
Noname manuscript No.
(will be inserted by the editor)

Distributed Learning Automata-Based Scheme for
Classification Using Novel Pursuit Scheme

Morten Goodwin, Anis Yazidi

the date of receipt and acceptance should be inserted later

Abstract Learning Automata (LA) is a popular decision making mechanism
to “determine the optimal action out of a set of allowable actions” [1]. The dis-
tinguishing characteristic of automata-based learning is that the search for the
optimising parameter vector is conducted in the space of probability distri-
butions defined over the parameter space, rather than in the parameter space
itself [2]. Recently, Goodwin and Yazidi pioneered the use of Ant Colony Op-
timisation (ACO) for solving classification problems [3]. In this paper, we pro-
pose a novel classifier based on the theory of LA. The classification problem
is formulated as a deterministic optimization problem involving a team of
LA that operate collectively to optimize an objective function.

Although many LA algorithms have been devised in the literature, those
LA schemes are not able to solve deterministic optimization problems as they
suppose that the environment is stochastic. In this paper, we develop a novel
pursuit LA which can be seen as the counterpart of the family of pursuit
LA developed for stochastic environments [4]. While classical pursuit LA are
able to pursue the action with the highest reward estimate, our pursuit LA
rather pursues the collection of actions that yield the highest performance.
The theoretical analysis of the pursuit scheme does not follow classical LA
proofs and can pave the way towards more schemes where LA can be applied
to solve deterministic optimization problems.

When applied to classification, the essence of our scheme is to search for
a separator in the feature space by imposing a LA based random walk in a

Morten Goodwin
Centre for Artificial Intelligence Research
University of Agder
E-mail: morten.goodwin@uia.no

Anis Yazidi
Dept. of Computer Science
Oslo Metropolitan University
E-mail: anis.yazidi@oslomet.no

2 Morten Goodwin, Anis Yazidi

grid system. To each node in the gird we attach an LA, whose actions are
the choice of the edges forming the separator. The walk is self-enclosing, i.e.,
a new random walk is started whenever the walker returns to starting node
forming a closed classification path yielding a multiedged polygon. In our ap-
proach, the different LA attached at the different nodes search for a polygon
that best encircles and separates each class. Based on the obtained polygons,
we perform classification by labelling items encircled by a polygon as part of
a class using ray casting function.

Seen from a methodological perspective, PolyPursuit-LA has appealing
properties compared to SVM. In fact, unlike PolyPursuit-LA, the SVM perfor-
mance is dependent on the right choice of kernel function (e.g. Linear Kernel,
Gaussian Kernel)— which is considered a “black art”. PolyPursuit-LA can
find arbitrarily complex separators in the feature space.

Experimental results from both synthetic and real-life data show that our
scheme is able to perfectly separate both simple and complex patterns out-
performing existing classifiers, including polynomial and linear SVM, with-
out the need of any “kernel trick”. We believe that the results are impressive
given the simplicity of PolyPursuit-LA compared to other approaches such
as SVM.

Keywords Classification, Learning Automata, Polygons.

1 Introduction

Learning Automata (LA) have been used in systems that have incomplete
knowledge about the Environment in which they operate [1,5–11]. The learn-
ing mechanism attempts to learn from a stochastic Teacher which models the
Environment. In his pioneering work, Tsetlin [12] attempted to use LA to
model biological learning. In general, a random action is selected based on
a probability vector, and these action probabilities are updated based on the
observation of the Environment’s response, after which the procedure is re-
peated.

The term “Learning Automata” was first publicised and rendered pop-
ular in the survey paper by Narendra and Thathachar. The goal of LA is to
“determine the optimal action out of a set of allowable actions” [1]. The dis-
tinguishing characteristic of automata-based learning is that the search for the
optimising parameter vector is conducted in the space of probability distri-
butions defined over the parameter space, rather than in the parameter space
itself [2].

With regard to applications, the entire field of LA and stochastic learning
has had a myriad of applications [5–7, 9, 10], which (apart from the many ap-
plications listed in these books) include solutions for problems in network
and communications [13–16], network call admission, traffic control, qual-
ity of service routing, [17–19], distributed scheduling [20], training hidden
Markov models [21], neural network adaptation [22], intelligent vehicle con-
trol [23], and even fairly theoretical problems such as graph partitioning [24].

Distributed Learning Automata Classification 3

In addition to these fairly generic applications, with a little insight, LA can be
used to assist in solving (by, indeed, learning the associated parameters) the
stochastic resonance problem [25], the stochastic sampling problem in com-
puter graphics [26], the problem of determining roads in aerial images by
using geometric-stochastic models [27], and various location problems [28].
Similar learning solutions can also be used to analyse the stochastic prop-
erties of the random waypoint mobility model in wireless communication
networks [29], to achieve spatial point pattern analysis codes for GISs [30],
to digitally simulate wind field velocities [31], to interrogate the experimen-
tal measurements of global dynamics in magneto-mechanical oscillators [32],
and to analyse spatial point patterns [33]. LA-based schemes have already
been utilised to learn the best parameters for neural networks [22], optimis-
ing QoS routing [19], and bus arbitration [14] – to mention a few other appli-
cations.

Although many LA algorithms have been devised in the literature, those
LA schemes are not able to solve deterministic optimization problems as they
suppose that the environment is stochastic. In this paper, we develop a novel
pursuit LA which can be seen as the counterpart of the family of pursuit
LA developed for stochastic environments [4]. While classical pursuit LA are
able to pursue the action with the highest reward estimate, our pursuit LA
rather pursues the collection of actions that yield the highest performance.
The theoretical analysis of the pursuit scheme does not follow classical LA
proofs and can pave the way towards more schemes where LA can be applied
to solve deterministic optimization problems.

Supervised Learning is one of the most central tasks in Machine Learn-
ing and Pattern Recognition. However, the latter task becomes intrinsically
challenging whenever the data to be classified is not easily separable in the
feature space. A myriad of classification algorithms have been proposed in
the literature with a variety of behaviours and limitations [34–36]. Examples
of these algorithms include Neural Networks, SVM and Decision trees.

A broad class of classification algorithms, including SVM and percep-
tion relies upon defining a mathematical function with weights as unknown
that efficiently can separate two or more classes of data where the unknown
weights are learned for the training data. These functions are called kernels
in the case of SVM and linear functions in case of perception.

However, the main difficulty is to choose the nature of this function (lin-
ear or non-linear). Often, the “best” hyperplane to separate classes does not
follow the function’s mathematical properties. For example, the “best” line
can be a polygon encircling certain data points, which is not a function and
therefore cannot straightforward be outputted by SVM or similar classifiers.

Different types of kernels were proposed in SVM so that deciding the
”shape” of the separator would not be limited to linear separators. How-
ever, the accuracy of the SVM is dependent on making the correct choice of
the kernel function which is not an easy task given the unlimited number of
available kernels.

4 Morten Goodwin, Anis Yazidi

Figure 1 shows an example of labeled data where it is not possible to
perfectly separate the data with one function simply because any line that
perfectly separates the data has multiple y−values of a certain number of
the x−values — which defies the definition of mathematical functions. SVM
deals with this by projecting the data in high dimensional space using the
“kernel trick” in which the data can be easily separable.

This paper introduces PolyPursuit-LA, a novel classification scheme op-
erating in two dimensions using LA and that not involving a ”kernel trick”
whenever the data is not easily separable. The presented approach deals with
classification problem in two-dimensional Euclidean by building ”separator”
with many-sided polygons. The polygons are extrapolated from reinforced
random walkers showing a preference towards encapsulating of all items
from one class and excluding from the encapsulation any items from other
classes. Thus, emerging polygons encapsulate each class in such a manner
that they can be used as classifiers. The classification takes place by resort-
ing to ray casting unknown items that identifies which polygon(s), if any, an
item is contained in. Each item is labeled depending on which polygons the
item is part of. It is worth mentioning that recently, Goodwin and Yazidi pi-
oneered the use of ant colony optimisation (ACO) for solving classification
problems [3]. In this paper, we propose a novel classifier in two-dimensional
feature spaces based on the theory of Learning Automata (LA). There are
some fundamentals. As Dorigo and Gianni Di Caro point out: ”the main dif-
ference lies in the fact that in ACO the environment signals (i.e., the ants) are
stochastically biased, by means of their probabilistic transition rule, to direct
the learning process towards the most interesting regions of the search space.
That is, the whole environment plays a key, active role to learn good state-
action pairs” [37]. Our devised pursuit LA is a contribution in itself in the
field of LA as it is the first LA that operates in deterministic environment.
Many Pursuit LA algorithms have been already devised for stochastic envi-
ronment where the LA pursues the action with highest average reward [4,38].
In our case, we operate under a deterministic environment and thus the idea
of average reward is not existent. We should emphasize that the current theo-
retical analysis presented in this article is general and can be provide a funda-
mental for development for more schemes where LA can be applied to solve
deterministic optimization problems.

1.1 Outline

The paper is organised as follows. Section 2 introduces the problem that we
attempt to solve.

Section 3 reviews relevant state-of-the-art approaches in the area of classi-
fiers. Section 4 provides a brief introduction to the theory of LA which is the
basis for our approach reckoned as PolyPursuit-LA. Section 5 continues by
introducing our solution: PolyPursuit-LA as a method for creating polygons
for classification using two classes and corresponding results. We then ex-

Distributed Learning Automata Classification 5

Fig. 1 Example of simple two class classification scenario with the classes Black (T1) and Gray
(T2)

tends the two-class approach to a multi-class classification problem. Section
6 provide some comprehensive experimental results. In Section 7, we draw
conclusions and provide insights into further areas for study.

2 Problem formulation

Classification of unknown items based on labeled data is a supervised learn-
ing problem. In line with common practice, the problem is divided into two
phases, namely (1) training and (2) classification:

1. Training phase: The aim of this phase is to create polygons that encircles
classes of items so that the polygons separate the training classes from
each other.

2. Classification phase: In this phase, we use the polygons as a basis to de-
termine to which class a new unknown item to be classified belongs. This
is achieved by finding the polygon(s) of which it is a part.

Further, this paper presents two distinct variants of PolyPursuit-LA:

1. LA polygon classification for two-class classification problems.
2. LA polygon classification for multi-class classification problems.

2.0.1 The training phase

This training phase can be formulated as a combinatorial optimisation prob-
lem. The training data, T , consists of multiple classes. The data is mapped to
a two dimensional Euclidean space as follows. A grid-like bidirectional pla-
nar graph G(V,E) with vertices i ∈ V and edges (i, j) ∈ E is created where

6 Morten Goodwin, Anis Yazidi

i, j ∈ V . All vertices have x− and y− coordinates and corresponding edges
so that an edge (i, j) represents the possibility to move from vertex i to j. The
vertices in the graph are defined so that the first vertex, 1 always has lower
x− and y−values than all the training data. Similarly, the last vertex, N , has
x− and y−values larger than the training data. Hence, all the training data
ti ∈ T lies somewhere between vertices 1 and N , 1 < ti < N∀ti∈T .

Two-class classification problem An example is shown in Figure 1. In this exam-
ple T consists of 17 items, 6 in the black class T1 and 11 in the gray class T2.
The grid G(V,E) is created so that all items is located in the grid.

To deduct, the main purpose of the training phase is to find a polygon,
s, that encircles and separates the training classes.1 Using the example form
Figure 1 the task is to find an s that encircles the first training data T1, but not
T2 — a polygon that efficiently separates T1 from T2.

A polygon s is therefore a list of vertices and edges so that the first vertex
in s is equal to the last vertex in s, and all vertices are connected together with
corresponding edges. All polygons that are possible to extract from the graph
G(V,E) are contained in the search space S.

When operating with two classes, say T1 and T2, there is only a need for
one polygon to perfectly separate the data.

Whether or not a training element ti is inside a polygon s ∈ S is defined
as the following:

h(ti, s) = 1 if ti is inside of s
h(ti, s) = 0 otherwise

(1)

Ideally, all items in class one (e.g. T1) should lie within the polygon, while
all items in other classes should fall outside the polygon. Any item, ti from
class T1 that is correctly located within the polygon s will yield h(ti, s) = 1,
similarly, any item, tj not part of class T1 and correctly lying outside of the
polygon s will yield 1 − h(tj , s) = 1. For all other items, h(., s) will produce
0. Further let f(s) be a function that combines h(ti, s) for all ti ∈ T so that an
ideal polygon that encapsulates all items in T1 and no other items will yield
an f(s) = 1. An incorrect polygon, one that incorrectly encapsulates all other
items than T2 and none in T1, will yield an f(s) = 0.2

The overall aim of the training phase can therefore be stated as attempt-
ing to find a polygon s∗ for each class, consisting of vertices and edges, that
minimises f(s∗). Thus, formally speaking, we aim to find an s∗ ∈ S so that
f(s∗) ≤ f(s) ∈ S. Keeping this aim in mind, we use LA as explained in sec-
tion 4.

Multi-class classification problem In the case of classification with more than
two classes, one polygon is not sufficient to separate all classes. There is a
need to separate each class from the others. For example, let us suppose there

1 In the case of multi-class classification, more than one polygon is required.
2 f(s) is formally defined in section 5.

Distributed Learning Automata Classification 7

are three classes: T1,T2, and T3. In simple terms, we need a classifier that iden-
tifies an item as belonging to T1, one to T2, and one to T3. This is done by
finding one polygon that separates T1 from the rest, and so on.

The output from the training phase is therefore a list of classifiers rather
than one single s∗. Following the same example with three classes, we have
one classifier that decides whether an item is part of T1, s∗T1

, and one that
decides whether an item is part of T2, s∗T2

. If it is neither part of T1 nor T2, it
naturally belongs to T3. Hence, the number of classifier is one less than the
number of classes.

For N classes, we get the following N − 1 classifiers:

s∗all = {s∗T1
, s∗T2

, . . . , s∗TN−1
} (2)

2.0.2 The classification phase

The classification phase resorts to the polygons from the training phase. The
classification task is to find to which class a new item with unknown label, tk,
belongs. The problem formulation depends on whether we are dealing with
(1) two-class classification problems or (2) multi-class classification problems.

Two-class classification problem Since the training phase produces one poly-
gon, s∗, the two-class classification problem is reduced to simply determin-
ing whether a new item is located within or outside s∗. The problem can be
stated as follows: given the polygon s∗ and a new item with unknown label,
tk, which class does tk belong to? Using the update function from equation 1,
given two classes T1 and T2 and the polygon s∗ we can define the following
decision rules:

tk is of class T1 if h(tk, s∗) = 1

tk is of class T2 if h(tk, s∗) = 0
(3)

Multi-class classification problem The classification phase uses the set of poly-
gons, s∗all (see equation 2), from the training phase. The task is to classify an
unlabeled item tk. The following decision rules are used in the case of multi-
class classification:

tk is of class T1 if h(tk, s∗T1
) = 1

tk is of class T2 if h(tk, s∗T2
) = 1

. . .

tk is of class TN−1 if h(tk, s∗TN−1
) = 1

tk is of class TN otherwise

. (4)

In simple terms, the above classification rules mean simply that if the item
to be classified is part of the first polygon s∗T1

, it should be classified as the
label corresponding to the first polygon, T1. Otherwise, if it is part of s∗T2

, it
should be classified as T2, and so on. However, if the item is not part of any
of the polygons of the TN−1 classes, it will be labelled as the class TN .

8 Morten Goodwin, Anis Yazidi

3 Related Work

3.1 Distributed LA on a Graph

Misra and Oommen pioneered the concept of LA on a graph using pursuit
LA [13, 39, 40] for solving the stochastic shortest path problem. Li [41] used a
type of S Learning Automata [42] to find the shortest path in a graph. Beigy
and Meybodi [43] provided the first proof in the literature that demonstrates
the convergence of distributed LA on a graph for a reward inaction LA. Con-
cerning applications of distributed LA on a graph in the field of computer
communications, we refer the reader to the work of Torkestani and collabo-
rators [44–46].

3.2 Some related LA work for classification and function optimisation

In order to put our work in the right perspective, we will briefly discuss dif-
ferent classification schemes relevant to this work from the field of LA theory.
A similar work to ours is due to Thathachar and Sastry [47] where the au-
thors use a team of LA in order to find the optimal discriminant function in a
feature space. The discriminant functions are parametrised, and a parameter
is attached to each that is to be learned. Subsequently, Santharam et al. [48]
proposed using continuous LA in order to deal with the disadvantages of
discretisation, thus allowing an infinite number of actions. For an excellent
review on the application of LA to the field of Pattern Recognition we refer
the reader to [49] . In [50], Zahiri devised an LA based classifier that operates
using hypercubes in a recursive manner. We believe that the latter idea can
be used to extend our current solution: PolyPursuit-LA for handling multi-
dimensional classification problems. In [51], the authors have proposed LA
optimisation methods for multimodal functions. Through experimental set-
tings, the performance of these algorithms were shown to outperform genetic
algorithms. In [52], the authors propose genetic LA for optimising functions.
Similarly, the work [53] proposed genetic algorithms for classifiers.

3.3 ACO for classification

Swarm intelligence denotes a set of nature-inspired paradigms that have re-
ceived a lot of attention in computer science due to their simplicity and adapt-
ability [54]. ACO figures among the most popular swarm intelligence algo-
rithms due to its ability to solve many optimisation problems. ACO involves
artificial ants operating a reinforced random walk over a graph. The ants re-
lease pheromones in favorable paths which subsequent ant members follow
creating a reinforcement learning based behaviour. The colony of ants will
thus concentrate its walk on the most favorable paths and in consequence
iteratively optimise the solution [55].

Distributed Learning Automata Classification 9

ACO was first applied to find shortest path from a source to a sink in
bidirectional graphs. ACO has later found increased popularity due to its
low complexity and ability to work in dynamic environments. The flexibil-
ity of ACO is apparent as it has been shown to be used in a wide variety
of problems [54] such as solving NP hard problems [56], traffic optimisa-
tion [57], evacuation path computation in emergency situations [58, 59], clas-
sification with neural networks, [60] Bayesian classifiers [61], rule based clas-
sification [62] and routing in communication networks.

Finding the shortest path in a bidirectional graph with vertices and edges
G(V,E) using ACO in its simplest form works as follows. Artificial ants move
from vertex to vertex. An ant that finds a route s from the source vs to the sink
vt will release pheromones τi,j corresponding to all edges ei,j ∈ s.

A considerable amount of work for ACO classification tasks was reported
in the literature. The existing approaches fall into two main categories: (1)
Rule based extractors, and (2) Hybrid approaches involving ACO that at-
tempt to improve and enhance the quality of existing classifiers.

The rule based classifiers [62–64] construct graphs by letting the ants walk
with preference towards common occurring examples so that strong pheromone
trails are used as rules in the classifier, or a set of IF-THEN rules [65]. The most
notable rule based ACO classifiers are probably the AntMiner series [66] in-
cluding: AntMiner [63, 67], AntMiner2 [63], AntMiner3 [62], AntMiner+ [64]
and new variantssuch as MAnt-Miner [68] and TACO-miner [69]. All the
aforementioned AntMiner variants rely on the idea of letting the ant walk
“on” examples so that the pheromone trails can yield usable rules. Many
other rule-based schemes exist, including rule extractor for web page clas-
sification [70].

The hybrid approaches use ACO to improve the performance of legacy
classifiers, for example in feed forward neural networks [71–73]. For exam-
ple, in the latter case, this is achieved by letting the ants minimize a function
consisting of a set of decision variables corresponding to the neuron param-
eter weights. Furthermore, there is a multitude of hybrid ACO variants for
Bayesian networks [74–78], multi-net classifiers [61], fuzzy rule-based sys-
tems [79], and rule pruning [80].

Classification problems usually involve usually finding classification bound-
aries in feature spaces. Among the early and most popular classifier figures
the perception algorithm. There are other classes of algorithms that are worth
investigating as an alternative method to LA for solving our classification
problem which include nature-inspired algorithms such as Butterfly [81], Mul-
tilayer Perceptron which we compared to in the experiments, Convolutional
Neural Networks [82], Particle Swarm [83], and commercial softwares such
as IBM Bluemix [84].

Perception works based on ”error-driven learning” where it iteratively
learns a linear separator model by adjusting the weights of the model when-
ever it has misclassified an item from the training data.

However, the major limitation of perception algorithm is the fact that it
only finds a linear decision boundary which works well for linearly separa-

10 Morten Goodwin, Anis Yazidi

ble data but fails to handle the case of non-linearly separable data. In order to
deal with the limitation of linear classifier, non-linear SVM variants were pro-
posed. SVM tries to circumvent over-fitting by choosing the maximal margin
hyperplane where the margin is the shortest distance between the decision
boundary and any of the data points. Despite the well recognised perfor-
mance of SVM in the machine learning community, the task of choosing the
right type of kernel, for example, linear, polynomial, Gaussian is considered
to be a black art!

A powerful concept in SVM is the ”kernel trick” where the input data are
mapped to higher-dimensional feature space in which the data items can be
separable.

4 Learning Automata

In the field of Automata Theory, an automaton [5–7,9,10] is defined as a quin-
tuple composed of a set of states, a set of outputs or actions, an input, a func-
tion that maps the current state and input to the next state, and a function
that maps a current state (and input) into the current output.

Definition 1: A LA is defined by a quintuple 〈A,B,Q, F (., .), G(.)〉, where:

1. A = {α1, α2, . . . , αr} is the set of outputs or actions that the LA must
choose from, and α(t) is the action chosen by the automaton at any instant
t.

2. B = {β1, β2, . . . , βm} is the set of inputs to the automaton. β(t) is the input
at any instant t. The set B can be finite or infinite. The most common LA
input is B = {0, 1}, where β = 0 represents reward, and β = 1 represents
penalty.

3. Q = {q1, q2, . . . , qs} is the set of finite states, where Q(t) denotes the state
of the automaton at any instant t.

4. F (., .) : Q×B 7→ Q is a mapping in terms of the state and input at the in-
stant t, such that, q(t+1) = F [q(t), β(t)]. It is called a transition function, i.e.,
a function that determines the state of the automaton at any subsequent
time instant t+ 1. This mapping can either be deterministic or stochastic.

5. G(.): is a mapping G : Q 7→ A, and is called the output function. G de-
termines the action taken by the automaton if it is in a given state as:
α(t) = G[q(t)]. With no loss of generality, G is deterministic.

If the sets Q, B and A are all finite, the automaton is said to be finite.
The Environment, E, typically, refers to the medium in which the au-

tomaton functions. The Environment possesses all the external factors that
affect the actions of the automaton. Mathematically, an Environment can be
abstracted by a triple 〈A,C,B〉. A, C, and B are defined as follows:

1. A = {α1, α2, . . . , αr} is the set of actions.

Distributed Learning Automata Classification 11

2. B = {β1, β2, . . . , βm} is the is the output set of the Environment. Again,
we consider the case when m = 2, i.e., with β = 0 representing a “Re-
ward”, and β = 1 representing a “Penalty”.

3. C = {c1, c2, . . . , cr} is a set of penalty probabilities, where element ci ∈ C
corresponds to an input action αi.

The process of learning is based on a learning loop involving the two en-
tities: the Random Environment (RE), and the LA, as described in Figure 2.
In the learning process, the LA continuously interacts with the Environment
to process responses to its various actions (i.e., its choices). Finally, through
sufficient interactions, the LA attempts to learn the optimal action offered by
the RE. The actual process of learning is represented as a set of interactions
between the RE and the LA.

Input Output

State Q

Transition Function

Output Function

F

G

Automaton

EnvironmentPenalty probabilities C

Fig. 2 Feedback Loop of LA.

The automaton is offered a set of actions, and it is constrained to choosing
one of them. When an action is chosen, the Environment gives out a response
β(t) at a time “t”. The automaton is either penalized or rewarded with an
unknown probability ci or 1 − ci, respectively. On the basis of the response
β(t), the state of the automaton φ(t) is updated and a new action is chosen at
(t+1). The penalty probability ci satisfies:

ci = Pr[β(t) = 1|α(t) = αi] (i = 1, 2, . . . , R).

We now provide a few important definitions used in the field. P (t) is re-
ferred to as the action probability vector, where,P (t) = [p1(t), p2(t), . . . , pr(t)]

T ,
in which each element of the vector.

pi(t) = Pr[α(t) = αi], i = 1, . . . , r, such that
r∑
i=1

pi(t) = 1 ∀t. (5)

12 Morten Goodwin, Anis Yazidi

Given an action probability vector, P (t) at time t, the average penalty is:

M(t) = E[β(t)|P (t)] = Pr[β(t) = 1|P (t)]

=

r∑
i=1

Pr[β(t) = 1|α(t) = αi] Pr[α(t) = αi] (6)

=

r∑
i=1

cipi(t).

The average penalty for the “pure-chance” automaton is given by:

M0 =
1

r

r∑
i=1

ci. (7)

As t 7→ ∞, if the average penalty M(t) < M0, at least asymptotically, the au-
tomaton is generally considered to be better than the pure-chance automaton.
E[M(t)] is given by:

E[M(t)] = E{E[β(t)|P (t)]} = E[β(t)]. (8)

A LA that performs better than by pure-chance is said to be expedient.

Definition 2: A LA is considered expedient if:

limt7→∞E[M(t)] < M0.

Definition 3: A LA is said to be absolutely expedient ifE[M(t+1)|P (t)] < M(t),
implying that E[M(t+ 1)] < E[M(t)].

Definition 4: A LA is considered optimal if limt 7→∞E[M(t)] = cl,where cl =
mini{ci}.

It should be noted that no optimal LA exist. Marginally sub-optimal perfor-
mance, also termed above as ε-optimal performance, is what LA researchers
attempt to attain. Definition 5: A LA is considered ε-optimal if:

limn 7→∞E[M(t)] < cl + ε, (9)

where ε > 0, and can be arbitrarily small, by a suitable choice of some param-
eter of the LA.

5 PolyPursuit-LA

This section presents our approach to two-class classification by introducing
PolyPursuit-LA. For the training phase, it maps the classification problem to
a combinatorial optimisation problem over the set of all different polygons
in a grid system and by formally specifying an appropriate cost function that
encircles one class. Thus, PolyPursuit-LA trains the classifier by defining a

Distributed Learning Automata Classification 13

Labeled data Polygon

Unknown items
to be labeled

Class 1: T1
Class 2: T2

Training Classification

LA Ray tracing

Fig. 3 Overview of approach applied to a simple two-class classification problem.

polygon s. Subsequently, it uses s with ray casting in order to discover if an
item is part of the s.

Figure 3 presents an overview of the approach in the case of a simple two-
class classification problem. The data is separated using a team of distributed
LA yielding a polygon. Next, the polygon is used in the classification with
ray casting. In this example, the first item to be labeled will be classified as
a T1 (“Class 1”) since it is shown to lie inside the polygon, while the second
item will be classified as T2 (“Class 2”) since it lies outside the polygon.

In order to use a team of distributed LA for encircling points into poly-
gons, we resort to a cost function that measures the quality of PolyPursuit-LA
solution. In order to discover whether or not a point lies within a polygon we
use ray casting.

5.1 Distributed LA

At each epoch, a polygon is chosen randomly according to a distribution over
a set of possible paths. The polygon represents a self enclosing path where the
source coincides with the destination. The observed performance (classifica-
tion accuracy) is used to reinforce the polygon by increasing the probability
of choosing it again. Since the paths yielding low performance receive weak
reinforcement signals, they are chosen less frequently. Thus the scheme can
adaptively focus more resources on paths that yield high performance.

Given a grid modeled as a graph G = (V,E), where V = {1, ...,m} is the
set of nodes in the graph, and E is the set of directed links in the graph. We
attach an LA to each node in the graph. The action of each LA attached to a
node is the choice of the next hop (neighbor node). Let N(i) be the set of the
neighbors of a node i.

The automaton’s state probability vector at the node i at time t is Pi(t) =
[p(i,j1)(t), p(i,j2)(t) . . . p(i,j|N(i)|)(t)]. where |N(i)| is the number of node i.

Thus, p(i,j)(t) is the probability at time instant t to select the node j as next
hop when being in node i.

The normalized feedback function (or reward strength) is given by f(s(t)),
where s(t) is the path taken at instant t. The function f(.) will be specified in
the next section. Informally speaking f(.) measures the fitness of the solution

14 Morten Goodwin, Anis Yazidi

taking values from [0, 1] where 0 is the lowest possible reward while 1 is the
highest reward.

Let s∗(t), the optimal path found so far, i.e, the path with highest accuracy
obtained up to time instant (t).

The idea of pursuit here is to reward the LA whose actions (edges) lie
along s∗(t).

We consider the LA update equations at node i where i ∈ s∗(t). For all
neighbors j, i.e., j ∈ N(i), the update is given by:

p(i,j)(t+ 1) = (1− θt)δj + θtp(i,j)(t) (10)

δj =

{
1 if j ∈ s∗(t)
0 else

(11)

θt is the update parameter and depends on time.
The informed reader would observe that the above update scheme corre-

sponds to the linear-reward inaction LA update.
In fact if j /∈ s∗(t) then p(i,j)(t+ 1) is reduced by multiplying by θt which

is less than 1

p(i,j)(t+ 1) = θtp(i,j)(t) (12)

However if j ∈ s∗(t) then p(i,j)(t+ 1) is increased by

p(i,j)(t+ 1)− p(i,j)(t) = [(1− θt) + θtp(i,j)(t)]− p(i,j)(t) (13)
= (1− θt) + p(i,j)(t)(θt − 1) (14)
= (1− θt)(1− p(i,j)(t)) ≥ 0 (15)

In Theorem 1, we will consider the conditions by which the algorithm can
converge when the update parameter depends on time. Further, we will give
convergence results for the case of fixed θ, i.e, independent of t.

Please note that, initially:
p(i,j)(0) =

1
|N(i)| , for j ∈ N(i).

With the updating formula (Equation 10), we can show that the probabil-
ity distribution Formula converges to the distribution that satisfies the fol-
lowing property if the optimal polygon is unique.

For i ∈ s∗

pij =

{
1 if j ∈ s∗

0 else
(16)

The update scheme is called pursuit LA and has rules that obey LRI . The
idea is to always reward the transitions probabilities along the best solution
obtained so far.

Distributed Learning Automata Classification 15

Intuition behind PolyPursuit-LA Thathachar and Sastry [85] pioneered the
idea of pursuit LA. The action with the highest reward estimate is ”pursued”.
The latter work has fueled a great deal of interest in pursuit LA involving dif-
ferent variants [4,86,87]. A common feature for all these pursuit algorithms is
to estimate the reward probability of each action and pursue the action with
the highest reward. In our current work, the environment is rather determin-
istic. Therefore, we opt to pursue the action of the LA along the path that
leads to the highest accuracy.

We will now state some theoretical results that catalogue the properties of
the PolyPursuit-LA for both the time varying update parameter and the fixed
update parameter.

Theorem 1 The optimal solution is generated with probability 1 only if the update
parameter θt obeys the following condition:

∞∑
t=1

t−1∏
k=1

θk =∞ (17)

Proof The proof follows similar arguments as in [88]. Using recurrence, we
can obtain a lower bound on p(i,j)(t):

p(i,j)(t) ≥
t−1∏
k=1

θkp(i,j)(0) (18)

For all arcs (i, j), by initialization, p(i,j)(0) = 1/|N(i)|, where N(i) is the
set of neighbors of node i. Let pmin(0), the smallest value for all arcs (i, j),
it is clear by way of construction of the grid pmin(0) = 1/4 since the max of
neighbors is 4 for nodes in the grid not close to the border.

Let At = {s(t) 6= s∗} the event that at iteration t, the candidate solution
does not contain the optimal solution.

Let BT the event that optimal solution is not found up to instant T .

P (BT) =

T∏
t=1

P (At) (19)

P (BT) ≤
T∏
t=1

(1−
t−1∏
k=1

(θkpmin(0))
|s∗|) (20)

By resorting to (1− u) ≤ exp(−u) we obtain

16 Morten Goodwin, Anis Yazidi

P (B∞) ≤
∞∏
t=1

(1−
t−1∏
k=1

θk) (21)

≤
∞∏
t=1

exp(−
t−1∏
k=1

(θkpmin(0))
|s∗|) (22)

= exp(−
∞∑
t=1

t−1∏
k=1

θ
|s∗|
k pmin(0)

|s∗|) (23)

However, from our assumption

∞∑
t=1

t−1∏
k=1

θk =∞

Since we have

P (B∞) ≤ 0 (24)

then
P (B∞) = P (s∗never obtained) = 0 (25)

Examples of smoothing sequences which eventually generate the optimal
solution with probability 1 (that is, which satisfy the sufficient condition of
Theorem 1) includes

θt = 1− 1/(t+ 1)β for β > 1.
and
θt = 1− 1

(t+1)log(t+1)β
for β > 1.

Let t∗ the first time instant when the optimal solution is found, the optimal
arcs are always reinforced. For t∗ + r , for (i∗, j) such that i∗ ∈ s∗ and j 6∈ s∗,
we have:

Using recurrence, we can verify:

p(i∗,j)(t
∗ + r) =

t∗+r−1∏
k=t∗

θkp(i∗,j∗)(t) (26)

Easy to see from the assumption that
∏∞
k=0 θk = 0, by considering the log

of the expression described in assumption on θk.

lim
r→∞

p(i∗,j)(t
∗ + r) = 0 (27)

By considering summation to 1 of probability of going from node i∗, and
for j∗ belonging to the optimal path.

lim
r→∞

p(i∗,j∗)(t
∗ + r) = 1 (28)

Distributed Learning Automata Classification 17

5.2 Constant Update Parameter

In Theorem 1, we give the convergence result of the PolyPursuit-LA for the
case of fixed parameter θ that is independent of time.

Theorem 2 The optimal solution is generated with probability 1 only if the update
parameter θ → 1.

Proof Using recurrence, we know that:

p(i,j)(t) > θt−1p(i,j)(0) (29)

Thus,
P (At) ≤ 1− (θt−1pmin(0))

|s∗| (30)

Therefore,

P (BT) ≤
T∏
t=1

(
1− (θt−1pmin(0))

|s∗|) (31)

Thus, using again (1− u) ≤ exp(−u) we obtain

P (s∗never obtained) = Prob(B∞) ≤
∞∏
t=1

exp(−θ(t−1)|s
∗|pmin(0)

|s∗|) (32)

≤ exp(−pmin(0)|s
∗|
∞∑
t=1

θ(t−1)|s
∗|) (33)

= exp(−pmin(0)|s
∗|
∞∑
t=0

θt|s
∗|) (34)

Let us define h(α) =
∑∞
t=0 θ

t|s∗|.

h(α) =

∞∑
t=0

θt|s
∗| (35)

= 1/(1− θ|s
∗|) (36)

lim
T→∞

P (BT) = P (s∗ never obtained) (37)

≤ exp(−pmin(0)|s
∗|h(θ)) (38)

Since we know that limθ→1 h(θ) = ∞, then limT→∞ P (BT) can be made
arbitrarily close to zero, if θ approaches 1.

Hence the theorem is proven. Now, let us characterize the LA probabilities
at convergence.

Let t∗ the first time instant when the optimal solution is found, the optimal
arcs are always reinforced. For t∗ + r , for (i∗, j∗) ∈ s∗, we have:

18 Morten Goodwin, Anis Yazidi

Using recurrence , we can obtain verify

p(i∗,j∗)(t+ r) = θrp(i∗,j∗)(t) + (1− θ)
r−1∑
i=0

θr−i−1 (39)

We remark

lim
r→∞

r−1∑
i=0

θr−i−1 = 1/(1− θ) (40)

Therefore,

lim
r→∞

p(i∗,j∗)(t+ r) = (1− θ)× 1/(1− θ) = 1 (41)

5.3 Training phase

The classifier is trained using a guided walk with the team of distributed
LA optimising for the score function f(s) in order to create a polygon. Since
actions lying over the best solution so far will get reinforced, the actions of
the team of LA will converge towards a polygon that is a good separator. This
polygon is the key to the classification. Hence, the pheromones on the path
are deposited directly in accordance with a score function over the length of
the path.

Note that the classifier, implicitly, performs optimisation according to two
properties of the data: the score function f(s).

The classifier can therefore be considered as a multi-edged polygon with
only vertical or horizontal edges.

In order to ease the understanding of the training process, we shall give an
example. Suppose we have a four by four grid containing 16 nodes as in Fig-
ure 4. To each node in the grid, we attach an LA. For instance to node number
1, we attach LA whose action probability vector is P1(t) = [p(1,2)(t), p(1,5)(t)].
Similarly for example for nodes 6, we attach an LA whose action probabil-
ity vector is P6(t) = [p(6,2)(t), p(6,7)(t), p(6,10)(t), p(6,5)(t)]. We suppose that
the search for separator starts at node 1. For the sake of clarity we use the
notation LAi to denote the LA attached to node i. We suppose that at time
instant t, LA1 chooses the edge (1, 2). Then LA2 gets activated and we sup-
pose it chooses (2, 6). We suppose that the process continues where the fol-
lowing edges get chosen sequentially (6, 7), (7, 11),(11, 10), (10, 9), (9, 5) and
(5, 1). Clearly, the resulting polygon has an accuracy of 100% since it perfectly
separates the red and blue classes. In the subsequent time instants, we shall
pursue the actions that lie along this optimal polygon since it has the high-
est accuracy: namely action (1, 2) corresponding to LA1 sees its probability
increasing while the other action (1, 5) sees its probability decreasing. Simi-
larly, we pursue action (2, 1) corresponding to LA2 and the rest of the actions
along the optimal polygon until action (5, 1) corresponding to LA5.

Distributed Learning Automata Classification 19

Fig. 4 Illustration of the PolyPursuit-LA

5.4 Boostraping the source node

A detail worth mentioning is the way by which we choose the source node of
the polygon. The performance of the scheme is dependent on the right choice
of the source vertex for the polygon. Therefore, in order to deal with this dis-
advantage we allow the scheme to readjust it choice of the source vertice.
Whenever a polygon gives a better performance compared to previous iter-
ations, we choose a random node among the nodes part of the best known
polygon as the source node. Please note that when probabilities have con-
verged, our experience is that as long as the source node is part of the best
polygon, the choice of source node is of little importance.

More advanced methods can be used and verified empirically. However,
we found that this simple strategy resulted in good performance.

6 Experiments

The experiments are carried out as traditional supervised learning approaches
in two phases: training and classification. The behaviour of the algorithm can
best be explained by examining how it behaves on the training data. Because
of this factor, the figures depict a visualisation of the polygon on the training
data — yielding a good overview of the algorithm behaviour.

The data is generated by various functions intended to show the per-
formance of PolyPursuit-LA using various data. The data generation is ex-
plained in each chapter. In each experiment 2000 data points are generated 3,

3 The number of samples has negligible effect on the performance of the scheme.

20 Morten Goodwin, Anis Yazidi

of which half are randomly selected for training and the rest used for classi-
fication. Further, the data always contains two classes; the blue T1 class and
the red T2 class.

The granularity of the grids are always chosen as 10x10 and the θ = 0.99.

6.1 Simple environments

We present a simple experimental settings as proof of concept of PolyPursuit-
LA. This section empirically shows that the approach works in a simple en-
vironment with two easily separable sets of data. The data is composed of
two blocks of data: T1 and T2. Figure 1 shows the LA convergence after the
training phase in this environment. The LA have built a rectangular polygon
encircling all items in T1, but none of the items in T2. Since this is a polygon
that perfectly separates the classes, it yields f(s) = 1. The polygon solution
in this example is quite straight forward.

In this simple proof of concept, PolyPursuit-LA gave an accuracy of 100%.

6.2 Gaussian

Figure 5 depicts the classification polygon found by the distributed LA for
data generated from two different Gaussian distributions. This experiment is
interesting because, in contrast to the proof of concept, no classifier will be
able to give a perfect result and is therefore a good test for PolyPursuit-LA.

Regarding the classification, the PolyPursuit-LA classifier gave an accu-
racy of 0.832. For comparison purposes, linear and polynomial SVM produce
the same data accuracies, 0.837 and 0.842 respectively.

These high numbers indicate that PolyPursuit-LA is able to perform in
line with SVM even when data overlap — without loss of precision.

6.2.1 Semi-circles

Figure 6 shows the scheme in a more complex scenario with semi-circles (or
half moons) where there are no clear separation boundaries. It is an inter-
esting experiment because there exists no linear or polynomial solution that
can result in a perfect classifier without mapping to multiple dimensions or
depending on a kernel trick.

Despite the added complexity, the PolyPursuit-LA approach works per-
fectly and surrounds the data from the blue class without including the read.
In fact, in the classification phase it gives an accuracy, precision and recall of
1. For comparison purposes, linear and polynomial SVM produce accuracies
of 0.912 and 0.997 on the same data.

Distributed Learning Automata Classification 21

Fig. 5 Gaussian with 0% noise

Fig. 6 Half-moon

6.2.2 circles

Figure 7 illustrates the case of non-linear classification boundaries in the form
of a circle.

The circular data are interesting to test because no mathematical function
can separate the two classes in two dimensions. Any line separating the two
classes will need to have multiple y-values for several of the x-values.

Despite the added complexity, the PolyPursuit-LA approach works per-
fectly by surrounding the data from the blue class without including the red.

22 Morten Goodwin, Anis Yazidi

To repeat, the accuracy, precision and recall for PolyPursuit-LA is 1, while for
linear and polynomial SVM gives accuracies of 0.538 and 0.892 respectively.
For SVM to come up to the performance of PolyPursuit-LA, we need to rely
on a RBF kernel.

In Figure 7, we increase the noise from 5% up to 50%. Noise means sim-
ply that some points of one class are overlapping with the other class making
impossible to separate between these overlapping points. When the noise is
50%, half of the data is in the wrong class making the classification an impos-
sible task.

Despite the added noise, the scheme perform well. We would expect an
approximate 2.5% loss in accuracy because of the 5% noise. Our empirical
results results confirms this giving an accuracy of 0.949. For comparison pur-
poses, SVM had no chance performance by adding noise.

Noise = 0% Noise = 5% Noise = 10% Noise = 15% Noise = 20%
Accuracy = 1.0 Accuracy = 0.949 Accuracy = 0.896 Accuracy = 0.862 Accuracy = 0.788

Noise = 25% Noise = 30% Noise = 35% Noise = 40% Noise = 50%
Accuracy = 0.747 Accuracy = 0.666 Accuracy = 0.647 Accuracy = 0.537 Accuracy = 0.504

Fig. 7 Example of best known polygon of circular classes and corresponding classification accu-
racy with increased noise

6.2.3 Gaussian blobs

Figure 8 depicts the case of pairwise Gaussian distributions with the distance
between the µ varying from 200 down to 0. The standard deviation is the
same for all distributions, σ = 34.1. This means that when the distance be-
tween the µ from both distributions is 200, there is no overlap between the

Distributed Learning Automata Classification 23

Distance = 200 Distance = 180 Distance = 160 Distance = 140 Distance = 120
Accuracy = 1.0 Accuracy = 0.975 Accuracy = 0.964 Accuracy = 0.958 Accuracy = 0.941

Distance = 80 Distance = 60 Distance = 40 Distance = 20 Distance = 0
Accuracy = 0.880 Accuracy = 0.821 Accuracy = 0.760 Accuracy = 0.614 Accuracy = 0.494

Fig. 8 Example of best known polygon of Gaussian distributed blob classes and correspond-
ing classification accuracy where the distance between the distributions µ becomes increasingly
closer together,

distributions. As the distance is decreasing, more and more data is overlap-
ping between the distributions until a distance of 0 where the two µs are the
same.

These are interesting results because they explain the behaviour of PolyPursuit-
LA when the data increasingly overlap, and in turn becoming increasingly
difficult to separate.

When the distance is 200, the data is not at all overlapping yielding an ac-
curacy of 1.0. By moving the two µs closer together, with a distance of 180 the
blobs are barely overlapping and PolyPursuit-LA yields in the classification
phase an accuracy of 0.975.

With a distance of 120, the data overlaps slightly more. However, PolyPursuit-
LA shows barely any drop in performance. It is still able to accurately sepa-
rate the data and yields in the classification phase an accuracy of 0.941.

When the distance is 0 in Figure 8, the µ from the two Gaussian distri-
butions are the same and the data is completely overlapping and in turn in-
distinguishable from each other. In this scenario, PolyPursuit-LA reaches an
accuracy of 0.494, similar to random guessing.

This indicates that PolyPursuit-LA is able to accurately classify data, even
when the data is overlapping and hard to distinguish. Only when the two
classes are completely overlapping will PolyPursuit-LA come to short.

24 Morten Goodwin, Anis Yazidi

6.2.4 Real datasets

We have applied PolyPursuit-LA for two real datasets, Iris and Wine. Fig-
ure 9 and Figure 10 show the performance of PolyPursuit-LA respectively
over time for the Iris data set and the Wine data set. Please note that the syn-
thetic data sets contain 2000 samples while the Wine quality data set contains
6499. From both figures we observe that PolyPursuit-L coverges quite fast in
around 4000 iterations.

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iterations

Po
in
ts

Points

Tr
ai
ni
ng
	A
cc
ur
ac
y

Iterations

Fig. 9 Training accuracy PolyLA- Pursuit for the Iris data set.

Table 1 summarizes all the results for all the experiences where we com-
pare to Linear SVM, Gaussian SVM, CALA Random Forest, Nearest Neigh-
bour and Multilayer Perceptron. We performed experimental comparison and
highlighted the differences and the approach proposed in [89], which is de-
noted here Continuous Action LA (CALA). There are two major differences
between our work and [89]. First, the referred work focuses on linear discrim-
inant. Our approach can find arbitrarily discriminants in the form of polygon
that are not necessarily linear. In this sense, from a design perspective the
work involving CALA focuses on finding the optimal parameters for the dis-
criminant while our results involve mapping the problem to a search on grid
and finding an ”optimal path”. Second, the environment in referred work is
stochastic, in a sense, the true label of the classes is noisy. The introduction
of a noise model is an argument for using CALA since typical LA operate in

Distributed Learning Automata Classification 25

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iterations

Po
in
ts

Points
Tr
ai
ni
ng
	A
cc
ur
ac
y

Iterations

Fig. 10 Training accuracy PolyLA- Pursuit for the Wine data set

random environments. In our problem, the environment is deterministic as
the identity of the label is not noisy. As aforementioned, we emphasize that
PolyLA-Pursuit is designed for deterministic environment and therefore we
believe that it is more suited for the classification problems where the identity
of the labels are deterministic. From Table 1 we observe that PolyLA-Pursuit
is the only scheme that performs consistently well in almost all the scenarios.
In fact, the PolyLA-Pursuit outperforms all the other schemes in the circu-
lar case almost for all the noise levels. This supremacy is clear if for example
we consider the circular noise 5% where the PolyLA-Pursuit achieves 0.949
accuracy while the second most performant algorithm, which is in this case
Multilayer Perceptron, achieves only 0.81 accuracy. Based on this observa-
tion, it seems that PolyLA-Pursuit is better at handling non-linear discrimi-
nant functions in two-dimensional space than the rest of the compared algo-
rithms. For the Gaussian blob scenarios, the PolyLA-Pursuit and the Random
first algorithm perform almost equally well. For example, for Gaussian blob
distance 140, the PolyLA-Pursuit yields 0.978 accuracy while the second best
algorithm, which is in this case Random Forest, achieves 0.975 accuracy. The
comparison results are promising and demonstrate the potential of PolyLA-
Pursuit.

Table 2 shows the comparison in accuracy between PolyLA-Pursuit and a
recently published ACO variant [3]. We see that PolyACO+ [3] and PolyLA-

26 Morten Goodwin, Anis Yazidi

Scenario PolyLA-Pursuit Linear SVM Gaussian SVM CALA Random Forest Nearest Neighbour Multilayer Perceptron
Proof of concept 1.0 (1.0/1.0) 1.0(1.0/1.0) 1.0(1.0/1.0) 0.459(0.918/0.478) 1.0(1.0/1.0) 1.0(1.0/1.0) 1.0(1.0/1.0)
Gaussian distributions 0.832 (0.813/0.862) 0.851(0.836/0.872) 0.784(0.769/0.810) 0.562(1.0/0.533) 0.825(0.823/0.827) 0.844(0.842/0.846) 0.81(0.800/0.826)
Semi-circles 1.0 (1.0/1.0) 0.897(0.899/0.894) 0.997(1.0/0.994) 0.5(1.0/0.5) 0.951(0.932/0.972) 1.0(1.0/1.0) 0.907(1.0/0.814)
Circular 0% noise 1.0 (1.0/1.0) 0.611(0.579/0.808) 0.983(1.0/0.966) 0.5(1.0/0.5) 0.93(0.882/0.992) 1.0(1.0/1.0) 0.481(0.490/0.962)
Circular 5% noise 0.949 (0.948/0.950) 0.59(0.563/0.798) 0.909(0.914/0.902) 0.5(1.0/0.5) 0.522(0.522/0.51) 0.525(0.5256/0.51) 0.81(1.0/0.62)
Circular 10% noise 0.896 (0.882/0.914) 0.541(0.538/0.568) 0.827(0.839/0.808) 0.5(1.0/0.5) 0.885(0.896/0.87) 0.886(0.881/0.892) 0.469(0.484/0.938)
Circular 15% noise 0.862 (0.859/0.866) 0.513(0.511/0.572) 0.820(0.837/0.794) 0.5(1.0/0.5) 0.844(0.848/0.838) 0.837(0.841/0.83) 0.42(0.456/0.84)
Circular 20% noise 0.788 (0.785/0.792) 0.513(0.512/0.522) 0.713(0.726/0.684) 0.5(1.0/0.5) 0.785(0.748/0.858) 0.731(0.725/0.744) 0.919(1.0/0.838)
Circular 25% noise 0.747 (0.743/0.754) 0.518(0.517/0.546) 0.661(0.660/0.664) 0.5(1.0/0.5) 0.701(0.692/0.724) 0.686(0.6905/0.674) 0.427(0.460/0.854)
Circular 30% noise 0.666 (0.649/0.72) 0.481(0.481/0.498) 0.621(0.637/0.56) 0.5(1.0/0.5) 0.67(0.672/0.664) 0.594(0.600/0.562) 0.395(0.441/0.79)
Circular 35% noise 0.647 (0.645/0.652) 0.489(0.489/0.494) 0.593(0.605/0.534) 0.5(1.0/0.5) 0.627(0.617/0.666) 0.555(0.557/0.534) 0.359(0.417/0.718)
Circular 40% noise 0.537 (0.530/0.932) 0.518(0.517/0.524) 0.512(0.513/0.466) 0.5(1.0/0.5) 0.565(0.546/0.77) 0.542(0.542/0.536) 0.342(0.406/0.684)
Circular 50% noise 0.504 (0.504/0.438) 0.493(0.493/0.508) 0.5(0.5/0.518) 0.5(1.0/0.5) 0.503(0.502/0.65) 0.496(0.496/0.518) 0.199(0.284/0.398)
Gaussian blob distance 200 1.0 (1.0/1.0) 1.0(1.0/1.0) 0.805(1.0/0.61) 0.495(0.974/0.497) 1.0(1.0/1.0) 1.0(1.0/1.0) 0.5(0.5/1.0)
Gaussian blob distance 180 0.975 (0.997/0.952) 0.997(0.996/0.998) 0.805(0.719/1.0) 0.514(0.996/0.507) 0.996(0.996/0.996) 0.994(0.992/0.996) 0.498(0.498/0.996)
Gaussian blob distance 160 0.964 (0.979/0.948) 0.987(0.989/0.984) 0.79(0.996/0.582) 0.504(1.0/0.502) 0.995(0.994/0.996) 0.982(0.985/0.978) 0.49(0.494/0.98)
Gaussian blob distance 140 0.978 (0.979/0.976) 0.974(0.968/0.98) 0.820(0.740/0.984) 0.512(1.0/0.506) 0.975(0.962/0.988) 0.958(0.952/0.964) 0.464(0.481/0.928)
Gaussian blob distance 120 0.941 (0.949/0.932) 0.957(0.948/0.966) 0.774(0.696/0.97) 0.508(1.0/0.504) 0.949(0.953/0.944) 0.949(0.949/0.948) 0.464(0.4813/0.928)
Gaussian blob distance 80 0.880 (0.875/0.886) 0.877(0.880/0.872) 0.721(0.822/0.564) 0.505(1.0/0.502) 0.897(0.8997/0.894) 0.867(0.889/0.838) 0.448(0.472/0.896)
Gaussian blob distance 60 0.821 (0.811/0.836) 0.822(0.827/0.814) 0.643(0.605/0.820) 0.508(1.0/0.504) 0.822(0.825/0.816) 0.795(0.790/0.802) 0.895(1.0/0.79)
Gaussian blob distance 40 0.760 (0.757/0.764) 0.751(0.748/0.756) 0.590(0.637/0.418) 0.52(1.0/0.510) 0.754(0.764/0.734) 0.699(0.707/0.678) 0.336(0.401/0.672)
Gaussian blob distance 20 0.614 (0.608/0.638) 0.648(0.640/0.676) 0.558(0.545/0.696) 0.509(1.0/0.504) 0.636(0.623/0.686) 0.572(0.574/0.554) 0.681(1.0/0.362)
Gaussian blob distance 0 0.494 (0.494/0.514) 0.493(0.491/0.398) 0.496(0.497/0.682) 0.507(1.0/0.503) 0.49(0.488/0.418) 0.521(0.521/0.51) 0.419(0.455/0.838)
Iris 0.674 (0.627/0.888) 0.98(1.0/0.96) 0.98(1.0/0.96) 0.5(1.0/0.5) 0.96(0.925/1.0) 1.0(1.0/1.0) 0.5(0.5/1.0)
Wine 0.674 (0.567/0.590) 0.687(0.589/0.577) 0.673(0.609/0.384) 0.378(1.0/0.378) 0.662(0.584/0.375) 0.664(0.560/0.522) 0.351(0.360/0.927)

Table 1 Summary of Accuracy of PolyPursuit-LA Performance. Precision and Recall in paren-
thesis.

Scenario PolyLA-Pursuit PolyACO+
Proof of concept 1.0 1.0
Gaussian distributions 0.832 0.852
Semi-circles 1.0 1.0
Circular 0% noise 1.0 1.0
Circular 5% noise 0.949 0.948
Iris 0.674 0.920
Wine 0.674 0.993

Table 2 Summary of Accuracy of PolyPursuit-LA Performance compared to PolyACO+.

Pursuit have comparable performance while PolyACO+ seems to outperform
in the real-life data sets.

7 Conclusion

In this paper, we propose a novel distributed pursuit LA in for determinis-
tic environments in contrast to the legacy LA that only deal with stochastic
environment. We apply the devised LA for solving a classification problem.
The essence of our scheme is to search for a separator in the feature space by
imposing a learning automata based random walks in a grid system. To each
node in the gird we attach an LA, whose actions are the choice of the edges
forming the separator. The walk is self-enclosing, i.e, a new random walk is
started whenever the walker returns to starting node forming a closed classi-
fication path yielding a multi-edged polygon. In our approach, the different
LA attached at the different nodes search for a polygon that best encircles and

Distributed Learning Automata Classification 27

separates each class. Based on the obtained polygons, we perform classifica-
tion by labelling items encircled by a polygon as part of a class using ray cast-
ing function. Indeed, PolyPursuit-LA has appealing properties compared to
SVM. In fact, unlike PolyPursuit-LA, the SVM performance is dependent on
the right choice of the kernel function (e.g. Linear Kernel, Gaussian Kernel)—
which is considered a “black art”. PolyPursuit-LA can find arbitrarily com-
plex separators in feature space.

As a future work, we want to explore other applications of the pursuit LA
in the future specially for solving combinatorial problems.

References

1. M. Agache, B. J. Oommen, Generalized pursuit learning schemes: New families of con-
tinuous and discretized learning automata, IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics 32 (6) (2002) 738–749.

2. M. A. L. Thathachar, P. S. Sastry, Varieties of learning automata: An overview, IEEE Transac-
tions on Systems, Man, and Cybernetics-Part B: Cybernetics 32 (6) (2002) 711–722.

3. M. Goodwin, A. Yazidi, Ant colony optimisation-based classification using two-dimensional
polygons, in: International Conference on Swarm Intelligence, Springer, 2016, pp. 53–64.

4. M. Agache, B. J. Oommen, Generalized pursuit learning schemes: New families of continu-
ous and discretized learning automata, IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics) 32 (6) (2002) 738–749.

5. S. Lakshmivarahan, Learning Algorithms Theory and Applications, Springer-Verlag, 1981.
6. K. Najim, A. S. Poznyak, Learning Automata: Theory and Applications, Pergamon Press,

Oxford, 1994.
7. K. S. Narendra, M. A. L. Thathachar, Learning Automata: An Introduction, Prentice-Hall,

Inc., 1989.
8. M. S. Obaidat, G. I. Papadimitriou, A. S. Pomportsis, Learning automata: Theory, paradigms,

and applications, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
32 (6) (2002) 706–709.

9. A. S. Poznyak, K. Najim, Learning Automata and Stochastic Optimization, Springer-Verlag,
Berlin, 1997.

10. M. A. L. Thathachar, P. S. Sastry, Networks of Learning Automata: Techniques for Online
Stochastic Optimization, Kluwer Academic, Boston, 2003.

11. J. Zhang, C. Wang, D. Zang, M. Zhou, Incorporation of optimal computing budget allocation
for ordinal optimization into learning automata, IEEE Transactions on Automation Science
and Engineering 13 (2) (2016) 1008–1017.

12. M. L. Tsetlin, Automaton Theory and the Modeling of Biological Systems, Academic Press,
New York, 1973.

13. S. Misra, B. J. Oommen, GPSPA: A new adaptive algorithm for maintaining shortest path
routing trees in stochastic networks, International Journal of Communication Systems 17
(2004) 963–984.

14. M. S. Obaidat, G. I. Papadimitriou, A. S. Pomportsis, H. S. Laskaridis, Learning automata-
based bus arbitration for shared-edium ATM switches, IEEE Transactions on Systems, Man,
and Cybernetics: Part B 32 (2002) 815–820.

15. B. J. Oommen, T. D. Roberts, Continuous learning automata solutions to the capacity assign-
ment problem, IEEE Transactions on Computers C-49 (2000) 608–620.

16. G. I. Papadimitriou, A. S. Pomportsis, Learning-automata-based TDMA protocols for broad-
cast communication systems with bursty traffic, IEEE Communication Letters (2000) 107–
109.

17. A. F. Atlassis, N. H. Loukas, A. V. Vasilakos, The use of learning algorithms in ATM networks
call admission control problem: A methodology, Computer Networks 34 (2000) 341–353.

18. A. F. Atlassis, A. V. Vasilakos, The use of reinforcement learning algorithms in traffic control
of high speed networks, Advances in Computational Intelligence and Learning (2002) 353–
369.

28 Morten Goodwin, Anis Yazidi

19. A. V. Vasilakos, M. P. Saltouros, A. F. Atlassis, W. Pedrycz, Optimizing QoS routing in hier-
archical ATM networks using computational intelligence techniques, IEEE Transactions on
Systems, Man and Cybernetics: Part C 33 (2003) 297–312.

20. F. Seredynski, Distributed scheduling using simple learning machines, European Journal of
Operational Research 107 (1998) 401–413.

21. J. Kabudian, M. R. Meybodi, M. M. Homayounpour, Applying continuous action reinforce-
ment learning automata (CARLA) to global training of hidden markov models, in: Proceed-
ings of the International Conference on Information Technology: Coding and Computing ,
ITCC’04, Las Vegas, Nevada, 2004, pp. 638–642.

22. M. R. Meybodi, H. Beigy, New learning automata based algorithms for adaptation of back-
propagation algorithm pararmeters, International Journal of Neural Systems 12 (2002) 45–67.

23. C. Unsal, P. Kachroo, J. S. Bay, Simulation study of multiple intelligent vehicle control using
stochastic learning automata, Transactions of the Society for Computer Simulation Interna-
tional 14 (1997) 193–210.

24. B. J. Oommen, E. d. S. Croix, Graph partitioning using learning automata, IEEE Transactions
on Computers C-45 (1995) 195–208.

25. J. J. Collins, C. C. Chow, T. T. Imhoff, Aperiodic stochastic resonance in excitable systems,
Physical Review E 52 (1995) R3321–R3324.

26. R. L. Cook, Stochastic sampling in computer graphics, ACM Trans. Graph. 5 (1986) 51–72.
27. M. Barzohar, D. B. Cooper, Automatic finding of main roads in aerial images by using

geometric-stochastic models and estimation, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 7 (1996) 707–722.

28. M. L. Brandeau, S. S. Chiu, An overview of representative problems in location research,
Management Science 35 (1989) 645–674.

29. C. Bettstetter, H. Hartenstein, X. Pérez-Costa, Stochastic properties of the random waypoint
mobility model, Journal Wireless Networks 10 (2004) 555–567.

30. B. S. Rowlingson, P. J. Diggle, SPLANCS: Spatial Point Pattern Analysis Code in S-Plus,
University of Lancaster, North West Regional Research Laboratory, 1991.

31. M. Paola, Digital simulation of wind field velocity, Journal of Wind Engineering and Indus-
trial Aerodynamics 74-76 (1998) 91–109.

32. J. P. Cusumano, B. W. Kimble, A stochastic interrogation method for experimental measure-
ments of global dynamics and basin evolution: Application to a two-well oscillator, Nonlin-
ear Dynamics 8 (1995) 213–235.

33. A. Baddeley, R. Turner, Spatstat: An R package for analyzing spatial point patterns, Journal
of Statistical Software 12 (2005) 1–42.

34. R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algo-
rithms, in: Proceedings of the 23rd international conference on Machine learning, ACM,
2006, pp. 161–168.

35. R. Caruana, N. Karampatziakis, A. Yessenalina, An empirical evaluation of supervised learn-
ing in high dimensions, in: Proceedings of the 25th international conference on Machine
learning, ACM, 2008, pp. 96–103.

36. G. Madjarov, D. Kocev, D. Gjorgjevikj, S. Džeroski, An extensive experimental comparison
of methods for multi-label learning, Pattern Recognition 45 (9) (2012) 3084–3104.

37. M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the
1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), Vol. 2, IEEE, 1999,
pp. 1470–1477.

38. B. J. Oommen, M. Agache, Continuous and discretized pursuit learning schemes: Various
algorithms and their comparison, IEEE Transactions on Systems, Man, and Cybernetics-Part
B: Cybernetics 31 (2001) 277–287.

39. S. Misra, B. J. Oommen, Dynamic algorithms for the shortest path routing problem: learn-
ing automata-based solutions, IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 35 (6) (2005) 1179–1192.

40. S. Misra, B. J. Oommen, An efficient dynamic algorithm for maintaining all-pairs shortest
paths in stochastic networks, IEEE Transactions on Computers 55 (6) (2006) 686–702.

41. H. Li, L. Mason, M. Rabbat, Distributed adaptive diverse routing for voice-over-ip in service
overlay networks, IEEE Transactions on Network and Service Management 6 (3) (2009) 175–
189.

42. L. Mason, An optimal learning algorithm for s-model environments, IEEE Transactions on
Automatic Control 18 (5) (1973) 493–496.

Distributed Learning Automata Classification 29

43. H. Beigy, M. R. Meybodi, Utilizing distributed learning automata to solve stochastic short-
est path problems, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 14 (05) (2006) 591–615.

44. J. A. Torkestani, M. R. Meybodi, An intelligent backbone formation algorithm for wireless
ad hoc networks based on distributed learning automata, Computer Networks 54 (5) (2010)
826–843.

45. J. A. Torkestani, M. R. Meybodi, Finding minimum weight connected dominating set in
stochastic graph based on learning automata, Information Sciences 200 (2012) 57–77.

46. J. A. Torkestani, M. R. Meybodi, A learning automata-based heuristic algorithm for solving
the minimum spanning tree problem in stochastic graphs, The Journal of Supercomputing
59 (2) (2012) 1035–1054.

47. M. A. Thathachar, P. S. Sastry, Learning optimal discriminant functions through a cooper-
ative game of automata, IEEE Transactions on Systems, Man and Cybernetics 17 (1) (1987)
73–85.

48. G. Santharam, P. Sastry, M. Thathachar, Continuous action set learning automata for stochas-
tic optimization, Journal of the Franklin Institute 331 (5) (1994) 607–628.

49. P. Sastry, M. Thathachar, Learning automata algorithms for pattern classification, Sadhana
24 (4) (1999) 261–292.

50. S. Zahiri, Learning automata based classifier, Pattern Recognition Letters 29 (1) (2008) 40–48.
51. X. Zeng, Z. Liu, A learning automata based algorithm for optimization of continuous com-

plex functions, Information Sciences 174 (3) (2005) 165–175.
52. M. Howell, T. Gordon, F. Brandao, Genetic learning automata for function optimization,

IEEE Transactions on Systems, Man, and Cybernetics 32 (6) (2002) 804–815.
53. S. Bandyopadhyay, C. A. Murthy, S. K. Pal, Pattern classification with genetic algorithms,

Pattern recognition letters 16 (8) (1995) 801–808.
54. T. Stützle, M. López-Ibáñez, M. Dorigo, A concise overview of applications of ant colony

optimization, Wiley Encyclopedia of Operations Research and Management Science.
55. M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, Computational Intelligence

Magazine, IEEE 1 (4) (2006) 28–39.
56. W. Gutjahr, A graph-based ant system and its convergence, Future Generation Computer

Systems 16 (8) (2000) 873–888.
57. L. D’Acierno, M. Gallo, B. Montella, An ant colony optimisation algorithm for solving the

asymmetric traffic assignment problem, European Journal of Operational Research 217 (2)
(2012) 459–469.

58. M. Goodwin, O.-C. Granmo, J. Radianti, P. Sarshar, S. Glimsdal, Ant colony optimisation for
planning safe escape routes, in: Recent Trends in Applied Artificial Intelligence, Springer,
2013, pp. 53–62.

59. M. Goodwin, O.-C. Granmo, J. Radianti, Escape planning in realistic fire scenarios with ant
colony optimisation, Applied Intelligence 42 (1) (2015) 24–35.

60. T. Desell, S. Clachar, J. Higgins, B. Wild, Evolving deep recurrent neural networks us-
ing ant colony optimization, in: Evolutionary Computation in Combinatorial Optimization,
Springer, 2015, pp. 86–98.

61. K. M. Salama, A. A. Freitas, Ant colony algorithms for constructing bayesian multi-net clas-
sifiers, Intelligent Data Analysis 19 (2) (2015) 233–257.

62. B. Liu, H. Abbas, B. McKay, Classification rule discovery with ant colony optimization, in:
IEEE/WIC International Conference on Intelligent Agent Technology, 2003. IAT 2003., IEEE,
2003, pp. 83–88.

63. R. S. Parpinelli, H. S. Lopes, A. Freitas, et al., Data mining with an ant colony optimization
algorithm, IEEE Transactions on Evolutionary Computation 6 (4) (2002) 321–332.

64. D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, B. Baesens, Classification
with ant colony optimization, IEEE Transactions on Evolutionary Computation 11 (5) (2007)
651–665.

65. F. E. Otero, A. A. Freitas, C. G. Johnson, cant-miner: an ant colony classification algorithm
to cope with continuous attributes, in: Ant colony optimization and swarm intelligence,
Springer, 2008, pp. 48–59.

66. I. C. Junior, Data mining with ant colony algorithms, in: Intelligent Computing Theories and
Technology, Springer, 2013, pp. 30–38.

30 Morten Goodwin, Anis Yazidi

67. R. S. Parpinelli, H. S. Lopes, A. A. Freitas, An ant colony based system for data mining:
applications to medical data, in: Proceedings of the genetic and evolutionary computation
conference (GECCO-2001), Citeseer, 2001, pp. 791–797.

68. S. Hota, P. Satapathy, A. K. Jagadev, Modified ant colony optimization algorithm (mant-
miner) for classification rule mining, in: Intelligent Computing, Communication and De-
vices, Springer, 2015, pp. 267–275.

69. L. Özbakir, A. Baykasoğlu, S. Kulluk, H. Yapıcı, Taco-miner: an ant colony based algorithm
for rule extraction from trained neural networks, Expert Systems with Applications 36 (10)
(2009) 12295–12305.

70. N. Holden, A. Freitas, Web page classification with an ant colony algorithm, in: Parallel
Problem Solving from Nature-PPSN VIII, Springer, 2004, pp. 1092–1102.

71. K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: appli-
cation to feed-forward neural network training, Neural Computing and Applications 16 (3)
(2007) 235–247.

72. K. Salama, A. M. Abdelbar, A novel ant colony algorithm for building neural network
topologies, in: Swarm Intelligence, Springer, 2014, pp. 1–12.

73. K. M. Salama, A. M. Abdelbar, Learning neural network structures with ant colony algo-
rithms, Swarm Intelligence (2015) 1–37.

74. L. M. De Campos, J. M. Fernandez-Luna, J. A. Gámez, J. M. Puerta, Ant colony optimiza-
tion for learning bayesian networks, International Journal of Approximate Reasoning 31 (3)
(2002) 291–311.

75. L. M. De Campos, J. Puerta, et al., Learning bayesian networks by ant colony optimisation:
searching in two different spaces, Mathware & soft computing 9 (3) (2008) 251–268.

76. R. Daly, Q. Shen, S. Aitken, Learning bayesian networks: approaches and issues, The knowl-
edge engineering review 26 (02) (2011) 99–157.

77. J. Jun-Zhong, H.-X. ZHANG, H. Ren-Bing, L. Chun-Nian, A bayesian network learning al-
gorithm based on independence test and ant colony optimization, Acta Automatica Sinica
35 (3) (2009) 281–288.

78. R. Daly, Q. Shen, Learning bayesian network equivalence classes with ant colony optimiza-
tion, arXiv preprint arXiv:1401.3464.

79. C.-F. Juang, P.-H. Chang, Designing fuzzy-rule-based systems using continuous ant-colony
optimization, IEEE Transactions on Fuzzy Systems 18 (1) (2010) 138–149.

80. A. Chan, A. Freitas, A new classification-rule pruning procedure for an ant colony algorithm,
in: Artificial Evolution, Springer, 2006, pp. 25–36.

81. S. Arora, S. Singh, An effective hybrid butterfly optimization algorithm with artificial bee
colony for numerical optimization, changes 26 (2017) 27.

82. A. O. Restrepo Rodrı́guez, D. E. Casas Mateus, G. Garcı́a, P. Alonso, C. E. Montene-
gro Marı́n, R. González Crespo, Hyperparameter optimization for image recognition over
an ar-sandbox based on convolutional neural networks applying a previous phase of seg-
mentation by color–space, Symmetry 10 (12) (2018) 743.

83. J. Meza, H. Espitia, C. Montenegro, R. G. Crespo, Statistical analysis of a multi-objective op-
timization algorithm based on a model of particles with vorticity behavior, Soft Computing
20 (9) (2016) 3521–3536.

84. M. Magdin, F. Prikler, Are instructed emotional states suitable for classification? demonstra-
tion of how they can significantly influence the classification result in an automated recog-
nition system, IJIMAI 5 (4) (2019) 141–147.

85. M. A. L. Thathachar, P. S. Sastry, A new approach to designing reinforcement schemes for
learning automata, IEEE Transactions on Systems, Man, and Cybernetics SMC-15.

86. X. Zhang, O.-C. Granmo, B. J. Oommen, On incorporating the paradigms of discretization
and bayesian estimation to create a new family of pursuit learning automata, Applied intel-
ligence 39 (4) (2013) 782–792.

87. B. J. Oommen, J. K. Lanctôt, Discretized pursuit learning automata, IEEE Transactions on
Systems, Man, and Cybernetics SMC-20 (4) (1990) 931–938.

88. W. J. Gutjahr, Aco algorithms with guaranteed convergence to the optimal solution, Infor-
mation processing letters 82 (3) (2002) 145–153.

89. M. A. L. Thathachar, P. S. Sastry, Learning optimal discriminant functions through a cooper-
ative game of automata, IEEE Transactions on Systems, Man and Cybernetics 17 (1) (1987)
73–85.

