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Abstract. The symplectic Brill–Noether locus Sk2n,K associated to a curve C parametrises

stable rank 2n bundles over C with at least k sections and which carry a nondegenerate

skewsymmetric bilinear form with values in the canonical bundle. This is a symmetric

determinantal variety whose tangent spaces are defined by a symmetrised Petri map. We

obtain upper bounds on the dimensions of various components of Sk2n,K . We show the

nonemptiness of several Sk2n,K , and in most of these cases also the existence of a com-

ponent which is generically smooth and of the expected dimension. As an application,

for certain values of n and k we exhibit components of excess dimension of the standard

Brill–Noether locus Bk2n,2n(g−1) over any curve of genus g ≥ 122. We obtain similar results

for moduli spaces of coherent systems.

1. Introduction

Let C be a projective smooth curve of genus g ≥ 2 and U(r, d) the moduli space of stable

vector bundles of rank r and degree d over C. A fundamental attribute of U(r, d) is the

stratification by generalised Brill–Noether loci

Bk
r,d := {W ∈ U(r, d) : h0(C,W ) ≥ k}.

This is a determinantal variety whose expected dimension is

βkr,d := r2(g − 1) + 1− k(k − d+ r(g − 1)).

Moreover, Bk+1
r,d ⊆ Sing(Bk

r,d). If r = 1, one obtains the classical Brill–Noether loci on

Picd(C), which are traditionally denoted W k−1
d (C). For a generic curve, the Bk

1,d behave

as regularly as possible: Bk
1,d is nonempty of dimension βk1,d if and only if βk1,d ≥ 0, and

furthermore irreducible if this dimension is positive; and Sing(Bk
1,d) = Bk+1

1,d . See [ACGH85]

for a full account of this story.

For r ≥ 2, the situation is more complicated, even for a general curve. In recent years,

much attention has been given to determining the components of Bk
r,d for r ≥ 2, together

with their dimensions and singular loci. See [GT09] for a survey. Several generalisations

have been studied, including coherent systems (see for example [BGMN03] and [Ne11]),

generalised theta divisors (see [Be06] for an overview) and more generally twisted Brill–

Noether loci (see [Te14] and [HHN18]).
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A variant of Bk
r,d which is of particular relevance for the present work is the fixed deter-

minant Brill–Noether locus

Bk
r,L := {W ∈ U(r, d) : h0(C,W ) ≥ k and det(W ) = L}

where L is a fixed line bundle of degree d. Denote by K the canonical bundle T ∗C . The

locus Bk
2,K has been studied extensively in [BF], [Muk92], [Muk97], [Te04], [Te07], [LNP16]

and [Baj19] (see also [GN14]), and we shall return to this below. The loci Bk
r,L for other

values of r and L are studied in [Os13-1], [Os13-2], [LNS16], [Zh17] and elsewhere.

In the present work, we consider a different generalisation of Bk
2,K to higher rank. For any

bundle W of rank two, there is a natural skewsymmetric isomorphism W
∼−→W ∗⊗det(W ).

In general, recall that a vector bundle W is said to be L-valued symplectic if there is a

skewsymmetric isomorphism W
∼−→ W ∗ ⊗ L for some line bundle L; equivalently, if there

is a nondegenerate skewsymmetric bilinear form ω : W ⊗W → L. By nondegeneracy, a

symplectic bundle must have even rank 2n ≥ 2, and moreover det(W ) = Ln. For us, L

will always be K. There is a quasiprojective moduli spaceMS(2n,K) for stable K-valued

symplectic bundles over C, which we discuss in more detail in § 2.1. Our fundamental

objects of study are the symplectic Brill–Noether loci

Sk2n,K := {W ∈MS(2n,K) : h0(C,W ) ≥ k} ⊆ Bk
2n,Kn .

It follows from [Muk92, Remark 4.6] that Sk2n,K is a symmetric determinantal variety

of expected codimension 1
2k(k + 1). In § 2.2, we expand upon this remark, showing that

Sk2n,K is étale locally defined by the vanishing of the (k+1)× (k+1)-minors of a symmetric

matrix. In § 2.3 we recall a description of the Zariski tangent spaces of Sk2n,K in terms of

a symmetrised Petri map. Adapting well-known results from [ACGH85] to the symplectic

case, in §§ 2.4–2.5 we construct a partial desingularisation of Sk2n,K near a well-behaved

singular point W and describe the tangent cone CWSk2n,K .

For 2n = 2, the K-valued symplectic bundles are precisely those of canonical determinant

and, as outlined above, Sk2,K = Bk
2,K has been much studied. Our next objective is to

answer some of the basic questions of nonemptiness, dimension and smoothness of Sk2n,K
for 2n ≥ 4. In § 3, we prove the following dimension bounds on various components of

Sk2n,K , generalising [Baj19, Theorem 3.4] of the first author.

Theorem A. Let C be any curve of genus g ≥ 2.

(a) (Theorem 3.5) Let X be a closed irreducible sublocus of Sk2n,K of which a general

element W satisfies H0(C,W ) = H0(C,LW ) for some line subbundle LW ⊂ W of

degree d. Then for each W ∈ X, we have

dimX ≤ dimTWX ≤ dim
(
TLWB

k
1,d

)
+ n(2n+ 1)(g − 1)− 2nd− 1.

(b) (Theorem 3.7) Let k be an integer satisfying 1 ≤ k ≤ n(g+ 1)− 1. Suppose Y is an

irreducible component of Sk2n,K containing a bundle W satisfying h0(C,W ) = k and
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such that the rank of the subbundle of W generated by global sections is r. Then

dimY ≤ dimTWY ≤ min

{
n(2n+ 1)(g − 1)− (2k − 1), n(2n+ 1)(g − 1)− k − 1

2
r(r − 1)

}
.

In Corollary 3.6, we deduce some conditions on g, n and k for the existence of a component

X of the form in Theorem A (a).

In § 4 we construct stable symplectic bundles W with prescribed values of h0(C,W ),

showing that Sk2n,K is nonempty in several cases. The approach is a combination of tech-

niques from [Me99] and [CH14]: the W we construct are “almost split” symplectic exten-

sions 0→ E →W → E∗⊗K → 0 where E and K⊗E∗ are stable and have many sections.

In § 4.4, we show that if C is Petri, in some cases Sk2n,K has a component which is smooth

and of the expected dimension. To state the results, set

(1.1) k0 := max{k ≥ 0 : dimBk
1,g−1 ≥ 1}.

By Brill–Noether theory, if C is Petri then k0 =
⌊√

g − 1
⌋
, where btc = max{m ∈ Z : m ≤

t}.

Theorem B. Let C be a curve of genus g ≥ 3.

(a) (Theorem 4.6) For 1 ≤ k ≤ 2nk0 − 3, the locus Sk2n,K is nonempty.

(b) (Theorem 4.9) If C is a general Petri curve, then for 1 ≤ k ≤ 2nk0 − 3 there is

a component of Sk2n,K which is generically smooth and of the expected codimension
1
2k(k + 1).

We also briefly mention strictly semistable symplectic bundles in Remark 4.7.

It should be noted that there are significantly stronger results in the rank two case. For

2n = 2, the bound in Theorem B (a) translates into 4(g−1) ≥ (k+3)2. For g ≥ 5, Teixidor

[Te04] showed for 4(g − 1) ≥ k2 − 1 that Bk
2,K is nonempty and has a component of the

expected dimension, with a slightly better result for k even. Furthermore, for k ≥ 8 and g

prime, Lange, Newstead and Park [LNP16] showed thatBk
2,K is nonempty for 4g−4 ≥ k2−k.

We certainly expect that the bound in Theorem B can be improved for 2n ≥ 4.

In § 5, we give an application of Theorem B to standard Brill–Noether loci Bk
2n,2n(g−1).

For r ≥ 2, it was proven in [Te91] that in many cases Bk
r,d has a component which is

generically smooth and of the expected dimension. However, even for a generic curve,

components of larger dimension can appear. Following [CFK18], we call such components

superabundant. It was noted in [Ne11, § 9] and [BF, §1] that Bk
2,K = Sk2,K in many cases

(precisely; for g < k(k−1)
2 ) has expected dimension strictly greater than βk2,2g−2, despite the

fact that Bk
2,K is contained in Bk

2,2g−2. For n ≥ 2 it emerges that the expected dimension

of Sk2n,K can also exceed βk2n,2n(g−1) for certain values of g, n and k. We show the following.

Theorem C.

(a) (Theorem 5.1) Suppose m ≥ 7 and let C be any curve of genus g = m2 + 1. Then

for any n ≥ 1, the locus S2nm−3
2n,K is nonempty and has dimension greater than

β2nm−3
2n,2n(g−1). In particular B2nm−3

2n,2n(g−1) has a superabundant component.
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(b) (Theorem 5.2) Fix n ≥ 1 and let C be any curve of genus g ≥ (4n + 7)2 + 1. For

k0 as defined in 1.1, the locus S2nk0−3
2n,K is nonempty and has dimension greater than

β2nk0−3
2n,2n(g−1). In particular, B2nk0−3

2n,2n(g−1) has a superabundant component.

In § 5.1, we also obtain similar results for certain moduli spaces of coherent systems, both

with and without fixed determinant.

We note that Teixidor [Te04] also obtains superabundant components of Bk
2,K = Sk2,K

for certain values of k.

Since Theorem C (b) applies to all curves of genus g ≥ 122, it gives a systematic way

of finding ordinary determinantal varieties of dimension strictly greater than expected, in

some ways akin to [HHN18, Proposition 9.1]. We hope that this aspect of the present work

may also be of interest outside the context of Brill–Noether theory.

The construction of the locus Sk2n,K is easily adapted for K-valued orthogonal bundles;

that is, bundles admitting a symmetric K-valued bilinear form (see [Mum71]). However,

our methods when applied to orthogonal bundles did not yield superabundant components

of any Bk
r,d; and the argument of Theorem B (b) also fails for orthogonal bundles. Therefore

we have restricted our attention for the present to the symplectic case, with the intention

of further studying orthogonal Brill–Noether loci in the future.

Acknowledgements. We would like to thank Peter Newstead for helpful comments and

for making us aware of several references. We also thank the referee for useful advice and

comments. Ali Bajravani was in part supported by a grant from IPM (No. 99140036).

Notation. Throughout, C denotes a smooth projective curve of genus g ≥ 2 over an

algebraically closed field K of characteristic zero. For a sheaf F over C, we shall often

abbreviate H i(C,F ), hi(C,F ) and χ(C,F ) to H i(F ), hi(F ) and χ(F ) respectively. If

A×B is a product, we denote the projections by πA and πB.

2. Symplectic Brill–Noether loci

2.1. Moduli of K -valued symplectic bundles. Let W be a K-valued symplectic bundle

of rank 2n over C. By [BG06, § 2], we have det(W ) = Kn. If κ is a theta characteristic,

then V := W ⊗ κ−1 is OC-valued symplectic. Thus V is the associated vector bundle of

a principal Sp2n-bundle P over C. By a similar argument to that in [Rm81, § 4] (carried

out in [Hi05]), the vector bundle V is stable if and only if P is a regularly stable principal

Sp2n-bundle; that is, stable and satisfying Aut (P ) = Z(Sp2n) = Z2.

By [Rth96], there is a moduli space M(Sp2n) for stable principal Sp2n-bundles, which

is an irreducible quasiprojective variety of dimension n(2n + 1)(g − 1), and smooth at all

regularly stable points. Moreover, it follows from [Se12, Proposition 2.6 and Theorem

3.2] that the natural map M(Sp2n) 99K U(2n, 0) is an embedding. Translating by κ, we

conclude:
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Lemma 2.1. The moduli space MS(2n,K) of stable vector bundles of rank 2n with K-

valued symplectic structure is a smooth irreducible sublocus of U(2n, 2n(g−1)), of dimension

n(2n+ 1)(g − 1).

Furthermore, we recall a description of the tangent spaces ofMS(2n,K). It is well known

that first order infinitesimal deformations of a vector bundle W → C are parametrised by

H1(EndW ). If ω : W →W ∗⊗K is a skewsymmetric isomorphism, we have an identification

(2.1) ω∗ : H1(EndW )
∼−→ H1(K ⊗W ∗ ⊗W ∗).

The following can be shown by a computation similar to that in the proof of [GT09,

Proposition 8.1].

Lemma 2.2. Let (W,ω) be a K-valued symplectic bundle. Then the deformations of W

preserving the symplectic structure are parametrised by the subspace H1(K ⊗ Sym2W ∗) ⊆
H1(K⊗W ∗⊗W ∗). In particular, if W is stable, then TWMS(2n,K) ∼= H1(K⊗Sym2W ∗).

2.2. The scheme structure of symplectic Brill–Noether loci. As already noted, bun-

dles of rank two and canonical determinant are precisely the K-valued symplectic bundles

of rank two. We shall see that the construction of Bk
2,K = Sk2,K in [Muk92] and [Muk97]

generalises virtually word for word to higher rank K-valued symplectic bundles.

To construct Sk2n,K as a scheme, we require a suitable Poincaré bundle equipped with a

family of symplectic forms. AsMS(2n,K) ∼=M(Sp2n) and the group Sp2n is not of adjoint

type, by [BBNN06] there is no Poincaré bundle overMS(2n,K)×C. The following lemma

shows that Poincaré bundles do exist over small enough étale open subsets ofMS(2n,K).

Lemma 2.3. There exists an étale open covering {Uα} of MS(2n,K), together with

Poincaré bundles Wα → Uα × C, each equipped with a family ωα : Wα ⊗ Wα → π∗CK

of symplectic forms.

Proof. As MS(2n,K) is contained in U(2n, 2n(g − 1)), there exists an étale cover M̃ →
MS(2n,K) together with a Poincaré bundle W → M̃ × C. By stability, for any W ∈
MS(2n,K) we have h0(K ⊗ ∧2W ∗) = 1. Hence by [Ha83, Corollary III.12.9], the sheaf

B :=
(
πM̃
)
∗
(
π∗CK ⊗ ∧2W∗

)
is locally free of rank one over M̃. Let {Uα} be an open covering of M̃ such that B|Uα is

trivial for each α. Now if W is a stable vector bundle of slope g− 1, then any nonzero map

W →W ∗ ⊗K is an isomorphism. Therefore, any generating section ωα for B|Uα defines a

family of symplectic structures on Wα :=W|Uα×C . The lemma follows. �

We proceed to study the symmetric determinantal structure of Sk2n,K . The following

proposition is an obvious generalisation of [Muk92, Theorem 4.2], and is essentially con-

tained in [Muk92, Remark 4.6]. We give the proof, because the construction will be used

further in §§ 2.4–2.5.
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Proposition 2.4.

(a) Scheme-theoretically, Sk2n,K is étale locally defined by the vanishing of the (ν − k +

1)× (ν − k + 1)-minors of a ν × ν symmetric matrix, for some ν ≥ k.

(b) Each component of Sk2n,K is of codimension at most 1
2k(k + 1).

(c) The sublocus Sk+1
2n,K is contained in Sing(Sk2n,K).

Proof. (a) We begin with a slightly more general situation. Let W → S ×C be a family of

bundles of rank 2n over C, and let ω : W ⊗W → π∗CK be a family of K-valued symplectic

structures on W. For k ≥ 0, we define the Brill–Noether locus associated to the family W
set-theoretically as

Sk(W) := {s ∈ S : h0(C,Ws) ≥ k}.

Now for any effective divisor D on C, the coherent sheaf

F := (πS)∗

(
W ⊗ π∗COC(D)

W ⊗ π∗COC(−D)

)
,(2.2)

is locally free of rank 4n · deg(D) over S. We shall define a symplectic structure on F . We

extend ω linearly over π∗COC to a symplectic form

∧2 (W ⊗ π∗COC(D)) → π∗CK(2D).

Now ωs(Ws(−D),Ws(D)) ⊆ K for all s. Thus, if t, u are elements of Fs = H0
(
C, Ws(D)
Ws(−D)

)
and Res is the residue map, then∑

x∈Supp(D)

Res (ωs(tx, ux)) =: ωs(t, u)

is a well-defined element of H1(K). Thus ω descends to a bilinear map

ω : ∧2 F → OS ⊗H1(K) = OS .

Moreover, ω is nondegenerate since ω is.

Let us now assume that deg(D) is large enough that h1(C,Ws(D)) = 0 for all s ∈ S.

Then, as Ws
∼=W∗s ⊗K, by Serre duality h0(C,Ws(−D)) = 0 for all s ∈ S also. Thus the

subsheaf

L1 := (πS)∗

(
W

W ⊗ π∗COC(−D)

)
⊂ F

is locally free of rank 2n · deg(D). As the residue of a regular differential is zero, L1 is

Lagrangian with respect to ω.

Furthermore, as h1(Ws(D)) = 0 for all s, the subsheaf

L2 := Im ((πS)∗ (W ⊗ π∗COC(D)) → F) ⊂ F

is also locally free of rank 2n · deg(D). By the residue theorem [Ha83, III.7.14.2], in fact

L2 also defines a Lagrangian subbundle of F . Moreover, it is easy to see that L1|s ∩L2|s ∼=
H0(C,Ws) for each s ∈ S, so

(2.3) Sk(W) = {s ∈ S : dim (L1|s ∩ L2|s) ≥ k}.
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Now let U ⊆ S be an open set over which F is trivial. Then any choice of Lagrangian

subbundle of F|U complementary to L1|U defines a local splitting F|U
∼−→ L1|U ⊕ L∗1|U .

Perturbing this choice and shrinking U if necessary, we can assume in addition that L∗1|s ∩
L2|s = 0 for all s ∈ U . Then, as in [Muk97, Examples 1.5 and 1.7], there exists a symmetric

map ΣU : L1|U → L∗1|U with the property that L2|U is the graph of ΣU , and for each s ∈ U
moreover

Ker(ΣU |s) = L1|s ∩ L2|s.
It follows by (2.3) that Sk(W)∩U is defined by the condition rk (ΣU |s) ≤ 2n · deg(D)− k,

so is cut out by the vanishing of the (ν − k + 1) × (ν − k + 1)-minors of a local matrix

expression for ΣU , where ν = rk (L1) = 2n · deg(D). Clearly, S can be covered by such

open sets U .

Now we specialise to S = Uα and (W, ω) = (Wα, ωα) as defined in Lemma 2.3. Statement

(a) follows as Sk2n,K is the union of the images of the loci Sk(Wα) by an étale map.

Parts (b) and (c) follow from part (a), by general properties of symmetric determinantal

loci. (In fact these statements are true for any family W → S ×C of K-valued symplectic

bundles.) �

Remark 2.5. In [Os13-1], [Os13-2] and [Zh17] the above approach is generalised to the

setting of multiply symplectic Grassmannians and used to give lower bounds on fixed de-

terminant Brill–Noether loci Bk
r,L for special line bundles L.

2.3. Tangent spaces of symplectic Brill–Noether loci. Let us now describe the Zariski

tangent spaces of Sk2n,K , following the discussion for bundles of rank two in [Te07, § 1].

Firstly, we require a definition. Recall that for any bundle W → C we have the Petri map

µ : H0(W )⊗H0(K ⊗W ∗) → H0(K ⊗ EndW ).

If ω : W
∼−→ K ⊗W ∗ is an isomorphism, then we obtain an identification of the Petri map

with the multiplication map

(2.4) H0(W )⊗H0(W ) → H0(W ⊗W ),

If W is simple (for example, stable) then this identification is canonical up to scalar.

In this case, we abuse notation slightly and denote the map (2.4) also by µ. Clearly,

µ
(
Sym2H0(W )

)
⊆ H0(Sym2W ). Let sym: H0(W )⊗H0(W )→ Sym2H0(W ) be the canon-

ical surjection.

Definition 2.6. Let W → C be a K-valued symplectic bundle. For any subspace Λ ⊆
H0(W ), we write

µs
Λ : sym(Λ⊗H0(W )) → H0(Sym2W )

for the restriction of (2.4). We abbreviate µs
H0(W ) to µs. Furthermore, for any subspace Π

of H0(W ⊗W ) we write

Π⊥ := {v ∈ H1(K ⊗ Sym2W ∗) : v ∪Π = 0},

the orthogonal complement of Π in H1(K ⊗ Sym2W ).
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Proposition 2.7. Let W be a simple K-valued symplectic bundle. For any subspace Λ ⊆
H0(W ), the space of first-order infinitesimal deformations preserving Λ is exactly Im (µs

Λ)⊥.

Proof. As in the proof of [ACGH85, Proposition IV.4.1], using also the identification (2.1),

one shows that the space of first-order infinitesimal deformations of the vector bundle W

which preserve the subspace Λ is given by

{v ∈ H1(K ⊗W ∗ ⊗W ∗) : v ∪ µ(Λ⊗H0(W )) = 0},

the orthogonal complement of µ
(
Λ⊗H0(W )

)
in the full deformation space H1(K⊗W ∗⊗

W ∗). Thus we must describe the intersection of this space with H1(K ⊗ Sym2W ∗).

Suppose v ∈ H1(K ⊗ Sym2W ∗). Then clearly v ∪ µ
(
∧2H0(W )

)
= 0, whence

v ∪ µ(σ) = v ∪ µ(sym(σ))

for all σ ∈ H0(W )⊗H0(W ). It follows, as desired, that

µ(Λ⊗H0(W ))⊥ = µ ◦ sym(Λ⊗H0(W ))⊥ = Im (µs
Λ)⊥ ⊆ H1(K ⊗ Sym2W ∗). �

Corollary 2.8. Suppose W is a stable K-valued symplectic bundle with h0(W ) = k. Then

Sk2n,K is smooth and of codimension 1
2k(k + 1) at W if and only if µs : Sym2H0(W ) →

H0(Sym2W ) is injective.

Proof. By Proposition 2.7, we have TWSk2n,K = Im (µs)⊥. Now clearly

dim Im (µs)⊥ = dimMS(2n,K)− dim Sym2H0(W ) + dim Ker(µs).

Since Sym2H0(W ) has dimension 1
2k(k + 1), we see that TWSk2n,K has the expected codi-

mension if and only if µs is injective. �

2.4. Desingularisations of symplectic Brill–Noether loci. In this subsection, we

adapt arguments for determinantal varieties from [ACGH85] to construct a partial desin-

gularisation of (an étale cover of) the symplectic Brill–Noether stratum Sk2n,K , and use it

to obtain information on smooth points of lower strata. In the next section, we shall also

use the desingularisation to study the tangent cones of Sk2n,K . This approach was used in a

similar way in [ACGH85], [CT11] and [HHN18] for the study of, respectively, Brill–Noether

loci in Pic(C), higher rank Brill–Noether loci Bk
r,d and twisted Brill–Noether loci Bk

n,e(V ).

Let W be a stable K-valued symplectic bundle with h0(W ) ≥ k ≥ 1. By Lemma 2.3

and Proposition 2.4 (a), we can find an étale neighbourhood S of W in MS(2n,K) and a

Poincaré bundleW → S×C, together with a symmetric map of vector bundles Σ: L1 → L∗1
over S such that for each s ∈ S we have Ker (Σs) ∼= H0(Ws), so

Sk2n,K ×MS(2n,K) S = Sk(W) = {s ∈ S : dim Ker(Σ|s) ≥ k},

an étale cover of Sk2n,K near W .

We consider the Grassmann bundle Gr(k,L1) parametrising k-dimensional linear sub-

spaces of fibres of L1. In analogy with [ACGH85, IV.3], we define

(2.5) SGk(W) := {Λ ∈ Gr(k,L1) : Σ(Λ) = 0}.
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A point of SGk(W) is a pair (Ws,Λ) whereWs is a symplectic bundle represented in S and

Λ a k-dimensional subspace of H0(Ws). Such a pair will be called a symplectic coherent

system. We write c : SGk(W)→ S for the projection.

Theorem 2.9. Let W , S, W and Σ: L1 → L∗1 be as above, and suppose that Λ ⊆ H0(W )

is a subspace of dimension k.

(a) The tangent space to SGk(W) at (W,Λ) fits into an exact sequence

(2.6) 0 → Hom(Λ, H0(W )/Λ) → T(W,Λ)SG
k(W)

c∗−→ TWMS(2n,K).

The image of the differential c∗ coincides with Im (µs
Λ)⊥ (cf. Definition 2.6).

(b) The locus SGk(W) is smooth and of dimension dimMS(2n,K) − 1
2k(k + 1) at

(W,Λ) if and only if µs
Λ is injective.

(c) Suppose µs
Λ is injective for all Λ ∈ Gr(k,H0(W )). Then SGk(W) is smooth in

a neighbourhood of c−1(W ), and c−1(W ) is a smooth scheme. In particular, in

this case SGk(W) contains a desingularisation of a neighbourhood of W in Sk(W).

Furthermore, the normal space N := Nc−1(W )/SGk(W) is precisely

{(Λ, v) : v ∪ Im (µs
Λ) = 0} ⊂ Gr(k,H0(W ))×H1(K ⊗ Sym2W ∗),

and the differential c∗ : N → TWMS(2n,K) is the projection to the second factor.

Proof. (a) By the construction of SGk(W), we have

c−1(W ) = Gr(k,H0(W )).

Therefore, Ker(c∗) ∼= TΛGr(k,H0(W )) ∼= Hom(Λ, H0(W )/Λ)). For the rest: Exactly as

in the line bundle case [ACGH85, Proposition IV.4.1 (ii)], the image of c∗ is the space of

tangent vectors in TsS = TWMS(2n,K) preserving the subspace Λ. By Proposition 2.7,

this is exactly Im (µs
Λ)⊥.

(b) Note that
(
Λ⊗H0(W )

)
∩Ker(sym) = ∧2Λ. Therefore,

dim
(
sym

(
Λ⊗H0(W )

))
= dim

(
Λ⊗H0(W )

)
− dim

(
∧2Λ

)
= k · h0(W )− k(k − 1)

2
.

By part (a), the dimension of TΛSG
k(W) is given by

k(h0(W )− k) + dimMS(2n,K)− dim
(
sym

(
Λ⊗H0(W )

))
+ dim ker(µsΛ) =

dimMS(2n,K)− k(k + 1)

2
+ dim ker(µsΛ).

Part (b) follows. All statements in part (c) are immediate consequences of part (a). �

The first application of Theorem 2.9 is very similar to [HHN18, Proposition 3.12]:

Lemma 2.10. Suppose Sk2n,K has a component X which is generically smooth of the ex-

pected codimension 1
2k(k + 1). Then for 1 ≤ ` ≤ k, the component X lies in a component

of S`2n,K which is generically smooth and of the expected codimension 1
2`(`+ 1).
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Proof. By induction, it suffices to prove this for ` = k − 1, where k ≥ 2. Let W be a

smooth point of X, so h0(W ) = k and µs : Sym2H0(W )→ H0(Sym2W ) is injective. Define

SGk−1(W) as in (2.5) in an étale neighbourhood of W . By hypothesis and Theorem 2.9

(b), for any Λ ⊂ H0(W ) of dimension k − 1, the space SGk−1(W) constructed above is

smooth and of dimension dimMS(2n,K) − 1
2k(k − 1) at (W,Λ). Thus (W,Λ) lies in a

component Ỹk−1 of SGk−1(W) which is generically smooth and of this dimension. Now the

inverse image of Sk2n,K in Ỹk−1 has dimension at most

dimX + dim Gr(k − 1, k) =

(
dimMS(2n,K)− k(k − 1)

2

)
− 1,

which is less than dimSGk−1(W). Therefore, a general (W ′,Λ′) ∈ Ỹk−1 is smooth and

satisfies h0(W ′) = k−1. It follows that the image of SGk−1(W) in Sk−1
2n,K lies in a component

which is generically smooth and of the expected codimension. The statement follows. �

2.5. Tangent cones of symplectic Brill–Noether loci. We shall now describe the

tangent cone CWSk2n,K at a “well-behaved” singular point W . We begin by adapting

[ACGH85, Lemma, p. 242] for symmetric determinantal varieties. Let A and Ē be vector

spaces of dimensions a and ē respectively, and let φ̄ : Sym2A → Ē be a linear map. As

before, write sym: A ⊗ A → Sym2A for the canonical surjection. Let {α1, . . . , αa} be a

basis of A, and write xij := φ̄ ◦ sym(αi ⊗ αj).

Lemma 2.11. Assume that φ̄Λ := φ̄|sym(Λ⊗A) is injective for each Λ ∈ Gr(k,A). Set

Ī :=
{

(Λ, v) ∈ Gr(k,A)× Ē∗ : v ∈ φ̄ (sym(Λ⊗A))⊥
}
.

Let p̄ : Gr(k,A)× Ē∗ → Ē∗ denote the projection. Then the following holds.

(a) The scheme p̄(Ī) is Cohen–Macaulay, reduced and normal.

(b) The ideal of p̄(Ī) is generated by the (a−k+1)×(a−k+1) minors of the symmetric

matrix (xij)i,j=1,...,a.

(c) The degree of p̄(Ī) is

a−k+1∏
i=0

(
a+i

a−k−i
)(

2i+1
i

) .
(d) The morphism p̄ maps Ī birationally onto p̄(Ī).

Proof. As this follows very closely the proof of [ACGH85, Lemma, p. 242], we give only a

sketch. The injectivity hypothesis implies that Ī is a vector bundle over Gr(k,A) which is

smooth of dimension ē − k(k+1)
2 . Let J̄ be the subvariety of Ē∗ whose ideal is generated

by the (a − k + 1) × (a − k + 1) minors of the symmetric matrix (xij)i,j=1,...,a. As in the

proof of loc. cit., we see that J̄ is supported exactly on p̄(Ī). Hence they coincide scheme-

theoretically and J̄ is a symmetric determinantal variety of the expected dimension. Thus

J̄ is Cohen–Macaulay by [Mi08, Theorem 1.2.14]. The proofs of (a), (b) and (d) now follow
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verbatim those of loc. cit. (i), (ii) and (iv) respectively. As for (c): Note that J̄ = p̄(Ī) is

the pullback of

{M ∈ Sym2Ka : dim Ker(M) ≥ k}

by the map Ē∗ → Sym2Ka given by v 7→
(
xij(v)

)
. As this map is linear and J̄ is of the

expected codimension, the statement follows directly from [HT84, p. 78]. �

Theorem 2.12. Suppose W ∈ Sk2n,K is such that for all Λ ∈ Gr(k,H0(W )), the map µs
Λ

is injective. Let α1, . . . , αh0(W ) be a basis for H0(W ), and define xij as above.

(a) As sets, we have

CWSk2n,K =
⋃

Λ∈Gr(k,H0(W ))

Im (µsΛ)⊥.

(b) The tangent cone CWSk2n,K to Sk2n,K at W is Cohen–Macaulay, reduced and normal.

(c) The ideal of CWSk2n,K as a subvariety of H1(K ⊗ Sym2W ∗) is generated by the

(h0(W )−k+1)×(h0(W )−k+1)-minors of the symmetric matrix (xij)i,j=1,...,h0(W ).

(d) The multiplicity of Sk2n,K at W is

h0(W )−k+1∏
i=0

( h0(W )+i
h0(W )−k−i

)(
2i+1
i

) .

Proof. By Theorem 2.9 (c) and Lemma 2.11 (a) & (d), the hypotheses of [ACGH85, Lemma

II.2.1.3, p. 66] are satisfied by the map p̄ : Ī → Ē∗. Therefore, p̄(Ī) coincides scheme-

theoretically with CWSk2n,K . Part (a) follows immediately from the definition of p̄. Parts

(b), (c) and (d) follow from Lemma 2.11 (a), (b) and (c) respectively. �

3. Dimension bounds on symplectic Brill–Noether loci

We begin this section with an important result on the structure of bundles with nonva-

nishing sections.

Lemma 3.1. Let V be a vector bundle over C with h0(V ) ≥ 1. Let B ⊂ C be the subscheme

of C along which all sections of V vanish. Its support is the finite set

{p ∈ C : s(p) = 0 for all s ∈ H0(V )}.

If the subbundle E ⊆ V generated by global sections is of rank at least two, then there exists

a section of V which is nonzero at all points of C\Supp(B).

Proof. This is [Baj19, Proposition 1], whose proof is due to Feinberg [Fe] (see [Te92]). �

Corollary 3.2. Any vector bundle V with h0(V ) ≥ 1 can be written as an extension 0→
OC(D)→ V → F → 0 where D is effective and H0(OC(D)) = H0(V ) or h0(OC(D)) = 1.

Motivated by Corollary 3.2, we recall [Baj19, Definition 1]:
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Definition 3.3. A vector bundle V over C with h0(V ) ≥ 1 will be said to be of first type

if V contains a line subbundle L such that H0(V ) = H0(L). If V contains a line subbundle

L with h0(L) = 1, then V is said to be of second type. Note that if h0(V ) = 1 then V is

both of first type and of second type.

The relevance of this for higher rank Brill–Noether loci is illustrated by [CFK18, Theorem

1.1], which states that for 3 ≤ ν ≤ g+8
4 , if C is a general ν-gonal curve then B2

2,d has two

components, corresponding to the two types in Definition 3.3. In a similar way, we shall

see that different dimension bounds apply for components of Sk2n,K whose generic elements

are of different types.

We shall require the following technical lemma in several places.

Lemma 3.4. Let V be any vector bundle, and let 0 → M
ι−→ K ⊗ V ∗ → G → 0 be an

extension where M has rank one. Consider the induced map

ι∗ : K−1 ⊗ V ⊗ V → M−1 ⊗ V.

Then the restriction of ι∗ to K−1 ⊗ Sym2V is surjective.

Proof. We dualise the given sequence and tensor by V . Then it is not hard to see that

Ker
(
ι∗|K−1⊗Sym2V

)
∼= K⊗Sym2G∗. Thus the image has rank equal to rkV , as desired. �

By the Clifford theorem for stable vector bundles [BGN97], for all stable K-valued sym-

plectic bundles W of rank 2n we have h0(W ) ≤ n(g + 1) − 1. In what follows, we shall

assume 0 ≤ k ≤ n(g + 1)− 1.

3.1. Symplectic bundles of first type.

Theorem 3.5. Let X be a closed irreducible sublocus of Sk2n,K of which a general element

W satisfies h0(W ) = h0(LW ) = k for some line subbundle LW ⊂ W of degree d. For such

W , we have

dimX ≤ dim (TWX) ≤ dim
(
TLWB

k
1,d

)
+ n(2n+ 1)(g − 1)− 2nd− 1.

Proof. The inclusion j : L→W induces maps on cohomology

j∗ : H1(End (W ))→ H1(Hom(L,W )) and j∗ : H1(End (L))→ H1(Hom(L,W )).

A deformation W of W induces a given deformation L of the subbundle L if and only if

there is a commutative diagram

0 // W // W // W // 0

0 // L //

j

OO

L //

OO

L //

j

OO

0.

This is equivalent to the condition

(3.1) j∗δ(W) = j∗δ(L) in H1(Hom(L,W )),



BRILL–NOETHER LOCI ON MODULI SPACES OF SYMPLECTIC BUNDLES OVER CURVES 13

where δ(W) and δ(L) are the cohomology classes of the extensions defined by the de-

formations W and L respectively. Now L defines a point of Bk
1,d. The deformation W

corresponds to a tangent direction in TWX if and only if W satisfies (3.1) for some L
belonging to TLB

k
1,d ⊆ H1(End (L)). It follows that

(3.2) TWX = (j∗)−1j∗

(
TLB

k
1,d

)
.

Composing with ω : W
∼−→ K ⊗W ∗, we view j as a map L→ K ⊗W ∗, and then

j∗ : H1(K−1 ⊗W ⊗W ) → H1(L−1 ⊗W ).

By Lemma 3.4, the restriction of j∗ to the subspace

H1(K−1 ⊗ Sym2W )
∼−→ H1(K ⊗ Sym2W ∗) = TWMS(2n,K)

remains surjective (the first identification above is given by ω⊗ ω). By this fact and (3.2),

we have

(3.3) dim(TWX) ≤ dim(TLB
k
1,d) + h1(K ⊗ Sym2W ∗)− h1(L−1 ⊗W ).

Now as W is of first type, there can be at most one independent vector bundle injection

L→W , so h0(L−1 ⊗W ) = 1. Then by Riemann–Roch,

h1(L−1 ⊗W ) = 1− χ(L−1 ⊗W ) = 1 + 2nd.

As moreover h1(K ⊗ Sym2W ∗) = n(2n+ 1)(g − 1), the theorem follows from (3.3). �

For k = 1, Theorem 3.5 together with the codimension condition gives the familiar fact

that the set of bundles with sections is a divisor. Moreover, if W is a general bundle with

one independent section then this section does not vanish, as if X is a locus as in the

theorem with k = 1 and d ≥ 1 then X has codimension at least (2n − 1)d + 1 ≥ 2. More

generally, Theorem 3.5 gives the following restrictions on the parameter n for components

in Sk2n,K whose general element is of first type.

Corollary 3.6.

(a) Suppose n ≥ 1 and k ≥ 2. Then Sk2n,K has a component whose generic element

W satisfies H0(W ) = H0(LW ) for a degree d line subbundle only if 8n − 2 ≤ k.

In particular, for all n ≥ 1, the generic element of any component of S2
2n,K is of

second type.

(b) Suppose d ≥ 1. Then Sk2n,K has a component whose generic element W satisfies

H0(W ) = H0(LW ) for a degree d line subbundle LW only if n ≤ g+4
16 .

Proof. (a) Let W be a general point of a component as in the statement. As any component

of Sk2n,K has codimension at most 1
2k(k + 1), by Theorem 3.5 we have

(3.4) 2nd ≤ dim
(
TLWB

k
1,d

)
+
k(k + 1)

2
− 1,
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By Martens’ theorem [ACGH85, p. 191 ff.], and noting that the usual Martens bound is in

fact a bound for dim
(
TLWB

k
1,d

)
, we have dim

(
TLWB

k
1,d

)
≤ d− 2(k − 1). Thus the above

inequality becomes

(2n− 1)d ≤ k(k + 1)

2
− 2k + 1 =

(k − 1)(k − 2)

2
.

By Clifford’s theorem [ACGH85, p. 107 ff.] applied to the line bundle LW , we have k ≤ d
2 +1.

Using this and the fact that d 6= 0 since k = h0(LW ) ≥ 2, the above inequality becomes

2n− 1 ≤
d
2 · (k − 2)

2d
=

k − 2

4
,

which gives 8n− 2 ≤ k, as desired.

(b) Suppose X is a component as in the statement. As in part (a) we have the inequality

(3.4), which yields

n ≤
(k − 1)(k + 2) + 2 · dim

(
TLWB

k
1,d

)
4d

.

By Martens’ theorem as above, we obtain

n ≤ (k − 1)(k + 2)− 4(k − 1) + 2d

4d
=

(k − 1)(k − 2)

4d
+

1

2
.

The above, by Clifford’s theorem, becomes

n ≤
d
2 ·
(
d−2

2

)
4d

+
1

2
=

d(d− 2)

16d
+

1

2
.

As d 6= 0, this simplifies to n ≤ d−2
16 + 1

2 . As W is stable, d ≤ g − 2, whence

n ≤ g − 4

16
+

1

2
=

g + 4

16
. �

3.2. Symplectic bundles of second type. In [Baj19, Theorem 4], the first author de-

rived a bound on the dimension of the Brill–Noether locus Bk
2,K of bundles of rank two

and canonical determinant. As noted above, these are precisely the K-valued symplectic

bundles of rank two. The following is a generalisation to symplectic bundles of higher rank,

whose proof is similar.

Notation. For the remainder of the paper, as we shall only consider symmetric Petri

maps, we denote µs simply by µ to ease notation.

Theorem 3.7. Let k be an integer satisfying 1 ≤ k ≤ n(g + 1) − 1. Suppose Y is an

irreducible component of Sk2n,K containing a bundle W of second type satisfying h0(W ) = k

and such that the rank of the subbundle E ⊂W generated by global sections is r. Then

dim(Y ) ≤ dim(TWY ) ≤ min {n(2n+ 1)(g − 1)− (2k − 1),

n(2n+ 1)(g − 1)− k − 1

2
r(r − 1)

}
.
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Proof. Let W be a general element of Y . If µ : Sym2H0(W ) → H0(Sym2W ) is the Petri

map of W , then

(3.5) dim(TWY ) = dim(MS(2n,K))− 1

2
k(k + 1) + dim Ker(µ).

We shall prove the theorem by finding a bound on dim Ker(µ).

As W is of second type, we may fix an exact sequence 0 → OC(D) → W
q−→ F → 0,

where D is an effective divisor with h0(OC(D)) = 1. Now we have an exact commutative

diagram

0 // Sym2H0(OC(D))
i //

µ1

��

Sym2H0(W )
j
//

µ

��

Sym2H0(W )

Sym2H0(OC(D))

µ2

��

// 0

0 // H0(OC(2D)) // H0(Sym2W ) // H0
(

Sym2W
OC(2D)

)
.

As h0(OC(D)) = 1, clearly µ1 is injective. Thus, by the Snake Lemma,

(3.6) dim Ker(µ) ≤ dim Ker(µ2).

Next, write V for the image of q : H0(W ) → H0(F ). There is a commutative diagram

with exact rows

0 // V ⊗H0(OC(D))
ι //

γ

��

Sym2H0(W )

Sym2H0(OC(D))
//

µ2

��

Sym2V

µ3

��

// 0

0 // H0(F (D)) // H0
(

Sym2W
OC(2D)

)
// H0(Sym2F )

Here γ is the multiplication map on sections, and ι is induced by sym: H0(W )⊗H0(OC(D))→
Sym2H0(W ). As D is effective and h0(OC(D)) = 1, the map γ is injective. Hence by the

Snake Lemma and (3.6) we have

(3.7) dim Ker(µ) ≤ dim Ker(µ3).

Therefore by Lemma 3.8 below, dim Ker(µ) is bounded above by

min

{
1

2
k(k − 1)− 1

2
r(r − 1),

1

2
k(k − 1)− (k − 1)

}
=

min

{
1

2
k(k + 1)−

(
k +

1

2
r(r − 1)

)
,
1

2
k(k + 1)− (2k − 1)

}
The theorem now follows from (3.5). �

Lemma 3.8. Let F be any vector bundle, and V a nonzero subspace of H0(F ). Let E be

the subbundle of F generated by V , and write m := rk (E). Let µ3 : Sym2V → H0(Sym2F )

be the restriction of the symmetric Petri map of F . Then

dim Im (µ3) ≥ max

{
1

2
m(m+ 1), dim(V )

}
.
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Proof. Let Λ ⊆ V be a subspace of dimension m which generically generates E. Then for

generic p ∈ C, the composed map

Sym2Λ
µ3|Sym2Λ−−−−−−→ H0(Sym2F )

ev−→ Sym2F |p

is an isomorphism onto Sym2E|p ⊆ Sym2F |p. Thus dim Im (µ3) ≥ rk (Sym2E) = 1
2m(m+

1).

For the rest: Choose any nonzero t ∈ V , and write L for the line subbundle generated

by t. There is a commutative diagram

K · t⊗ V �
� /

s�

&

H0(L)⊗ V
sym

//

��

Sym2V

µ3

��
H0(L⊗ F ) �

� Σ / H0(Sym2F ),

where Σ: F ⊗F → Sym2F is the canonical surjection. Since dim(K · t) = 1, the top row is

injective. On the other hand, since L has rank one, (L⊗F )∩∧2F = 0. Thus Σ is induced

by an injective bundle map, and so is injective. By commutativity, the restriction of µ3 to

sym(K · t⊗ V ) is injective. Thus dim Im (µ3) ≥ dim(V ). �

Remark 3.9. We mention some special cases. If h0(W ) = 1, then W is both of first and

of second type, and Theorems 3.5 and 3.7 both confirm that S1
2n,K is a generically smooth

reduced divisor. More generally, if k = r, then W belongs to a unique component of Sk2n,K
which is generically smooth and of the expected dimension.

4. Nonemptiness of symplectic Brill–Noether loci

In this section, we shall prove nonemptiness of Sk2n,K for certain values of g, n and k.

We use a combination of techniques from [Me99] and [CH14]. In §§ 4.1 and 4.2 we recall

or prove the necessary ingredients, and then proceed to the questions of nonemptiness and

smoothness of Sk2n,K .

4.1. Mercat’s construction. Here we recall and further analyse the bundles constructed

in [Me99, p. 76] as elementary transformations of sums of line bundles. Let C be any curve

of genus g ≥ 3. As in the introduction, set

k0 := max{k ≥ 0 : βk1,g−1 > 0}.

Fix n ≥ 1. By definition of k0, the Brill–Noether locus Bk0
1,g−1 is of positive dimension. Let

L1, . . . , Ln be general elements of Bk0
1,g−1, in particular such that

L1, . . . , Ln,KL
−1
1 , . . . ,KL−1

n

are mutually nonisomorphic. Choose any point x ∈ C. Let E be an elementary transfor-

mation

(4.1) 0 → E →
n⊕
i=1

Li → Ox → 0
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which is general in the sense that no Li|x is contained in E. One checks using [Me99, p.

79] that such an E is stable. Hence K ⊗ E∗ is also stable, so any proper subbundle has

slope at most g − 1. In fact we shall require the following stronger statement.

Lemma 4.1. Suppose n ≥ 2. Let E be as in (4.1).

(a) Any slope g − 1 subbundle of K ⊗ E∗ contains a line subbundle of degree g − 1.

(b) The bundle K ⊗ E∗ contains a finite number of line subbundles of degree g − 1.

Proof. We use induction on n. Firstly, suppose n = 2. For part (a), there is nothing to

prove. Recall that the Segre invariant s1(K ⊗ E∗) is defined as

min{deg(K ⊗ E∗)− 2 deg(M) : M a line subbundle of K ⊗ E∗}.

As KL−1
i is clearly a maximal line subbundle of K ⊗ E∗, we have s1(K ⊗ E∗) = 1. Then

statement (b) follows from [LN83, Proposition 4.2].

Now suppose n ≥ 3. We have a diagram

0 // En //

��

E //

��

Ln //

=

��

0

0 //
⊕n−1

i=1 Li
//

��

⊕n
i=1 Li

//

��

Ln // 0

Ox
= // Ox

where En has rank n− 1 and degree (n− 1)(g − 1)− 1. Since no Li is contained in E, in

particular no Li is contained in En. Thus, by induction we may assume that statements

(a) and (b) hold for K ⊗ E∗n.

We now prove part (a). Suppose F is a slope g − 1 subbundle of K ⊗ E∗. We have a

diagram of sheaves

(4.2) 0 // KL−1
n

// K ⊗ E∗ // K ⊗ E∗n // 0

0 // F1
//

OO

F //

OO

F2
//

OO

0

where F1 is the sheaf-theoretic intersection of F and KL−1
n . If F1 6= 0 then F1 = KL−1

n

and we are done. If F1 = 0 then F ∼= F2 is a slope g − 1 subsheaf of K ⊗ E∗n. Since the

latter is stable of slope g − 1 + 1
rk (En) , in fact F2 must be saturated; that is, a subbundle.

By induction, F ∼= F2 contains a line subbundle of degree g − 1. This proves (a).

As for (b): By the top row of (4.2), any degree g − 1 line subbundle M ⊂ K ⊗ E∗ is

either KL−1
n or is a subbundle of K ⊗E∗n. By induction, we may assume there are at most

finitely many degree g − 1 subbundles of K ⊗ E∗n. For a fixed such subbundle M , the set

of liftings of M to K ⊗ E∗ is a pseudotorsor over H0(Hom(M,KL−1
n )). Since the Li are

chosen generally from the positive dimensional locus Bk0
1,g−1, perturbing Ln if necessary we

can assume that KL−1
n 6∼= M , so h0(Hom(M,KL−1

n )) = 0. Statement (b) follows. �
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4.2. Symplectic extensions. In this subsection we shall recall a method for constructing

symplectic bundles as extensions, together with a geometric criterion for liftings in such

extensions.

Criterion 4.2. Let C be a curve, and let E be a simple vector bundle over C. An extension

(4.3) 0 → E → W → K ⊗ E∗ → 0

admits a K-valued symplectic form with respect to which E is isotropic if and only if the

extension class δ(W ) belongs to H1(C,K−1 ⊗ Sym2E).

Proof. This is a special case of [Hi07, Criterion 2.1]. �

Let us now recall some geometric objects living naturally in the projectivised extension

space PH1(K−1 ⊗ E ⊗ E). Let V be any vector bundle over C with h1(V ) 6= 0. Write

π : PV → C for the projection. Via Serre duality and the projection formula, there is a

canonical identification

PH1(V )
∼−→ |OPV (1)⊗ π∗K|∗.

Hence there is a natural map ψ : PV 99K PH1(V ) with nondegenerate image. Let us recall

a useful way to realise this map fibrewise.

Lemma 4.3. On a fibre PV |y, the map ψ can be identified with the projectivised coboundary

map of the sequence

H0(V ) → H0(C, V (y)) → V (y)|y → H1(V )→ · · · .

Proof. This follows by direct calculation, or from the discussion on [CH10, pp. 469–470]. �

Now set V = K−1 ⊗ E ⊗ E. We shall recall a result from [CH10] relating the geometry

of ψ(P(E ⊗E)) and liftings of subsheaves of K ⊗E∗ to extensions of the form (4.3), in the

spirit of [LN83, Proposition 1.1]. Let e1, . . . , em be points of E lying over distinct points

y1, . . . , ym ∈ C. These define an elementary transformation

0 → Fe1,...,em → K ⊗ E∗ →
m⊕
l=1

Oyl → 0.

Proposition 4.4. With E and F := Fe1,...,em as above, let 0 → E → W → K ⊗ E∗ → 0

be an extension of class δ(W ) ∈ PH1(K−1 ⊗ E ⊗ E). Then F lifts to W if and only

if δ(W ) belongs to the secant spanned by ψ(e1 ⊗ f1), . . . , ψ(em ⊗ fm) for some nonzero

f1 ∈ E|y1 , . . . , fm ∈ E|ym.

Proof. Let β : H1(K−1⊗E⊗E)→ H1(F ∗⊗E) be the induced map on cohomology. Then

F lifts to an extension W if and only if δ(W ) ∈ Ker(β). By [CH10, Lemma 4.3 (ii)], the

space Ker(β) is exactly the span of the projective linear spaces ψ
(
P(K · el ⊗K−1 ⊗ E)

)
for

1 ≤ l ≤ m. (Note that the assumption on the degrees in [CH10] is made solely to ensure

that ψ be an embedding, which we do not require in the present situation.) �



BRILL–NOETHER LOCI ON MODULI SPACES OF SYMPLECTIC BUNDLES OVER CURVES 19

Next, as in [CH14, § 2.2], composing ψ with the relative Segre embedding, we obtain a

map

(4.4) ψs : PE ↪→ P(Sym2E) 99K PH1(K−1 ⊗ Sym2E)

with nondegenerate image. Note that ψs(e) = ψ(e ⊗ e). We remark that ψs is the map

associated to

|OPE(2)⊗ π∗K2|∗ ∼= PH0(K2 ⊗ Sym2E∗)∗ ∼= PH1(K−1 ⊗ Sym2E).

4.3. The construction. Suppose g ≥ 3 and n ≥ 1. Let L1, . . . , Ln and E be as defined

in § 4.1. Let e1, e2 be general points of PE lying over distinct y1, y2 ∈ C respectively. Let

(4.5) 0 → E → W → K ⊗ E∗ → 0

be a nontrivial extension such that δ(W ) is a general point of the line spanned by ψs(e1)

and ψs(e2). As δ(W ) ∈ H1(K−1⊗Sym2E), by Criterion 4.2 there is a K-valued symplectic

structure on W .

Proposition 4.5. The bundle W is stable as a vector bundle.

Proof. The following uses ideas from [CH14, § 3] and [HP15, Lemma 7]. As every proper

subbundle of K ⊗ E∗ has slope at most g − 1, and the extension W is nontrivial, it is not

hard to see that any subbundle of W has slope at most g−1. Thus we need only to exclude

the existence of a subbundle of slope g − 1.

Furthermore, for any proper subbundle F ⊂ W1, we have a short exact sequence 0 →
F⊥ →W → F ∗⊗K → 0 where F⊥ is the orthogonal complement of F with respect to the

bilinear form. An easy computation shows that

µ(F⊥) = (g − 1) +
rk (F )

2n− rk (F )
(µ(F )− (g − 1)) .

Hence µ(F ) ≥ (g − 1) if and only if µ(F⊥) ≥ (g − 1). As rk (F⊥) = 2n − rk (F ), to prove

stability of W it suffices to exclude the existence of subbundles of slope g − 1 and rank at

most n.

Let F ⊂W be a subbundle of rank at most n. Then there is a sheaf diagram

0 // F1
//

��

F //

��

F2
//

��

0

0 // E // W // K ⊗ E∗ // 0,

where F1 is a subbundle of E and F2 a subsheaf of K⊗E∗. For j = 1, 2 write rj := rk (Fj).

If r1 > 0, then r2 < n. As µ(F2) < g − 1 + 1
n , in fact µ(F2) ≤ g − 1, whence

µ(F ) ≤ r1 · µ(E) + r2 · (g − 1)

r1 + r2
< g − 1.

Thus we may assume that r1 = 0 and F ∼= F2 is a subsheaf of K ⊗ E∗.
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If r2 < n, then by Lemma 4.1 (a) we may assume n ≥ 2 and r2 = 1. Let ι : M → K⊗E∗

be a line subbundle of degree g − 1. Then ι lifts to a map M →W if and only if

δ(W ) ∈ Ker
(
ι∗ : H1(C,K−1 ⊗ E ⊗ E) → H1(C,M−1 ⊗ E))

)
.

As H1(C,M−1⊗E)) is nonzero, by Lemma 3.4, the restriction of ι∗ to H1(K−1⊗ Sym2E)

is nonzero. Furthermore, by Lemma 4.1 (b), there are only finitely many possibilities for ι.

We conclude that the locus of extensions in H1(K−1⊗ Sym2E) admitting a lifting of some

such ι : M → K ⊗ E∗ is a finite union of proper linear subspaces. Since

ψs(PE) ⊂ PH1(K−1 ⊗ Sym2E) ∼= |OPE(2)⊗ π∗K2|∗

is nondegenerate and δ(W ) is a general point of a general 2-secant to ψs(PE), we may

assume that δ(W ) does not belong to any of these proper linear subspaces.

Finally, we must exclude a lifting of some F2 of rank r2 = n ≥ 1; that is, an elementary

transformation 0→ F2 → K⊗E∗ → Oy → 0. By Proposition 4.4, such a lifting exists only

if δ(W ) belongs to ψ(∆), where

∆ := PE ×C P(K−1 ⊗ E)

is the rank one locus of P(K−1 ⊗ E ⊗ E).

Now h0(K−1⊗Sym2E) = 0 since E is stable of slope < g−1. Hence by Riemann–Roch,

h1(K−1 ⊗ Sym2E) =
1

2
n(n+ 1)(g − 1) + n+ 1.

One checks easily that for g ≥ 3, this is greater than dim(PE) + 1 = n+ 1, so ψs(PE) is a

proper subvariety of PH1(K−1 ⊗ Sym2E). It follows that the secant variety Sec2(ψs(PE))

strictly contains ψs(PE). Hence, since the points e1, e2 were chosen generally and δ(W ) is

general in the line ψs(e1)ψs(e2), we may assume δ(W ) 6∈ ψs(PE). Thus δ(W ) belongs to

ψ(∆) only if ψ(e⊗ f) ∈ PH1(K−1 ⊗ Sym2E) for some independent e, f in some fibre E|y.
In view of Lemma 4.3 and the diagram

H0(K−1 ⊗ E ⊗ E(y)) // K−1 ⊗ E ⊗ E(y)|y // H1(K−1 ⊗ E ⊗ E)

H0(K−1 ⊗ Sym2E)

OO

this happens if and only if there is a global section α of K−1 ⊗ E ⊗ E(y) with value
1
2(e ⊗ f − f ⊗ e) at y. We claim that such an α can exist for at most finitely many y.

Since K−1 ⊗ E ⊗ E(y) is a subsheaf of
⊕

i,jK
−1LiLj(y), it suffices to show for almost all

y ∈ C that h0(K−1LiLj(y)) = 0; equivalently, that h1(K−1LiLj(y)) = g − 2. By Serre

duality, this is in turn equivalent to h0(K2L−1
i L−1

j (−y)) = g − 2. But since LiLj 6= K, we

have h0(K2L−1
i L−1

j ) = g − 1, and so h0(K2L−1
i L−1

j (−y)) = g − 2 for almost all y ∈ C, as

required.

Therefore, writing ∆′ for the complement of the relative diagonal PE ⊂ ∆, the intersec-

tion of ψ(∆′) with H1(K−1⊗Sym2E) is contained in at most a finite number of fibres ∆′|y.
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As the linear span of ψ(∆′|y) is ψ(P(K−1⊗E⊗E)|y), we conclude that the locus of exten-

sions in H1(K−1⊗Sym2E) lying over ψ(∆′) is contained in a finite union of linear subspaces

of dimension at most n2. Again, one computes using g ≥ 3 that h1(K−1 ⊗ Sym2E) > n2.

Thus the locus of symplectic extensions (4.3) admitting a lifting of an elementary transfor-

mation F2 ⊂ K ⊗ E∗ with deg
(
K⊗E∗

F2

)
= 1 is contained in a finite union of proper linear

subspaces. As above, by nondegeneracy of ψs(PE) we can assume that W does not admit

such a lifting. This completes the proof that W is stable as a vector bundle. �

Theorem 4.6. Let C be a curve of genus g ≥ 3, and let k0 be as defined in (1.1). For

each n ≥ 1 and for 0 ≤ k ≤ 2nk0 − 3, the locus Sk2n,K has a component which is nonempty

and of codimension at most 1
2k(k + 1).

Proof. Let W be the K-valued symplectic bundle constructed in (4.5), which is stable by

Proposition 4.5. By Proposition 4.4, the elementary transformation

0 → Fe1,e2 → K ⊗ E∗ e1,e2−−−→ Oy1 ⊕Oy2 → 0

lifts to a subsheaf F of W (which is in fact a subbundle, as W is stable). Since e1 and e2

are general and K ⊗ E∗ is generically generated, we may assume h0(F ) = nk0 − 2. Hence

h0(W ) ≥ h0(E) +h0(F ) = 2nk0− 3 and W defines a point of Sk2n,K . In particular, Sk2n,K is

nonempty. By Proposition 2.2 (b), each component is of codimension at most 1
2k(k+1). �

Remark 4.7. If one allows strictly semistable symplectic bundles, it is easy to give exam-

ples of K-valued symplectic bundles with larger h0 over any curve. Set

k1 := max{h0(L) : L ∈ Picg−1(C)}.

Let L1, . . . , Ln be (not necessarily pairwise nonisomorphic) line bundles of degree g − 1

with h0(Li) ≥ k1. Then the direct sum

W :=
⊕(

Li ⊕KL−1
i

)
endowed with the sum of the standard skewsymmetric forms on the Li⊕KL−1

i is semistable

(but not stable) K-valued symplectic of rank 2n with h0(W ) = 2nk1 > 2nk0 − 3.

4.4. Smoothness. Now we shall prove that if C is a general Petri curve, the component

of Sk2n,K whose existence was shown above is smooth and of the expected codimension
1
2k(k + 1). We shall require the following lemma, whose proof is straightforward.

Lemma 4.8. Let V be a vector bundle. Suppose F1, . . . , Fm are sheaves such that
⊕m

i=1 Fi

is a subsheaf of V with H0(V ) =
⊕m

i=1H
0(Fi). Suppose that the multiplication maps

H0(Fi)⊗H0(Fj) → H0(Fi ⊗ Fj) and Sym2H0(Fi) → H0(Sym2Fi)

are injective for 1 ≤ i ≤ j ≤ m. Then the Petri map Sym2H0(V ) → H0(Sym2V ) is

injective.
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Theorem 4.9. Let C be a general Petri curve of genus g ≥ 3. Then for n ≥ 2 and

k ≤ 2nk0 − 3, the locus Sk2n,K has a component which is generically smooth and of the

expected dimension.

Remark 4.10. Note that the Petri assumption implies that k0 =
⌊√

g − 1
⌋
.

Proof of Theorem 4.9. Recall the K-valued symplectic bundle W constructed in (4.5),

which by Proposition 4.5 defines a point of S2nk0−3
2n,K . By Corollary 2.8 and Lemma 2.10,

the statement will follow if we can show that µ : Sym2H0(W )→ H0(Sym2W ) is injective.

The following argument is modelled upon the proof of [HHN18, Lemma 7.2]. Let p ∈ C
be a point which is not a base point for any KL−1

i , so h0(Li(p)) = h0(Li) for 1 ≤ i ≤ n.

For each i, we have a commutative diagram

H0(Li)⊗H0(KL−1
i )

o
��

// H0(K)

o
��

H0(Li(p))⊗H0(KL−1
i ) // H0(K(p)).

Now let U be the open subset of Bk0
1,g−1 over which h0(L) = h0(L(p)) = k0. (Note that

since C is Petri, Bk0
1,g−1 is irreducible by [HHN18, Remark 4.2].) Let A and B be vector

bundles over U ×U whose fibres at (L,N) are H0(L(p))⊗H0(KN−1) and H0(KLN−1(p))

respectively. These have rank k2
0 and g respectively. Let µ̃ : A → B be the globalised Petri

map. Since C is Petri, the composed map

H0(Li)⊗H0(KL−1
i ) → H0(K) → H0(K(p))

is injective for all Li. Hence µ̃ is injective on an open subset of U × U . Deforming the Li

if necessary, we may assume that the multiplication maps

(4.6) H0(Li)⊗H0(Lj) → H0(LiLj) and H0(Li)⊗H0(KL−1
j ) → H0(KLiL

−1
j )

and H0(KL−1
i )⊗H0(KL−1

j ) → H0(K2L−1
i L−1

j )

are injective for all i, j.

Furthermore, as C is now assumed general in moduli and the Li were chosen generally

in the positive-dimensional locus Bk0
1,g−1, by [Bal12, Theorem 1] the symmetric Petri maps

(4.7) Sym2H0(Li) → H0(L2
i ) and Sym2H0(KL−1

i ) → H0(K2L−2
i )

are injective for all i.

Next, from the proof of Proposition 4.5 we recall the subbundle F ⊂W lifting from the

elementary transformation Fe1,e2 ⊂ K ⊗ E∗. We claim that H0(W ) = H0(E) ⊕ H0(F ).

Clearly H0(E)⊕H0(F ) ⊆ H0(W ). For the reverse inclusion:

For 1 ≤ ` ≤ 2, let ê` ∈ E(y`)|y` be a point lying over the image of e` via the canonical

isomorphism PE ∼−→ P(E(y`)), and let κ` be a generator of K−1|y` . Then, since δ(W ) was
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chosen to be a general point of the secant ψ(e1)ψ(e2), by Lemma 4.3 we can write δ(W ) as

the image in H1(K−1 ⊗ E ⊗ E) of a point

∇ := (λ1κ1 ⊗ e1 ⊗ ê1, λ2κ2 ⊗ e2 ⊗ ê2) ∈ K−1 ⊗ E ⊗ E(y1 + y2)|y1+y2

for nonzero scalars λ1, λ2. Then there is a commutative diagram

H0(K ⊗ E∗)⊗K · ∇
� _

��

ε

++
H0(K ⊗ E∗)⊗

(
K−1 ⊗ E ⊗ E(y1 + y2)|y1+y2

) ε1 //

��

E(y1 + y2)|y1+y2

��
H0(K ⊗ E∗)⊗H1(K−1 ⊗ E ⊗ E)

∪ // H1(E)

where the lower vertical arrows are induced by coboundary maps, and ε and ε1 are induced

by evaluation of sections.

Now since H0(K ⊗E∗) ∼=
⊕n

i=1H
0(KL−1

i ) and each h0(KL−1
i ) ≥ 2, after perturbing e1

and e2 if necessary, we can find sections t1, t2 ∈ H0(K ⊗E∗) such that t`(κm⊗ em) = δ`,m,

where δ`,m is the Kronecker delta. It follows that the image of ε is spanned by ê1 and ê2.

Then by commutativity and in view of Lemma 4.3 (with V = E), the projectivised image

of ∪δ(W ) is spanned by the images of e1 and e2 in PH1(E) = |OPE(1)⊗π∗K|∗. Perturbing

e1and e2 again if necessary, we may assume that these images span a P1. We conclude that

∪δ(W ) has rank 2, whence h0(W ) = 2k0− 3 and H0(W ) = H0(E)⊕H0(F ) as desired. As

H0(E) ⊂
⊕
i

H0(Li) and H0(F ) ⊂
⊕
j

H0(KL−1
j ),

by injectivity of the maps in (4.6) and (4.7) and by Lemma 4.8, we obtain the injectivity

of µ : Sym2H0(W )→ H0(Sym2W ). This completes the proof. �

Remark 4.11. Recall that the scheme Sk2n,K has expected dimension

βk2n,s(K) := n(2n+ 1)(g − 1)− 1

2
k(k + 1).

In the case 2n = 2, Bertram and Feinberg conjectured in [BF], that if the expected dimen-

sion

βk2,s(K) = 3g − 3− 1

2
k(k + 1)

is nonnegative, then Sk2,K = Bk(2,K) would be nonempty. They further predicted that on

a general curve, Sk2,K would be nonempty only if βk2,s(K) ≥ 0. Mukai states this conjecture

as a problem in [Muk92, Problem 4.11] and [Muk97, Problem 4.8].

Teixidor i Bigas proves in [Te07, Theorem 1.1] that on a general curve, if k = 2k1, then

Sk2,K is nonempty for g ≥ k2
1 if k1 > 2, for g ≥ 5 if k1 = 2, and for g ≥ 3 if k1 = 1.

Moreover, under these conditions, it has a component of the expected dimension βk2n,s(K).

In the case k = 2k1 + 1, she proves that Sk2,K is nonempty when g ≥ (k1)2 + k1 + 1 and has

a component of the right dimension.
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Lange, Newstead and Park [LNS16] proved that if C is a general curve of odd prime

genus g and if g − 1 ≥ max{2k − 1, 1
4k(k − 1)}, then Sk2,K is nonempty.

The above Theorems 4.6 and 4.9 push forward the Bertram–Feinberg–Mukai conjecture

and extend it when n ≥ 2, covering also the issue of smoothness in many cases for Petri

curves. Note that Theorem 4.6 does not need any genericity condition; however, a sharp

bound for k in Theorems 4.6 and 4.9 will however require further studies.

5. Superabundant components of Brill–Noether loci

The usual Brill–Noether locus Bk
r,d has expected dimension

βkr,d = dimU(r, d)− k(k − d+ r(g − 1)).

As outlined in the introduction, examples of components of excess dimension are relevant

both to Brill–Noether theory and the study of determinantal varieties. Building on the

observation [Ne11, § 9] that Bk
2,K can have larger expected dimension than the locus Bk

2,2g−2

containing it, we shall now show for infinitely many n and g the existence of superabundant

components of Bk
2n,2n(g−1) for any curve of genus g.

The expected dimension of Sk2n,K exceeds that of Bk
2n,2n(g−1) if and only if

dimMS(2n,K)− 1

2
k(k + 1) > dimU(2n, 2n(g − 1))− k(k − d+ r(g − 1)),

which is equivalent to

(5.1)
1

2
k(k − 1) > n(2n− 1)(g − 1) + 1.

Thus if Sk2n,K is nonempty for a value of k satisfying this inequality, there exists a super-

abundant component of Bk
2n,2n(g−1). We shall give examples using Theorem 4.6. Firstly,

for certain values of g, one can obtain statements for all n.

Theorem 5.1. Suppose m ≥ 7 and let C be any curve of genus g = m2 + 1. Then for

any n ≥ 1, the locus S2nm−3
2n,K is nonempty and has dimension greater than β2nm−3

2n,2n(g−1). In

particular, B2nm−3
2n,2n(g−1) has a superabundant component.

Proof. As before, set k0 := max{k ≥ 0 : dimBk
1,g−1 ≥ 1}. Then k0 ≥

⌊√
g − 1

⌋
= m (with

equality if C is Petri). Hence the bundle W defined in (4.5) defines a point of S2nm−3
2n,K . For

k = 2nm− 3, the inequality (5.1) becomes

(2nm− 3)(2nm− 4)

2
> n(2n− 1)m2 + 1.

The n2-terms cancel, and the inequality reduces to nm2−7nm+5 > 0. One checks easily

that this holds for all n ≥ 1 when m ≥ 7. �

With the same approach, if we fix n, then we can obtain a statement for any curve of

large enough genus. For a fixed g, we set k1 :=
⌊√

g − 1
⌋
. (If C is Petri then k1 = k0.)
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Theorem 5.2. Fix n ≥ 1 and let C be any curve of genus g ≥ (4n+7)2 +1. Then S2nk1−3
2n,K

is nonempty and has dimension greater than β2nk1−3
2n,2n(g−1). In particular, for fixed n ≥ 1,

there are infinitely many g such that for some k depending on g, the locus Bk
2n,2n(g−1) has

a superabundant component for any curve C of genus g.

Proof. Let W be as above. As k2
1 ≤ g − 1 but (k1 + 1)2 ≥ g, we have

(5.2)
√
g − 1 ≤ k1 ≤

√
g − 1.

Now let us check inequality (5.1) for k = h0(W ) = 2nk1 − 3; explicitly, that

(2nk1 − 3)(2nk1 − 4)

2
> n(2n− 1)(g − 1) + 1,

that is,

(5.3) 2n2k2
1 − 7nk1 + 5 > 2n2(g − 1)− n(g − 1).

Rewriting the left side as 2n2(k2
1 +2k1)−4n2k1−7nk1 +6 and noting that k2

1 +2k1 ≥ g−1

by the left hand inequality in (5.2), we see that (5.3) would follow from the inequality

−4n2k1 − 7nk1 + 5 > −n(g − 1),

that is, (g − 1) + 5
n > k1(4n+ 7). As k1 ≤

√
g − 1 by (5.2), this would follow from

√
g − 1

(
1 +

5

n(g − 1)

)
> 4n+ 7.

This follows from the hypothesis g ≥ (4n+ 7)2 + 1. �

Setting n = 1, the above theorem shows in particular:

Corollary 5.3. For any curve of genus g ≥ 122, there exist Brill–Noether loci with super-

abundant components.

Remark 5.4. The bundle W is not a smooth point of the component of B2nk1−3
2n,2n(g−1). The

usual Petri map is identified with the multiplication H0(W )⊗H0(W )→ H0(W⊗W ). Since

W has at least one line subbundle L1 with at least two independent sections, the restriction

of this map to ∧2H0(W ) has nonzero kernel containing ∧2H0(L1). Note moreover that we

have only shown that S2nk1−3
2n,K has a component contained in a superabundant component

of B2nk1−3
2n,2n(g−1); the latter component could in general have even larger dimension.

Remark 5.5. In [CFK18], the authors show that in rank two for a general ν-gonal curve,

the superabundant components of Bk
2,d are all of first type (cf. Definition 3.3). However,

W is generically generated, since E is generically generated and the subspace H0(F ) lifting

from H0(K⊗E∗) generically generates F . This is another aspect in which the higher rank

case differs from the rank two case.
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5.1. Superabundant components of moduli of coherent systems. Coherent systems

on C were briefly mentioned in § 2.4. We recall now some more facts, referring the reader to

[Br09] for more information and references; and to [BGMN03] for the connection to Brill–

Noether theory. For a coherent system (W,Λ) of type (r, d, k) on C and a real number α,

recall that the α-slope of (W,Λ) is defined to be the real number

µα(W,Λ) :=
d

r
+ α

k

r
.

The coherent system (W,Λ) is called α-stable if for any coherent subsystem (V,Π) of

(W,Λ) one has µα(V,Π) < µα(W,Λ). For any real number α > 0, there exists a moduli

space G(α; r, d, k) parametrising α-stable coherent systems, which has expected dimension

βkr,d = r2(g − 1) + 1− k(k − d+ r(g − 1)).

Furthermore there is an increasing finite sequence of real numbers 0 = α0, α1, α2, . . . , α`

with the property that if α and α′ belong to the open interval (αi, αi+1) then G(α; r, d, k) ∼=
G(α′; r, d, k). The numbers αi are called critical values for the type (r, d, k).

For any L ∈ Picd(C), we may also consider the closed sublocus

G(α; r, L, k) := {(W,Λ) ∈ G(α; r, d, k) : detW ∼= L}.

It is clear that every component of G(α; r, L, k) has dimension at least βkr,d−g. However, in

[GN14], the authors show that in several cases this is not sharp, and conjecture in [GN14,

§ 2] that every component of G(α; r, L, k) has dimension at least

(5.4) βkr,d − g +

(
k

2

)
· h1(L) =: γkr,L.

We have the following result on superabundant components of moduli of coherent systems.

Theorem 5.6. Let C be a general curve of genus g ≥ 3, so that k0 =
⌊√

g − 1
⌋
, and W

be the K-valued symplectic bundle constructed in (4.5). Set k = 2nk0 − 3. Let α1 be the

smallest positive critical value for the type (2n, 2n(g − 1), k), and suppose 0 < α < α1.

(a) The coherent system (W,H0(W )) is of type (2n, 2n(g − 1), k) and α-stable.

(b) The fixed determinant locus G(α; 2n,Kn, k), and hence also the full moduli space

G(α; 2n, 2n(g − 1), k), contains a component of dimension at least

n(2n+ 1)(g − 1)− 1

2
k(k + 1).

(c) Suppose m ≥ 7 and g = m2+1, so k = 2nm−3. Then for any n ≥ 1, the component

of G(α; 2n, 2n(g − 1), 2nm − 3) referred to in (b) is superabundant. Moreover,

G(α; 2n,Kn, 2nm − 3) has a component of dimension larger than γ2nm−3
2n,Kn + g (cf.

(5.4)).

(d) Fix n ≥ 1 and g ≥ (4n+7)2+1. Then the component of G(α; 2n, 2n(g−1), 2nk0−3)

referred to in (b) is superabundant. Moreover, G(α; 2n,Kn, 2nk0− 3) has a compo-

nent of dimension larger than γ2nk0−3
2n,Kn + g.
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Proof. (a) By the proof of Theorem 4.9, we have h0(W ) = k, so (W,H0(W )) is of type

(2n, 2n(g − 1), k). For α-stability (see also [KN95]): By Proposition 4.5, the bundle W is

stable. In particular, if V is a proper subbundle of rank r, then µ(V ) ≤ µ(W ) − 1
2nr . It

is then easy to check that the coherent system (W,H0(W )) is α-stable for 0 < α < 1
2nk .

Since G(α; r, d, k) ∼= G(α′; r, d, k) for any α, α′ in the interval (0, α1), the coherent system

(W,H0(W )) is α-stable for 0 < α < α1.

(b) Denote by X the component of Sk2n,K containing W . By part (a), for generic W ′ ∈ X
the coherent system (W ′, H0(W ′)) is α-stable, so there is a map

X 99K G(α; 2n, 2n(g − 1), 2nk0 − 3)

given by W ′ 7→ (W ′, H0(W ′)). Clearly this is generically injective. In particular, the

moduli space G(α; 2n, 2n(g − 1), 2nk0 − 3) has a component of dimension at least n(2n +

1)(g − 1)− 1
2k(k + 1). Moreover, as any K-valued symplectic bundle has determinant Kn,

the image of X is contained in the fixed determinant locus G(α; 2n,Kn, k).

Finally, as G(α; 2n, 2n(g − 1), k) has the same expected dimension as Bk
2n,2n(g−1), parts

(c) and (d) follow from the computations in the proofs of Theorems 5.1 and 5.2. �
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