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Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents
that are playing a game and, after every round, update their strategies to maximize individual payoffs. There are
two complementary approaches to modeling evolution of player populations. The first addresses essentially finite
populations by implementing the apparatus of Markov chains. The second assumes that the populations are infinite
and operates with a system of mean-field deterministic differential equations. By using a model of two antagonistic
populations, which are playing a game with stationary or periodically varying payoffs, we demonstrate that it exhibits
metastable dynamics that is reducible neither to an immediate transition to a fixation (extinction of all but one strategy
in a finite-size population) nor to the mean-field picture. In the case of stationary payoffs, this dynamics can be captured
with a system of stochastic differential equations and interpreted as a stochastic Hopf bifurcation. In the case of varying
payoffs, the metastable dynamics is much more complex than the dynamics of the means.

Although first formalized by Darroch and Seneta in 19641,
the best (in our opinion) outline of quasi-stationary states
(QSs) was given by Yaglom when he asked in 19472: “We
are dealing with a stochastic process with an absorbing state
(i.e., a state which cannot be left once the system got into it)
so that the absorption happens with probability one. What is
the distribution in the limit t → ∞ provided that the absorp-
tion did not happen until time t?”. In the Markov chain
framework, the QSs are related to the probability distri-
butions over the set of states from which all the absorbing3

ones are excluded. Some quasi-stationary distributions
could be very sustainable so that the time needed for their
eventual ’evaporation’ into the absorbing states is much
longer than all the relevant observation time scales4. In
this case the QS is also a metastable state5. The QS con-
cept naturally applies to the game-driven evolution of fi-
nite populations6,7. Quasi-stationary states were recently
interpreted as a mean9 to resolve a conflict6 between the
stochastic approach based on the Markov chain ideology7

and deterministic mean-field description8. Namely, while
the former tells that the asymptotic regime of any finite
population is a fixation, the latter yields an asymptotic so-
lution either in the form of a periodic cycle or a chaotic at-
tractor or a fixed point (an ’evolutionary stable strategy’
in which different types of players are represented8). The
gap between the two mutually exclusive pictures could be
bridged with QSs, by observing that, in the case of large
but finite populations, the corresponding distributions are
localized around the mean-field solutions and declaring
that the mean-field solution is thus transformed into a
transient (metastable) dynamics9–11. Here we demonstrate
that this is not always the case and the metastable dynam-
ics, underlying the QSs, can be very different from the
mean-field solution.

a)Corresponding author: sergiyde@oslomet.no

I. INTRODUCTION

The agenda of Evolutionary Game Theory (EGT) is to ex-
plain the evolution of biological populations by formalizing
two main driving factors, conflict and cooperation12. Current
applications of the theory range far beyond the original bio-
logical context and it is used to model dynamics of financial
markets13 and interpret condensation phenomena in dissipa-
tive quantum systems14.

The central element of EGT is the interaction of players
during a round of a game. Although formally any number of
players can be involved into the interaction15, most of the ex-
isting results were obtained for two-player games. Players can
choose strategies from fixed sets and their interaction is medi-
ated by payoffs corresponding to the choices they made. For
a two-player game with two strategies per player, the payoffs
can be arranged in a bi-matrix8,[

a11,b11 a12,b21
a21,b21 a22,b22

]
. (1)

For example, if player A chooses strategy 1 and player B
chooses strategy 2, the former receives payoff a12 and the
latter receives payoff b21. After every round, players moni-
tor the payoffs obtained by their peers (other members of the
population) and try to adapt strategy of the most successful
ones. There are several formalizations of the strategy adap-
tation process; the Moran process16,17 is currently the most
popular one; see, e.g., Refs. [6, 9, 10, and 18].

Finite sizes of animal populations favor stochastic Marko-
vian approaches3,19 to modeling game-driven evolution. By
assuming that players belonging to the same population are
indistinguishable, the iterative process of matching and conse-
quent strategy adaption can be recast in the form of a Markov
chain. The state of a population is then fully specified by the
probability vector which assigns probability to every possible
arrangement of the strategies. In the absence of mutations20

(the case we address here), a state corresponding to the sit-
uation when the whole population uses the same strategy, is
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an absorbing state21. Once the population enters this state, a
fixation is happened19.

An alternative approach, which was prevailing in the EGT
field until recently, addresses the case of infinite populations.
Its main tool is the celebrated replicator model, which is a
system of nonlinear deterministic differential equations8. The
variables governed by these equations are relative frequencies
of the strategies which are assumed to be continuous probabil-
ities. Because of the non-linearity of its equations, the replica-
tor model is able to exhibit a spectrum of dynamical regimes,
ranging from fixed point solutions to periodic oscillations and
chaos (when the number of players and/or number strategies
per player are larger than two; see, e.g., Refs. [22–24]).

In between these two limits there is a land of large but finite
populations. Many animal populations fall into this category
and so analysis of the corresponding models can provide some
additional insight into complex real-life phenomena25. It is in-
tuitive that finite size fluctuations play an important role in the
evolutionary dynamics of such populations but these popula-
tions are too big to be modeled with Markov chains26. The
diffusion approximation of Markov processes27, is an appeal-
ing tool to bridge the two approaches and explore the land be-
tween them. When implemented to Moran processes16,17, the
approximation yields a system of stochastic differential equa-
tions (SDEs) with a multiplicative cross-correlated noise6,28.
The noise strength scales down as the population size in-
creases so that, in the thermodynamic limit, the equations re-
duce to the deterministic replicator model.

Because the size of the population enters the SDEs as a pa-
rameter, the diffusion approach provides a tremendous speed-
up as compared to Markov chain simulations and allows for
simulating models of an arbitrary large size28. The SDE ap-
proach can be used to resolve QSs and capture the transient
(before the fixation) dynamics, e.g., by replacing the absorb-
ing boundary conditions with the reflecting ones10 and then
performing a routine ensemble averaging.

Here we apply the concept of quasi-stationary distributions
(QDs) 1,29 to analyze evolutionary dynamics of two antago-
nistic populations driven by a two-player game. We consider
two variants of the game, with stationary payoffs and with
payoffs changing from round to round, in a periodic manner
(this choice is motivated by some biological phenomena; see
the next section).

We demonstrate that, in both cases, the metastable dynam-
ics underlying the QDs is very different from the solutions of
the corresponding replicator models. In the stationary case,
the latter is a fixed point while the metastable dynamics is
manifested by a stochastic limit cycle, which, within the SDE
framework, can be interpreted as a result of a stochastic Hopf
bifurcation30–32. By employing the Floquet theory33,34, we
generalize the notion of QD to evolutionary games with peri-
odically varying payoffs. We demonstrate that the correspond-
ing non-equilibrium states are result of a complex dynamics
which cannot be reduced to the evolution of means.

II. MODEL

Motivated by the original biological context of EGT, we
decided to use the celebrated “Battle of Sexes” model by
Dawkins35, as an example. This model formalizes a sex con-
flict over the parental investment36 and two antagonistic pop-
ulations are represented by females and males of a species
(see sketch in Fig. 1). Players of each sex have two strate-
gies and payoffs are given by a 2×2 bi-matrix. We generalize
this model by introducing periodic time variations in the pay-
offs. We are not only inspired by the possibility to encounter a
more complex evolutionary dynamics but also by several new
findings in ecology.

In recent years it has been found that in many species mat-
ing strategies and preferences are not constant in time but are
season-dependent37–40. When courting (selecting) a mate, a
female or male of the species faces a complex choice problem
when benefits of a choice depend on the season and have to
be traded off against each other in the context of current envi-
ronmental conditions. For example, the rate of the hormonal
activity, courtship strategies, and mate selection of Carolina
anole lizards (Anolis carolinensis), both of females and males,
are regulated by the temperature and photo-period and thus
are strongly season dependent41. Even the amount of differ-
ent types of muscle fibers that control the vibrations of a red
throat fan (dewlap) - which males employ during courtship
- is season dependent42. Within the “Battle of Sexes” frame-
work, this can be modeled by introducing periodically varying
payoffs, as illustrated in Fig. 1.

Namely, players A (males) and B (females) form two popu-
lations of a fixed size N, with each of them having two strate-
gies s = {1,2}. Payoffs, {ass′} and {bs′s}, s,s′ = {1,2}, may
change from round to round. During a single round, mem-
bers of the antagonistic populations are randomly matched
and then simultaneously play N games. After that, a strat-
egy adaptation phase takes place in every populations. Then
the process is iterated.

This evolution is an essentially discrete-time process and its
rounds are labeled with index m. In order to be able to com-
pare the discrete-time evolution to the mean-field dynamics,
we introduce time variable t, which is counted from zero and
incremented by ∆t after every round. Now we define time-
periodic payoffs, css′(t) = css′(t +T ), c = {a,b}, where ∆t =
T/M. The payoffs can be represented as sums of constant and
zero-mean time-periodic components, css′(t) = c̄ss′ + c̃ss′(t),
〈c̃ss′(t)〉T = 0. After M rounds the payoffs return to their ini-
tial values.

To introduce the strategy adaptation stage, we use the
Moran process16,17, which works in the following way. The
state of the populations after the m-th round is specified by the
number of players playing first strategy from their strategy list,
i (males with s = 1) and j (females with s′ = 1), 0≤ i, j ≤ N.
The payoffs obtained by the players using strategy s are

π
A
s ( j, t) = as1(t)

j
N +as2(t)

(N− j)
N , (2)

π
B
s (i, t) = bs1(t) i

N +bs2(t)
(N−i)

N . (3)

Payoffs determine the probabilities for a player to be chosen
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FIG. 1. (color online) ‘Battle of Sexes’ with seasonal variations of
mate preferences. It can model, e.g., the process of mate selection
in a population of Carolina anole lizards. A female of the species
could be either coy (and prefer a long and arduous courtship, in order
to be sure that a mate will contribute to parental care) or fast (and
not worry much about parental care). A male could be either faith-
ful (and ready to assure a potential partner that he will be a ‘faithful
husband’ by performing a long courtship) or philanderer (and thus
would prefer to shorten the courtship stage). Depending on the strate-
gies, s (played by the female) and s′ (played by her mate), the female
gets payoff bss′ (red) and the male gets as′s (blue). Both, females
and males, are season-constrained in their preferences of opposite-
sex mates. These seasonal constraints are modeled via time-periodic
variations of the payoffs.

for reproduction, e.g., for population A,

PA
s (i, j, t) =

1
N
· 1−w+wπA

s ( j, t)
1−w+wπ̄A(i, j, t)

, (4)

where π̄A(i, j, t) = [iπA
1 ( j, t)+ (N− i)πA

2 ( j, t)]/N is the aver-
age payoff for the population A.

The baseline fitness w ∈ [0,1] is a tunable parameter of the
game driven evolution6,17. For example, when w = 0, the
probability to be chosen for reproduction does not depend on
player’s payoff and is uniform across the population. After
the choice for reproduction has been made, another member
of the population is chosen completely randomly and replaced
with an offspring of the chosen player, i.e. with a player which
uses the same strategy as its parent43. This mechanism is act-
ing simultaneously in both populations, A and B, so that one
male and one female is chosen for reproduction. The mating
pair then produces two offspring, a male and female, which
then introduced into the corresponding populations. The size
N of both population is therefore preserved.

A single round can be considered as a two-dimensional
Markov chain, a generalization of the one-dimensional chain
introduced in Ref.6,28. Before formalising the Markov chain,
we first define the transition rates for two populations of play-
ers. For example, the probability for population A to get one
more player with strategy 1 after one round (and, correspond-

ingly, one player with strategy 2 less) is given by

T+
A (i, j, t) =

1−w+wπA
1 (t)

1−w+wπ̄A
i
N

N− i
N

, (5)

The probability to get one more player with strategy 2 (and,
correspondingly, one player with strategy 1 less) is

T−A (i, j, t) =
1−w+wπA

2 (t)
1−w+wπ̄A

N− i
N

i
N
. (6)

The probability for population B are defined in the similar
manner. These four probabilities are building blocks to con-
struct the transition matrix for the two-dimensional Markov
process (see Appendix).

By following the procedure from Ref. [6], it can be shown
that, in the limit N→ ∞ and dt = 1

N → 0, the dynamics of the
variables x = i/N and y = j/N is governed by the adjusted
replicator equations12,44,

ẋ = x[1− x][MA (t)+Σ
A(t)y]

1
Γ+ π̄A(x,y, t)

, (7)

ẏ = y[1− y][MB (t)+Σ
B(t)x]

1
Γ+ π̄B(x,y, t)

, (8)

where MC= c12− c22, ΣC = c11 + c22− c12− c21, Γ = 1−w
w ,

and C(c) = {A(a),B(b)}.
Within the stochastic framework, a single round can be rep-

resented as the multiplication45 of the state p, expressed as a
N×N matrix with elements p(i, j), with the transition fourth-
order tensor S, with elements S(i, j, i′, j′) (see Appendix). By
using the bijection k = (N−1) j+ i, we can unfold the proba-
bility matrix p(i, j) into the vector p̃(k), k = 0, ...,N2, and the
tensor S(i, j, i′, j′) into the matrix S̃(k, l) with k, l = 0,1, ...,N2.
This reduces the problem to a Markov chain46, p̃m+1 = S̃mp̃m,
where m is the round to be played and every state is fully spec-
ified now with a single integer k.

The four states (i = {0,N}, j = {0,N}) are absorbing
states because the transition probabilities leading out of them,
Eqs. (5-6), are identically zero. The absorbing states are there-
fore attractors (sinks) of the evolutionary dynamics, and it is
evident that finite-size fluctuations will eventually drive a pop-
ulation to one of these states.

We are interested in the dynamics before the absorption,
so we merge the four states into a single absorbing state by
summing the corresponding incoming rates. The boundary
states, (i = {0,N}, j ∈ {1, · · · ,N − 1}) and (i ∈ {1, · · · ,N −
1}, j = {0,N}), can also be merged into this absorbing ‘super-
state’. The reason for including these additional states into
the ‘absorbing’ state is that once the population gets to the
boundary, it will only move towards one of the two nearest
absorbing states. By labeling the absorbing super-state with
index k = 0, we end up with a stochastic (L+ 1)× (L+ 1)
matrix

S̃m =

[
1 %m

0

0 Q̃m,

]
(9)

where L = (N− 2)2, ρm
0 is row vector given by the set of in-

coming transition probabilities to the absorbing super-state, 0
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FIG. 2. (color online) Quasi-stationary probability distributions of the ‘Battle of Sexes’ with constant payoffs. For all values of N, the
distribution were obtained by finding the maximal-eigenvalue eigenvector of the reduced transient matrix Q̃1, Eq. (9)47. For N = 200 the plot
combines the distribution obtained by reshuffling the eigenvector (left half) and the histogram sampled by using Langevin equations (14 - 15),
which were propagated to time t f in = 106. (right half). The total number of realization is 107. In the thermodynamic limit N = ∞ (right panel),
the quasi-stationary distribution shrinks to the Nash equilibrium

( 1
2 ,

1
2
)
, which thus becomes a fixed point of the mean-field dynamics. The

baseline fitness w = 0.3.

is a L×1 column vector will all entries zero, and Q̃m is a L×L
reduced transition matrix.

With Eq. (9), we arrive at the the setup used by Darroch and
Seneta to formulate the concept of QDs1. Namely, there ex-
ists a vector d, which represent a quasi-stationary distribution
(QD). This distribution can be very sustainable and remains
near invariant under the action of the matrix S̃m. In this case,
it is a metastable state5. The QD can be obtained from the
right eigenvector d of the reduced transition matrix Q̃m cor-
responding to the maximum (by modulus) eigenvalue λ 1. By
virtue of the Perron-Frobenius theorem, λ is real and vector
d is real and non-negative46. By applying the inverse bijec-

tion and then performing the normalization, we obtain two-
dimensional probability distribution d(x,y).

The most straightforward way to evaluate of the dynamics
underlying the QDs is to perform Monte-Carlo sampling. To
address the limit N� 1, we follow the recipe given in Refs. [6
and 28] and derive stochastic differential equations (SDEs),
which can be then used to approximate the evolution. As the
first step, we introduce continuous variables x= i/N, y= j/N,
and t = m/N. Next we define probability density ρ(x,y, t) w
N · pm(i, j). Finally, by Taylor expanding the Markov chain in
orders of 1/N and truncating the expansion after the second
order, we obtain a Fokker-Planck equation49

ρ̇(x,y, t) =− ∑
k=A,B

∂

∂xk
· [νk(x,y, t)ρ(x,y, t)]+

1
2 ∑

k,l=A,B

∂ 2

∂xkxl
· [dkl(x,y, t)ρ(x,y, t)] , (10)

where

νk(x,y, t) = T+
k (x,y, t)−T−k (x,y, t), (11)

dkk(x,y, t) =
T+

k (x,y, t)+T−k (x,y, t)
N

, (12)

dkl(x,y, t) =
νk(x,y, t) ·νl(x,y, t)

N
, k 6= l, (13)

where k, l ∈ {A,B}. The corresponding stochastic differential
equations can be represented in the Langevin form49

ẋ(t) = νA(x,y, t)+ ∑
l=A,B

gAl ·ξl(t), (14)

ẏ(t) = νB(x,y, t)+ ∑
l=A,B

gBl ·ξl(t), (15)

where ξ (t) is an uncorrelated Gaussian white noise of vari-

ance one. The 2× 2 matrix G =

(
gAA gAB
gBA gBB

)
can be ex-

pressed in terms of the diffusion matrix D =

(
dAA dAB
dBA dBB

)
via

GT G = D. We integrate equations (14 - 15) by using the stan-
dard Euler - Maruyama method50 with time step dt = 10−4. In
order to obtain matrix G, on every step we diagonalize 2× 2
diffusion matrix D = UΛUT and use its eigenvectors to con-
struct matrix G =U

√
ΛUT . A conditional sampling of QD is

performed by integrating the Langevin equations up to time
t f in and updating the histogram with the final points of the
trajectories.

III. STATIONARY PAYOFFS: A STOCHASTIC
BIFURCATION

We first consider the case when all payoffs are constant. As
an example, we use a game with payoffs a11, a22, b12 and b21
equal 1, and −1 for the rest of strategies (this choice corre-
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FIG. 3. Transient evolution of two populations driven by ‘Bat-
tle of Sexes’ game with constant payoffs. The color indicates the
quasi-stationary distribution d(x,y). The white line corresponds to a
single realization of the Markov process initiated at the point (N

2 ,
N
2 ).

N = 200. Other parameters are as in Fig. 2.

sponds to the ‘Matching Pennies’ game51). Figure 2 presents
the metastable states of the corresponding evolution. In or-
der to find them we numerically obtain maximal-eigenvalue
eigenvector of the matrix Q̃1 (m = 1 since the payoffs are con-
stant) and perform sampling by using the SDEs, Eqs. (14,15).

The means (first moments of the QD),

x̄ =
N−1

∑
i, j=1

i ·d(i, j)
(N−2)2 ; ȳ =

N−1

∑
i, j=1

j ·d(i, j)
(N−2)2 , (16)

coincide with the Nash equilibrium
( 1

2 ,
1
2

)
for any N. Yet the

distributions obtained for N = 100 and N = 200 are not simply
peaked but have ‘craters’ on their tops. Stochastic Markovian
simulations reveal the existence of a long transient trajectory
going along the ridge of the craters and encircling the Nash
equilibrium; see Fig. 3. The SDE integration yields a near
identical dynamics. However, the SDE framework offers an
interpretation of the dynamics as a limit cycle resulted from
a stochastic Hopf bifurcation30–32,52. The latter is a result of
a marginal stability of the fixed point ( 1

2 ,
1
2 ) of the replicator

system (7 - 8)53.
The limit cycle character of the dynamics can be validated

by tracking the trajectory polar angle as a function of time
and noting a well pronounced linear dependence; see inset on
Fig. 4. We also calculate radius RMC of the metastable cycle
and its period TMC, by performing both Monte-Carlo and SDE
samplings. The radius scales proportionally to the fluctuation
strength, ∼ 1√

N
, and the period is near independent of N, as

expected for a stochastic Hopf bifurcation52.
The average lifetime of the metastable dynamics can de-

fined, by using the largest eigenvalue λ of the reduced transi-
tion matrix Q̃1, as tlife = 1/(1−λ )1. It can be then compared
with the average extinction time54, obtained by performing

FIG. 4. Radius of the metastable limit cycle (red) and its period
(blue) for the ‘Battle of Sexes’ with constant payoffs. For N ≤ 300
(1/
√

N ≥ 0.057) both quantities were obtained from quasi-stationary
distributions and Monte-Carlo sampling. For N > 300, a sampling
with the SDEs, Eqs. (14 - 15), was used. Inset shows the evolution of
the polar angle (black line) of the stochastic trajectory of the stochas-
tic differential equations (14,15). Black dashed line corresponds to
linear dependence 〈Ω〉t, where 〈Ω〉 = 2π/TMC for N = 200. Red
dashed line indicates an inverse dependence of the cycle radius w.r.t.
the fluctuation strength

√
N. The radius scaling and the period inde-

pendence of N are signatures of a stochastic Hopf bifurcation52. All
parameters are the same as in Fig. 3.

Monte-Carlo sampling of the Markovian dynamics. The two
times are in a perfect agreement; see Fig. 5.

IV. PERIODICALLY VARYING PAYOFFS:
A METASTABLE FLOQUET DYNAMICS

By introducing periodic variations into the payoffs of
the ‘Battle of Sexes’, we find that the mean-field dynam-

FIG. 5. The average lifetime tlife vs average extinction time text for
the ‘Battle of Sexes’ with constant payoffs. The average extinction
time was sampled with 105 realizations per non-absorbing state. All
parameters are the same as in Fig. 3.
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ics, Eqs. (7-8), does not exhibit substantial changes even for
a relatively large variation amplitude. For example, for a
choice when ε(t) = ã11(t) = b̃22(t) = f cos(ωt), with f = 0.5
and ω = 2π/T and all other payoffs kept constant, we ob-
serve a period-one limit cycle localized near the Nash equi-
librium of the constant payoff case, see Figs. 6a). In the
limit ω � 1, the cycle collapses to a set of adiabatic Nash
equlibria (dashed black lines in Fig. 6a). Here an adiabatic
Nash equilibrium is defined as the Nash equilibrium of a sta-
tionary game with ’frozen’ instantaneous values of payoffs,{

xNE(ε) =
2−ε

4−ε
,yNE(ε) =

2
4+ε

}
.

Figure 7a shows the average extinction time text as a func-
tion of variation strength f for ω = 0.1. In order to compare
the evolution for different population size N, we keep T con-
stant and scale the time step as ∆t = 2π

N . Another words, in
terms of index m, the number of the rounds needed for one
variation cycle is M = ωN.

As it can be seen from Fig. 7a, changes of text with f are not
substantial for all three considered values of N. However, the
extinction times are more than the order of magnitude shorter
than in the case of constant payoffs (compare to Figure 5). The
Monte-Carlo sampling reveals the cycling transient dynamics
which is much less localized around the the Nash equilibrium
than the limit cycle corresponding to the mean-field descrip-
tion; see Fig. 6b). Evidently, the dynamics of the means is not
able to unreveal the whole complexity of the transient dynam-
ics. We are going now to generalize the idea of QDs to the
case of periodically varying payoffs and demonstrate that the
corresponding quasi-stationary state provides a deeper insight
into the transient dynamics.

The transition matrices, Eq. (9), are round-specific now and
form a set {S̃m}, m = 1, · · · ,M (recall that after M = T/∆t
rounds the payoffs return to their initial values). The propaga-
tor over the interval [0, t], 0 < t < T , is the product Ũ(0, t) =
∏

m
k=1 S̃k with m = t/∆t. All the propagators, including the

period-one propagator Ũ(0,T ) = ŨT , have the same structure
as the matrix in Eq. (9).

We introduce the quasi-stationary distribution of ŨT , d[0].
It is a Floquet state33,34 of the reduced period-one propagator
Ũr

T , obtained by replacing, in the definition of the propaga-
tor, transition matrix S̃m′ with reduced transition matrix Q̃m′ .
The maximal-eigenvalue eigenvector of the matrix, after the
reshuffling, leads to probability distribution d[0] = d[T ]. This
is a stroboscopic snapshot of Floquet QD which periodically
evolves, d[t] = d[t+T ], being locked by payoff variations, see
Fig. 7a. For any value of t, 0 < t < T , QD d[t] can be obtained
by acting with the reduced propagator Ũr(0, t) on the distribu-
tion d[0].

The structure and dynamics of the Floquet QD explains the
dramatic shortening of the average extinction times. Namely,
while in the constant limit, QD d(x,y) was localized near the
Nash equilibrium, i.e., at the maximal distance from the ab-
sorbing boundaries, both maxima of the Floquet QD skim
very close to the boundary, see Fig. 7b. In the ecological con-
text, this can be considered as a periodic sequence of popula-
tion bottlenecks35. A better articulated biological interpreta-
tion of this effect is intriguing but goes outside the scope of
our work.

FIG. 6. (color online) Evolution driven by a ‘Battle of Sexes’
with periodically varying payoffs. (a) Period-one limit cycles of
the mean-field dynamics, N→ ∞ with ω = 0.1 (solid blue line) and
ω = 0.01 (solid red line), are localized near the point

( 1
2 ,

1
2
)

(ar-
rows indicate the direction of the motion). In the adiabatic limit,
ω → 0, the mean-field cycle collapses to the set of the instantaneous
Nash equlibria (dashed black line). Averages of the Floquet quasi-
stationary distribution d[t] for N = 200, x̄(t) and ȳ(t), evolve along a
limit cycle (blues dots) localized near the Nash equilibrium

( 1
2 ,

1
2
)
;

(b) A stochastic trajectory (gray line) reveals the existence of a very
de-localized transient dynamics. The trajectory was initiated at an in-
terior point (square) and ended up at an absorbing state (cross). The
parameters are f = 0.5, ω = 0.1, and other parameters as in Fig. 2.

Finally, we compare an average lifetime extracted from the
Floquet QD with the result of the sampling of the average ex-
tinction time. The average lifetime of d[t] is defined by us-
ing the largest eigenvalue λT , 0 < λT < 1, of matrix Ũr

T . In
order to compare it with the lifetime introduced for the case
of constant payoffs, we define the mean single-round expo-
nent as λ̄T = T

√
λT . The average lifetime is defined then as

tlife = 1/(1− λ̄T ). The obtained values are in a perfect agree-
ment (within the sampling error) with the values presented
on Fig. 7a.

Different from the constant payoff case, the SDE approach,
when realized numerically by using the first order Euler -
Maruyama scheme, works poorly in this case. In particular,
the trajectory often crosses the boundary of the unit square
thus making results meaningless55. Even though the noise
strength is strictly zero along the adsorbing boundary, it is not
enough to prevent the trajectory from crossing the latter. A
numerical integration of stochastic equations with multiplica-
tive noise and time-dependent coefficients is a non-trivial task
and its realization demands more sophisticated higher-order
schemes56.

V. CONCLUSIONS

By implementing the idea of quasi-stationary
distributions1,29, we demonstrated that the transient (be-
fore the fixation) game-driven evolution of a large but finite
population can be very different from the mean-field replica-
tor picture. In the case of a game with constant payoffs, the
transient evolution corresponds to a noisy cycling dynamics
which can be reproduced with a system of stochastic differ-
ential equations. Within this framework, the dynamics can be



7

FIG. 7. (color online) Metastable Floquet dynamics. (a) The av-
erage extinction time text as a function of the modulation strength f ,
for the population size N = 50 (dots), 100 (squares), and 200 (trian-
gles). For every values of the variation strength f , text was sampled
with 105 realizations per non-absorbing state; (b) Stroboscopic snap-
shots of a quasi-stationary Floquet distributions d[t] for different time
instances, t = m ·∆t ∈ [0,T ]. Distributions are obtained by diagonal-
izing the reduced propagators Q̃m for N = 200. Other parameters are
as in Fig. 2.

interpreted as a stochastic Hopf bifurcation30–32,52

There are ongoing discussions on the role of “stochasticity
in population cycling”62–64 and the phenomenon of “noise-
sustained oscillations around otherwise stable equilibria” was
addressed recently in the ecological context63.

It is important therefore to demarcate this type of cycling
from the well-know phenomena observed in many EGT mod-
els8, especially in system driven by games with so-called "cy-
cling dominance"57,58 (Rock–Paper–Scissors is perhaps the
most celebrated example). This phenomena goes under differ-
ent names, depending on the interpretation, e.g., "evolution-
ary cycling"59, "cycles of cooperation and defection"60, and
"oscillating tragedy of the commons"61. On the formal level,
the corresponding models demonstrate cycling behaviour in
the thermodynamics limit, and the origin of the cycling is a
limit-cycle dynamics exhibited by the corresponding mean-
field system.

In contrast, in our models oscillations are absent in the
mean-field picture due to the marginal stability of the fixed
point. Our findings can be considered as an extension of the
results by McKane and Newman62. Namely, McKane and
Newman highlighted the existence of a cycling behavior in a
finite predator-prey model while the corresponding mean-field
system is characterized, similar to adjusted replicator equa-
tions we considered, Eqs. (7 - 8), by a single marginally sta-
ble stable fixed point (an attracting point with zero Lyapunov

exponents). Their main finding is that the mechanism respon-
sible for the appearance of the cycling is internal and it is a
“demographic stochasticity inherent in discrete birth, death,
and predation events”62. Our consideration however new as-
pects, such as the essentially transient character of this cycling
dynamics and finiteness of its lifetime.

By introducing periodically varying payoffs, we demon-
strated the existence of a metastable, periodically-changing
probability distribution, which cannot be deduced from the
evolution of the means. To be more specific, the mean-field
system yields the limit cycle strongly localized near the Nash
equilibrium of the average (in terms of the paoffs) game; see
Fig. 6b. In the case of finite-size dynamics with N � 1, it
is usually expected that the corresponding probability distri-
bution is localized on the cycle and the localization becomes
stronger upon the increase of N. This is not so in the model
with periodically varying payoffs: The corresponding proba-
bility distribution is multi-modal and its first moments, x̄(t)
and ȳ(t), Eq. (16), do not reflect the complex shape and dy-
namics of the distribution. For example, during a single round
of modulations, maxima of the distribution pass very close to
the absorbing border (see Fig. 7b) so that the probability of
extinction for the corresponding player species is high. This,
however, cannot be guessed by looking at the evolution of x̄(t)
and ȳ(t).

The idea that Floquet theory can be used to model the evolu-
tion of ecological systems subjected to time periodic environ-
mental variations, has recently been emphasized in Refs. [65
and 66]. However, it was used to analyze asymptotic regimes
of models described with a set of deterministic linear dif-
ferential equations, in the spirit of the conventional Floquet
theory33.

Other potential applications of quasi-stationary Floquet
distributions include modeling of periodically modulated fi-
nite systems with complex kinetics. For example, tran-
sient Floquet states can be related to a transient single-cell
gene-expression dynamics, when the chemical kinetics of
molecule ensembles is modulated by the inner-cell circadian
rhythm67,68.

Finally, we would like to mention a possibility of extension
of the QS concept to quantum systems. Quantum channels69,
also known as "completely-positive trace-preserving maps"
and "quantum operations"70, which can transform a quan-
tum state (density operator) into another quantum state while
preserving some important properties, are conventionally ac-
cepted as a quantum generalization of Markov chains. For-
malization of quasi-stationary quantum states and figuring out
their relations to metastable71 and Floquet72 states of open
quantum systems is a thought-provoking perspective.
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APPENDIX: TRANSITION TENSOR

Here we describe the transition fourth-order tensor
Sm(i, j, i′, j′) in terms of the rates [T+,−

A (i, j, t) and
T+,−

B (i, j, t)] for populations A and B, given by Eq. (??) in
the main text. The stochastic Moran process can be expressed
as a Markov chain

pm+1(i, j) =
[
1−T+

A (i, j)−T−A (i, j)
][

1−T+
B (i, j)−T−B (i, j)

]
pm(i, j)+T−B (i, j+1)

[
1−T−A (i, j+1)−T+

A (i, j+1)
]

pm(i, j+1)

+T+
B (i, j−1)

[
1−T−A (i, j−1)−T+

A (i, j−1)
]

pm(i, j−1)+T−A (i+1, j)
[
1−T−B (i+1, j)−T+

B (i+1, j)
]

pm(i+1, j)

+T+
A (i−1, j)

[
1−T−B (i−1, j)−T+

B (i−1, j)
]

pm(i−1, j)+T−A (i+1, j+1)T−B (i+1, j+1)pm(i+1, j+1)

+T+
A (i−1, j+1)T−B (i−1, j+1)pm(i−1, j+1)+T−A (i+1, j−1)T+

B (i+1, j−1)pm(i+1, j−1)
+T+

A (i−1, j−1)T+
B (i−1, j−1)pm(i−1, j−1). (A1)

Above we have suppressed the time index t = m∆t for all
the rates.

The above equation can be recast into

pm+1(i, j) = ∑
i′, j′

Sm(i, j, i′, j′)pm(i′, j′), (A2)

where the fourth-order tensor Sm(i, j, i′, j′) is given by

Sm(i, j, i′, j′) =
[
1−T+

A (i′, j′)−T−A (i′, j′)
][

1−T+
B (i′, j′)−T−B (i′, j′)

]
δi′,i δ j′, j +T−B (i′, j′)

[
1−T−A (i′, j′)−T+

A (i′, j′)
]

δi′,i δ j′, j+1

+T+
B (i′, j′)

[
1−T−A (i′, j′)−T+

A (i′, j′)
]

δi′,i δ j′, j−1 +T−A (i′, j′)
[
1−T−B (i′, j′)−T+

B (i′, j′)
]

δi′,i+1 δ j′, j

+T+
A (i′, j′)

[
1−T−B (i′, j′)−T+

B (i′, j′)
]

δi′,i−1 δ j′, j +T−A (i′, j′)T−B (i′, j′)δi′,i+1 δ j′, j+1

+T+
A (i′, j′)T−B (i′, j′)δi′,i−1 δ j′, j+1 +T−A (i′, j′)T+

B (i′, j′)δi′,i+1 δ j′, j−1 +T+
A (i′, j′)T+

B (i′, j′)δi′,i−1 δ j′, j−1, (A3)

with the indices i, j, i′, and j′ ∈{0, · · · ,N}. Using the bijection
k = (N−1) j+ i and l = (N−1) j′+ i′, we obtain the required
matrix form, Eq. (9) in the main text.
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