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ABSTRACT In this article, we presented a novel spectral estimation method, the dyadic aggregated
autoregressive model (DASAR), that characterizes the spectrum dynamics of a modulated signal. DASAR
enhances automatic modulation classification (AMC) on environments where new or unknown modulation
techniques are introduced, and only size-restricted data is accessible to train classification algorithms. A key
component for obtaining efficient machine learning-based classification is the development of valuable
knowledge-descriptive features. DASAR constructs a multi-level spectral representation by subdividing a
signal into successive dyadic segments where each partition is modeled as an aggregation of single-frequency
autoregressive processes. Thus, the model ensures a robust representation at the segment level, while the
multi-level decomposition can capture time-varying spectra. As a feature extraction model, DASAR can
provide useful learning features related to signals with complex spectra. The effectiveness of our model
was tested on a dataset comprised of 11 different modulation techniques and realistic transmission medium
characteristics. Using only 200 128-point samples per modulation scheme (1% of the available signal
samples) and a proper selection of a classification algorithm, DASAR reaches accuracy up to 70.96%
compared with a maximum accuracy of 43.62% using the state-of-art methods tested under the same
conditions.

INDEX TERMS Automatic modulation classification, signal processing, spectrummodeling, autoregressive
model, machine learning.

I. INTRODUCTION
A reliable communication system enforces that a transmit-
ted message will only be understood if the transmitter and
receiver have complete information about the communica-
tion parameters, including the type and characteristics of the
desired modulation (i.e., the techniques to adapt the mes-
sage to the transmission medium conditions). However, it is
feasible to infer some properties about the communication
channel’s configuration if we intercept the modulated mes-
sage passing through the channel. This inference is the central
goal in automatic modulation classification (AMC) [1]. AMC
was developed for military applications such as electronic
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warfare, surveillance, and threat analysis [2]. Nevertheless,
its relevance made it fundamental for other widespread civil-
ian purposes, including software-defined radio (SDR) and
spectrum management. SDR is the base of self-organized
communication infrastructures that rely on AMC to recog-
nize the modulation in real-time and to adapt or optimize
resources during the ongoing transmission process. The rapid
progress and spread of high-speed wireless communication
networks (especially 5G and WiFi 802.11ax), and the conse-
quent spectrum saturation, impulse the role of AMC in spec-
trum management allowing the regulatory entities to detect
misused spectrum ranges by non-authorized communication
channels.

AMC algorithms can be classified into likelihood-based
(LB-AMC) and feature-based (FB-AMC) methods [1]–[4].
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LB-AMC estimates the likelihood of a finite set of modu-
lation schemes given the observed signals. Multiple likeli-
hood ratios are commonly applied as the main discrimination
method [3]. It is granted that LB-AMC methods can theo-
retically achieve optimal solutions (if prior information of
the transmitter is available). However, due to the complexity
of those likelihood functions, the calculations depend on
Markov chain Monte Carlo [4] techniques that are intrinsi-
cally time computationally expensive and inhibit the applica-
tion of LB-AMC for embedded systems.

Moreover, FB-AMC techniques search for suboptimal
alternatives and provide reasonable and flexible solutions
with less computational requirements that do not depend on
prior knowledge. FB-AMC was conventionally based on the
development of expert features based on the nature of the
modulation process: 5th, and 8th-order cyclic cumulants [4],
Fourier transform of the received signal [5] or the phase
signal [6]. However, the detection accuracy of those meth-
ods is limited. In recent research, there was an interest in
the development of advanced machine learning methods to
increase that accuracy. In this trend, several models were
proposed based on deep learning: deep belief networks [7],
extreme learning machines [8], stacked autoencoders [1],
or convolutional neural networks [9]–[13].

The state-of-art methods mentioned above have reached
high levels of accuracy in classifying the modulation type.
In some cases, accuracies higher than 90% were reported [8],
[12], [13]. However, there are still some challenges, mainly
the need for larger datasets for training with all desired and
possible modulation techniques in order to train the neural
networks properly.

In this article, we propose a preventive solution for those
cases when a new modulation scheme, or channel condition,
is introduced, and there are only a limited modulated signal
samples. For this objective, we proposed to extract spectral
features under a classical machine learning classification
model. The features are generated from a novel stochastic
time-spectral decomposition of the signal magnitude and
phase. Our decomposition model, the dyadic aggregated
autoregressivemodel (DASAR), is based on a dyadic (binary)
partition of the signals, where the spectrum of each indi-
vidual segment is modeled by a set of autoregressive mod-
els. DASAR can offer noise-robust mechanisms of spectral
autoregressive representations while allowing to represent
complex dynamic and varying spectra. Therefore, our model
can also capture the spectral signal dynamics while retaining
only the most significant spectral components (likely to con-
tain the modulated and carrier signal). Furthermore, in order
to ensure the computational feasibility of this method, we also
incorporated a dynamic estimation method.

The rest of this article is organized as follows:
Section 2 describes the generalized signal model, the aggre-
gated autoregressive model, the dyadic decomposition tech-
nique, and the estimation algorithm; section 3 illustrates
the dataset and the experimental conditions; in section 4,
the results of the classification algorithms are shown along

with the respective discussions. Finally, we present our con-
clusions in section 5.

II. DASAR MODEL
In a common communication system, a carrier signal, with
amplitude A and carrier frequency fc: c (t) = A cos (2π fct) is
modified according to a source signal x (t) in order to produce
a signal s (t) prepared to the conditions of the communication
channel (baseband signal). In essence, threemajor parameters
are manipulated from the carrier signal: frequency, phase,
and amplitude. We can summarize the diverse single-carrier
modulation techniques through the accompanying equation:

s (t) = A (g (t))κPAM (x (t))κAM

· cos
(
2π t

(
fc + κFM1f

∫ t

0
x (τ ) dτ

)
+ κPMx (t)) (1)

where κAM , κFM , κPM , κPAM are modulation scheme param-
eters and g (t) determines the shape of the pulse (in digital
communications), typically a cosine frequency shaping filter:

g (t) = sinc
(
t
T

)
cos

(
πα t

T

)
1−

(
2α t

T

)2 (2)

controlled by the roll-off factor α ∈ [0, 1].
Now, let us consider the parameter vector:

κθ = (κAM , κFM , κPM , κPAM ) (3)

Combinations of this vector generate the majority of existing
single-carrier modulation techniques characterized by [2].
For instance, amplitude modulation double-sided band (AM
DSB) and amplitude shift keying (ASK) are the analog and
digital case when κθ = (1, 0, 0, 0). Frequency modula-
tion (FM) and frequency shift keying (FSK) are a particular
case of Equation 1 with κθ = (0, 1, 0, 0). Phase modu-
lation (PM) and phase shift keying (PSK), phase schemes
in analog and digital communications, are special cases of
Equation 1 when κθ = (0, 0, 1, 0). Furthermore pulse ampli-
tude modulation (PAM) is obtained when κθ = (0, 0, 0, 1);
and quadrature amplitude modulation (QAM) under κθ =
(1, 0, 1, 0).
We should recognize that the source signal s (t) will suffer

alterations during its transmission over a wired or wireless
medium, and the signal received will be different. Therefore,
we can model the measured signal r (t) at the receiver as:

r (t) = ω (t)+ αej(2π f0t+θ0)

·

∫
∞

−∞

s (τ ) p (τ − t) h (t − τ + εT ) dτ (4)

where α is the channel gain, p (·) is the pulse shape of the
channel, h (·) is the channel response, and εT is the symbol
timing error, and f0 is the carrier frequency that can be delayed
by θ0 radians. Moreover, it is also often observed that the
channel will be affected by a thermal noise interference ω (t)
(modeled with an additive Gaussian noise [14]) inherently
related to the maximum signal-to-noise ratio supported by the
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channels (SNR). We refer to [2] and [15] for further details
about this model.

If the pulse shape and channel response are known,
the receiver is able to mitigate the distortion impact of the
channel as it takes place in communication with sufficient
knowledge between transmitter and receiver. In those cases,
the model can be simplified as [2]:

r (t) = αej(2π f0t+θ0)s (t)+ ω (t) (5)

A. SPECTRAL REPRESENTATION USING AGGREGATED
AUTOREGRESSIVE COMPONENTS
For complex modulation schemes, the encoded and transmit-
ted symbols (Equation 1 and 5) can be recovered applying
discrete inverse Fourier transform [16]. It is implicit to this
process that time-located frequency variations for eachmodu-
lated symbol can be ignored. Nevertheless, Fourier transform
is still suitable to demodulate the signals under some con-
straints. In this article, we proposed a parametric method to
model the signal spectrum; therefore, the complete spectrum
can be represented by a reduced set of parameters while
spurious components are rejected.

The crucial element in DASAR is the spectral representa-
tion as an aggregated autoregressive model (AAR). For effi-
cient parameter estimation and simple representation, in this
study we use aggregated second-order autoregressive model
AAR(2). However, this choice does not restrict the applica-
tion of DASAR to higher-order AAR models. An autoregres-
sive model of second order AR(2) describes a real and finite
signal x (t) (sampled at a fixed interval 1/fs) as the stochastic
process generated by a linear combination of the two previous
points, x (t − 1) and x (t − 2), and an additive Gaussian error
term ε (t):

x (t) = φ1x (t − 1)+ φ2x (t − 2)+ ε (t) (6)

where φ1 and φ2 are known as the autoregressive coeffi-
cients. In this case, without loss of generality, we assume that
E[X (t)] = 0 The error component ε (t) ∼ WN

(
0, σ 2

ε

)
, is a

zero-mean random variable, with variance σ 2
ε , and serially

uncorrelated E [ε (t) ε (t − τ)] = 0 ∀τ .
For stationary AR(2) processes, the power spectral density

(PSD) Sx (ω) is characterized by:

Sx (ω) =
σ 2
ε∣∣1− φ1e−2jπω − φ2e−4jπω∣∣2 (7)

where ω is the normalized frequency with respect to the
sampling frequency fs: ω =

f
fs
.

We should note that Sx (ω) has a single maximum at the
dominating frequency ω∗:

ω∗ =
1
2π

arccos
(
φ1 (φ2 − 1)

4φ2

)
=

1
2π

arctan
(
φ2

φ1

)
(8)

when φ21 + 4φ2 < 0. Given our interest in the spec-
tral information contained in an AR process, we can refor-
mulate the autoregressive coefficients based on ω∗ and a

FIGURE 1. Second-order autoregressive processes as stochastic harmonic
oscillators controlled by τ and ω∗.

parameter τ :

φ1 =
2

1+ e−τ
cos

(
2πω∗

)
(9)

φ2 = −
1(

1+ e−τ
)2 (10)

AR(2) processes can effectively model stochastic oscilla-
tions with a frequency around ω∗ [17]. In these models, τ
controls the randomness of the central oscillation frequency:
small values can model signals with frequency components
widely spread around ω∗ (Figure 1.A-B); and large val-
ues of τ can model signals with an clear central frequency
(Figure 1.D-E).

However, the received signal r (t) can have more than
one main resonating frequency (this is more noticeable in
AM/ASK), and therefore a single AR(2) would be insuf-
ficient to represent the spectrum of the signal accurately.
Nevertheless, we can take advantage of the concise stochastic
frequency representation offered by AR(2), establishing an
aggregated model as the superposition of several AR(2) com-
ponents with distinct parameters. Some theoretical properties
of these types of models were introduced by Chong et al. [18]
and generalized by Dacunha-Castelle et al. for AR(p) pro-
cesses [19].

An aggregated model AAR (p,K ) is defined as the sum of
K uncorrelated components where each one is characterized
through an AR (p) process:

y (t) =
K∑
k=1

zk (t)+ ν (t) (11)

where εk is the additive white noise εk ∼ WN
(
0, σ 2

εk

)
,

and each zk (t) is a latent unobserved AR(p) time series,
in our target case, an AR(2) process associated with a
central frequency ω∗k , and a frequency randomness τk
(Equation 9, 10 and 7):

zk (t) =
cos

(
2πω∗k

)
1+ e−τk

x (t)−
1(

1+ e−τk
)2 zk (t − 1)+ εk (t)

(12)
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Given that zi (t) and zj (t) are uncorrelated for i 6= j, the spec-
trum of an AAR (2,K ) is determined by

Sy (ω) =
K∑
k=1

σ 2
εk∣∣∣∣1− cos(2πω∗k)

1+e−τk
e−2jπω + 1

(1+e−τk )
2 e−4jπω

∣∣∣∣2
+σ 2

ν

(13)

B. ESTIMATION METHOD
The inference of the set of parameters

{
φ1,1, φ2,1, . . . , φ1,K ,

φ2,K , σ
2
1 , . . . , σ

2
K

}
of an AAR (2, p) model is still an

open problem. Wong et al. proposed Kalman filters
with expectation-maximization as a method for estimating
AAR (2, 4) [20]. Gao et al. also proposed to Kalman filter
with a least squares estimation based on block resampling for
AAR (2, 4) [21]. It should be emphasized that in the latter,
it is required apriori knowledge of the target signal, and a
reasonable fixed resonating frequencies

{
ω∗k

}
. To the best

of our knowledge, there is no general method that provides
an estimation method without relying on strong assumptions
related to the number of representative components of the
signal.

We introduce an estimation method that automatically
infers a pertinent number of components (and their parame-
ters) that can explain a set of observations. Given a signal that
has a fixed, and unknown, number of dominating frequencies
with at least a separation of 1f , we proposed and estimation
algorithm composed of three stages:

1) Estimation of an interpolated fast Fourier trans-
form (FFT) of a signal x (t). The autocovariance func-
tion of a zero-mean stationary process, x[t], is given by
γX (`) = E [x [t] x [t − `]], where E [·] is the expecta-
tion operator and the spectrum is further given by the
Fourier transform:

SX (ω) =
1
2π

∞∑
`=−∞

e−j`ωγX (`) (14)

For a realization (or observation) of this process,
the FFT squared magnitude of the recorded signal
can be used as an estimate of SX (ω). Moreover,
to increase the frequency scale of the digitalized FFT
signal, we can interpolate the estimates in the frequency
domain with a Dirichlet kernel; or equivalently, zero-
padding the signal in the time domain,

xZ =

{
x (t) t ≤ T
0 t > T .

Thus, the initially estimated spectrum is

S(0) (ω)=SFFT (ω)=
1
T

∣∣∣∣∣
T+B∑
t=1

xZ (t) exp (−jπ tω)

∣∣∣∣∣ (15)

2) Fit an AR(2) model that describes the dominating fre-
quency in ω∗. Let w be the frequency where S(k) has a
maximum value (consider that initially, k = 0). Then,

restrict the neighborhood of wwith a Gaussian window
B (ω;ω∗) around it with a standard deviation equal to
the frequency separation 1f :

B
(
ω;ω∗

)
= exp

(
−

(
ω − ω∗

1f

)2
)

(16)

Now, given the L2 distance function defined by

L2
(
ω;ω∗, τ

)
=

∑
ω

(
S(k) (ω)B

(
ω;ω∗

)
−S

(
ω;ω∗, τ

))2
(17)

define the estimate τ̂ as the nonlinear least square of B,
i.e., the minimum value of L (ω):

τ ∗ = argmin
τ

(
L
(
ω;ω∗, τ

))
(18)

3) Calculate the residuals. Obtain the unexplained spec-
trum for a next iteration k + 1:

S(k+1) (ω) =
⌈
S(k) (ω)− S

(
ω;ω∗, τ ∗

)⌉+
(19)

4) The previous steps should be repeated until conver-
gence (

∑
ω

∣∣S(k+1) (ω)∣∣ < ε), or until reaching the
maximum number of desired components.

C. DYADIC TIME PARTITION
AAR (2, k) offers a model that explains the most significant
frequency components in the signal, but ignoring their time
origin. This absent time-location information is highly rele-
vant in dynamic modulated signals because of the modulated
signal’s dynamic nature. Therefore, inspired by the decompo-
sition in the discrete wavelet transform, the dyadic aggregated
autoregressive model (DASAR) addressed this time-location
issue through a dyadic (or binary) decomposition of the time
series where a signal segment on n-th level is split into
two segments (n + 1-th level). For each segment, we fit a
AAR (2, k) model with a maximum of k components.

This decomposition structure provides a representation of
the frequency components that are allowed to vary according
to time during the complete recorded transmission. Thus,
stable components such as the carrier frequencies are likely
to be captured in the first level (level 0 in Figure 2) due to
their stability and magnitude compared with the modulated
components and the noise. Subsequent levels can capture
components that are most significative only in specific inter-
vals, or can capture minor variations in the carrier frequencies
as they are common for frequency modulation.

Figure 2 shows an example of a decomposition of signals
with 11 different modulation schemes into 4 levels. Note
that compared with the decomposition applied in wavelet
transform, DASAR also keeps the high-frequency dominat-
ing components at each level.

III. DATASET
In order to ensure the repeatability of the results presented in
this study, we utilized a publicly available dataset for assess-
ing the performance of our model: the RadioML2016.10a
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FIGURE 2. 4-level DASAR decomposition of the different 11 modulation
schemes presented in the RadioML2016.10a dataset.

(RML) dataset. This is a synthetic database created using the
software GNU Radio to simulate several realistic transmis-
sion conditions. It was originally introduced by O’Shea [14].
In RML, the communication channel has an average sampling
rate of 200KHz with a standard deviation of 0.01Hz. The
effect of the channel on the carrier (carrier frequency drift)
is simulated through a zero-mean Gaussian random variable
with a standard deviation of 0.01Hz. Moreover, Doppler
effects (common in wireless transmissions) are simulated
with stochastic frequency shifts up to 1Hz. Finally, channel
delays are simulated through a fractional delay model, with
three fractional tap delays: 0, 0.8 and 1.7 taps.

RML comprises 220000 in-phase/quadrature samples with
a length of 128 points each one, those segments simulate
several noisy conditions with signal-to-noise ratios (SNRs)
ranging from −20dB to 18dB. Note that the overall RML
simulation parameters (SNR levels, maximum Doppler shift,
and channel tap delays) can simulate mobile communications
in indoor and outdoor environments with communication
devices at varying speeds and under different interference
levels. Nevertheless, no burst errors are included in the sim-
ulated communication channels. Moreover, RML comprises
11 modulation schemes including 3 analog methods: double-
sideband amplitude modulation (AM-DSB), single-sideband
amplitude modulation (AM-SSB), wideband frequency mod-
ulation (WBFM); as well as eight digital modulation tech-
niques: 2-, 4- and 8-level phase shift keying (BPSK, QPSK,
8PSK), pulse-amplitude modulation (PAM), 16- and 64-level
quadrature amplitude modulation (QAM16, QAM64), Gaus-
sian and continuous-phase frequency-shift keying (GFSK,
CPFSK). For a detailed explanation about the simulated mod-
ulation techniques and their respective parameters, we refer
to [14] and [9].

FIGURE 3. Feature extraction method for AMC based on the DASAR
model.

A. METHOD
The fundamental intention of this study is to introduce a
design for those instances where we have minimal access to
samples of an unusual set of channel conditions or unfore-
seen modulation settings. These circumstances can occur
when proprietary industrial multi-carrier modulation (MCM)
protocols are introduced, or abnormal time-varying electro-
magnetic propagation patterns are found, such as Lim et al.
measured in the coastal area of South Korea [22]. For the
cases where a large dataset is available, O’Shea et al.,
Rejendram et al., and Ramjee et al. have reported accuracies
closed to 90% using convolutional neural networks (CNN)
[9], long short-term memory neural networks (LSTM) [13],
and convolutional long short-term deep neural networks
(CLDNN) [12], respectively.

We extracted features using a 4-level DASARmodel with a
maximum of 4 components per segment (Figure 3) such that,
at least, 8 data points are processed in the lowest levels given
the size of the sample segments. The spectral information is
extracted from themodulus and phase of the samples in RML,
following the parameter estimation procedure described in
Section II.

We adopt a training set composed of a randomly cho-
sen 1% of the dataset (2200 samples) with an SNR higher
than 0, and the rest of the dataset as testing set (217800 sam-
ples). Due to computational constraints, this process was
only repeated 30 times. We should emphasize that this
proportion of 1%-99% allowed us to replicate a condition
of limited knowledge of the available types of modula-
tions using less than 200 sample segments per modulation
scheme.

We also contrast two conditions: our processed features
and raw data using four machine learning classifiers: the
CNN architecture introduced by [14] as a reference algo-
rithm, random forest of 500 trees (RF500), extreme gradient
boosting trees with 500 trees (XGB500), a decision tree with
20 maximum levels (DT20).

IV. RESULTS AND DISCUSSION
It is usually that the AMC discriminators displayed the classi-
fier’s accuracy as a function of the signal-to-noise ratio of the
modulated signal [9], [12], [13], in order to observe their abil-
ity to detect the correct modulation method in environments
with high, medium and low interference. It is also frequent
that the displayed accuracy is normalized with respect to the
number of samples in each SNR level [9], [12], [13].
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FIGURE 4. Normalized classifiers’ accuracies with respect to SNRs:
A) curve, and B) detailed table.

The accuracy-per-SNR curve of the eight simulated con-
figurations (raw data and DASAR with four classifica-
tion algorithms) is displayed in Figure 5. Initially, we can
observe that the performance of the features extracted from
DASAR using RF500 showed the best performance with
a detection accuracy higher than 70% with SNRs higher
than 10dB.

We acknowledge that O’Shea’s CNN model [9] will pro-
vide low performance (lower than DT20 in our simulations),

FIGURE 5. Normalized confusion matrix of RF500 trained with DASAR
features. The matrix is constructed over the performance of the classifier
on signals with SNR higher than zero. Note that the values are shown in
percentages.

due to the limitation of the training data size. As it was also
denoted by [13], a deep learning architecture will require
more than 50% of the dataset input for reaching an accuracy
level of 90%.

We also present the normalized confusion matrix obtained
by the RF500 classifier in Figure 5. This structure allowed us
to identify the central reasons that illustrate the performance
of the method:

• The modulation schemes that involve one or more
distinct central frequencies were accurately recog-
nized. Thus, AM-SSB has a prediction accuracy
of 94.6%, while CPFSK and GFSK have accu-
racies higher than 96.6%. The latter techniques
modulate discrete input signals shifting the carrier
frequency, and the RF500 classifier accurately identifies
this change.

• However, gradual variations in the carrier frequency
were not detected by the classification algorithm
(WBFM was correctly classified only in 43.6% of the
cases). We hypothesized that DASAR with a maxi-
mum of 4 components per level was not sufficient to
represent this continuous change in frequency accu-
rately, and the variations were improperly interpreted
as wide fluctuations over the carrier wave, and there-
fore, labeled as amplitude modulation AM-DSB (that
produces the same precise behavior in frequency). Note
that 22.7% of the AM-DSB segments are recognized as
WBFM, and 44.5% of theWBFM samples are classified
as AM-DSB.

• Phase transformations cannot be fully described by
the PSD, and therefore, by a limited-level DASAR.
We should note that this type of modulation has higher
bit error rates, given its high sensitivity to changes
in the medium [2]. In our simulations, we observe
a confusion of the RF500 classifier between 8-PSK
and QPSK, and QAM16 with respect to QAM64. The
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first set (QPSK and 8-PSK) corresponds to the same
modulation technique with 4 and 8 levels, respectively.
In both, the digital input information is encoded by
only changing the phase of the signal. The second
pair (QAM16 and QAM64) are also two variants of a
quadrature amplitude modulation that encodes digital
signals through combinations of amplitude and phases.
Even though the limitations of anAAR(2) spectral repre-
sentation, the dyadic structure of DASAR can represent
the transitions caused by the variations of phase and
allow RF500 to identify the algorithms. But, a minor
difference in the type of phase transitions (e.g., from
QAM16 to QAM64) limits the effectiveness of a 4-level
DASAR for differentiating the correct scheme.

V. CONCLUSION
We presented a spectrum-estimation model to serve as a
feature-basedmethod for automatic modulation classification
with an emphasis in environments with limited access to
samples of the modulation schemes. Our method, the dyadic
aggregated autoregressive model (DASAR), starts perform-
ing a dyadic decomposition, i.e., it divides a signal based
on successive binary partitions. Each segment is modeled as
a sum of second-order autoregressive processes from which
a robust estimator of the spectrum can be obtained. The
inference of the parameters in the later processes is performed
using an efficient and flexible numerical method.

As a feature extraction method for AMC, DASAR was
tested on the RadioML2016.10a dataset, which contains a
large sample set of modulation techniques under realistic
transmission conditions. As the state-of-art proposed for
AMC, we explored a convolutional neural network (CNN)
architecture with raw data as a classification method, as long
as decision trees, and high-performant ensemble trees (ran-
dom forests and extreme gradient boosting trees) trained with
DASAR features. Later, we used a train/test split technique
to evaluate the performance of those techniques, repeated
30 times. To assess the generalization power of our method,
we simulate a restrictive environment condition where only a
minimal portion of the complete set is accessible, in such a
way that 2200 samples (1% of the dataset) with SNR higher
than 0dB were randomly selected for training the algorithms,
and 217800 samples (99%of the dataset) is utilized for testing
the performance.

Random forest classifiers with DASAR-based features
showed accuracies higher than 70% for identifying 11 dif-
ferent modulation techniques when the signal-to-noise ratio
was higher than 10dB. In comparison, the state-of-art meth-
ods showed an accuracy lower than 35.5%. Surprisingly,
DASAR showed an accuracy higher than the state-of-art
(59%) even when the noise and signal have the same power
level (0dB). We should emphasize that alternative state-of-
art deep-learning methods have reported higher accuracies
when larger datasets are available. Nevertheless, the observed

results revealed promising further applications of DASAR
for environments where novel modulation schemes are intro-
duced, or extensive datasets cannot be provided or con-
structed.
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