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Abstract: The ever-increasing concerns over urban air quality, noise pollution, and considerable
savings in total cost of ownership encouraged more and more cities to introduce battery electric buses
(e-bus). Based on the sensor records of 99 e-buses that included over 250,000 h across 4.7 million
kilometers, this paper unveiled the relationship between driving behaviors and e-bus battery energy
consumption under various environments. Battery efficiency was evaluated by the distance traveled
per unit battery energy (1% SoC, State of Charge). Mix effect regression was applied to quantify the
magnitude and correlation between multiple factors; and 13 machine learning methods were adopted
for enhanced prediction and optimization. Although regenerative braking could make a positive
contribution to e-bus battery energy recovery, unstable driving styles with greater speed variation or
acceleration would consume more energy, hence reduce the battery efficiency. The timing window is
another significant factor and the result showed higher efficiency at night, over weekends, or during
cooler seasons. Assuming a normal driving behavior, this paper investigated the most economical
driving speed in order to maximize battery efficiency. An average of 19% improvement could be
achieved, and the optimal driving speed is time-dependent, ranging from 11 to 18 km/h.

Keywords: electric bus; battery efficiency; driving behavior; mixed effect regression; machine
learning methods

1. Introduction

Compared to conventional diesel or compressed natural gas buses, one of the biggest challenges
nowadays for e-buses is their high upfront cost ($570,000 vs. $450,000); however the cost parity was
forecasted to be reached before 2030 [1]. Total cost of ownership (TCO) of an e-bus includes the upfront
cost and additional operating cost over the lifespan. Many factors affect the TCO, including electricity
prices, average driving distances, charging configuration, and financing costs. The research discovered
that longer traveling distances favor e-bus and as battery prices keep on falling, the e-bus will become
more and more competitive on a TCO basis [1,2]. On top of the competitive TCO, e-buses also have
health and environmental benefits, because they do not produce tailpipe pollution and make much
less noise [3,4]. Due to these benefits, many European countries are accelerating the transformation of
zero emission vehicles (ZEV). For example, by 2025, Norway is aiming for transitioning to all ZEVs.
Following Norway, six other counties are targeting to achieve the transformation in 2030, including
Denmark, Iceland, Ireland, Netherlands, Slovenia, and Sweden [5]. The European Commission and the
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Committee of the Regions launched a dedicated initiative for clean buses—the Clean Bus Deployment
Initiative. Since then, many cities and regions have announced plans to stop purchasing fueled buses,
like Copenhagen, London, Berlin, and Oslo [6].

Although electric vehicles (EV) are environmental-friendly and able to benefit the development
of a sustainable urban transit system, an important concern is energy consumption estimation that
related to driver’s range anxiety—avoid driving with little energy remaining in the battery [7-9].
Energy consumption can be quantified via battery state of charge (SoC), which reflects the level of charge
compared to its capacity. SoC is scaled from 100% to 0%, where 100% represents a fully charged status
and 0% refers to an empty battery with no energy. EV energy consumption is driven by multiple aspects.
For example, the average travel speed and acceleration were rated by researchers [10] and they found
that the energy consumption for a passenger EV was extremely high when the average speed was below
20 km/h. Another case study in Beijing, China [9], analyzed the driving distance per SoC (DDPSoC)
using a four-door passenger EV. They applied robust nonlinear regressions to fit speed and DDPSoC
under three temperature conditions and identified 50 km/h as the most economical driving speed that
can reach the maximum remaining driving range. Both of the above-mentioned papers advised higher
speed to improve battery efficiency; but such speed strategies were designed for passenger EVs. As a
subset of EVs, e-buses mainly focus on moving people along stations on predetermined routes and
frequent stops are needed to serve passengers; therefore, this study hypothesized that e-bus optimal
speed strategy might be different from passenger EV. Research found that more than 30% of the energy
could be consumed by air conditioning, so the operational range of e-bus is significantly influenced by
the use of air conditioners [11,12]. Furthermore, the bus operator’s driving behavior is another critical
component, because abrupt acceleration or deceleration consumes more battery power, which can
greatly decrease the operational range [12,13].

After identifying potential factors (speed, temperature, air conditioning, and acceleration styles)
that linked to e-bus battery energy consumption from prior literature, statistical models can help to
understand the correlation. Different buses were operating in numerous routes under a variety of
roadway traffic conditions; however, detailed information was difficult to collect and measure directly.
For example, detailed information like roadway geometry along the bus route, detailed hourly city
weather conditions, passengers carried, etc., are not available for the current study. To incorporate
the vehicle-specific correlations and unobserved driving heterogeneity, a mixed effect modeling
framework was employed to understand the relationship between various factors and the target
variable. The modeling results are highly interpretable and widely used in many naturalistic driving
studies [14-17] and EV researches, like charging behavior studies [18-20] and energy consumption
estimation [21].

Besides the mixed effect models, machine learning algorithms were also frequently utilized in many
EV research areas because of the enhanced prediction accuracy; however, the model’s interpretability
is compromised [22]. For instance, both support vector machine (SVM) and multi-layer neural network
were applied to assess battery aging for real-world e-buses [23]. To predict charging demand at EV
charging stations, Decision Tree and Random Forest regressors were adopted [24,25]. Random Forest
regression can also estimate lithium-ion battery state-of-health [26] and state-of-charge [27]. Apart from
Random Forest, other ensemble methods like Gradient Boosting Tree were used for battery remaining
useful life prediction [28] and XGBoost algorithm for battery SoC estimation [29]. These ensemble
methods (e.g., XGBoost and Random Forest) were showing better accuracy for the research on EV
energy consumption, compared with linear family models (Lasso, Ridge, and Elastic Net) [30].

While prior battery energy consumption researches investigated multiple factors and analysis
methods, they were often focusing on the passenger EVs and limited by the sample size. The present
paper will extend existing research efforts on e-buses by evaluating a rich driving dataset collected
from 99 e-buses in seven cities during a long-term (15 months) period. Due to the unobserved driving
heterogeneity, the linear mixed effect regression was adopted in the result section to understand
hidden insights that are crucial to battery efficiency of e-buses. Studies proposed optimal driving speed
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strategies for passenger EVs; however, the present study hypothesized that such speed might not be
suitable for e-bus operations in urban public transport systems. After training and identifying the most
predictable machine learning model, an optimized bus traveling speed strategy will be presented in
the following section.

2. Materials and Methods

More than one year (from May 2017 to July 2018) of operational data were collected from
99 e-buses that were running at seven different cities in China. All of them were the same type
(Table 1) and the in-vehicle sensors, GPS (Global Positioning System) and BMS (Battery Management
System), were recording bus status every 10 s. For the average historical temperature (daily high, low,
and average), Figure 1 illustrates the distribution of seven cities in this study.

Table 1. E-bus specifications.

Parameters Specification
Curb Weight 12,600 kg
Engine Power 100 kW
Passenger Capacity 72
Length x Width x Height 8405 x 2500 x 3195 mm
Battery Type Lithium-ion (LiFePOy)
Battery Capacity 133 kWh
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Figure 1. Average historical daily temperature—high, low, and average.

This paper aims to analyze battery performance when a bus is running along the road; therefore,
data were aggregated based on the battery discharge period—it started as a bus left the charging
station or restarted, covered the driving time in the city transit network, and ended as a bus was
switched off. Figure 2 visualizes example driving profiles in two afternoons between 2 p.m. and 4 p.m.;
and in each afternoon, this particular bus experienced two battery discharge periods and one charging
status in-between. For each discharge period, several features were calculated, including average
speed, standard deviations of acceleration and deceleration, mileage, and SoC (State of Charge).
Using Figure 2 as an example, Table 2 summarizes statistics for each battery discharge period and the
calculated distance per SoC will be treated as the target variable in the following section.
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Figure 2. Example driving profile.

Table 2. Example summary statistics for four battery discharge periods from Figure 2.

Features Period #1 Period # 2 Period #3 Period #4

SoC Start (%) 74 82 82 88

SoC End (%) 65 75 77 82
Mileage Start (km) 5044 5062 7152 7166
Mileage End (km) 5062 5079 7166 7182
Average Speed (km/h) 20.82 20.03 21.98 19.92
Speed Standard Deviation (Std) 16.09 14.63 14.39 15.31
Overall Acceleration Std. 0.39 0.35 0.37 041
Deceleration Std. 0.28 0.25 0.26 0.29

Distance per SoC (km) (5062 — 5044) / (5079 — 5062) / (7166 — 7152) / (7182 — 7166) /

(74-65)=2.00 (82—-75)=2.64 (82-77)=2.80 (88 —82)=2.67

After data cleaning and aggregation, a total of 62,057 battery discharge periods were extracted,
covering 4,727,206 km traveled over 256,979 h. Table 3 provides the summary statistics of all continuous
modeling variables and three time-related categorical covariates that were extracted from GPS time
stamps. One is for meteorological temperate seasons, where Spring covers from March to May, with a
historical average daily temperature from 12 to 22 °C; Summer (25-26 °C) ranges from June to August,
Fall (19-26 °C) is between September and November, and Winter (8-12 °C) lasts from December till
February. The other is the time of day, where the daytime starts at 6 a.m. and the nighttime begins at
6 p.m. The third one considers weekdays (Monday to Friday) and weekends (Saturday or Sunday).
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Table 3. Summary statistics of modeling variables.

Variables Mean  Std. Range Count Description
Distance per SoC (km)  2.19 041 1.38-3.40 - Target variable
Average Speed (km/h)  19.88  3.42 5.66-42.21 -

Speed Standard Factors that reflect
Deviation (Std.) 1875 234 10.39-31.03 . driving behaviors
Overall Acce. Std. 0.41 0.10 0.12-1.46 -
Deceleration Std. 0.38 0.15 0.12-2.61 -
SoC Start (%) 89.07 12.36 14-100 -
Batt tate of ch,
SoC End (%) 53.76  18.30 11-97 : attery state of charge
Spring (12-22 °C) - - - 17,656
Summer (25-26 °C) - - - 19,338 Categorical seasonal
Fall (19-26 °C) - - - 14,354 factors
Winter (8-12 °C) - - - 10,709

Daytime - - - 59,810 .

! T fd

Nighttime - - - 2247 tmeotday

Weekday 44,058 Weekday (Mon. to Fri.)

Weekend 17,999 Weekend (Sat. & Sun.)

The general form of linear mixed effect model in matrix notation is listed in the following
equation [31]:
y=Xp+Zu+te¢ 1)

where y is the target variable with size N X 1; X is a N X p matrix with p predictors; g is the fixed-effect
coefficients with size p X 1; Z is the random complement to the fixed X with size NX ganduisag X 1
column vector of the random effects. ¢ is the residuals vector that accounts for the randomness that
cannot be explained by Xp + Zu. In this study, the bus-specific correlations need to be considered
to accommodate unobserved driving heterogeneity. The final modeling dataset has 62,057 records
(N = 62,057) with 99 e-buses (g = 99). All the continuous input variables were z-scored to allow effect
comparison across a uniform scale and the R package Ime4 (Linear Mixed Effects Models using ‘Eigen’
and S4) [32] was used to fit the model.

3. Results

In this session, the linear mixed effect regression model was estimated to quantify the magnitude
and correlation between multiple factors and battery efficiency. Then, after hyper-parameter fine-tuning,
training, random sampling, and comparing 13 different machine learning algorithms, the Random
Forest was identified as the most predictable method. At last, the Random Forest regressor was further
adopted to search the optimal speed using the stochastic differential evolution optimization.

3.1. Understanding Correlations Using Mixed Effect Modeling

Table 4 presents mixed effect modeling results for average distance traveled per SoC. The average
speed is statistically significant, and its positive coefficient indicates that the faster the speed, the longer
distance can be traveled per unit battery energy. The standard deviation of bus operation speed and
acceleration can reflect operator’s driving behaviors—the higher the speed variation, the greater the
driving fluctuations, and the higher the acceleration, the more excessive sudden pressing on brake or
gas pedals. Both of them have significant negative effects, suggesting that unstable driving behavior
can greatly increase battery energy consumption; hence reduce the distance traveled. The seasonal
indicator was treated as a categorical variable and the baseline is Spring. All of them are significant,
showing that environmental temperature plays an important role in battery energy consumption.
It is possible to assume that the higher the temperature (in Summer), the heavier usage of bus air
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conditioners, thus increasing the energy consumptions and shortening the total distance that can
be reached. More people use buses during daytime or weekdays, hence battery energy could be
exhausted faster with the heavier load. The positive coefficient of nighttime further validates such a
hypothesis—with carrying fewer passengers at night or weekends, the bus can travel longer.

Table 4. Mixed effect modeling results.

Estimate  Std. Error t Value Prob. (>|t))

Intercept 2273 0.025 90.02 <0.001
Speed Average 0.047 0.002 25.43 <0.001
Speed Std. —-0.020 0.003 -7.86 <0.001
Overall Acceleration Std. —-0.057 0.002 —26.48 <0.001
Deceleration Std. 0.041 0.002 20.42 <0.001
SoC Start 0.027 0.002 16.62 <0.001
SoC End 0.050 0.002 28.47 <0.001
Spring (12-22 °C) Baseline
Summer (25-26 °C) —-0.289 0.0031 —88.67 <0.001
Fall (19-26 °C) —-0.057 0.0034 -16.21 <0.001
Winter (8-12 °C) 0.086 0.0037 22.88 <0.001
Daytime (6 am—6 pm) Baseline
Nighttime (6 pm—6 am) 0.143 0.0072 19.42 <0.001
Weekend (Sat. or Sun.) Baseline
Weekday (Mon. to Fri.) —-0.007 0.0026 -2.43 0.015

3.2. Predicting Energy Consumption via Machine Learning

While mixed effect regression model is great for factor interpretation, the prediction accuracy
might be compromised due to its linear nature. In this section, several machine learning algorithms
(including both linear and non-linear methods) are assessed to explore the model’s prediction accuracy.

Figure 3 illustrates the framework used in the current paper for model hyperparameter tuning,
mode selection, and model validation. Thirteen machine learning estimators were tested, including
linear regressors (Linear Regression, Lasso, Ridge, Elastic Net, and Robust Huber Regression),
kernel-based method (Support Vector Machine), method with dimension reduction (PLS), multi-layer
perceptron (MLP) and deep neural network with dropout, tree-based method (Decision Tree),
and ensemble methods (Random Forest, Boosting Trees, and XGBoost). It is desired to identify
the most predictive method for the unseen data; therefore, the whole dataset was randomly divided
into training, validation, and testing samples, based on the ratio of 60%, 20%, and 20%. Each estimator
has a set of hyper-parameters (the parameter that used to control the learning process) and they
are tuned via an exhaustive grid search based on the training and validation dataset. Additionally,
to consider the randomness, this process was repeated 50 times via random sampling. Within each
iteration, 80% of the data were used to fine-tune the model and the remaining unseen 20% were
reserved as the testing data to verify the model’s performance.

Mean Square Error (MSE), the average squared difference between the predicted values and
the actual values, was chosen as modeling performance in Figure 4. The Random Forest regressor
outperforms other machine learning methods as evidenced by the lowest MSE scores for both training
and testing dataset. Figure 4 also embeds two parity plots for Random Forest at one iteration during
the process of random sampling, where the x-axis represents true values and y-axis is prediction.
The bottom one is for training performance and upper plot is based on testing dataset. Overall,
the model performance is good, as all the points clustered along the 45° diagonal line. However,
some systematic bias was observed, as the regressor overestimates (prediction is higher than true
value) at the lower end and underestimates (prediction is lower than true value) at the higher end.
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Figure 3. Framework for model hyperparameter tuning, mode selection, and model validation.
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Figure 4. Average MSE (Mean Square Error) for 13 different regression methods.

3.3. Optimization to Identify the Most Economical Driving Speed

Once the random forest estimator was fine-tuned and selected, the next question is to optimize
the target variable—maximizing total distance traveled per SoC (DPSoC) to achieve a higher battery
efficiency. Although there are multiple different input features for the random forest regressor,
this study aims to find the most economical driving speed based on typical driving behavior and
driving environment during weekdays. The median values were adopted to represent a typical driving
behavior—an operator started a bus with 97% charge, after driving it normally (with 18.64 km/h as
speed standard deviation, 0.39 as overall acceleration variation, and 0.33 as deceleration variation)
along city transit network, this bus consumed 43% battery energy and returned to charging station
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with an ending SoC of 54%. As discovered by the statistical model, timing is critical to e-bus better
performance; therefore, the optimization was conducted based on eight different situations:

max DPSoC
SPEEdmean

= RandomForest(Speedmean, Speedsiq, Acce.sq, Dece.sq, S0Cstart, S0C,pq, Time)

subject to : Speedsy = 18.64, Accesq = 0.39, Decesq = 0.33, SoCstart = 97%, S0Cepg

= 54%, Time @)

Equation (2) summarizes objective function which subjects to some normal driving
assumptions. Random Forest is an ensemble black-box model with limited information of gradient.
Differential evolution optimization was utilized because it is a stochastic method and does not
depend on the gradient to find the optimum [33]. Table 5 provides the optimization results with
respect to different time windows. It was impossible to find the identical constrains (speed variation,
acceleration/deceleration, and SoC as listed in Equation (2) from the historical dataset; therefore,
the existing unoptimized distance per SoC was approximated by averaging all the data points around
the constrains within a +2.5% buffer (increase the buffer by a step of 0.25% if no data point was
identified). An average of 19.5% improvement was observed after applying the most economical
speed strategy.

Table 5. The most economical e-bus speed.

Most Economical Maximum Distance =~ Approximated Existing  Improve

Season Time Speed (km/h) per SoC (km) Distance per SoC (km) (%)
Spring Day 11.13 2.35 2.19 7.4%
Spring Night 11.11 2.36 1.65 42.8%
Summer Day 18.48 1.95 1.89 3.5%
Summer  Night 32.15 1.96 221 -11.1%
Fall Day 17.30 2.31 1.89 22.1%
Fall Night 17.45 2.30 2.34 -1.4%
Winter Day 11.49 2.36 1.56 51.1%
Winter Night 11.39 2.36 1.67 41.3%

4. Discussion

There were approximately 385,000 e-buses globally in 2017 and 99% of them were operated in
China [1]. Inspired by 99 e-buses from seven cities in China, the present paper treated the total distance
traveled per unit SoC as a surrogate for battery efficiency and researched its correlations with driving
behaviors under various environments.

Statistical model with mixed effects can consider the unobserved driving heterogeneity and
quantify the correlation and magnitude of each factor. Specifically, the average driving speed is essential
to battery efficiency, and the higher the speed, the longer distance could be traveled. Both speed
variation and acceleration can reflect driving behavior, which could be attributable to operator’s
intrinsic driving style or traffic conditions. Their modeling coefficients were negative, indicating that
the more unstable maneuvers that were performed, the shorter distance can be covered per unit battery
energy. Dedicated bus lanes (DBL) can free buses from traffic interference [34] and the study found that
it could save bus running time and reduce the operation variability [35]. To provide a better driving
environment and enhance battery efficiency further, DBL is recommended, because operators can
drive faster and smoother. As for the phenomenon of regenerative braking, this should be partially
reflected by the standard deviation of deceleration during each battery discharge period. Its coefficient
is positive, suggesting that regenerative braking can make a positive contribution to e-bus battery
energy recovery.



Sustainability 2020, 12, 10007 90f12

In addition to different driving behaviors, this paper also identified strong correlations between
battery energy consumption and timing windows. Temporal factors like time of day and day of week
are considerable, and e-buses can travel 6.3% longer per unit battery energy at night and 0.3% longer
over weekends. This improvement makes sense because the daytime traffic is always more congested
than nighttime and with fewer passengers on the bus, the battery can last longer. Seasonal effect is
another dominant factor. Assuming Spring is the baseline, the battery efficiencies were reduced during
hotter months—12.7% and 2.5% reduction for Summer and Fall, respectively, whereas battery efficiency
was increased by 3.8% during Winter. It is well acknowledged that a lithium-ion battery cell often
performs worse at a lower temperature due to the increased resistance. However, most of the buses in
the current study were operated in warm southern cities in China, where the average temperature
during Winter is around 10 °C. Although the detailed data is not available, it is highly possible that the
major battery efficiency reduction during Summer is caused by air conditioning usage.

While mixed effect model helps to understand correlations among existing historical data, its ability
to predict the unknown is limited. After a comprehensive evaluation of 13 machine learning algorithms,
the Random Forest was chosen because of its lowest modeling errors in both training (understanding
existing patterns) and testing (predicting unknown) datasets. It was integrated into the next analysis
stage—identifying the optimum speed that can assist bus drivers to travel longer within a unit SoC.
Results found that the average maximum distance which could be achieved is about 2.24 km per
unit battery energy, with a reduction in Summer (1.96) and increase in Spring (2.36), Fall (2.31) and
Winter (2.36). As hypothesized, the optimal speed strategy for e-bus is much lower than the previous
researches on passenger EVs; and an average of 19.5% improvement could be achieved based on the
most economical speed under a normal driving style. Unlike passenger EVs, e-bus serves as public
transportation and our results can provide a scientific guidance to help bus drivers better control e-bus
with a greater energy efficiency.

5. Conclusions

This paper processed a comprehensive dataset (55 GB) that is composed of the data collected
from 99 e-buses in seven cities in China over one year. Various driving behaviors (average speed,
speed variation, and acceleration) were linked to battery efficiency and a stable driving style would be
appreciated for a higher efficiency. Different timing windows were also proven to achieve a higher
battery efficiency, probably due to fewer passengers at night and less air conditioning usage during
cooler seasons.

By analyzing historical datasets, one can learn from prior experiences; but more importantly,
one wants to forecast the unknown future. This paper introduced a framework that starts with
understanding existing data via mixed effect regression; followed by a comprehensive model selection
and evaluation, in order to pick up a method with the most prediction power. This case study
pinpointed the Random Forest to be the best candidate and applied it in the optimization stage for a
more productive battery usage plan. The findings of the most economical speed were recommended,
which could be served as an actionable bus operating guideline during different times.

As the current paper only analyzed a portion of dataset, more actions are planned in the
future; for example, including the battery details (current and voltage information) and engine status
(rotation speed and torque). Neural network methods (MLP and deep neural net) were tested in the
current study; however, their performances were not good enough. With a much more complex layer
structure (activation function, dropout rates, learning rates, etc.) to explore, it is possible that the
current research did not identify the suitable deep learning models. More deep learning methods will
be studied by the team in the future. GPS data were collected but the GIS (Geographic Information
System) roadway profile data was not available for the current study, which made it impossible to
compare battery performance under various roadway conditions (ramp, straight/curved road, or slope).
Although mixed effect model can account for these unobserved driving heterogeneities to some extent,
further study is recommended based on the roadway profile data. Admittedly, temperature has a
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great influence on the battery energy consumption; however, the current research only considered the
seasonal aspect, which lost the detailed insights in daily or hourly levels. Although itis a lengthy process,
the research team is currently collecting detailed weather information (wind speed, temperature,
precipitation, etc.) from each city in a much granular level to further extend the research in the future.
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