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Introducingmulti-resonatormicrostructure intophononicmetamaterials providesmoreflexibility inbandgapmanip-
ulation. In this work, 3D-acoustic metamaterials of the body- and face-centered cubic lattice systems encompassing
nodal isotropicmultivibrators are investigated. Ourmain results are: (1) the number of bandgaps equals the number,
n, of internalmasses as each bandgap is a result of the classical analog of the quantum level-repulsionmechanism be-
tween internal and external oscillations, and (2) the upper boundary frequencies, ωupper

2 i, i= 1, 2,⋯, n, of the gaps
formed coincidewith eigen-frequencies,ωint;i

2 ≠0, of the isolatedmultivibrator,ωupper2;i=ωint; i
2 , and the lower bound-

ary frequencies,ωlower2,i
2, are in good agreement with estimations asω2

lower,i≈bω2
int;i (ω

2
lower,i<bω2

int;i), where bω2
int;i rep-

resent the eigen-frequencies of the multivibrator when its external shell is motionless.
The morphologies of the set of dispersion surfaces, ωm

2 (k), m = 1, 2, …, 6, in the corresponding passbands are
similar to each other and to that of the set of dispersion surfaces, ωext; m

2 (k), obtained through the exclusion of
internal masses. Thus, the problem of analyzing the acoustic properties of the complicated system is reduced

to the study of two simple sets {ωint; i
2 } and bω2

int;i

n o
, along with {ωext; m

2 (k)}, the morphology of which depends

only on the type of lattice symmetry. This splitting renders controlled phononic bandgaps formation in homoge-
neous multi-resonator metamaterials feasible.
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1. Introduction

Phononic metamaterials, as synthesised latticed materials
possessing microstructure, have been the subject of contemporary re-
search due to their beneficial controllable features such as concurrent
negative effective stiffness and density [1] and controllable frequency
pass- and stop-bands [2]. These features, not observed in natural mate-
rials, render them useable in a variety of applications, including blast
wave mitigation [3], seismic wave protection [4], enhanced flexural
wave sensing [5], and several other applicationswhere wavemanipula-
tion or guiding are relevant [6]. The microstructure in phononic meta-
materials may comprise a single mass and spring (single resonator) or
multiple masses and springs (multiple resonator) or such idealised
realisations of other elements when feasible.

Introducingmultiple resonators into themicrostructure of phononic
metamaterials adds new dimensions to bandgap formation, frequency
spectral expansion, and passband expansion/contraction as a result of
the additional degrees-of-freedom introduced [7,8]. Compared to their
single resonator (SR) counterparts (Fig. 1(a)), multi-resonator (MR)
metamaterials (Fig. 1(b)) possess more degrees-of-freedom per unit
cell and, as a consequence, a higher number of dispersion surfaces and
multiple bandgaps. SR metamaterials, such as those introduced by
Lazarov and Janson [9] or Huang et al. [1], possess only a limited number
of (in their case, two) complete bandgaps when acting as phononic fil-
ters rendering them unsuitable for some devices in need of multiple
gaps. The solution is to increase the number of degrees-of-freedom in
the microstructure through the introduction of additional elements.
While several related ideas utilisingmore sophisticatedmicrostructures
such as fractals/pseudo-fractals [10], Labyrinthine acoustic metamateri-
als with space-coiling channels [11], and Hilbert curves [12] are pro-
posed recently, extending the classic SR metamaterials using merely
additional masses and springs proves to introduce distinctive features
while the system's level of complexity remains undaunting.

The inclusion of microstructure also assists with narrowing down or
extending the gap size through correct tuning of model parameters
[2,13,14]. This is true of SR as well as MR metamaterials, however, MR
metamaterials are more flexible due to an increased number of model
parameters involved so the size of bandgaps may be appropriately
tuned. It is therefore essential to investigate the primary features of
Fig. 1. Schematic of the microstructure in (a) single-resona

2

MR metamaterials. While SR metamaterials of different topology and
at several length scales are well studied (see e.g. [2,13,15–18]) there
are a limited number of studies conducted on the characteristics of
MR metamaterials (see e.g. [7,8,19–21]).

In the context of MR metamaterials, several forms are conceivable.
While Huang and Sun [7] focused on the simple mass-spring-based de-
sign, Bonanomi et al. [22] discussed wave propagation in granular
chains of directional filtering properties, Li [23] and Li et al. [24] came
up with the design for acoustic diodes based on the hybrid tunable
sonic crystal-multiphase gel units, Martinez-Sala et al. [25] investigated
diffraction structures at macro length scales, and Gorishnyy et al. [26]
proposed hypersonic phononic crystals. These studies are very interest-
ing and form the basis of novel designs in thefield [6], however, asmen-
tioned before, we concentrate here on simple mass-spring models of
MR with distinctive features.

Besides theoretical modelling, experimental research on the topic of
design and testing phononicmetamaterials has been ongoing ever since
the conception of the idea, and some recent studies have focused on the
topic. To mention but a few, Liu et al. [27] fabricated and tested sonic
crystals encompassing localized resonant units and depicted spectral
gaps with a lattice constant two orders of magnitude smaller than the
relevant wavelength. They constructed and tested a 2 cm slab of the
metamaterial which was shown to break the conventional mass-
density law of sound transmission by one or more orders of magnitude
at almost half a kilohertz. In another study conducted by Sheng et al.
[28], a rigorous theoretical derivation of dynamic mass density yielded
frequency-dependent values significantly deviating from the long-
wavelength (static) value. The dynamic mass density was shown to be
negative for certain frequency ranges (bandgaps) and the results were
corroborated with experimental data. In a more recent study, Wang
et al. [29] reported on the mechanism for simultaneous realization of
perfect absorption and broadband insulation by layered acoustic meta-
materials. They showed that at a particular frequency (312 Hz) nearly
perfect absorption (98.4%) was achieved by testing a sample of 15 mm
thickness. Barnhart et al. [19] conducted an experimental program to
study dissipativeMRmetamaterials used for broadband elastic wave at-
tenuation. This broadband wave attenuation was demonstrated
through an impact test performed on finite samples where the fre-
quency spectrum of the transmitted amplitude was found to be in
tor, and (b) multi-resonator phononic metamaterials.
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close agreementwith numerical results. Finally, in a rather recent study,
Ma and Sheng [30] provided an overview of the topic as investigated
over the one and half decades prior to their work.

Most results in this realmhinge upon the simple fact that composites
with locally resonant microstructure within their unit cells exhibit si-
multaneous negative effective density and stiffness at certain frequency
ranges. While the experimental study of this class of metamaterials is
interesting in itself and essential to adduce evidence in support of the
theoretical results obtained also to depict the physical significance of
parameters defining the models investigated, such a study falls beyond
the scope of the present paper as it merits a great deal of research on
its own.

This paper is organised in 5 sections as follows: following this intro-
duction, the discrete-parameter multi-resonator metamaterial is for-
mulated in Section 2. Each MR unit comprises mass points of zero
rotatory inertia and is connected to adjacent masses by massless linear
springs of equal stiffness in each direction (local isotropy). The two
kinds of connectivity of MR units considered are those of the BCC and
FCC structures. In Section 3, the BCC MR metastructure is analyzed and
its results expounded. In Section 4, the FCC lattice is considered. In
each case, dispersion surfaces are tuned to form bandgaps and pass-
bands. Finally, the study is concluded in Section 5.
2. Analyses

2.1. The discrete-parameter multi-resonator (MR) metamaterial

The discrete-parameter MR metamaterial is an idealisation of sce-
narios where mass and springs stand for structural elements, as in
Fig. 2(a).WhenMR units are embedded in a continuum, as if connected
Fig. 2. (a) Schematic of an N-layered mass-in-mass unit in an MR metamaterial. (b) A medium
elements). (c) The schematic of a scenario when MR (n = 3) mass-spring idealisation is possi
deformed configurations in optic modes, are distinguishable.

3

by external springs in a given topology, the MR metamaterial is ensued
(See Fig. 2(b)). When feasible assumptions are made regarding the dis-
tribution of mass and stiffness in the system, the discrete-parameter
model is resulted in and the equations ofmotionmay be cast in a simple
form. Considering a three-dimensional metamaterial comprising an in-
finite arrangement of locally resonant mass-spring MR's connected in a
given topology, as shown schematically in Fig. 2(b), the equations of
motion for different layers of the mass-spring model (Fig. 2(a)) are de-
rived as follows:

m1€q1 þ kq1 q1−q2ð Þ ¼ 0 for the innermost layer ð1Þ

mp€qp þ kqp þ kqp−1

� �
qp−kqpqpþ1−kqp−1qp−1 ¼ 0

for intermediate layers 1 < p < nð Þ
ð2Þ

where the layers are numbered from inside outwards;
mp is the mass of layer p; and kp

q is the stiffness of the spring connecting
layer p to layer p + 1 in the direction of q, where q designates a gener-
alized coordinate which may be the x, y, or z components of the dis-
placement vector in the cartesian coordinate system. Equations of
motion for the outermost layer depend upon the external topology of
MR units in the metamaterial and may be complicated, in general. In
this work, two different well-known topologies of the BCC and FCC lat-
tices are considered which render local interactions of each MR unit
with immediately adjacent ones possible. In the sequel, the equations
of motion are derived for both topologies and subsequent analyses per-
formed which make it possible to derive the dispersion surfaces and
bandgap structures for each case, corresponding to acoustic and optic
modes of vibration (Fig. 2(c)).
with multi-resonator microstructure (external connections may be defined using spring
ble. The base state (undeformed configuration) and acoustic rigid body modes, as well as



Fig. 3. External topologies of the MR units in the (a) BCC, and (b) FCC lattices.
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2.2. Analysis of the MR metamaterial

As mentioned before, two topologies, namely the BCC and FCC, are
considered here to represent the external connectivity of the MR
units. The BCC and FCC topologies are selected as they replicate two of
the topologies encountered in nature, for instance in crystalline metals.
Fig. 3 shows both of these topologies in 3D along with the nodal micro-
structure for a four-layered resonator, as an example.

3. The BCC-multi-resonator mass-in-mass structure

3.1. Formulation of the problem

The dispersion equation for the BCC structure under consideration is
based on two basic relations. If two locally resonant elements of the sys-
tem are connected by a spring of stiffness κ, then the second element
acts on the first one with a force, f12 of Eq. (3).

f 12 ¼ κe12 e12: x2−x1ð Þ½ � ð3Þ

Here x1 and x2 are the displacements of the spring ends from the
equilibrium position, e12 – the unit vector directed along the spring,
Fig. 4. (a) The unit cell of the BCC structure (confined by red dashed lines) and the schematic of
lattices inserted into each other. (b) The internal structure of nodes (A and B). The inner she
perpendicular to four adjacent springs. The stiffness of the springs and the masses of the in
colour in this figure legend, the reader is referred to the web version of this article.)

4

and the displacements are assumed to be small i.e. |x2 − x1| ≪ l,
where l is the unstretched length of the spring.

When a wave propagates in an infinite medium, the displacements,
x1, x2, in the equivalent nodes of the structure with coordinates, r1, r2,
are related by Bloch's equation as follows:

x2 ¼ x1ei r2−r1ð Þk ð4Þ

where k is thewave vector, and the vector r2− r1 is a translational sym-
metry vector.

The unit cell of the BCC structure includes two lattice nodes (Fig. 4)
and the corresponding lattice constant is equal to a. Blue and red nodes
form simple cubic lattices which are then inserted into each other to
create the model. Nodes A and B (marked with circles) are used as ‘ref-
erence nodes’. As such, the displacement of any other structural node is
associated with the displacement of the corresponding reference node
through Eq. (4). For the selected shape of the unit cell (instead of a trun-
cated octahedron, which contains one node only), the Brillouin zone in
k-space is a cube of side length 2π/a.

As an infinite lattice with this unit cell, the dynamics of the entire
system can be described by equations for the displacements of the ref-
erence nodes represented by a column vector,X, composed of 18 entries
as in Eq. (5).

X ¼
Xext

X int

Xnuc

264
375,Xext ¼

xa

ya

za
xb
yb
zb

26666666664

37777777775
,X int ¼

xai

yai

zai
xbi
ybi
zbi

26666666664

37777777775
,Xnuc ¼

xan

yan

zan
xbn
ybn
zbn

26666666664

37777777775
ð5Þ

In relations (5), Xext represents the displacement vectors of the outer
shells for the reference nodes A and B of massM (see Fig. 4), Xint are the
displacements of the inner shells of mass mi, and Xnuc are the displace-
ments of the inner cores in nodes A and B (the mass of the core is mn).
As mentioned before, nodes A and B have an identical internal structure
(local homogeneity) (the stiffness of internal springs is indicated in
Fig. 4). The stiffness of external springs connecting the nodes of the
same sublattice is χ (in Fig. 4(a), for example, these are the springs be-
tween the neighboring blue nodes). The stiffness of springs that connect
external elastic bonds between its nodes. Blue and red spheres represent two simple cubic
lls/cores are connected to the corresponding outer shells by six springs, each of which is
ner shells and cores are indicated in the figure. (For interpretation of the references to
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adjacent nodes belonging to different sublattices is derived as
ϰ ¼ 2χ=

ffiffiffi
3

p
, provided that the stiffness of each spring is inversely pro-

portional to its length, i.e.:

χ � 1=a;ϰ � 1= a
ffiffiffi
3

p
=2

� �
;χ=ϰ ¼

ffiffiffi
3

p
=2 ð6Þ

Now, we derive the equations of motion for only the outer shells of
reference nodes, i.e. without taking into account their internal micro-
structure. To this end, we take into consideration all the forces, caused
by 6 neighboring blue nodes (see Fig. 4(a)) and 8 red nodes, acting on
the reference node A. Similar calculations are performed for reference
node B. The basis of these calculations is presented in Eqs. (3) and (4).
For example, when calculating the forces exerted by 8 neighboring red
nodes and acting on the reference node A, it should be taken into ac-
count that their displacements are related by the equation:

X redð Þ
j ¼ X redð Þ

B e ika eBAþe jð Þ=2½ � ð7Þ

Here eBA is the vector directed from the reference node B to the ref-
erence node A, ej is the unit vector directed from the reference node A to
one of the neighboring red nodes (j=1, 2, 3,…, 8), and XB

(red) is the dis-
placement of the reference node B. As a result, we obtain the following
system of equations:

M€Xext ¼ A B
B� A

� �
∙Xext ≡ Fext ∙Xext ð8Þ

The third-order matrix, A, describes the interaction of nodes in each
of the blue and red sublattices while the matrices B and B ∗ (complex
conjugate of B) represent the mutual influence of the sublattices on
one another.

A ¼ 2χ∙A0−8ϰ
3

∙I3 ð9Þ

A0 ¼
cos kxð Þ−1 0 0

0 cos ky
� �

−1 0
0 0 cos kzð Þ−1

24 35 ð10Þ

Hereinafter, by thewave vector, k, wemean the dimensionless wave
vector, i.e. kj ja ¼ 2πa

λ ¼ k, where λ is the wavelength, In is the identity
matrix of the n-th order, and the following relations hold:

B ¼ ξ∙B0 ð11Þ

B0 ¼
α1 þ α2 þ α3 þ α4 α1−α2 þ α3−α4 α1−α2−α3 þ α4
α1−α2 þ α3−α4 α1 þ α2 þ α3 þ α4 α1 þ α2−α3−α4
α1−α2−α3 þ α4 α1 þ α2−α3−α4 α1 þ α2 þ α3 þ α4

24 35
ð12Þ

ξ ¼ 2
3
ϰe i kxþkyþkzð Þ=2½ Þ�, and ϰ ¼ 2χ=

ffiffiffi
3

p
ð13Þ

whereαi are the functions ofwave vector components and related to
them as follows:

α1 ¼ cos
kx þ ky þ kz

2

� �
,α2 ¼ cos

−kx þ ky þ kz
2

� �
α3 ¼ cos

−kx−ky þ kz
2

� �
, and α4 ¼ cos

kx−ky þ kz
2

� � ð14Þ

Whenwe take into account the fact that the lattice nodes have an in-
ternal microstructure, we obtain a system of equations as:
5

M∙€Xext
mi∙€X int

mn∙Xnuc

24 35 ¼
Fext−2κ i∙I6 2κ i∙I6 0
2κ i∙I6 − 2κ i þ 2κnð Þ∙I6 2κn∙I6
0 2κn∙I6 −2κn∙I6

24 35∙ Xext
X int
Xnuc

24 35
ð15Þ

In the sequel, for a qualitative analysis of acoustic properties of the
system under consideration, it is useful to know the eigenfrequencies
of the isolated lattice nodes i.e. without taking into consideration the in-
fluence of external springs. These can be found from the truncated sys-
tem of Eq. (15) if we single out the equations of motion for the
displacements of the outer shell of the node, xe, its inner shell, xi, and
its core, xn, at χ = 0 as in Eq. (16).

M∙ €xe
mi∙€xi
mn∙€xn

24 35 ¼ −
2κ i −2κ i 0
−2κ i 2κ i þ 2κn −2κn

0 −2κn 2κn

24 35∙ xe
xi
xn

24 35 ð16Þ

In the model chosen, it suffices to consider the one-dimensional
problem as the excited internal oscillations are independent (due to
the geometric linearity approximation) along arbitrarily defined per-
pendicular directions. For the periodic solutions, i.e. x = x0 exp (iωt),
there are two non-zero eigenfrequencies (the third solution of
Eq. (15), ω2 = 0 corresponds to the free movement of the node as a
whole):

ω2
int;1,2 ¼ 1

2
ω2

i þω2
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

i −ω2
n

� �2 þ 4ω4
in

q� �
ð17Þ

where.

ω2
0≡ω

2
i ¼ 2κ i

μei
, μei ¼

Mmi

M þmi
ð18Þ

ω2
n ¼ 2κn

μ in
, μ in ¼ mimn

mi þmn
ð19Þ

ω4
in ¼ 4

κ iκn

m2
i

ð20Þ

The frequency ω0
2 ≡ ωi

2 represents the eigenfrequency of an isolated
node in the absence of a core, while the frequencyωn

2 corresponds to the
natural oscillations of the isolated inner shell-core pair.

The equation for the eigenfrequencies and eigenvectors characteriz-
ing the acoustic properties of the entire system is obtained based on
Eq. (15), represented in the form X = X0 exp (iωt) thus:

−ω2X0 ¼

~Fext−
γ

1þ γ
∙I6

γ
1þ γ

∙I6 0

1
1þ γ

∙I6 −
γ þ β
1þ γ

∙I6
β

1þ γ
∙I6

0
αβ

1þ γ
∙I6 −

αβ
1þ γ

∙I6

26666664

37777775∙X0 ð21Þ

In Eq. (21), the frequency ω is given in units of ω0 where:

eFext≡
eA eBeB⁎ eA

" #
ð22Þ

eA ¼ Ω2∙
3
ffiffiffi
3

p

16
∙A0−

Ω2

2
∙I3, eB ¼ Ω2∙

1
8
∙B0 ð23Þ

γ ¼ mi

M
,α ¼ mi

mn
,β ¼ kn

ki
, andΩ2 ¼ 16

3
ffiffiffi
3

p 2χ
M

	 

=ω2

0 ð24Þ

Since thematrix of the systemof equations in Eq. (21) is a function of
the wave vector k, Eq. (20) defines, in the general case, 18 dispersion-
surfaces ω(k) in the four-dimensional (4D) space. Four parameters, α,
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β, γ, and Ω2 - which determine the acoustic properties of the system -
have a transparent physical sense (includingΩ2 - see the next section)
and are easily controlled.

3.2. Acoustic properties of the system

The presence of multivibrators inside the lattice nodes leads to the
formation of both separate passband regions and bandgaps in the fre-
quency spectrum. Below, we show that the corresponding boundary
frequencies can be established as the simple mathematical relations of
a clear qualitative interpretation.

We demonstrate the indicated acoustic properties of the
system using the results obtained for a specific set of parameters
(Figs. 5 and 8: α=2, β=1, γ=2, andΩ2= 1.5). Note that the param-
eter Ω2 (see Eq. (24) and Fig. 5) corresponds to the frequency of lattice
vibrations at k = 0 in the case when internal multivibrators are re-
moved from the system. Such (thrice degenerate) vibrations (according
to the shape of the Brillouin zone for the selected unit cell) are equiva-
lent to vibrations with the wave vector kx, y, z = 2π and wavelength
λ = 1 (in the units of the lattice constant a). In other words, each of
the sublattices of the system is shifted, as a whole, relative to the
other sublattice along one of the coordinate axes x, y, or z. In this case,
the neighboring planes of lattice sites with an orientation of the type
[100] are displaced in the antiphase without deformation of the springs
in the sublattices.

Oscillations at the boundary point k(π,π,0) in Fig. 5 (point M1, 2 in
Fig. 12) also correspond to antiphase displacements of neighboring
planes of nodes ([110] -type) with frequencies:

ω2
M;1 ¼ 4

3
ffiffiffi
3

p 4χ
M

	 

=ω2

0;ω
2
M;2 ¼ 4χ

M

	 

=ω2

0; and

ω2
M;3 ¼ 4χ

M
1þ 8

3
ffiffiffi
3

p
	 


=ω2
0 ≈ 1:65�Ω2

ð25Þ
Fig. 5. (a) Dispersion surfaces calculated for lattice vibrationswithout taking into account the in

plane (kx,ky), and kz = 0. (b) Cross-section of the surfaces presented in part (a): kx ¼ ky≡kxy=
p

6

The first two frequencies correspond to transverse vibrations, and
the third to longitudinal. For future estimates, we note that ωM, 3

2 is
the maximum frequency in the first Brillouin zone. This follows from
the truncated systemof Eq. (21), ifwe exclude from consideration inter-
nal multivibrators:

−ω2Xext ¼ eFext

h i
∙Xext , eFext kð Þ þω2∙I6

��� ��� ¼ 0 ð26Þ

For individual values of the wave vector, k, the dispersion equation
(Eq. (26)) can be easily solved analytically. At the point k(π,π,π)
(point R in Fig. 12), the longitudinal and transverse vibrations have

the same frequency ω2
R ¼ 4χ

M 1þ 4
3
ffiffi
3

p
� �

=ω2
0; point k(π,0,0) (point X in

Fig. 12) corresponds to twice degenerate transversal oscillations with

frequency ω2
X1,2 ¼ 4

3
ffiffi
3

p 4χ
M

� �
=ω2

0 and longitudinal oscillations with fre-

quency ω2
X,3 ¼ 4χ

M 1þ 4
3
ffiffi
3

p
� �

=ω2
0.

The planes outlined in Fig. 5(a) with red and blue contours are cor-
responding to surfaces:

ω2 ¼ ω2
int;1,2 ð27Þ

whereωint; 1, 2
2 are the eigenfrequencies of isolated nodes (see Eq. (15)).

When defined in terms of dimensionless parameters these are recast as:

ω2
int;1,2 ¼ 1

2
1þ β

1þ α
1þ γ

	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β

1þ α
1þ γ

	 
	 
2

þ 4
β

1þ γð Þ2

vuut24 35 ð28Þ

For the parameters given above ωint; 1
2 = 2/3, ωint; 2

2 = 4/3.
The result of the interaction between external and internal elastic

forces is shown in Fig. 6(a). The brief qualitative interpretation of
this is quite transparent. The internal structure of lattice nodes defines
the isotropy of their elastic properties. In this case, a coupling strength
between external and internal vibrational modes manifests itself
ternal structure of nodes (Ω2= 1.5). Thewave vector k changes in thefirst quadrant of theffiffiffi
2.



Fig. 6. (a) Cross-sections of frequency surfaces (kx ¼ ky≡kxy=
ffiffiffi
2

p
, kz ¼ 0), taking into account the internal structure of the lattice nodes. Ω2 = 1.5, α = 2, β = 1, and γ = 2. (b) A more

detailed representation of the blue and olive dependencies given in part (a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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through the influence of external/internal elastic forces on the outer
shells. At the lines of intersection of the planes ω2 = ωint; 1, 2

2 (see
Eq. 28) and surfaces ω2 = ω2(k) (see Fig. 5(a)) these modes have
the same frequency and the same polarization, so that effects analo-
gous to the quantum effect of energy-level repulsion arise (see [27]):

M €xe ¼ − χ þ kið Þxe þ kixi ¼ −ω2Mxe andm€xi ¼ kixe−kixi ¼ −ω2mxi
ð29Þ

the surfacesω2=ω2(k) are essentially ‘torn up’ by planesω2=ωint; 1, 2
2 .

The reconnection of these ‘primary’ dispersion surfaces is followed by
the formation of bandgaps (see Fig. 6(a)). On the adjacent newly formed
upper frequency surfaces (ω2(k) is higher than the corresponding value
ωint; i

2 ), the external elastic forces act on the outer shells antiphase with
internal forces. On the lower adjacent surfaces (ω2(k) < ωint; i

2 ) these
forces act in phase. Thus, the maximal frequency on these surfaces can
be achieved when the result of the ‘in-phase displacements’ vanishes,
in other words, the outer shells are stationary. The analogs of the
bandgap/passband formation mechanism discussed manifest them-
selves in other physical systems. The passband for electromagnetic
(EM) waves in metals corresponds to the frequencies, ωEM, that is
higher than the eigenfrequency of plasma oscillations, ωplasma, in the
system of electrons and positive charged nuclei. More complex exam-
ples of the formation of passbands/bandgaps were realized by the inter-
action of EM waves with saturated atomic cesium vapor as shown in
previous studies [31].

It is important to establish the quantitative characteristics of the
passband regions (alternatively bandgaps) as a function of parameters
defining the acoustic system. To this end, we consider a simpler prob-
lem when the internal structure of the node is represented by a simple
vibrator (see the inset in Fig. 8). Examples of its solution, by analogy
with the results of Figs. 5 and 6 are shown in Fig. 7. We draw attention
7

to the fact that the topology of dependencies ω2(kxy) in each passband
region, shown in Fig. 6 and Fig. 7(c) and (d), is similar to the structure
of the frequency dependencies of the system in the “initial” (without in-
ternal structure) state - see Fig. 5 and Fig. 7(a) and (b). Let us consider,
in detail, factors determining the result of splitting of this initial state
into separate zones.

The interaction between external and internal elasticmedia does not
depend on the nature of the external elastic forces that cause vibrations
of the node shell (see the inset in Fig. 8) with a certain angular fre-
quency,

ffiffiffiffiffiffiffiffiffiffiffi
χ=M

p
, at mi = 0. Taking into account the internal structure

of the node leads to the formation of hybrid frequencies, which are
easy to determine from the system of equations of motion for the
displacements of the outer shell, xe, and internal mass, xi.

The corresponding dimensionless hybrid frequencies are equal to:

ω2
h1,2 ¼ 1

2
Ω2

e þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

e þ 1
� �2

−4Ω2
e= 1þ γð Þ

r !
ð30Þ

whereΩe
2= (χ/M)/ω0

2,ω0
2= ki/μ, μ=Mm/(M+m), andγ=m/M. (The

dimensionless eigenfrequency of an isolated node, ω0
2, in Fig. 8 is equal

to 1). Themain result of the solution of the problem is that the lower hy-
brid frequency has an upper limit (see Fig. 8):

lim
Ω2⟶∞

ω2
1 ¼ 1= 1þ γð Þ < ω2

0 ≡ 1 ð31Þ

The limit value 1/(1+ γ) can be obtained from qualitative consider-
ations that lead to a simple method for calculating hybrid frequencies
for a multi-level internal structure of nodes.

In the case of free vibrations of an isolated node, the displacements
of the shell and the core are out of phase and the displacement of the
system's centre of mass is identically zero - Mxe(t) + mxi(t) = 0. The



Fig. 7. (a) and (b): Initial (without internal structure) set of dependences ω2(k). (a): Ω2 = 1.5 and γ = 1; (b) Ω2 = 0.5 and γ = 1. (c) and (d): Effects of manifestation of the internal
structure of nodes in variants A and B, respectively. In the center of the Brillouin zone, the optical branches of the oscillations are derived from the eigenfrequency of the vibrator (ω2

(k = 0) = 1) and two hybrid frequencies 2.15 and 0.35 (c), and 1.31 and 0.19 (d).
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influence of an external field changes the frequency of internal oscilla-
tions and shifts the center of mass of the node with time. However,
these forced vibrations can be represented as free vibrations of an iso-
lated node with the effective mass of the outer shell M ∗ = − mxi(t)/
xe(t), which ensures the immobility of the center of mass of the node.
At the lower hybrid frequency, the displacements xi(t) and xe(t) are in
phase andM ∗< 0. On the other hand, the eigenfrequency of oscillations

of the node is ω2
h ¼ ki

μ⁎ ¼ ki
m

� �
1þ m

M⁎

� �
. As the stiffness of the external

spring increases, the displacement value xe(t) → 0, and the effective
mass M ∗ → − ∞, thereby bringing the value of ωh

2 to the upper limit
ki
m

� �
. Its dimensionless quantity, ki

m

� �
=ω2

0, is equal to the value of

1/(1 + γ) obtained from Eq. (31), and represents the eigenfrequency
of internal vibrations under the assumption that the outer shell of the
node is motionless.

The analysis of the results presented in Fig. 7 leads to the following
assumption. The presence of an internal vibrator splits each function,
ω2 = ω2(k), presented in Fig. 7(a) and (b), into two hybrid depen-
dences, ωh1

2 [ω2(k)], ωh, 2
2 [ω2(k)], in accordance with Eq. (28), in which

Ωe
2 ≡ ω2(k). Two passband regions are formed - upper and lower (see
Fig. 8. Solutions of Eq. (30) and the scheme of the object under consideration.

8

Fig. 7(c–d)). In particular, the point Ωe
2 = 0 gives rise to the lower

(ω2(k = 0) = 0) and upper passband regions, ω2(k = 0) = 1 (recall
that this frequency coincides with the eigenfrequency of the internal
vibrations of an isolated node). The formation of the bandgap occurs
because the lower hybrid frequency is bounded from above (see Fig. 8).

The result obtained can be generalized to the case of a multilevel
metastructure of n−1 internal multivibrators possessing n−1 internal
elements/masses (Fig. 2(a)). The total number, n, of elements of an isolated
node determine its n eigenfrequencies as: ω2

int;0 ¼ 0;ω2
int;1;ω

2
int;2;…::;

ω2
int;n−1, which subsequently represent the lower boundaries of the pass-

band regions. The upper boundaries of these regions (or the lower bound-
aries of the bandgaps) are guaranteed to represent eigenfrequencies:
ω2

h,1,ω
2
h,2,ω

2
h,3, . . . ::,ω

2
h,n−1 of an isolated node under the assumption

that its outer shell is motionless. Bandgaps thus correspond to frequency
intervals:

Δ
ω2ð Þ
sup;i ¼ ω2

int;i−ω2
h;i; i ¼ 1;2;…; n−1 ð32Þ

Data presented in Figs. 5 and 6 confirm the assumption above about
the general principles anent the formation of a multiband spectrum of
frequencies. In the case under consideration in this section n ¼ 3. The
eigenfrequencies of a two-level internal vibrator are defined in
Eq. (26). To determine the operator that transforms the dependencies
ω2 = ω2(k), shown in Fig. 5, into a series of three passbands, it suffices
to consider the one-dimensional oscillations of a single node (taking
into account the internal microstructure) based on Eq. (15) taking
into consideration external forces, as was done in deriving Eqs. (27)
and (28). For the dimensionless parameterswehave adopted, the corre-
sponding equations assume the following form:

γ
1þ γ

þΩ2
e−ω2 −

γ
1þ γ

0

−
1

1þ γ
1þ β
1þ γ

−ω2 −
β

1þ γ

0 −
αβ

1þ γ
αβ

1þ γ
−ω2

26666664

37777775∙
xe
xi
xn

24 35 ¼ 0 ð33Þ

The influence of the external environment is embedded in the fre-
quency Ωe

2. The limiting values of the frequencies, ωh, 1
2 and ωh, 2

2 , can
be found from the truncated system as represented by Eq. (34):
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1þ β
1þ γ

−ω2 −
β

1þ γ

−
αβ

1þ γ
αβ

1þ γ
−ω2

��������
�������� ¼ 0 ð34Þ

Hence

ω2
h1;2 ¼ 1þ β þ α β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β þ αβð Þ2−4αβ

q
2 1þ γð Þ ð35Þ

For parameters in Fig. 6, the eigenvalues areωh, 1
2 = 0.195 andωh,2

2 =
1.138. Such estimates somewhat narrow the width of the bandgaps and
expand the middle passband. The widths of these zones can be deter-
mined more accurately if we substitute in Eq. (33) the highest frequency
reached in Fig. 5 (see Eq. (25)).

ω2
M;3 ≈ 1:65�Ω2 ¼ 2:475 ð36Þ

The obtained values ofωh, 1
2 = 0.156 andωh, 2

2 = 1.087 coincide with
the result shown in Fig. 6(a). Data presented in Fig. 7 show the depen-
dencies of ωi

2(k) only along one straight line in the k-space (i = 1, 2,
3, …, 18 in the increasing order of frequencies). Graphical representa-
tion of dispersion hypersurfaces in four-dimensional space (k,ω) is im-
possible, but it is realistic to depict the alternation of bandgaps and
passbands as follows.

In a spherical coordinate system (θ, ϕ, ω2), we define surfaces con-
structed by the following method. For each direction (θ,ϕ), we change
the wave vector, k, from 0 to the boundary of the Brillouin zone and
find the extreme values as:

max
k

ω2
6 θ;ϕ; kð Þ� 
 ¼ ω2

1;h θ;ϕð Þ; min
k

ω2
7 θ;ϕ; kð Þ� 
 ¼ ω2

int;1; and

max
k

ω2
12 θ;ϕ; kð Þ� 
 ¼ ω2

2;h θ;ϕð Þ; min
k

ω2
13 θ;ϕ; kð Þ� 
 ¼ ω2

int;2

ð37Þ

The surfaces, ω(a)
2 = ω1, h

2 (θ,ϕ) and ω(b)
2 = ωint; 1

2 bound the lower
bandgap, and the surfaces ω(c)

2 = ω2, h
2 (θ,ϕ) and ω(d)

2 = ωint; 2
2 bound

the upper bandgap. The corresponding result for the system parameters
α = 2, β = 1, γ = 2, and Ω2 = 1.5 (as shown in Fig. 6) is presented in
Fig. 9. Naturally, the passband region is bounded frombelowby a sphere
of radiusω2 =ωint; 1

2 , and a sphere of radiusω2 = max (ω2, h
2 ) = 1.087

from above (see Eqs. (35) and (36) and corresponding explanations).
Fig. 9. Representation of bandgaps in the three-dimensional (θ, ϕ, ω2)-space. Coordinates
θ and ϕ indicate the direction alongwhich thewave propagates (α=2, β=1, γ=2, and
Ω2 = 1.5).
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Based on Eqs. (28) and (35), it is easy to control the passbands and
bandgaps by approximating the surfaces ω(a)

2 , ω(b)
2 , ω(c)

2 , ω(d)
2 with

spheres of radii ω1, h
2 (k = 0), ωint; 1

2 , ω2, h
2 , and ωint; 2

2 . Data represented
by the surface in Fig. 10 depict the characteristic dependence of fre-
quencies ωint; 1

2 and ωint; 2
2 on the parameters α and β for a fixed value

of γ. It is discussed below how the upper bandgap can be adjusted
based on these data (see in Fig. 6 the orange-coloured zone referred to
in the sequel as the ‘orange-zone’).

A narrow ‘orange-zone’ can be formed if the frequency difference
Δω21

2 = 1/2(ωint; 2
2 − ωint; 1

2 ) is small relative to the frequency average
value 〈ω21

2 〉 = (ωint; 2
2 + ωint; 1

2 )/2. According to Fig. 10, one of the suit-
able parameter sets is: α = 7 and β = 0.5. The corresponding result is
shown in Fig. 11(a). The dependencies of frequency on the wave vector
are calculated for the trajectory in k-space, presented in Fig. 12. The ‘or-
ange-zone’ can be significantly expanded (see Fig. 11(b)) for a large gap
of Δω21

2 (α = 0.5 and β = 0.5 - see Fig. 10).
In Fig. 11(a) and (b), the frequencyΩ2 exceeds the valueωint; 2

2 . By an
inverse ratio, Ω2 ≲ ωint; 2

2 , the difference ω2, h
2 − ωint; 1

2 , which is an esti-
mation of the width of the second passband, can be significantly re-
duced (recall that all three hybrid frequencies depend on Ω2 and are
easily calculated based on Eq. (33)). Results in Fig. 11(c) show the pos-
sibility of forming such a rather narrow passband regions (see the olive
passband) with low group velocities of acoustic waves. The results ob-
tained for the BCC lattice are directly related to more complex 3D struc-
tures as shown in the next section.

4. The FCC-multi-resonator mass-in-mass structure

Here we demonstrate the implementation of the physical principles
of bandgap formation as discussed above, using the example of an FCC
substratum lattice for the MR metamaterial. We construct the mathe-
matical description of the acoustic properties of such a system in a
slightly different way than in the previous section.

When considering the BCC structure, we operated with a unit cell in
the form of a cube containing two nodes. Accordingly, the entire system
was presented in the form of two simple cubic sublattices. This node
partitioningmade it possible tomap the oscillation frequency of the sys-
tem,Ω2, withwave vectors kx, ky, kz=2π/a to the center of the Brillouin
zone (k = 0) and subsequently display hybrid frequencies at the same
point (k = 0) for interpretations and estimates of the width of
bandgaps. A similar approach applied to the FCC problem (the unit
cell contains 4 nodes) will force one to operate with four sublattices,
Fig. 10. The characteristic dependence of the relative amplitude of variations in
eigenfrequencies of an isolated lattice site, Δω21

2 /〈ω21
2 〉, on parameters α and β for a

fixed γ (γ = 2).



Þ;

Fig. 11. Dependencies ωn
2 = ω2(k) where n = 1, 2, 3, …, 18 for different sets of system

parameters. Vector k changes along the path that lies in the first octant of the Brillouin
zone (see Fig. 7). (a) Ω2 = 1.5, α = 7, β = 0.5, and γ = 2. (b) Ω2 = 1.5, α = 0.5, β =
0.5, and γ= 2. (c)Ω2 = 0.3, α = 0.5, β = 0.5, and γ= 2.
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which greatly complicates the construction of the dispersion equation.
Therefore, we operated with a primitive cell containing a single node.
The corresponding translational symmetry vectors (see Fig. 13(a), red-

yellow vectors) are ‘1
affiffi
2

p , affiffi
2

p , 0
� �

, ‘2 0, affiffi
2

p , affiffi
2

p
� �

, ‘3 affiffi
2

p , 0, affiffi
2

p
� �

. Each
Fig. 12. The first octant of the Brillouin zone and the path along which the wave vector
changes when calculating the data presented in Fig. 11.
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node (marked blue) interacts with 12 nearest neighboring nodes
(marked olive), placed at a distance affiffi

2
p from the reference node, and

six dark cyan nodes from the second-order close environment, located
at a distance a (see Fig. 13(a)). The stiffness constants for the longer
and shorter springs areχ and

ffiffiffi
2

p
χ, respectively. For the selected system

of translational symmetry vectors, the first Brillouin zone in k-space is a
truncated octahedron as shown in Fig. 13(b) (the dimensions of the
zone along the X, Y, Z axes are equal to 4π/a).

When analyzing the properties of the BCC lattice, we established that
in order to determine the boundaries of pass and stop bands, it is neces-
sary to establish a set of eigenfrequencies of isolated nodes and a set of
hybrid frequencies (see Eq. (32)). Both of these sets can be found from
Eq. (33) forΩe

2=0andΩe
2=Ω0,max

2 , respectively (Ω0,max
2 – is the highest

frequency achieved in the lattice if internal multivibrators are excluded
from consideration). Usually, such a frequency corresponds to a point k
lying on the boundary of the Brillouin zone. These frequencies can be ob-
tained analytically for the directions of the wave vector which coincide
with the axes of symmetry of the zone.

Derived on the basis of Eqs. (3) and (4), equations of motion corre-
sponding to the generalized coordinates of external shells of nodes xe,
ye, ze, (internal multivibrators have not yet been taken into account)
have the form:

M€Xext ¼
ffiffiffi
2

p
χA∙Xext ,Xext ¼

xe
ye
ze

264
375,Xext ¼ X0eiωt

!
ffiffiffi
2

p
χ

M
Aþω2

�����
�����∙X0 ¼ 0 ð38Þ

where

A11 ¼ axy þ axz−4þ
ffiffiffi
2

p
cos kx−1ð Þ

A22 ¼ axy þ ayz−4þ
ffiffiffi
2

p
cos ky−1
� �

A33 ¼ axz þ ayz−4þ
ffiffiffi
2

p
cos kz−1ð Þ

axy ¼ 2 cos kx=2ð Þ cos ky=2
� �

, axz ¼ 2 cos kx=2ð Þ cos kz=2ð Þ, ayz
¼ 2 cos ky=2

� �
cos kz=2ð Þ

A12 ¼ A21 ¼ −2 sin kx=2ð Þ sin ky=2
� �

;A13 ¼ A31 ¼ −2 sin kx=2ð Þ sin kz=2ð
and A23 ¼ A32 ¼ −2 sin ky=2

� �
sin kz=2ð Þ

The highest eigenfrequencies of the lattice calculated for the bound-
ary points of the Brillouin zone X(2π,0,0), K(3π/2,3π/2,0), Σ(π,π,0) and
L(π,π,π) (see Fig. 15(b)) are equal, respectively, to:

ω2
X ¼ χ

M
8
ffiffiffi
2

p
;ω2

K ¼ χ
M

4 1þ
ffiffiffi
2

p� �
;ω2

Σ ¼ χ
M

6
ffiffiffi
2

p
þ 4

� �
; and

ω2
L ¼ χ

M
8
ffiffiffi
2

p
þ 4

� � ð39Þ

These frequencies are indicated by circles in Fig. 14(a). The highest
frequency is achieved for the dimensionless wave vector k(π,π,π) and
corresponds to the longitudinal vibrations of the [111]-layers of the lat-

tice nodes with a wavelength of λ ¼ 2
3 a

ffiffiffi
3

p� �
which means that neigh-

boring [111] layers, spaced apart by a=
ffiffiffi
3

p
distance, oscillate in

antiphase.
In the presence of internalmultivibrators, the formation of bandgaps

and passbands in between them obeys the same laws as in the case of
the BCC lattice. The equation of motion for the coordinates of the ele-
ments of the system below.

X ¼
Xext

X int
Xnuc

24 35;X int ¼
xi
yi
zi

24 35;Xnuc ¼
xn
yn
zn

24 35 ð40Þ



Fig. 13. (a) The FCC lattice: the interaction scheme of the referenced lattice node (blue) with the nearest nodes (olive) and second-order nearest nodes (dark cyan). (b) The first Brillouin
zone for the FCC lattice. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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have the form:

M∙€Xext

mi∙€X int

mn∙Xnuc

24 35 ¼
ffiffiffi
2

p
χ∙A−2κ i∙I3 2κ i∙I3 0
2κ i∙I3 − 2κ i þ 2κnð Þ∙I3 2κn∙I3
0 2κn∙I3 −2κn∙I3

24 35∙ Xext
Xint
Xnuc

24 35
from which the equation for determining the eigenfrequencies and

eigenvectors, X0 follows:

−ω2X0 ¼

Ω2∙ηA−
γ

1þ γ
∙I3

γ
1þ γ

∙I3 0

1
1þ γ

∙I3 −
γ þ β
1þ γ

∙I3
β

1þ γ
∙I3

0
αβ

1þ γ
∙I3 −

αβ
1þ γ

∙I3

26666664

37777775∙X0 ð41Þ

Here η ¼ 1
8þ2

ffiffi
2

p , and parameters, α, β,and γ are defined, as before, by

Eq. (24). The fourth parameter is the dimensionless eigenvalue defined
by the ratio Ω2 = ωL

2/ω0
2 (the definition of ω0

2 is given in Eq. (18)).
Fig. 14. (a) The initial set of dependences ω2(k) along a trajectory in the k-space. Ω2 = 1.5
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In Fig. 14(a) the frequency characteristics of the system are depicted
along the path ΓXWKΓLKWLUX in the k-space (see Fig. 13(b)). The re-
sults obtained from Eq. (38) when internal multivibrators are not
taken into account and for the value of the parameter Ω2 = 1.5 are
shown in Fig. 14(a). The effect of turning the multivibrators on is
shown in Fig. 14(b) with conspicuous gaps in between dispersion
curves (projections of dispersion surfaces). It can be seen that the topol-
ogy of the dependencesω2(k) in the three passbands is an analog of the
topology of the set of dependencies obtained in the “initial state” - see
Fig. 14(a).

We should emphasize that the upper boundaries of the bandgaps,
ω2 = ωint, 1

2 =2/3 and ω2 = ωint, 2
2 =4/3, as well as their lower bound-

aries, ω2 = ωh, 1
2 = 0.137 and ω2 = ωh, 2

2 =1.05 can be precisely deter-
mined in advance by Eq.(33) by substituting Ωe

2 = 0 and Ωe
2 = Ω2,

respectively, without solving Eq.(41). The value ωh, 3
2 ≈ 2.31 defines

the upper bound of all possible wave frequencies that can propagate
in the system.

The revealed patterns of formation of passbands are applicable for
more complex multivibrators (see Fig. 15). Here we present the result
. (b) The manifestation factor of a three-level multivibrator (α = 2, β = 1,and γ = 2).



Fig. 15. The manifestation of an additional core inside the lattice node for the system
shown in Fig. 14 (Ω2 = 1.5, α = 2, β = 1, γ= 2, α′= 2, and β′ = 0.5).
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for the case when three internal masses are located inside the node: the
central core ofmassmс is added to themassesmi andmn. The stiffness of
the springs that connect this corewith the adjacent shell is kc. Therefore,
to the four previously used parametersα, β,γ,Ω2, twomore dimension-
less parameters should be added - α′ = ma/mc, β′ = kc/ka.

Data presented in Fig. 15 is quite expected. Four passbands reproduce
the structure of dependencies, shown in Fig. 14 (a), in different frequency
ranges. The upper/lower boundaries of the bandgaps, Δsup,i

2 (i = 1, 2, 3),
displayed in Fig. 15, exactly correspond to the eigenfrequencies of the
equation presented below forΩe

2 = 0 andΩe
2 = Ω2.

γ
1þ γ

þΩ2
e−ω2 −

γ
1þ γ

0 0

−
1

1þ γ
1þ β
1þ γ

−ω2 −
β

1þ γ
0

0 −
αβ

1þ γ
α β þ β0� �
1þ γ

−ω2;−
αβ0

1þ γ

0 0−
α0β0

1þ γ
α0β0

1þ γ

2666666666664

3777777777775
∙

xe
xi
xn
xc

2664
3775

¼ 0

ð42Þ

This equation is an extension of Eq. (31), which takes into account
the additional vibrator/internal mass. Its solutions are ωint,1

2 =0.277,
ωint,2

2 =0.896, ωint, 3
2 =1.493 (Ωe

2 = 0) and ωh,1
2 =0.085, ωh,2

2 =0.420,
ωh,3

2 =1.344 (Ωe
2 = Ω2). The value ωh, 4

2 =2.317 determines the highest
frequency in the upper passband. The widths of the bandgaps are
given, in accordance with Eq. (32), as Δsup,i

(ω2 ) = ωint,i
2 − ωh,i

2 , i = 1, 2, 3.

5. Conclusions

The present study deals with the extraction of dispersion surfaces,
passbands, and bad gaps for 3D discrete parameter multi-resonator
phononic metamaterials. The investigation has considered the simple
case of locally isotropic homogeneous model where all nodes have the
same internal microstructure comprising nodal pointmasses connected
by springs of equal stiffness in three mutually perpendicular directions.
Themain result of the conducted study is the established laws for creat-
ing amultiband acoustic system based on themultilevel internal micro-
structure within the lattice nodes. We have shown that the solution to
such a problem splits into two stages.

In the first stage, only the desired “initial” structure of dispersion
surfaces ωn

2(k) of the acoustic system is formed by choosing the type
of symmetry of the lattice nodes (internal multivibrators are excluded
from consideration, n=1, 2, 3,…, N, where N is the number of degrees
of freedom). The topology of this set of surfaces does not depend on the
ratioχ/M (whereχ is the stiffness of external springs, andM is themass
12
of nodes (mass of external shells)). A general parameter of the initial set
ωn

2(k) is its upper boundaryΩe
2, which can usually be found analytically

from the dispersion equation for the initial structure. In the second
stage, only the relations between the parameters of the internal micro-
structure of the nodes (multivibrators) are optimized to form the rela-
tions between the required boundary frequencies of the passbands or
bandgaps. These frequencies can be found from easily constructed dis-
persion equations of the n-th order e.g. second-, third-, or fourth-order
(depending on the number of levels in the internal structure of the
nodes). All these boundary frequencies are shifted to the desired
range of real frequencies by the parameter Ωe

2 (which is proportional
to the value of χ). Herewith, each passband is an exact topological
copy of the original set ωn

2(k).
The value of the parameter Ωe

2 may be chosen to be either
above the maximum natural frequency of the isolated lattice node,
ωint;max

2 , or below it. In the latter case, a passband is generated
in the range ωn,hibr

2 (k) > ωint; max
2 . The variation of the gap Ωe

2 −
ωint;max

2 changes the width of the passbands, determining different
group velocities of acoustic waves in each of them.

It is thus concluded that the use of multivibrators in acoustic meta-
materials makes it possible to form the desired properties of elastic
media on the basis of our simplemethod for predicting these properties
depending on the controlled parameters of the multivibrators and the
environment external to them. This depends on the topology as well
as the geometric properties of the external medium. Controlled forma-
tion of pass and stop bands, in terms of number and sizemay be achiev-
able through alteration of model parameters defining the MR
metastructure uniquely.

Note that our work concerns the development of concepts on the
mechanism of bandgap formation in acoustic metamaterials based on
an ordered lattice ofmultivibrators. Such a problemwaspreviously con-
sidered for a one-dimensional chain of multivibrators [7,32]. The possi-
bility of the formation of bandgaps is analyzed in terms of the effective
mass of lattice sites (gaps correspond to negative effective mass). This
method leads to the analysis of the properties of a multiparameter
mathematical expression, which complicates the choice of optimal pa-
rameters for the entire system in 3D cases with a complex morphology
of the internal structure of the lattice nodes. In our method, through di-
viding the problem into the two stages described above, the task of
searching for the required optimum is greatly simplified. Taking into ac-
count dissipation processes in real structures (in a one-dimensional
case this was done in [20]) will not introduce additional problems
when using the method presented in our work, since the guaranteed
bandgap boundaries are determined with the eigenfrequencies of iso-
lated multivibrators and multivibrators with fixed outer shells (these
frequencies will be merely shifted if the dissipative factors are taken
into account).

A final remark is in order here. While microstructure continuum
modelling of such MR metamaterials is possible, similar to the works
done on SR metamaterials [33,34], this has not been found to provide
specifically more information on the dispersion surface topology nor
on the band structure of the MR metamaterial. Furthermore, advanced
numerical techniques need to be used to solve the homogenised contin-
uum models' equations relating to phenomena such as quantum level
repulsion, energy splitting, strong coupling, and level crossings
[35–37]. In order to achieve additional flexibility, more intricate designs
might be needed to render possible additional features as directional
dependence of wave propagation [6], anisotropy in waveguides [2,14],
or traction-direction dependence in filtering [10,14].
Data availability

The raw/processed data required to reproduce thesefindings cannot
be shared at this time as the data also forms part of an ongoing study.
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