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Abstract. We developed QB-Gest, a bimanual text entry method based on sim-

ple gestures where users drag their thumbs in the direction of the desired letter 

while visualizing the Qwerty-layout. In an experiment with four sessions of 

testing, 20 users achieved text entry rates of 11.1 wpm eyes-free and 14.1 wpm 

eyes-on. An expert user achieved an eyes-free rate of 24.9 wpm after 10 rounds 

of entering the-quick-brown-fox phrase. The method holds potential for users 

with low vision and certain types of reduced motor function. 
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1 Introduction 

Smartphones have become an important tool in modern society by facilitating com-

munication independent of time and place. Many smartphone tasks require text input, 

such as searching the web, sending emails, or messaging. Text input typically uses a 

default virtual keyboard. Yet, many users find it hard to use virtual smartphone key-

boards compared to physical desktop keyboards [1], because input requires accurately 

hitting keys without tactile feedback. Virtual smartphone keys are smaller than physi-

cal desktop keys; so, input is both visually intensive and requires careful eye-motor 

coordination [2]. Techniques that require limited visual demand, such as touch typing, 

are desirable in many situations. Eyes-free operation is an absolute necessity for blind 

users [3, 4]. In addition to situational impairments, visual acuity and pointing accura-

cy reduce with age. Another goal is to free up the valuable display real estate occu-

pied by soft keyboards for displaying other information. 

Gestures have been proposed as a means of reducing visual demand in text entry 

tasks [5, 6, 7]. Instead of hitting keys at absolute positions, the user inputs simple 

gestures as relative finger movements. Such gestures, often resembling the graphical 

shape of letters, can be input eyes-free. Usually, gesture alphabets must be learned, 

and this requires the user to invest effort. In the proposed approach we instead rely on 

users’ familiarity with the Qwerty layout, thus reducing the need to learn new ges-

tures. Users visualize the Qwerty layout and move a thumb in the direction of the 

required character within either the left or right half of the layout (see Fig. 1). 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 1.   Top: Input of c in eyes-on mode by (a) pressing left thumb, (b) displaying the left side 

of the Qwerty keyboard centered around the thumb, (c) dragging the thumb down towards c and 

releasing the thumb. Bottom: Inputting the word we in eyes-free mode by (d) the left thumb 

northwest for w, (e) left thumb north for e, (f) both thumbs outwards for space. 

High text entry rates can be achieved when both hands are used collaboratively to 

input text. Expert smartphone users often input text with two thumbs [8]. However, it 

is difficult to input complex gesture shapes bimanually as users typically need their 

dominant hand for fine motor tasks. Since the proposed method only requires simple 

directional gestures it is envisaged that bimanual input is possible. An experiment was 

designed to determine if users who are familiar with Qwerty can visualize the layout 

and produce the corresponding directional gestures. These observations were con-

trasted against a group of users who used the technique with visual feedback. 

In the next section we review work related to smartphone text entry. This is fol-

lowed by a description of the proposed QB-Gest prototype. Then, we describe a user 

study to test the prototype followed by an analysis of the results. 

2 Related work 

Qwerty is the most common layout on smartphones, although alternatives have been 

proposed [9]. Since users resist change [10, p. 187], research focuses on compromises 

that leverage users’ familiarity and the reduced visual search afforded by both alpha-

betical [11] and Qwerty [12] layouts. Other work experimented with adding keys 

dynamically according to current input using a language model [13]. 

Virtual or soft keyboards on smartphones are small with limited space for each 

key. Key width is especially small when the device is in portrait mode. Clearly, to 

successfully hit small keys, visual cues are required for key locations. Ordinary 

smartphone virtual keyboards are a challenge for individuals with low vision and or 

reduced motor function [14]. As vision and motor control reduce with age, 

smartphone text entry is particularly challenging for older individuals [1]. 

Input on a virtual keyboard is a pointing task where users move a finger or stylus to 

hit a key. With physical keyboards, the fingers feel the keys before acting; with prac-

tice, ten-finger touch-typing is possible. However, virtual keyboards have no such 
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tactile feedback: The first touch is recorded as a keypress. Input using virtual key-

boards is therefore a visually intensive target acquisition task. Fitts’ law predicts the 

relationship between the distance to the target, the width of the target, and the speed 

[15]; hence, the faster the pointing task is performed, the less likely is the user to hit 

the target. With smaller targets, accurate target acquisition requires slowing down. 

Hence, Fitts’ law explains why smartphone text entry is slower than using ordinary 

physical keyboards.  

Experiments on ten finger touch-typing on touch surfaces have used Markov-

Bayesian models [16]. Although entry rates were high, at 45 wpm, achieving adequate 

accuracy was a challenge. Attempts have also been made to input text through eyes-

free thumb input relying on motor memory [17]. Again, accuracy is a challenge.  

The small size of smartphones means that ten finger touch typing is not possible. 

Instead, input uses a single index finger, two thumbs, or a single thumb. Azenkot and 

Zhai report that text entry rates reach approximately 50 wpm with two thumbs, 36 

wpm with a single index finger, and 33 wpm with one thumb [8]. Two thumbs are 

faster as the keyboard area is divided in two and each thumb traverses shorter distanc-

es. Two thumb input is also associated a higher error rate (11%) compared to using a 

single index finger (8%) and or a single thumb (7%). The authors also found that the 

participants hit consistently below the targets, with larger horizontal offsets at the 

edges. This implies that participants tend to minimize the finger distance travelled. 

Approaches for supporting input on tiny virtual keyboards include zooming in using a 

callout where an enlarged version of the acquired key is displayed above the finger. 

Callouts may also include neighboring keys [2]. 

Zhu et al. [18] explored if users were able to enter text on a smartphone eyes-free 

using their memory of the Qwerty layout. Experiments with their Invisible Keyboard 

achieved 31.3 wpm during the first session and 37.9 wpm during the third session 

without visual feedback. An invisible smartphone keyboard relies on skill transfer 

from smartphone text entry. It is not likely that ordinary Qwerty typing skills will 

transfer to the smartphone form factor. Text entry methods such as Apple's VoiceOver 

or Android's TalkBack support blind or low-vision individuals. Users move their fin-

ger over the keyboard and receive speech feedback to explore the layout until the 

desired letter is spoken. One of the first accounts of this technique is found in the 

Slide Rule project [19]. Such exploratory strategies are slow with a study on blind 

users revealing a text entry rate of 2.1 wpm with VoiceOver using a Qwerty layout 

[4]. Proposed improvements include two-handed input with separate male and female 

voices for each hand [20] and using pseudo-force to separate exploration and taps, 

where the touch area of the fingertip is used as a measure of finger pressure [6]. An 

alternative to keyboard input is speech, with rates about 5 faster than VoiceOver [3]. 

Moreover, speech input was preferred by blind users [3].  

There are comparatively fewer studies addressing smartphone text entry for indi-

viduals with reduced motor function. Graphical approaches such as Dasher [21] are 

visually intensive. The literature on text entry with reduced motor function is domi-

nated by keyboard scanning where virtual keyboards are automatically traversed in 

regular steps and once the desired key or key-group is highlighted a selection is made 

with a single key or switch [22]. Hence, the user only makes a time-dependent selec-



4 

 

tion and there is no need to hit an absolute target. Clearly, scanning is slow compared 

to other techniques. Chording [23, 24] offers potentially high text entry rates and is 

suitable for certain types of reduced motor function, such as loss of a hand, and can 

also be performed eyes-free. Chording has been used for eyes-free numeric input on 

smartphones [5]. Unfortunately, learning the chords is required and chording is there-

fore not widely adopted despite effective mnemonic aids such as using the graphical 

shape of letter [24] and Braille codes [25]. 

Another avenue of text entry research is gestures [26, 27]. Gestures are simple 

dragging motions performed on the touch display. The motions are relative and do not 

require hitting specific targets. Thus, gesture input is applicable to users with low or 

no vision. Also, gestures can be employed by users with reduced motor function who 

are unable to accurately hit targets. Approaches such as Graffiti [26, 28] and Edge-

Write [27, 29] rely on gestures that resemble the shape of letters. It is easier to re-

member gestures that mimic symbols users already know. On the other hand, these 

gestures can resemble complex shapes with twists and turns. Simpler gestures such as 

UniStrokes are faster (15.8 wpm) than the more complex Graffiti gestures (11.4 wpm) 

as there is less distance for the fingers to travel [28].  

Attempts exist to input text using single-stroke gestures, for example navigating 

menu hierarchies to retrieve a specific letter using multiple simple gestures [30, 31]. 

With Swipeboard [31] the user selects letters by navigating menus on very small 

touch displays using multiple swipe gestures. Absolute pointing tasks and gestures 

have also been combined, such as Swype, where the user drags the finger along the 

keys of a keyboard using a continuous stroke to produce a word shape. Bimanual 

mechanisms have been explored but are slower than the methods relying on one hand 

[32]. Lai et al. [33] investigated if simple gestures with audio feedback could be used 

for entering text eyes free on a smartphone using one hand. Their system, Thumb-

Stroke, presented letters alphabetically in groups around a circle with the thumb 

dragged in the direction of the desired letter. After 20 sessions users reached 10.85 

wpm eyes-free. Banovic et al. [34] combined absolute pointing with relative gestures 

for eyes-free text entry. With their Escape-Keyboard, the user first points at one of 

four regions on the display, then performs a simple gesture in one of eight directions. 

Input used one thumb. Users were given audio feedback and after six training sessions 

reached 7.5 wpm. 

A study where a physical keyboard was compared to a virtual keyboard and ges-

tures [35] found that the physical keyboard (48.6 wpm) was more than 2 faster than 

the virtual on-screen keyboard (21.0 wpm), which again was faster than using ges-

tures (16.5 wpm). As found in performance measures with smartphones [8], the virtu-

al keyboard and gestures were input with one hand, while the keyboard task was con-

ducted bimanually. However, an 8-inch tablet was used instead of a smartphone.  

The study reported herein allows text entry with simple gestures. It was inspired by 

a text entry method proposed for dual joystick game controllers [36], where the user 

visualizes the Qwerty keyboard. If the desired key is on the left side of the keyboard, 

the user uses the left hand and left joystick, and vice versa. In inputting a specific 

letter the user imagines that the left and the right joysticks are located between D-F 

and J-K, respectively. To retrieve a specific letter, the respective joystick is moved in 
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the direction of the letter. Dictionaries resolve ambiguities as several of the directions 

are assigned multiple characters. Experiments with joysticks showed that with little 

practice participants reached 6.8 wpm [36]. The present study employed the same 

principle except using finger touch gestures. One benefit is that the gestures require 

less finger movement than traditional UniStroke-type gestures. Moreover, they are 

bimanual in nature. There is thus potential for high text-entry speeds. However, touch 

gestures are different from manipulating dual joysticks as used in the earlier study 

[36]. Joysticks provide tactile feedback since they move in the direction pushed, and 

stop once the maximum displacement is achieved, with the stick returning to the 

home position when released. Moreover, each joystick has a square guide allowing 

users to feel if they have found the diagonal corners. Thus, joysticks offer tactile 

feedback. Also, with joysticks the response appears on the display with the user map-

ping joystick motion with display feedback. With touch input, visual feedback can be 

provided near the finger, thus allowing for a close mapping between the physical 

movement and visual feedback. The benefit of building eyes-free text entry on the 

smartphone is the wide applicability and availability of this technology, where spe-

cial-purpose input devices such as joysticks are impractical. 

 

(a)  

(b)  

Fig. 2.   Qwerty layouts showing (a) customary left-right division for two-handed touch typing 

and (b) QB-Gest letter positions for bimanual gestural input. 

 

Fig. 3. QB-Gest with visual hints in the eyes-free mode. 

3 QB-Gest System Description 

QB-Gest was implemented in Java and tested on a Huawei C8817E smartphone with 

a 5-inch display running Android 4.4 KitKat. The UI included a text region and a 

gesture region, along with two entry modes: eyes-free and eyes-on. The text region 
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contained fields for the presented and transcribed text, and a word region showing 

four suggested words. The word region was only implemented for the eyes-on mode. 

The gesture region was located below the text region and was divided into a left 

and right side. The left side was for letters on the left side of the Qwerty layout and 

the right side was for letters on the right side of the Qwerty layout. Fig. 2a shows the 

usual Qwerty left-right division of input for two-handed touch typing. Fig. 2b shows 

the QB-Gest left-right positions for gestural input. Although practical, the assignment 

of letters to direction is not optimal from an information theoretic perspective. In 

particular, left-west is assigned three high-frequency letters, ASD, while left-south is 

assigned just the letter C. The rationale was to exploit users’ familiarity with Qwerty. 

Consequently, the letter-to-direction assignments are limited. An alternative is to 

change the groups ASD:FG to AS:DFG, but then one would also need to change the 

right-side assignments from HJ:KL to HJK:L to maintain symmetry across the two 

hands. There is an obvious trade-off between information theoretic optimization and 

assignments that leverage users’ mental model of the Qwerty keyboard [36].  

For eyes-free input, the letter positions in Fig. 2b are hidden and do not appear dur-

ing input. However, the user can request visual hints using a two-thumb swipe-up 

gesture. In this case, the letter positions appear for 1.5 seconds. Fig. 3 shows the QB-

Gest application in eyes-free mode with visual hints shown. 

 For eyes-on input, the letter positions are also hidden, but appear immediately 

when the user's thumb touches the display to make a gesture. On touch, the display 

shows the letters for the left or right half of the Qwerty layout, depending on the touch 

location. Each half shows eight boxes around the touch point. By dragging the thumb 

in one of the eight directions, the respective box of letters is selected once the finger is 

released. In the eyes-free mode, a short beep is heard each time a letter is entered. 

The angle of the gesture was converted to one of eight directions by dividing the 

space into eight equal sectors centered on compass directions. A trie data structure 

[37] mapped the sequence of directions to words is a dictionary. The trie is a special 

tree data structure that stores words associated with each word prefix. In the eyes-on 

mode, words were suggested based on these word prefixes. Although there are ambi-

guities caused by words sharing the same sequence of directions, most sequences are 

unique. Fig. 4 gives an example of text input in the eyes-on mode. In eyes-free mode, 

entry proceeds similarly except the letter positions do not appear. 

3.1 KSPC Analysis 

Since QB-Gest positions 26 letters on 2  8 = 16 keys, the entry of some words is 

ambiguous. However, the ambiguity is considerably less than that of a phone keypad 

where 26 letters are positioned on 8 keys.  

Keystrokes per character (KSPC) is an established metric that captures the key-

stroke efficiency of a text entry method [38]. Of course, "keystrokes" is "gesture 

strokes" in the present context. For ambiguous keyboards, KSPC reflects the overhead 

in resolving the ambiguity when a key sequence corresponds to more than one word.  
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(a) Goal: input t. Touching left side of display. (b) Moving the finger incorrectly north-west. 

 
 

(c) Repositioning the finger north-east. (d) Releasing the finger produces the letter t. 

Fig. 4. QB-Gest example input in eyes-on mode. 

As an example, for English text entry using a 10,000 word dictionary, a phone 

keypad has KSPC = 1.0072 [38]. In other words, the overhead, on average, is just 7.2 

keystrokes per 1000 keystrokes. This is for T9-style input, where the user navigates 

an ordered list of words when ambiguities occur.  

A similar calculation for QB-Gest yields KSPC = 1.0037, for an overhead of 3.7 

keystrokes per 1000 keystrokes. So, ambiguous words, or "collisions", are rare. Ex-

amples for QB-Gest include {king, lung}, {edge, rage} and {rise, ride, rude}. See Fig. 

2. Since collisions are rare, we have not implemented a disambiguation method for 

eyes-free input in our prototype. We expect a full implementation could use linguistic 

context to resolve the occasional collision that does occur. 

3.2 Special Inputs 

As well as the two-thumb gesture to request visual hints, we used special inputs for 

SPACE, BACKSPACE, and ENTER. Two-thumb gestures were chosen to reduce conflicts 

with letter input. Through some experimentation it was found that symmetric gestures 

worked better than non-symmetric gestures [39]. The two-thumb gestures are 

SPACE    both thumbs moving outward to the sides 

BACKSPACE   both thumbs moving inward 

ENTER    both thumbs moving down 

HINTS    both thumbs moving up 
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Our research questions are as follows: Can users leverage their knowledge of the 

Qwerty layout to perform bimanual gestural input on a smartphone? To what degree 

can users perform eyes-free text entry?  Is the error rate affected by visual feedback? 

Are the gesture dynamics affected by visual feedback? To explore these, we conduct-

ed a user study, as now described. 

4 Method 

We evaluated QB-Gest in both the eyes-free and eyes-on entry modes over four ses-

sions of text entry. 

4.1 Participants 

Twenty participants were recruited, 10 each assigned to the eyes-free and eyes-on 

groups. Participants were recruited among students from the university campus of the 

first author. There were 11 males and 9 females split equally (approximately) between 

the eyes-free and eyes-on groups. Ages ranged from 10 to 54 years with most partici-

pants between 25 to 34 years. The mean ages for the two groups was approximately 

equal. All the participants had normal or correct-to-normal vision. 

The participants were screened for text input skill and Qwerty familiarity as this 

was a prerequisite for participating in the experiment. Responses were self-assessed 

on a six-point Likert scale, with higher scores for greater skill/familiarity. The re-

sponses are summarized thus: 

 

Text input skill 

  Eyes-on group (M = 4.3, SD = 0.68) 

  Eyes-free group (M = 4.6, SD = 0.52) 

 

Qwerty familiarity 

  Eyes-on group (M = 4.2, SD = 1.14) 

  Eyes-free group (M = 5.2, SD = 0.79) 

 

Using a Mann Whitney U test, there was no significant difference between the re-

sponses of the two groups in terms of self-assessed text entry skill (z' = -1.023, p = 

.306). However, the slightly higher mean response for the eyes-free group on Qwerty 

familiarity was statistically significant (z' = -2.053, p = .0401). Although the two 

groups exhibit different Qwerty skills which may confound results, our main focus 

was to study eyes-free text entry with the eyes-on entry as a reference. 

4.2 Task 

The participants performed a text copy task using a standard 500-phrase set [40]. 

Phrase were selected at random and appeared in the presented text field. The user 

entered the phrase using QB-Gest in the assigned mode with the result appearing in 
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the transcribed text field (see Figs. 3 and 4). At the end of a phrase, participants em-

ployed the ENTER gesture to move to the next phrase. The participants in the eyes-free 

group could use the HINTS gesture to receive a visual hint wherein the full Qwerty 

letter pattern was shown for 1.5 seconds. 

4.3 Procedure 

Testing was done in a quiet room. The first session included a briefing where partici-

pants signed a consent form and completed a questionnaire asking for demographic 

information and a text entry skill self-assessment. Next, participants practiced QB-

Gest for 10 minutes to enter text using either the eyes-free or eyes-on entry mode, 

depending on the participant's group. After practicing, the measured text entry ses-

sions began. Sessions were time-limited to 20 minutes with the measured text entry 

part of the session taking about 5 minutes. The number of phrases entered in a session 

varied from 6 in session 1 to 11 in session 4. 

The four sessions for each participant were a few days apart in a concentrated time-

period to avoid confounding effects. The entire experiment involved 80 sessions and 

ran over three months. The participants where asked about their opinions on QB-Gest 

using a 6-point Likert scale after the fourth session. No monetary reward was given. 

4.4 Apparatus 

The hardware and QB-Gest user interface described earlier were used in the experi-

ment. The software logged all the interactions performed on the smartphone during 

the experiment, including the spatial and temporal details of the individual gestures as 

well as high-level statistics such as text entry speed (in words per minute), error rate 

(percent of incorrect letters) [41], and requests for hints. 

To minimize word collisions (particularly for the eyes-free mode), QB-Gest was 

configured with a small dictionary that contained only the 1168 unique words in the 

phrase set. In this configuration, the T9-style KSPC = 1.0023. 

4.5 Design 

The experiment was a 2  4 mixed design with the following independent variables 

and levels: 

 

Entry mode Eyes-free, eyes-on 

Session   1, 2, 3, 4 

 

The assignments were between-subjects (entry mode) and within-subjects (ses-

sion). Entry mode was assigned between-subjects to avoid interference between the 

two conditions.  

The dependent variables were text entry speed in words per minute (wpm), error 

rate (%), hint requests (count per character), output/input gain resulting from using 

word suggestions (difference in number of output and input symbols over number of 
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output symbols) and gesture length (cm). Error rate was measured using the minimum 

string distance metric, comparing the presented and transcribed text phrases. 

 

 

Fig. 5. Text entry speed (words per minute) by session and entry mode. Error bars show ±1 SD.  

5 Result and discussion 

5.1 Performance 

The grand mean for text entry speed was 9.55 wpm. By session, the means increased 

from 6.60 wpm (session 1) to 12.60 wpm (session 4). By entry mode, the means were 

8.35 wpm (eyes-free) and 10.75 wpm (eyes-on). The results show a significant im-

provement in text entry performance with practice (F(3, 54) = 106.5, p < .001, η2 = 

.851) and also a significant difference between entry modes (F(1, 18) = 4.917, p = 

.040, η2 = .215). Text entry speed was about 29% higher for the eyes-on entry mode 

(see Fig. 5). Bonferroni post-hoc tests showed that all the sessions are significantly 

different from each other (p < .001). 

Table 1. Eyes-free text mobile text entry results (*Results with a MacBook). 

Mode Hands  Entry Speed (wpm) by Session 

 1 2 3 4 > 5 

Invisible Keyboard [18] 2 31.3 35.7 37.9   
Blindtype (PR) [17] 1 22.8     
Graffiti (delayed) [7]* 1 11.1     
Escape [34] 1 6.9 9.3 10.4 11.1  
QB-Gest 2 5.5 7.4 9.4 11.1 24.9 

Thumb Stroke [33] 1 7.2    10.8 

EdgeWrite [33] 1     7.8 

Qwerty [4] 1 2.1     
NoLookNotes [46] 1 1.32     
VoiceOver [46] 1 0.66     

 

The improvement with practice appears close to linear. It is thus likely that further 

practice would yield further improvements. However, with prolonged training one 

would expect the improvement to be logarithmic, that is, with increased practice the 
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improvement becomes smaller [10, p. 274]. A logarithmic regression model suggests 

that the mean entry speed may exceed 20 wpm after 18 sessions. 

The performance in the eyes-free entry mode seems to match that of the preceding 

session for the eyes-on entry mode. Another interesting observation is that the spread 

for eyes-on is larger than the spread for eyes-free. One would expect the spread to be 

somewhat higher with higher mean values. Also, one could expect a higher spread for 

the eyes-free mode since the task is more difficult. We suspect that the difference in 

spread is a result of between-group sampling bias and not necessarily an effect. There 

was no Session  Entry Mode interaction effect on entry speed (F(3, 54) = 0.63, ns). 

We compared our results to other studies of eyes-free mobile text entry. See Table 

1. Clearly, the Invisible Keyboard yields text entry speeds much above the other 

methods as it directly leverages users’ Qwerty skills. However, such high mobile text 

entry speeds are mostly found among expert users, typically young individuals. Older 

smartphone users typically yield lower performance [1]. The Invisible Keyboard is 

also the only other reported bimanual input method. Very fast rates were also ob-

tained with an enhanced version of Graffiti. QB-Gest has a similar performance to the 

Escape-keyboard at the fourth session, while QB-Gest has more rapid improvement. 

QB-Gest performs marginally better than Thumb Stroke. All these recent methods 

yield higher performance than older methods such as EdgeWrite and VoiceOver. 

Comparison of error was not possible as the studies report different error metrics. 

5.2 Errors 

Error rate was calculated from the minimum-string distance between the presented 

and transcribed text phrases [41]. The grand mean for error rate was 10.8%. By ses-

sion, the means decreased from 15.9% (session 1) to 6.90% (session 5). By entry 

mode, the means were 15.2% (eyes-free) and 6.3% (eyes-on). The errors rates by 

session and entry mode are shown in Fig. 6.  

 

Fig. 6. Error rates (%) by session and entry mode. Error bars show ±1 SD.  

As seen, the error rates with eyes-free entry are nearly twice as high as with eyes-on 

entry. Higher error rates for eyes-free entry agree with other studies [19, 4].  

Training also affects the error rate as there is a reduction from the first to last ses-

sion for both eyes-free and eyes-on entry. A Levene’s test showed that the data lacked 
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equality of variances. The measurements were therefore transformed using the aligned 

rank transform (ART) [45]. Mauchly tests showed that the data aligned according to 

session did not satisfy the assumption of sphericity and a Greenhouse-Geisler correc-

tion was therefore applied. There was a significant effect on practice (session) for 

eyes-on entry (F(2.156, 38.813) = 13.941, p < .001, η2 = .426). Bonferroni post-hoc 

tests show that the error reduction from the first to the second session is significant (p 

= .013) while not from session 2 to 3 and from session 3 to 4. The reduction in error is 

also significant from session 2 to 4. There is also a significant effect of mode (F(1, 

18) = 13.34, p = .002, η2 = .426) as well as a significant interaction between session 

and mode (F(3, 54) = 3.874, p = .014, η2 = .167).  

 

 

Fig. 7. Percentage visual hints requests by session (% per character).  

5.3 Visual Hints 

In the eyes-free mode, requesting visual hints is an important feature in learning QB-

Gest (see Fig. 3). The need for hints reduces as users get accustomed to which thumb 

to use and in which direction to swipe. We logged the occurrence of hint requests by 

session and by character. See Fig. 7. The requests dropped from 1.9% per character in 

the 1st session to 0.4% in the 4th session, clearly showing an improvement. A Fried-

man test confirmed that the effect of practice was statistically significant (χ2 (3) = 

11.61, p = .009). Connover’s post hoc tests revealed that there was no significant 

different from one session to the next, but the difference was significant from session 

1 to 3 (p = .007) and from session 2 to 4 (p = .013). 
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Fig. 8. Output/input gain resulting from word suggestions and BACKSPACE use.  

 

Fig. 9. Backspace ratio.  

5.4 Word Suggestions 

In the eyes-on mode participants could select words based on prefixes by directly 

pressing the displayed suggestion. To assess the effect of the suggestions, the input 
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on experiment utilized word suggestions. As illustrated by Fig. 8, the suggestions 
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fourth session. The eyes-free mode yielded a negative gain of -34.7% during the first 
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significant effect on output/input gain (F(3, 54) = 8.626, p < .001, η2 = .309). Howev-

er, Bonferroni post-hoc testing revealed that only the first and last sessions were sig-

nificantly different (p < .001). There was a significant difference between the out-
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The negative output/input gains observed with the eyes-free mode can be partly 

explained by BACKSPACE use. If a user inputs a, followed by BACKSPACE and b, that's 

3 gestures producing just 1 character. To explore BACKSPACE further, the ratio of 

BACKSPACE inputs to all inputs is plotted in Fig. 9. The observations did not show 

equivalence of variances and the observations were therefore transformed using ART 

[45]. The eyes-free mode is associated with significantly more use of BACKSPACE 

than the eyes-on mode (F(1, 18) = 15.72, p < .001, η2 = .466). During the first session 

the eyes-free mode exhibited a mean rate of 17.5% BACKSPACE inputs, while the 

eyes-on mode only exhibited 6.0% BACKSPACE inputs. Practice had a significant ef-

fect on the use of BACKSPACE (F(3, 54) = 13.196, p < .001, η2 = .415). Post-hoc tests 

show that the two first sessions were significantly different (p = .041) but not the 

other two consecutive sessions. Again, session two and four were significantly differ-

ent (p = .003). During the fourth session the BACKSPACE ratio dropped to 8.2% in the 

eyes-free mode and 3.0% in the eyes-on mode. A significant interaction was also 

observed between practice and mode (F(3, 54) = 4.718, p = .005, η2 = .195). 

Having word suggestions partly explains the higher text entry rates in the eyes-on 

mode compared to the eyes-free mode. In hindsight, the participants should not have 

been given suggestions in the eyes-on mode to keep this experimental condition con-

stant for both groups. However, as a practical consideration, using word suggestions 

is clearly beneficial, even expected, for eyes-on text entry. 

The eyes-on mode utilized a mixture of relative gestures for character input and 

absolute targets for selecting words. Marking menus [42] may be one way of provid-

ing users with word suggestions without having to rely on direct pointing. The Mark-

ing menus approach is based on presenting menu items radially when the user touches 

the display. Users select an item by making a gesture in the direction of the menu 

item. Hierarchal selections are also possible. This approach relies on relative motions 

instead of absolute pointing. With practice, users select items without looking. To 

avoid confusing word selections with character input, a different region of the display 

could be allocated for these selections, for example the top middle of the display. 

The incorporation of effective word suggestions in eyes-free mode is still an open 

problem. The user needs feedback on the word suggestions while entering text. With-

out visual feedback this information must be conveyed using other modalities. The 

most obvious modality is audio. Further research is needed to uncover how such au-

dio feedback might interfere with the text entry task. 

5.5 Gesture Dynamics 

To compare the gesture dynamics of the eyes-on and eyes-free modes, detailed ges-

ture information were extracted from the logs and aggregated into mean gesture 

lengths (cm) and mean gesture angles. See Figs. 10 and 11. There are several noticea-

ble differences between the two modes. First, the gesture lengths in the eyes-on mode 

are shorter (M = 1.0, SD = 0.2) than the eyes-free gestures (M = 1.2, SD = 0.2), and 

the difference is significant (F(1, 10) = 5.474, p = .041, η2 = .354). There is no signif-

icant difference in gesture length across the two hands for the eyes-on mode (F(1, 3) 

= 4.889, p = .114). A visual inspection of the eyes-on gestures in Fig. 10 shows that 
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the four diagonal gestures are slightly longer than the four horizontal/vertical ges-

tures. The endpoints of the gestures appear to fall on the boundary of an approximate 

square for both hands. One explanation is that the visual feedback on the display 

guides the fingers toward the displayed targets and hence constrains finger movement. 

Fig. 11 shows that the gesture patterns in eyes-free mode are different from those in 

eyes-on mode. The two gestures along the adjacent diagonals are longest while the 

gestures along the perpendicular diagonals are shortest. This pattern mirrors across 

the hands, explained as follows. There are no visual guides in the eyes-free mode; the 

user therefore executes the gestures more freely in a comfortable manner. The left 

thumb has a higher dexterity along the northwest-southeast diagonal as it involves 

abductions and adductions, while moving the left thumb along the southwest-

northeast direction is anatomically more difficult as it involves flexion and exten-

sions. These southwest-northeast motions are thus smaller. The same holds for the 

right thumb although the patterns are mirrored vertically resulting in longer gestures 

along the southwest-northeast diagonal. 

 

  

Fig. 10. Mean gesture lengths (cm) and angles in eyes-on mode.  

  

Fig. 11. Mean gesture lengths (cm) and angles in eyes-free mode.  
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3-9 degrees). This is probably a result of the thumb origin being in the bottom left 

corner for the left hand resulting in arc-like shapes and vice versa for the right hand. 

These results may help improve the accuracy of gesture recognition. In addition to 

using just the angle and a minimum distance to detect gestures, the length may help 

improve the discrimination of neighboring eyes-free gestures. The vertical detection 

angles should also be adjusted accordingly. Another possibility is to redesign the vis-

ual feedback in the eyes-on mode to better align with the hand ergonomics. 

5.6 Subjective Assessment 

After completing four sessions of testing, participants were asked several questions on 

their impressions of QB-Gest. Responses were on a 6-point Likert scale. Participants 

in each group were asked if they felt the entry method (eyes-free or eyes-on) was 

"easy to use". A Mann Whitney U test revealed no significant difference between the 

responses from the two groups (z' = -1.336, p = .182). They were also asked to self-

assess their typing skill on the entry mode they were using. Again, there was no dif-

ference in the self-assessed performance between the two entry modes (z' = -1.413, p 

= .158). All the responses were in the upper part of the Likert scale from 3 to 6, indi-

cating a good overall impression with QB-Gest. A positive but non-significant corre-

lation was found between how easy the participants found the method to use and er-

rors (rs(20) = .402, p = .079). 

5.7 Improvement with practice 

The longitudinal performance measurements suggest that prolonged training will 

yield further improvements as there was no sign of the flattening as typical in longitu-

dinal studies. It is thus likely that the observed performance is not representative of 

what is practically possible. For reference, we also measured the peak performance of 

an expert QB-Gest user in the eyes-free mode (one of the authors) who managed to 

input the phrase “the quick brown fox jumps over the lazy dog” 10 times at an aver-

age rate of 24.9 wpm. The mean performance observed in the user study, namely 14.1 

wpm with visual feedback wpm in session 4, is by no means exceptional compared to 

the 50 wpm obtained with two-thumb text entry [8] with visual feedback. However, in 

terms of eyes-free text input, our results are better than 2.1 wpm reported for VoiceO-

ver [4] and similar to the 11.1 wpm obtained with Graffiti with visual feedback [28] 

and better than the 8.34 wpm obtained with Graffiti in eyes-free mode [7].  

The error rate was high in the no-visual feedback mode. This means that a practical 

system employing this type of text-entry needs robust error correction. Error correc-

tion is commonly employed in the text-entry domain, for instance through word-level 

correction of gesture input [7], full-phrase error correction [43], and word-level 

chording errors [44].  

Users who rely on eyes-free text entry are not likely to continuously monitor and 

detect mistakes in the inputted text and it is thus appropriate to employ error correc-

tion techniques where the entire phrase is checked and corrected instead of individual 

words [43] as this gives more robustness.  
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6 Conclusions 

We presented QB-Guest – a method for inputting text on small smartphone displays 

using simple Qwerty bimanual gestures. The user visualizes the Qwerty keyboard and 

gestures with the left or the right thumb in the direction of the desired character from 

the gap between D-F and J-K keys as the left and right points of origin. 

A user study demonstrated that text could be input both with visual feedback at a 

rate of 14.1 wpm and eyes-free at a rate of 11.1 wpm during the fourth session. An 

expert user entered text eyes-free at 24.9 wpm.  

The error rate was 9.9% for the eyes-free mode and 3.9% for the eyes-on mode 

during the fourth session. Participants relied little on visual hints in the eyes-free 

mode as only 0.4% of the inputted characters required hints during the fourth session. 

The results are comparable to other results obtained with gestures, but the longitudinal 

data suggest that higher text entry rates are possible with additional training. All par-

ticipants in the eyes-on mode relied on word suggestions and during the fourth session 

this led to an output/input gain of 34.9%. The results also indicate that the visual 

guides in the eyes-on mode constrained the physical movement of the thumbs. 

Text entry on smartphone virtual keyboards is visually demanding as there are 

small targets and no tactile feedback. QB-Gest holds potential for rapid smartphone 

text entry with low visual attention, for example, in situations where users are multi-

tasking and attention is limited. As QB-Gest can be used eyes-free, it holds potential 

for blind users. Although the participants herein were not visually impaired, their 

ability to enter text eyes-free is a convincing indicator; however, further user studies 

involving blind users are needed. 

References 

1. Smith, A.L., Chaparro, B.S.: Smartphone text input method performance, usability, and 

preference with younger and older adults. Human factors 57 (6),1015-1028 (2015). 

2. Leiva, L.A., Sahami, A., Catala, A., Henze, N., Schmidt, A.: Text Entry on Tiny 

QWERTY Soft Keyboards. In: Proceedings of the 33rd Annual ACM Conference on Hu-

man Factors in Computing Systems (CHI '15), 669-678. ACM, New York, NY, USA 

(2015). 

3. Azenkot, S., Lee, N.B.: Exploring the use of speech input by blind people on mobile de-

vices. In: Proceedings of the 15th International ACM SIGACCESS Conference on Com-

puters and Accessibility (ASSETS '13), Article 11. ACM, New York, NY, USA (2013). 

4. Oliveira, J., Guerreiro, T., Nicolau, H., Jorge, J., Gonçalves, D.: Blind people and mobile 

touch-based text-entry: acknowledging the need for different flavors. In: The proceedings 

of the 13th international ACM SIGACCESS conference on Computers and accessibility 

(ASSETS '11), 179-186. ACM, New York, NY, USA (2011). 

5. Azenkot, S., Bennett, C. L., Ladner, R.E.: DigiTaps: eyes-free number entry on 

touchscreens with minimal audio feedback. In: Proceedings of the 26th annual ACM sym-

posium on User interface software and technology (UIST '13), 85-90. ACM, New York, 

NY, USA (2013). 

6. Goh, T., Kim, S.W.: Eyes-free text entry interface based on contact area for people with 

visual impairment. In: Proceedings of the adjunct publication of the 27th annual ACM 



18 

 

symposium on User interface software and technology (UIST'14 Adjunct), 69-70. ACM, 

New York, NY, USA (2014). 

7. Tinwala, H., MacKenzie, I.S.: Eyes-free text entry with error correction on touchscreen 

mobile devices. In: Proceedings of the 6th Nordic Conference on Human-Computer Inter-

action: Extending Boundaries (NordiCHI '10), 511-520. ACM, New York, NY, USA 

(2010). 

8. Azenkot, S., Zhai, S.: Touch behavior with different postures on soft smartphone key-

boards. In: Proceedings of the 14th international conference on Human-computer interac-

tion with mobile devices and services (MobileHCI '12), 251-260. ACM, New York, NY, 

USA (2012). 

9. MacKenzie, I. S., Zhang, S.X.: The design and evaluation of a high-performance soft key-

board. In: Proceedings of the SIGCHI conference on Human Factors in Computing Sys-

tems (CHI '99), 25-31. ACM, New York, NY, USA (1999). 

10. MacKenzie, I. S.: Human-computer interaction: An empirical research perspective. Mor-

gan Kaufmann, Waltham, MA (2013).  

11. Zhai, S., Smith, B.A.: Alphabetically biased virtual keyboards are easier to use: layout 

does matter. In: CHI '01 Extended Abstracts on Human Factors in Computing Systems 

(CHI EA '01), 321-322. ACM, New York, NY, USA (2001). 

12. Bi, X., Smith, B.A., Zhai. S.: Quasi-qwerty soft keyboard optimization. In: Proceedings of 

the SIGCHI Conference on Human Factors in Computing Systems (CHI '10), 283-286. 

ACM, New York, NY, USA (2010). 

13. Raynal. M.: KeyGlasses: semi-transparent keys on soft keyboard. In: Proceedings of the 

16th international ACM SIGACCESS conference on Computers & accessibility (ASSETS 

'14), 347-349. ACM, New York, NY, USA (2014). 

14. Kane, S.K., Jayant, C., Wobbrock, J.O., Ladner. R.E.: Freedom to roam: a study of mobile 

device adoption and accessibility for people with visual and motor disabilities. In: Pro-

ceedings of the 11th international ACM SIGACCESS conference on Computers and ac-

cessibility (Assets '09), 115-122. ACM, New York, NY, USA (2009). 

15. MacKenzie, I. S., Buxton, W.: Extending Fitts' law to two-dimensional tasks. In: Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '92), 219-

226. ACM, New York, NY, USA (1992). 

16. Shi, W., Yu, C., Yi, X., Li, Z., Shi. Y.: TOAST: Ten-Finger Eyes-Free Typing on Toucha-

ble Surfaces. In: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), Article 

33. ACM, New York, NY, USA (2018). 

17. Lu, Y., Yu, C., Yi, X., Shi, Y., Zhao, S.: BlindType: Eyes-Free Text Entry on Handheld 

Touchpad by Leveraging Thumb's Muscle Memory. In: Proc. ACM Interact. Mob. Weara-

ble Ubiquitous Technol. 1(2), Article 18. ACM, New York, NY, USA (2017). 

18. Zhu, S., Luo, T., Bi, X., Zhai. S.: Typing on an Invisible Keyboard. In: Proceedings of the 

2018 CHI Conference on Human Factors in Computing Systems (CHI '18), Paper 439. 

ACM, New York, NY, USA (2018).  

19. Kane, S.K., Bigham, J.P., Wobbrock, J.O.: Slide rule: making mobile touch screens acces-

sible to blind people using multi-touch interaction techniques. In: Proceedings of the 10th 

international ACM SIGACCESS conference on Computers and accessibility (Assets '08), 

73-80.  ACM, New York, NY, USA (2008). 

20. Guerreiro, J., Rodrigues, A., Montague, K., Guerreiro, T., Nicolau, H., Gonçalves, D.: 

TabLETS Get Physical: Non-Visual Text Entry on Tablet Devices. In: Proceedings of the 

33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15), 39-

42. ACM, New York, NY, USA (2015). 



19 

 

21. Ward, D.J., Blackwell, A.F., MacKay, D.J.C.: Dasher—a data entry interface using con-

tinuous gestures and language models. In: Proceedings of the 13th annual ACM symposi-

um on User interface software and technology (UIST '00), 129-137. ACM, New York, 

NY, USA (2000). 

22. Polacek, O., Sporka, A.J., Slavik, P.: Text input for motor-impaired people. Universal Ac-

cess in the Information Society 16 (1), 51-72 (2017). 

23. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A., Looney, E. W.: Twid-

dler typing: one-handed chording text entry for mobile phones. In: Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems (CHI '04), 671-678. ACM, 

New York, NY, USA (2004). 

24. Sandnes, F.E.: Can spatial mnemonics accelerate the learning of text input chords?. In: 

Proceedings of the working conference on Advanced visual interfaces (AVI '06), 245-249.  

ACM, New York, NY, USA (2006). 

25. Frey, B., Rosier, K., Southern, C., Romero. M.: From texting app to braille literacy. In: 

CHI '12 Extended Abstracts on Human Factors in Computing Systems (CHI EA '12), 

2495-2500. ACM, New York, NY, USA (2012). 

26. Goldberg, D., Richardson, C.: Touch-typing with a stylus. In: Proceedings of the 

INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems (CHI 

'93), 80-87. ACM, New York, NY, USA (1993). 

27. Wobbrock, J.O., Myers, B.A., Aung, H.H., LoPresti, E.F.: Text entry from power wheel-

chairs: edgewrite for joysticks and touchpads. In: Proceedings of the 6th international 

ACM SIGACCESS conference on Computers and accessibility (Assets '04), 110-117. 

ACM, New York, NY, USA (2003). 

28. Castellucci, S.J., MacKenzie, I.S.:. Graffiti vs. unistrokes: an empirical comparison. In: 

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 

'08), 305-308. ACM, New York, NY, USA (2008). 

29. Wobbrock, J.O., Myers, B.A., Kembel, J.A.: EdgeWrite: a stylus-based text entry method 

designed for high accuracy and stability of motion. In: Proceedings of the 16th annual 

ACM symposium on User interface software and technology (UIST '03), 61-70. ACM, 

New York, NY, USA (2003). 

30. Sandnes, F.E., Tan, T.B., Johansen, A., Sulic, E., Vesterhus, E., Iversen, E.R.: Making 

touch-based kiosks accessible to blind users through simple gestures. Universal Access in 

the Information Society 11 (4), 421-431 (2012). 

31. Chen, X., Grossman, T., Fitzmaurice, G.: Swipeboard: a text entry technique for ultra-

small interfaces that supports novice to expert transitions. In: Proceedings of the 27th an-

nual ACM symposium on User interface software and technology, 615-620. ACM, (2014). 

32. Bi, X., Chelba, C., Ouyang, T., Partridge, K., Zhai, S.: Bimanual gesture keyboard. In: 

Proceedings of the 25th annual ACM symposium on User interface software and technolo-

gy (UIST '12), 137-146. ACM, New York, NY, USA (2012). 

33. Lai, J., Zhang, D., Wang, S., Kilic, I.L., Zhou, L.: A Thumb Stroke-Based Virtual Key-

board for Sight-Free Text Entry on Touch-Screen Mobile Phones. In: Hawaii International 

Conference on System Sciences. (2018). 

34. Banovic, N., Yatani, K., Truong, K. N.: Escape-Keyboard: A Sight-Free One-Handed Text 

Entry Method for Mobile Touch-screen Devices. Int. J. Mob. Hum. Comput. Interact. 5 

(3), 42-61 (2013). 

35. Armstrong, P., Wilkinson. B.: Text entry of physical and virtual keyboards on tablets and 

the user perception. In: Proceedings of the 28th Australian Conference on Computer-

Human Interaction (OzCHI '16), 401-405. ACM, New York, NY, USA (2016).  



20 

 

36. Sandnes, F.E., Aubert, A.: Bimanual text entry using game controllers: relying on users’ 

spatial familiarity with QWERTY. Interacting with Computers 19 (2), 140-150 (2007). 

37. Fredkin, E.: 1960. Trie memory. Commun. ACM 3(9), 490-499 (1960). 

38. MacKenzie, I.S.: KSPC (keystrokes per character) as a characteristic of text entry tech-

niques. In: Proceedings of the Fourth International Symposium on Human Computer Inter-

action with Mobile Devices, LNCS, vol. 2411, 195-210. Springer-Verlag, Heidelberg, 

Germany (2002). 

39. Matias, E., MacKenzie, I. S., Buxton, W.: Half-QWERTY: typing with one hand using 

your two-handed skills. In: Conference Companion on Human Factors in Computing Sys-

tems (CHI '94), Catherine Plaisant (Ed.), 51-52. ACM, New York, NY, USA (1994). 

40. MacKenzie, I. S., Soukoreff, R.W.: Phrase sets for evaluating text entry techniques. In: 

CHI '03 Extended Abstracts on Human Factors in Computing Systems (CHI EA '03). 

ACM, New York, NY, USA, 754-755 (2003).   

41. MacKenzie, I.S., Soukoreff. R.W.: A character-level error analysis technique for evaluat-

ing text entry methods. In: Proceedings of the second Nordic conference on Human-

computer interaction (NordiCHI '02), 243-246. ACM, New York, NY, USA (2002). 

42. Kurtenbach, G., Buxton, W.: User learning and performance with marking menus. In: Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '94), 

258-264. ACM, New York, NY, USA (1994). 

43. MacKenzie, I. S., Castellucci, S.: Reducing visual demand for gestural text input on 

touchscreen devices. In: CHI '12 Extended Abstracts on Human Factors in Computing Sys-

tems (CHI EA '12), 2585-2590. ACM, New York, NY, USA (2012). 

44. Sandnes, F.E., Huang, Y.-P.: Chording with spatial mnemonics: automatic error correction 

for eyes-free text entry. Journal of information science and engineering 22 (5), 1015-1031 

(2006). 

45. Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J.: The aligned rank transform for 

nonparametric factorial analyses using only anova procedures. In: Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems (CHI '11). ACM, New 

York, NY, USA, 143-146 (2011). 

46. Bonner, M.N., Brudvik, J.T., Abowd, G.D., Edwards, W.K.: No-look notes: accessible 

eyes-free multi-touch text entry. In: International Conference on Pervasive Computing, pp. 

409-426. Springer, Berlin, Heidelberg (2010). 

 




