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ABSTRACT In recent years, the number of image fusion schemes presented by the research community
has increased significantly. Measuring the performance of these schemes is an important issue. In this
work, we introduce three quantitative fusion metrics to assess the quality of an image fusion algorithm.
The proposed metrics rely on edge information that is obtained using fractional order differentiation. Edge
and orientation strengths are fed into three sigmoidal functions separately for estimating the values of three
normalized weighted metrics for the fused image corresponding to source images. The experiments on the
multi-focus, infrared-visible and medical image fusion pairs demonstrate that the proposed fusion metrics
are perceptually meaningful and outperform some of the state-of-the-art metrics.

INDEX TERMS Edge detection, fractional order differentiation, fusion metric, image fusion, sigmoidal
functions.

I. INTRODUCTION
In general, the word image fusion means a method to
amalgamate and coalesce all the useful complementary infor-
mation acquired frommultiple source images of a given scene
into a single representation called fused image. Image fusion
has a number of applications such as multi-focus [1]–[4],
medical [5]–[9], infrared-visible [10]–[14], etc. Due to the
tremendous advancement of fusion techniques, the problem
of performance evaluation and assessment of image fusion
techniques has gained a lot of attention within the research
community [15]. The fusion methods can be evaluated in two
ways, viz., qualitatively and quantitatively. The qualitative
evaluation corresponds to assessing the quality of a fused
image, which is carried out by human visual system (HVS).
However, our naked eyes cannot continuously ascertain the
quality enhanced by a fused image over the source images.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yudong Zhang .

Therefore, researchers are developing many quality evalua-
tion indexes/metrics since three decades for measuring the
performance of a fusion process quantitatively/objectively.
Quantitative and objective evaluations are same, thus are
used interchangeably in this study. Fusion metrics can be
grouped into three categories, namely, statistic based, infor-
mation theory based, and human perception related [16].
Root means square error (RMSE) [17], peak signal noise
ratio (PSNR) [18], rate of correct classification [19], and
others [20] fall in the first category. The second category con-
sists of entropy [21], the collective cross entropy [22], mutual
information (MI) [23], correlation information entropy [24],
information deviation [25], and other indices [26]. Edge
information (EI) [27], space resolution and spectral resolu-
tion [28], space frequency and space visibility [29], change of
contrast [30], and other indexes [31] lie in the third category.
Fusion metrics can also be divided into two groups based on
the number of reference images. The first group consists of
fusion metrics for which reference/source image is required
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to measure the performance. RMSE [17], signal to noise ratio
[32], percentage fit error [33], mean bias [34], relative dimen-
sionless global error [35], spectral angular mapper [36],
PSNR [18], correlation coefficient [37], MI [38], structural
similarity (SSIM) [39], universal quality index [36], and oth-
ers [18] fall in the first group. There is no need for reference
image for the second group to evaluate the performance of a
fusion process. Standard deviation [21], entropy [21], cross
entropy [40], spatial frequency [41], and others [18] lie in
the second group.

Though there exist a number of metrics to assess fusion
methods quantitatively, every metric have some draw-
backs [15]. The non-reference metrics are faster to compute,
however it considers only the fused image. So, the corre-
spondence between the source images and the fused image
cannot be properly judged. The reference image based met-
rics are widely used but are computationally expensive. The
statistic based metrics are not suitable to all types of fusion
applications whereas information theory based metrics are
inconsistent [16]. Moreover, the human perception related
metrics are subjective and hard to quantify [16]. Hence, there
is no unanimously accepted fusion metric for evaluating the
quality of fusion schemes. However, among the different
metrics, EI [27] is frequently used to evaluate the perfor-
mance of fusionmethods [1], [2], [42]–[44], which efficiently
quantifies the edge information of source images contained
by the fused image. It uses Sobel operator to generate the
edge magnitude and orientation information. However, Sobel
operator is sensitive to noise and provides poor anti-noise
performance [45]. Therefore, the EI metric sometimes fails
to generate the desired result. In recent times, fractional
order differentiation is applied to image fusion [46]–[49],
which is robust to noise and improves the detection selec-
tivity [50]. Simultaneously, fractional order differentiation
better retains the detailed feature information of the image
compared with the integer order differentiation like Sobel
operator [49]. Motivated by the popularity of EI metric and
superiority of fractional order differentiation, three novel
image fusionmetrics based on three sigmoidal functions, viz.,
tanh, arctan, and logistic are proposed in this work, which
combines the robustness of the EI metric and effectiveness of
the fractional order differentiation. The proposed metrics use
fractional order differentiation to extract the edge information
of the source images contained in the fused image. The
correspondence of the proposed metrics with respect to HVS
are shown using state-of-the-art fusion methods designed
for multi-focus, infrared-visible, and medical image fusion.
The effectiveness of the proposed metrics are demonstrated
using five popular fusion metrics, namely, entropy, EI [27],
MI [23], SSIM [39], and edge-dependent fusion quality
index [51].

The main contributions of this paper are described as
follows:

(1) Three fractional order differentiation based fusion
metrics correspond to three sigmoidal functions,
namely, tanh, arctan, and logistic are proposed in this

work by modifying the EI metric, where fractional
order differentiation is applied to quantify the edge
information of the source images preserved by the
fused image.

(2) The effectiveness of the proposed metrics is demon-
strated using the fusion results on the multi-focus,
infrared-visible, and medical image pairs obtained by
popular state-of-the-art fusion methods.

(3) The competitiveness of the proposed metrics is shown
using the five well known state-of-the-art fusion
metrics.

The rest of this work is organized as follows. Section II
presents the proposed method. In Section III, the experi-
mental results are discussed in detail. Finally, Section IV
concludes the work.

II. MATERIALS AND METHODS
A. EDGE DETECTION USING FRACTIONAL ORDER
DIFFERENTIATION
Edge detection algorithm acts as an important tool in com-
puter vision applications especially in feature detection and
feature extraction. Researchers introduced integer-order dif-
ferentiation operators especially order 1 [52] and order 2 [53]
in gradient based and Laplacian based edge detection
methods respectively. The fractional calculation is able
to enhance the quality of images. Moreover, the use of
an edge detection based on non-integer differentiation
improves the detection selectivity of the edge information.
Fractional differentiation based non-integer differentiation
using Grunwald-Letnikov definition is successfully incorpo-
rated to edge detection methods [50]. The contour Robuste
d’Ordre Non Entier (CRONE) detector introduced by
Mathieu et al. is an edge detecting technique which uti-
lizes fractional differentiation to single out edges [50]. The
CRONE detector uses the cusp of derivative at inflexion point
of abscissa to generate the edge detector. This technique has
remarkable detection sensitivity, selectivity, and immunity
to noise for order of fractional differentiation lying between
[−1, 1]. The edges are determined by convoluting the image
pixel by pixel with a predefined moving window/mask. Many
masks are available in literature for edge detection. In [54],
V. Garg et al. presented an improved Grunwald-Letnikov
fractional differentiation mask. In [55], Duch et al. dis-
cussed two new masks by combining sobel operator and
Grunwald-Letnikov fractional differential mask for 0 degree,
M0, and 90 degree, M90, called Likewise-Radar Fractional
order edge operators, which are shown in Eqs. (1) and (2)
respectively.

M0 =

−G2 0 G2

−G1 0 G1

−G2 0 G2

 , (1)

M90 =

−G2 −G1 −G2

0 0 0
G2 G1 G2

 , (2)
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where the values of Gi|i = 1,2 in Eqs. (1) and (2) can be
computed using Eq. (3), shown at the bottom of this page.
In Eq. (3), 0(·) is a gamma function whereas r is the order of
differentiation and r ∈ [0, 1].

In this work, these twomasks, namelyM0 andM90 are used
to convolve with the input image, I , to obtain the horizontal,
Ih, and vertical, I v, edge images.

B. EDGE SIMILARITY MEASURES
In this section, three edge similarity measures, namely, detec-
tion error rate (DER), detection common rate (DCR) and
detect correct similarity (DCS) are defined [56]. These simi-
larity measures estimate how similar an edge image is with
respect to another edge image. In other words, these three
measures help to calculate the similarity value between two
edge images obtained by two different edge operators.
Definition 1 (Detection Error Rate): Let us consider two

gray-scale edge images, namely A and B. Then the value of
DER can be computed using Eq. (4).

DER(A,B) =
|F(A \ B)|
|F(B)|

, (4)

where F(A \ B) is the set edge pixels that appears in A but
not in B whereas F(B) depicts the set of edge pixels in B. The
operator, |·|, represents cardinality of a set.
Definition 2 (Detection Common Rate): The value of DCR

is estimated using Eq. (5).

DCR(A,B) =
|F(A&B)|
|F(B)|

, (5)

where F(A&B) denotes the set of edge pixels appearing in
both A and B.
Definition 3 (Detect Correct Similarity): The DCS is the

ratio ofDCR andDER, which would be computed by Eq. (6).

DCS(A,B) =
DCR(A,B)
DER(A,B)

=
|F(A&B)|
|F(A \ B)|

. (6)

The greater the value of DCS metric, the higher the similarity
between A and B. Edge image obtained by Likewise-Radar
Fractional is considered as A while B is used to represent
sobel edge image for this work. The greater similarity with
sobel edge detectormethod guarantees the fact that the chosen
fractional edge detector is at par if not better than the sobel
method.
Theorem 4: DER(A,B) = DER(B,A) iff A = B wherein

A,B are images.
Proof: Since DER(A,B) is directly proportional to

F(A \ B) and from the definition of Eq. (4) we can conclude
that DER(A,B) is directly proportional to the set difference
operation of two images A and B i.e. (A− B).
Now, let us consider Fig. 1 which shows two sets, namely

A and B. The following two statements can be inferred from

FIGURE 1. Two sets A and B.

Fig. 1 by incorporating set theory.

A = (A− B) ∪ (A ∩ B),

B = (B− A) ∪ (A ∩ B).

If A− B = B− A then,

A = (A− B) ∪ (A ∩ B)

= (B− A) ∪ (A ∩ B)

= B

So, this proves that set difference operator is commutative i.e.
A− B = B− A iff A = B, thus same holds true for the DER
operator. Thus, DER(A,B) = DER(B,A) iff A = B and holds
false otherwise.
Theorem 5: DCS(A,B) = DCS(B,A) iff, A = B, where A

and B are images.
Proof: According to Eq. (6), DCS operator is inversely

proportional to DER(A,B) i.e. F(A \ B) and directly pro-
portional to DCR(A,B) i.e. F(A&B). Also, according to the
definition, F(A \ B) is the set difference operation between
image A and B i.e. (A − B). Now, F(A&B) = F(B&A)
because set intersection operator is commutative in nature.
But, from Theorem 4,DER(A,B) = DER(B,A) iff A = B and
since DCS is inversely proportional to DER operator we can
conclude that DCS will be commutative if and only if DER is
commutative and for that to happen A should be equal to B.
The converse holds false that is DCS(A,B) will not be equal
to DCS(B,A) if A is not equal to B.

C. PROPOSED FUSION METRIC
One of the primary objectives of image fusion is to construct
a fused image preserving maximum visual information from
its source images to provide better visualization. In other
words, fusion rules should be formulated in such a way that it
can extract perceptually meaningful information from source
images and transfer them into the fused image as precisely as
possible so that HVS can easily identify the improvement of
fused image over source images. The proposed fusion metric
would extract the edge information from source and fused
images using Eqs. (1) and (2) because edge information is
considered as one of the perceptual visual information in
computer vision applications.

Gi =
1

0(−r)

[
0(i− r + 1)

(i+ 1)!

(
r
4
+
r2

8

)
+
0(i− r)

i!

(
1−

r2

4

)
+
0(i− r − 1)

(i− 1)!

(
−
r
4
+
r2

8

)]
. (3)
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Let us consider two source images, namely A and B of size
M×N pixels. Let F be the fused image of same size i.e.M×
N pixels obtained by a fusion technique, which integrates A
and B. The edge strengths of these three images are estimated
separately using Eqs. (7), (8), and (9) [27].

SA(x, y) =
√
Ah(x, y)2 + Av(x, y)2, (7)

SB(x, y) =
√
Bh(x, y)2 + Bv(x, y)2, (8)

SF (x, y) =
√
Fh(x, y)2 + Fv(x, y)2, (9)

where x and y are the x and y coordinates of the respective
image. The orientations of these three images are calculated
using Eqs. (10), (11), and (12) [27].

OA(x, y) = tan−1
(
Ah(x, y)
Av(x, y)

)
. (10)

OB(x, y) = tan−1
(
Bh(x, y)
Bv(x, y)

)
. (11)

OF (x, y) = tan−1
(
Fh(x, y)
Fv(x, y)

)
. (12)

The relative edge strength and orientation of F with respect to
A would be computed using Eqs. (13) and (14) respectively.

SFA(x, y) =


SF (x, y)
SA(x, y)

if SA(x, y) > SF (x, y)

SA(x, y)
SF (x, y)

otherwise.
(13)

OFA(x, y) = 1−
2× |OA(x, y)− OF (x, y)|

π
. (14)

Similarly, Eqs. (15) and (16) would be used to calculated edge
strength and orientation of F with respect to B.

SFB(x, y) =


SF (x, y)
SB(x, y)

if SB(x, y) > SF (x, y)

SB(x, y)
SF (x, y)

otherwise.
(15)

OFB(x, y) = 1−
2× |OB(x, y)− OF (x, y)|

π
. (16)

The next step is to estimate edge strength and orientation
retaining values using sigmoid functions. Sigmoidal func-
tions are popularly used in neural networks as an activation
function due to its bipolar transfer nature [57]. A fusion
metric is binary in nature because every fusion metric pro-
vides a value within a finite range, which helps to check
whether a fusion approach is either good or bad. Moreover,
sigmoidal function’s distinctive feature of strictly increasing
and S−curve growth with a finite range of function value
make it even more suitable for modeling a fusion metric.
In [16], C.S. Xydeas et al. considered logistic sigmoidal
function for modeling a fusion metric. The logistic function
can be represented using Eq. (17).

logistic: f (u) =
eu

eu + 1
. (17)

Hyperbolic tangent (tanh) and arcus tangent (arctan) func-
tions are also considered as sigmoid functions, which are
shown in Eqs. (18) and (19) respectively.

tanh: g(u) =
eu − e−u

eu + e−u
. (18)

arctan: k(u) = arctan(u). (19)

However, tanh function is the rescaled version of the logistic
function and can be derived using Eq. (20).

g(u) = 2f (2u)− 1. (20)

Tanh function has twice the range than that of sigmoidal
function i.e. (−1, 1). Since, this function is zero-centered
and anti-symmetric about the origin, it leads to faster con-
vergence. Tanh function is also widely used as a activation
function and greatly excels in 2-class classification problems.
Arctan function is popularly known as inverse tangent func-
tion. This function having a flatter S shape than the rest makes
it a bit potent in classification problems. Thus, we can con-
clude that, in principal, arctan function is potentially superior
to the rest functions due to the above stated reason. Sigmoidal
functions are very good for modeling probabilistic type of
variables, since it saturates at 0 and 1 while the tanh functions
saturate at −1 and 1. Similarly, arctan saturates at −π/2 and
π/2. Figure 2 shows how the three sigmoid functions vary
from each other and where their saturation lies.

FIGURE 2. Plots of sigmoidal functions.

The perceptual loss of information in F , in terms of how
good the strength and orientation values of a pixel in A that
are represented in the F would be estimated using Eqs. (21)
and (22), shown at the bottom of the next page, based on
arctan function. Three above mentioned sigmoid functions
are used in this study. However, equation of the arctan func-
tion is shown here because this is superior to other sigmoid
functions. Similarly, Eqs. (23) and (24), shown at the bottom
of the next page, could be used to compute the information
loss of edge strength and orientation of F with respect to B.
In the above equations, the constants a, b, c, and d deter-

mine the exact shape of sigmoid functions. Edge information
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at a particular pixel location (x, y), transferred from A to F
can be computed using Eq. (25), shown at the bottom of this
page. Similarly, Eq. (26), shown at the bottom of this page,
could be used to estimate the edge information transferred
from B to F .
The value of RFA and RFB will always lie between 0 and 1

because four constants modify arctan function and bring its
range between 0 and 1 including themselves. Lesser the edge
information, greater the loss of information from the source
images in the fused image. Normalized weighted fusion met-

ric, R
F
AB
Q , of a fusion scheme Q that operates on images A,

B, and generates F is obtained using Eq. (27), shown at
the bottom of this page. In Eq. (27), WA(x, y) and WB(x, y)
are the weights of the edge retaining values RFA(x, y) and
RFB(x, y) respectively. Here, weights would be computed by
WA(x, y) = SA(x, y)L and WB(x, y) = SB(x, y)L , where L is
constant. In this work, L = 1. The value of the proposed met-

ric, R
F
AB
Q , for a fused image can be calculated using Eq. (27).

In order to compute edge and orientation strengths of a fused
image with respect to its source images, three sigmoidal
functions, namely, tanh, arctan, and logistic are used inter-
changeably in Eqs. (21) to (24). It means three fusion metrics
are proposed based on three sigmoidal functions respectively.
Since, the proposed metrics use EI metric like mechanism
to investigate the quality of a fused image, higher values
for the proposed metrics correspond to better fused images.
In this study, the order of fractional differential edge detection
method is assumed to be 1.8 because it is the best order in our
experiments which is discussed in section III-E.

The values of the proposed metrics significantly depend
upon the type and shape of sigmoidal functions used.
Since, rescaling and reshaping of these sigmoidal functions
may have profound effects over the parameter values, it is
paramount to make it constant over the course of experi-
mentation. The shape of sigmoidal functions depends on the
Eqs. (28), (29), and (30).

logistic(x) = a(f (c(x − b))+ d). (28)

arctan(x) = a(k(c(x − b))+ d). (29)

tanh(x) = a(g(c(x − b))+ d). (30)

The values of a, b, c, and d can be modified to change
the shape and size of previously defined sigmoidal functions.

Using these parameters, the sigmoidal functions are rescaled
and reshaped. Moreover, the values of these parameters
are kept constant throughout the course of experimentation.
The values of these four parameters for edge and orienta-
tion strengths are set empirically, which are presented in
tables 1 and 2 respectively. Figure 3 reveals the rescaled sig-
moidal functions for edge and orientation strengths.

TABLE 1. Parameter values of sigmoidal functions for edge strength.

TABLE 2. Parameter values of sigmoidal functions for orientation
strength.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATABASE DESCRIPTION
The images from the SIPI image database [58] are considered
to obtain the edge images using fractional order edge detec-
tionmethod. This database consists of frequently used images
in the literature such as ‘‘Zelda’’, ‘‘Cameraman’’ etc. The first
column of Fig. 4 shows some of the sample images taken
from SIPI image database. In order to validate the proposed
fusion quality metrics, four multi-focus images pairs (MF-1,
MF-2, MF-3, and MF-4) [3], four infrared-visible image
pairs (IV-1, IV-2, IV-3, and IV-4) [10], and four medical
image pairs (MED-1, MED-2, MED-3, and MED-4) [2] are
used in the experiments. Three color multi-focus image pairs
(MF-C-1, MF-C-2, and MF-C-3) [59] are also considered to
illustrate the workability of the proposed metrics. Further-
more, three gray-scale and pseudo color medical image pairs
(GP-MED-1, GP-MED-2, and GP-MED-3) are used to show
the effectiveness of the proposed metrics. Different image
pairs are shown in the first two rows of Figs. 6, 7, 8, 9, 10,
and 11 whereas Table 3 reports the size of different image
pairs.

B. COMPUTATIONAL PROTOCOLS
In order to show the workability of a fusion metric, it is
necessary to show the correspondence between themetric and

RFAS (x, y) = arctan(SFA(x, y)) = a · (tan−1(c(SFA(x, y))− b)+ d). (21)

RFAO (x, y) = arctan(OFA(x, y)) = a · (tan−1(c(OFA(x, y))− b)+ d). (22)

RFBS (x, y) = arctan(SFB(x, y)) = a · (tan−1(c(SFB(x, y))− b)+ d). (23)

RFBO (x, y) = arctan(OFB(x, y)) = a · (tan−1(c(OFB(x, y))− b)+ d). (24)

RFA(x, y) = RFAS (x, y)× RFAO (x, y). (25)

RFB(x, y) = RFBS (x, y)× RFBO (x, y). (26)

R
F
AB
Q =

∑M
x=1

∑N
y=1(R

FA(x, y)WA(x, y)+ RFB(x, y)WB(x, y))∑M
x=1

∑N
y=1(WA(x, y)+WB(x, y))

. (27)
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FIGURE 3. Rescaled sigmoidal functions for edge strength (left) and orientation strength (right).

TABLE 3. Size of image pairs.

quality of the fused image obtained by a method. Simulta-
neously, a good metric should be applicable to all types of
fusion applications. Therefore, four types of image fusion
techniques, namely, multi-focus, infrared-visible, medical,
and robust are considered in this work to show the correspon-
dence between the proposed metrics and quality of the fused
images, where robust fusion methods can be applicable to all
types of applications for constructing the fused image. The
above fusion techniques are specially designed to work for
particular image fusion applications. Different state-of-the-
art image fusion methods are briefly described as follows.

Three image fusion methods, viz., quad-tree (QT) [1],
non-subsampled contourlet transform with sparse
representation (NSCT-SR) [2], and boundary finding based
on multiscale morphological focus measure (BF-MSMFM)
[3] are considered to compare the performance of the pro-
posed metrics on the multi-focus image pairs. The QT
performs the quad-tree based decomposition of the source
images to obtain the fused image. In NSCT-SR, the source
images are first transformed into low-pass and high-pass
sub-bands using NSCT, where the low-pass sub-bands are
fused using SR. On the other hand, the high-pass sub-bands
are combined using max-rule. Finally, the fused image is
obtained from the decomposed sub-bands. The BF-MSMFM
generates the fused image by finding boundaries between the
defocused and focused regions of the source images using a
novel focus measure.

In order to show the effectiveness of the proposed met-
rics in infrared-visible image fusion, three state-of-the-art
methods, namely, anisotropic diffusion and Karhunen-Loeve
transform (AD-KLT) [60], two-scale using saliency detection
(TS-SD) [10], and gradient transfer and total variation min-
imization (GT-TVM) [42]. In AD-KLT, the source images
are decomposed into base and detail layers using anisotropic
diffusion. The detail layers are fused using KLT whereas
weighted superposition is used for the base layers. The TS-SD
considers averaging filter to decompose the source images
into detail and base layers, where the detail layers are fused
by the weight map constructed from the visual saliency of the
source images. The averaging rule is employed to obtain the
fused base layer. In GT-TVM, the fusion problem is formu-
lated as a `1-total variation minimization problem, where the
data fidelity and regularization terms preserve the important
intensity distribution in the infrared image and gradient vari-
ation in the visible image respectively.

The efficacy of the proposed metrics on the medical image
fusion is shown using three image fusion methods, viz.,
Laplacian pyramid with SR (LP-SR) [2], convolutional SR
(CSR) [61], and non-subsampled shearlet transform using
pulse coupled neural network (NSST-PCNN) [7]. The LP-SR
is similar to NSCT-SR, where LP is used instead of NSCT.
In [61], Tikhonov regularization is first utilized to decom-
pose the source images into a base and a detail layer. The
fused detail layer is obtained using CSR whereas max-rule is
considered to construct the fused base layer. After applying
NSST to the source images, NSST-PCNN uses the parameter
adaptive PCNN to fuse the high-pass sub-bands whereas
fused low-pass sub-band is obtained using weighted local
energy and weighted sum of eight-neighbourhood based
modified Laplacian.

The robustness of the proposed metrics on the gray-scale
and pseudo color medical image fusion is discussed
using three recent image fusion methods, namely, infor-
mation of interest in local Laplacian filtering domain
(II-LLF) [62], phase congruency and local Laplacian energy
in NSCT domain (PC-LLE-NSCT) [63], and Laplacian
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FIGURE 4. Original images, edge images obtained using sobel operator
and fractional order differentiation.

re-decomposition (LRD) [64]. In II-LLF, LLF is first applied
to source images, then the fused approximate image is
obtained using a maximum local energy (MLE) rule whereas
the fused residual images are generated by an information
of interest based scheme and MLE rule. The fused image
is reconstructed from the fused approximate and residual

FIGURE 5. DER, DCR, and DCS values for the images shown in Fig. 4.

FIGURE 6. Fusion results on multi-focus image pairs.

images. In PC-LLE-NSCT, the fused high-pass sub-bands
are constructed using PC whereas LLE is used to construct
the fused low-pass sub-band. The LRD first decomposes
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FIGURE 7. Fusion results on multi-focus color image pairs.

the source images into redundant, complementary, and
low-pass information using Laplacian decision graph decom-
position. The redundant and complementary information
are fused using novel overlapping and non-overlapping
domain. Low pass sub-bands are fused using MLE rule.
The fused high-pass sub-bands are obtained from fused
redundant and complementary information using an inverse
re-decomposition scheme. Finally, fused image is constructed
by applying inverse Laplacian transform.

Finally, three robust image fusion methods, namely, NSCT
with spatial frequency motivated PCNN (NSCT-SF-PCNN)
[43], guided filtering (GF) [44], and adaptive SR (ASR) [65]
are considered to show the competitiveness of the proposed
metrics with five well known state-of-the-art image fusion
metrics. In NSCT-SF-PCNN, the SF of the decomposed
coefficients corresponding to the source images obtained
using NSCT are fed into PCNN whose outputs are utilized
to get the fused image. Unlike the SR based methods that
learn a single redundant dictionary, ASR learns a number of

FIGURE 8. Fusion results on infrared-visible image pairs.

sub-dictionaries from the high quality image patches which
are pre-classified using their gradient information. ASR adap-
tively selects a sub-dictionary to generate the fused image.
In [44], the source images are first decomposed into base and
detail layers using averaging filter. Then, the weight maps for
these layers are obtained using GF, which are finally used to
obtain the fused base and detail layers.

C. COMPUTATIONAL METRICS
The effectiveness of the proposed metrics is shown using five
image fusion quality metrics, namely, entropy (EF ), EI or
Petrovic’s metric (QAB/F ) [27], MI (MIAB/F ) [23], SSIM [39]
and edge-dependent fusion quality index (QE ) [51]. EF mea-
sures the degree of information contained by the fused image,
F . QAB/F quantifies the edge information of the source
images, A and B that is transferred to F .MIAB/F estimates the
degree of dependency between A, B, and F . SSIM computes
the similarity between the source and fused images whereas
QE represents the edge dependent saliency information of
the source images which is preserved by the fused image.
Higher values of these five metrics corresponds to a better
fused image.

D. PROGRAMMING ENVIRONMENT
All the experiments are performed in MATLAB R2019b on a
PC with Intel(R) Core(TM) i3-5005U CPU @ 2.00GHz and
4-GB RAM. The parameters of different fusion methods are
set to their default values.
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FIGURE 9. Fusion results on medical image pairs.

E. DETERMINATION OF ORDER FOR EDGE DETECTION
USING FRACTIONAL DIFFERENTIATION
In the first experiment, likewise-radar fractional and sobel
operators are used separately to find edge images. However,
the former one depends on an input parameter i.e., order.
In order to compare the edge images obtained using
likewise-radar fractional with sobel edge images, the values
of order are varied from 0.1 with a step-size of 0.1 until
getting a convergence. Here, only non integer values are
considered as the values for order to ensure fractional order
differentiation. Initially, the comparison is performed by bare
eyes. Visual perception depicts that the edges obtained using
fractional order method is comparable with the sobel edge
detection method. But, HVS cannot always recognize the
improvement achieved by an edge detection method over
other methods. Hence, quantitative analysis is required. The
quantitative analysis can be conducted based on the DCS
values. These values are estimated for the images shown in
the first column of Fig. 4.

Figure 5 shows the estimated DCS values along with DER
and DCR values up to order 1.9 because the higher values of

FIGURE 10. Fusion results on gray-scale and pseudo color medical image
pairs.

order beyond 1.9 are less convergent. In this study, we are
interested in estimating edge strengths using fractional order
only. Thus, the edge strengths are not calculated for the order
1.0 which is an integer order equivalent to the first order
differentiation. Similarly, edge strengths are not considered
for the zero order. It can be observed in Fig. 5 that almost
all the images show an upward trend in similarity when the
order is increased. The Graph of DCS vs order can be used
to interpret many useful insights. The same graph depicts a
very significant downfall/through in the order range of 1.3 to
1.6 while drastically increases till 1.8. The DCS values for
most of the images increase in the range of 1.6 to 1.8 order
level. Thus, we can infer that an order of 1.8 gives a desirable
edge output, comparable to sobel operator. We can conclude
from this experiment that order of 1.8 is best suitable for fur-
ther processing. However, for different experiments, the best
order may vary. The edge images for the images shown in the
first column of Fig. 4 obtained by sobel operator and frac-
tional order, 1.8 are shown in the second and third columns
of Fig. 4 respectively. Visual perception clearly shows that
the images shown in the third column of Fig. 4 provide better
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TABLE 4. The values of R
F

AB
Q for the fused images of multi-focus image pairs shown in Fig. 6 obtained by QT, NSCT-SR, and BF-MSMFM.

FIGURE 11. Sample image pairs and the corresponding fused images.

and more edges as compared to the images of second column.
This proves that the fractional order differentiation is indeed
detection sensitive, since it is able to detect very light edges.
Moreover, an image with better visual quality is more likely
to have a higher DCS value.

F. RESULTS FOR IMAGE FUSION AND PROPOSED FUSION
METRICS
In the second experiment, QT, NSCT-SR, and BF-MSMFM
are implemented on MF-1, MF-2, and MF-3 image pairs and
the obtained fused images are shown in Fig. 6 whereas the

values of R
F
AB
Q for these images are reported in Table 4. It is

clear from Fig. 6 that the visual quality of the fused images
obtained by QT are better than NSCT-SR and BF-MSMFM
except the clock boundary in the fused image of MF-1 which
is better fused by BF-MSMFM. However, BF-MSMFM pro-
duces blurry left pedicel for the MF-2 image pair. Few ring-
ing effects can be seen in the fused images generated by
NSCT-SR, which are caused due to NSCT. It can be observed

FIGURE 12. DCS values of sample image fusion pairs.

from Table 4 that the R
F
AB
Q produces higher values for most of

the fused images obtained byQTwhichmatches with the sub-
jective quality of the fused images. It shows the effectiveness

of the proposed fusion metrics. Moreover, the values of R
F
AB
Q

with tanh sigmoidal function are always higher than arctan

and logistic whereas arctan produces the least values of R
F
AB
Q .

In the next experiment, above three methods are exe-
cuted on three color images pairs, viz., MF-C-1, MF-C-2,
and MF-C-3. The subjective and objective results are shown
in Fig. 7 and Table 5 respectively.While estimating the values

of R
F
AB
Q for color images, channel-wise R

F
AB
Q is first calculated

and then averaged to get the final R
F
AB
Q value. It shows the

similar trend as the second experiment suggests. The values

of R
F
AB
Q for the fused images of QT are always higher than

NSCT-PCNN and BF-MSMFM for all the color multi-focus
image pairs. Again it proves the efficiency of R

F
AB
Q .

In the fourth experiment, three image pairs, namely,
IV-1, IV-2, and IV-3 are combined using AD-KLT, iTS-SD,
and GT-TVM. The generated fused images are displayed

in Fig. 8 and the corresponding R
F
AB
Q values are presented

in Table 6. The subjective quality of the fused images
produced by TS-SD are better than AD-KLT and GT-TVM.
Though GT-TVM preserves the thermal radiation in the
fused images, it almost blurred the object boundaries.

88394 VOLUME 8, 2020

anisy



A. Sengupta et al.: Edge Information Based Image Fusion Metrics Using Fractional Order Differentiation and Sigmoidal Functions

TABLE 5. The values of R
F

AB
Q for the fused images of color multi-focus image pairs shown in Fig. 7 obtained by QT, NSCT-SR, and BF-MSMFM.

TABLE 6. The values of R
F

AB
Q for the fused images of infrared-visible image pairs shown in Fig. 8 obtained by AD-KLT, TS-SD, and GT-TVM.

TABLE 7. The values of R
F

AB
Q for the fused images of medical image pairs shown in Fig. 9 obtained by LP-SR, CSR, and NSST-PCNN.

TABLE 8. The values of R
F

AB
Q for the fused images of gray-scale and pseudo color medical image pairs shown in Fig. 10 obtained by II-LLF, PC-LLE-NSCT,

and LRD.

TABLE 9. The values of R
F

AB
Q for the fused images of image pairs shown in Fig. 11 obtained by NSCT-SF-PCNN, GF, and ASR.

The quantitative evaluation as shown in Table 6 depicts the
superiority of TS-SD over other two methods.

Three methods, viz., LP-SR, CSR, and NSST-PCNN are
exploited on MED-1, MED-2, and MED-3 image pairs in
the fifth experiment. The obtained fused images and the

respective R
F
AB
Q values are shown in Fig. 9 and Table 7 respec-

tively. It is clear from Fig. 9 and Table 7 that the subjective
and objective quality of the fused images obtained by LP-SR
are better than CSR and NSST-PCNN. The results exhibit the
effectuality of the proposed fusion metrics.

The sixth experiment is performed on GP-MED-1,
GP-MED-2, and GP-MED-3 image pairs using three
methods, viz., II-LLF, PC-LLE-NSCT, and LRD to show
the effectiveness of the proposed metrics corresponding to
gray-scale and pseudo color image fusion. The fusion results
of these image pairs are shown in Fig. 10 whereas the corre-

spondingR
F
AB
Q values are reported in Table 8. It can be inferred

from Fig. 10 that PC-LLE-NSCT produces well balanced
fused images that mostly retain the anatomical and functional
information from the gray-scale and pseudo color images
respectively. Though, II-LLF transfers maximum anatomical
information from the gray-scale image to the fused image,
it completely fails to resemble the color components which
represent the functional information. Thus, its fused images
are even worst than LRD, which can be seen in the fusion
results of GP-MED-3 image pair. For the GP-MED-3 image
pair, II-LLF produced over exposed fused image. It is evident
in Table 8 that the fused images obtained by PC-LLE-NSCT

produce highest R
F
AB
Q values.

In the last experiment, the performance of the proposed
image fusion metrics is compared with five state-of-the-
art metrics discussed in Section III-C. Here, three methods,
namely, NSCT-SF-PCNN,GF, andASR are applied onMF-4,
IV-4, and MED-4 image pairs. The fused images obtained
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TABLE 10. Computational time of different metrics for the fused image of
MF-4 image pair obtained by NSCT-SF-PCNN.

by these methods are shown in Fig. 11 and the values of
different metrics for these fused images are stated in Table 9.
The last column of Table 9 represents the rank of the fused
images based on HVS. It can be seen in Fig. 11 that GF
outperforms other two methods. Ideally, the subjective and
objective qualities of a fused image should follow the same
trend. It is clear from this experiment that the proposed fusion
metrics along with QE obey this order. Thus, the proposed
fusion metrics can be used to evaluate the performance of a
fusion technique.

It is clear from the above stated experiments that for most
of the cases, the proposed metrics produce higher values
for the better fused images. Therefore, the method which
produces better fused images is prone to generate higher
values for the proposed metrics. Here, a better fused image
corresponds to a fused image with better visual quality.
In other words, the proposed metrics are directly proportional
to the qualitative evaluation of a fused image. Thus, it can
be said that the proposed metrics resembles the HVS. The
values of the proposed metrics lie between 0 and 1 which
occurs due to the rescaling of three corresponding sigmoidal
functions. Moreover, the values of the proposed metric for
tanh sigmoidal function varies from 0.3294 to 0.7987 with
a dynamic range 0.4693. The dynamic ranges of arctan and
logistic sigmoidal functions are 0.4037 and 0.4531 respec-

tively. Simultaneously, tanh provides higher values of R
F
AB
Q

because it approaches its asymptotes more faster than logis-
tic and arctan sigmoidal functions. Furthermore, the per-
formance of the proposed metrics is comparable with the
state-of-the-art metrics.
Remarks: Fusion techniques are desired to produce a

fused image which preserves the complementary salient edge
features of the source images. In other words, the fused
image has more quantitative edge information than the source
images. Thus, source images are prone to have less DCS
values. Figure 12 shows the DCS values of three image fusion
image pairs and corresponding sample fused images. The
fused images have quite higher or almost same DCS values.
Therefore, in this work, fractional differentiation based edge
information metric is proposed to measure the visual saliency
preserved in the fused image.

G. COMPUTATIONAL COST
In order to compare the running time of different metrics,
the MF-4 image pair is selected. Table 10 reports the running
time of different metrics required to assess the fused image
of MF-4 image pair obtained by NSCT-SF-PCNN. It can
be seen in Table 10 that EF and QAB/F are computationally
most and least efficient respectively. The proposed metric
based on tanh and arctan sigmoidal function take highest and

TABLE 11. Average computational time of different methods.

lowest time among the proposed metrics. Moreover, Table 11
depicts the average running time of different methods used
in this study. The running time of the proposed metrics may
be reduced to some extent by using efficient programming
languages like Python and C++.

IV. CONCLUSION
Edge information using fractional order differentiation based
fusion metrics based on three sigmoidal functions, namely,
tanh, arctan, and logistic functions are proposed in this study
to assess the quality of image fusion schemes quantitatively.
The proposed metrics rely on the type of sigmoidal functions.
The characteristics are almost same for the three sigmoidal
functions.Moreover, the shape and size of the curves obtained
using these functions are controlled by four parameters. So,
these parameters are tuned in such a way that the range of the
proposed metrics lie between 0 and 1. These three functions
take edge and orientation strengths as inputs and estimates
normalized weighted fusion metric, which helps to judge the
quality of a fusion algorithmwith the help of fused image and
the corresponding source images. Here, source images are
called reference images as well. The tanh sigmoidal function
provides higher values for the proposed metric with the best
dynamic range. The typical range of the normalized weighted
fusion metric is from 0 to 1. A lower value i.e. close to 0 cor-
responds to a poor fusion algorithm whereas higher values
i.e. close to 1 depict better fusion algorithms. The exper-
iments on multi-focus, infrared-visible, and medical image
pairs using fifteen fusion algorithms show that the proposed
metrics are effective in representing the response of HVS.
The competitiveness of the proposed metrics are shown using
five popular state-of-the-art fusion metrics. Future work lies
in devising some fusion rules using fractional order differen-
tiation to accomplish image fusion. The computational cost
of the proposed metrics can be reduced using C++, Python,
and parallel programming.
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