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Abstract: Engineers usually use trial-and-error approaches for dealing with design problems where
they need to find the most economical design of a structural element in terms of its material cost
while satisfying all the safety requirements imposed by the design codes. In this study, we employ a
genetic algorithm (GA) with a dominance-based tournament selection technique for dealing with this
design challenge. The methodology is applied in the design of reinforced concrete rectangular-shaped
isolated footings in accordance with the American Concrete Institute ACI 318-19. First, the footing is
encoded into a set of decision variables and an objective function is defined to compute the total cost
based on the different construction materials. Then, the compliance of the design with the ACI 318-19
code is enforced by a constraint function that takes into consideration all the demand-—capacity ratios
for the different resistance requirements such as the allowable bearing pressure of the supporting
soil, and the shear and flexural capacities of the footing, among others. Two numerical examples are
presented where the results show a significant advantage in terms of material-cost and design-time
reduction in comparison with the commonly used trial and error approach, proving the applicability
of optimization algorithms (OAs) into the everyday design routine of the structural engineer.

Keywords: structural design; optimization; ACI 318-19; concrete isolated footing;
genetic algorithm; GA

1. Introduction

With the development of modern computing, optimization algorithms (OAs) have emerged as
powerful design tools in practically all fields of engineering. In the construction industry, most times
optimization is only applied locally to a few specific “key” components of the design, but it is still
considered over-complicated to be applied at a full scale to broader design problems. One of the
reasons for this is that the design of these elements usually requires fast, reliable, and sometimes
on-the-go solutions for which the complexity of an optimization algorithm seems to be not worth the
benefits obtained compared to traditional trial-and-error approaches, which take advantage of the
experience of the engineer. This conception is changing rapidly nowadays with the development of
ready-to-use optimization tools and libraries that require either a small amount of coding or are based
on a user-friendly interface that takes the coding complexity away. When such computational tools are
used, it only takes some basic understanding of the underlying concepts of optimization to successfully
implement it into the everyday-design problems that the structural engineer faces during the design of
buildings and structures [1].

The motivation for using modern computational techniques to optimize the structural design
of a construction comes as an answer to the fact that the construction industry consumes a huge
amount of resources, which contributes to a high amount of greenhouse gas emissions. Buildings
and construction generate nearly 40% of global CO, emissions according to the 2019 Global Status
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Report [2] published by the Global Alliance for Buildings and Construction (GlobalABC) of the UN.
The fast-required solutions of the construction industry many times outweigh an efficient usage of
construction materials. A much more efficient resource usage and lower carbon footprint can be
achieved by integrating modern optimization techniques into the everyday design process of structural
elements, without compromising the safety or the speed of the design process.

The main goal of this study is to set an example of how the problem of the design of structural
elements, such as reinforced concrete (RC) footings, can be transformed to a well-defined optimization
problem that can then be computationally handled and solved by an OA. The genetic algorithm,
a well-established OA inspired by the natural evolution process, has been used in the study because of
its elegance, robustness, and reliability in handling various types of optimization problems. Genetic
algorithms (GAs) have been successfully used for solving highly non-linear problems in various
engineering disciplines [3].

Optimization techniques have been successfully used for the design of various reinforced concrete
structures [4,5]. Coello et al. [6] applied a simple GA for the design of RC elements, where the aim was to
minimize the cost of a reinforced concrete rectangular beam based on strength design procedures, while
also considering the costs of concrete, steel, and shuttering. In Luévanos-Rojas et al. [7,8], optimization
was applied to the design of concrete footings using a soil pressure model that requires the computation
of several integrals in the constraint functions. Chaudhuri et al. [9] used GA and unified particle swarm
optimization (UPSO) strategies for the design of footings according to IS 456 2000, showing that both
implementations produce noticeable better solutions than some popular structural design commercial
packages in terms of material cost. Khajehzadeh et al. [10] presents an interesting multi-objective
optimization (MOO) approach for the design of spread footings, where one of the objective functions
quantifies the total amount of CO, emissions resulting from the material usage. The MOO problem is
solved using a novel global-local gravitational search algorithm. Al-Ansari [11] proposes an iterative
optimization method for RC footings with a sophisticated analytical model that computes the total cost
of the footing including a high level of detail such as the timber formwork and rebar dowels length.
Other metaheuristic techniques have been also successfully implemented for the design of RC footings,
such as in Nigdeli et al. [12] where harmony-search (HS), teaching-learning-based optimization (TLBO),
and flower pollination algorithm (FPA) have been used with successful results.

In this paper, an optimization methodology to find the most economical structural design using
GAs is developed. A problem is defined where the total material cost of the structural element is used
as an objective function to be minimized, and the compliance of the building design code is enforced by
a constraint function that takes into account all of its design requirements. The methodology is tested
for the design of RC footings within the scope of the building code requirements for concrete structures
by the American Concrete Institute ACI 318-19 [13]. For a given set of reaction forces and other input
parameters, the algorithm will find the optimum dimensions of the RC footing and the amount of steel
reinforcement that lead to the lowest material cost while satisfying all the design criteria for footing
design stablished in the ACI 318-19 code.

2. The Optimization Problem

2.1. Basic Principles of Design

The design of a structural element needs to comply to all the safety and strength requirements
provided in the governing building design code, from now on, each of these requirements will be
denoted as a “design check”. Each design check can be understood as the comparison of a characteristic
or property of a structural element (capacity) against the permitted or required value provided in the
building design code (demand). In general, the capacity of the structural element has to be larger than
the demand and this comparison can be expressed in form of the demand-capacity ratio d/c of the
actual value c (capacity, e.g., element strength) against the required value d (demand, e.g., actual stress)
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of the property in question. The ideal scenario is when the element demand is slightly less than its
capacity, i.e., d/c = 1, meaning that the design is structurally efficient and also economic.

The goal of the structural designer is to achieve the best cost-effective design in order to maintain
the viability of the project. For that purpose, finding the most economical solution for as many
structural elements as possible is essential. This may be a non-trivial task for specific structural
elements that are required to comply with multiple design checks under various loading conditions
and combinations of loads. For example, a RC column must be able to resist both axial forces (vertical
loads) and bending moments (due to lateral loads). In some scenarios, the resistance to vertical loads
could be improved by simply increasing the compressive strength of the concrete and the cost would
not change considerably. However, for the lateral loads, probably adding additional steel reinforcement
would be the simplest option but it could elevate the cost significantly. As a result, the solution to
achieve the most cost-effective overall solution is not always obvious.

2.2. Encoding the Problem in Decision Variables

The first step is to encode the structural element into n decision variables zj, zy, ... , zn, Where n
is the dimensionality of the optimization problem. These variables represent the element properties
which are possible to change during the design phase, such as the geometrical dimensions and others.
For each decision variable zj, a specific range [zjmin, Zjmax] and domain must be defined. For continuous
search spaces it is usually z; € R. The encoded structural element e can then be written as a vector of
the decision variables as follows:

e = [Zl,Zz,...,Zn] (1)
2.3. Objective Function

The optimal design is defined in terms of the material cost of the structural element; therefore, the
optimization task becomes a minimization problem where the set of design variables that leads to the
minimum material cost of the structural element are to be found. In the general case with m different
materials used for the construction of the structural element, the element cost is given by

fle) = Zvjcj @)

=1

where v; is the volume of material j and ¢; is the perspective material volumetric cost. Other cost
parameters such as the labor cost, the form-work in concrete elements, or the welding in steel
constructions could be easily added as additional terms in Equation (1), yet the present study focuses
only on the material cost, i.e., the cost of concrete and steel of the RC element.

2.4. Defining the Constraint Function

To define the constraint function, all the design checks that apply to the design of the structural
element in question are identified in the building design code and converted into a d/c ratio where for
a safe design check, it is a d/c < 1. For each design check, we define the exceeding ratio er as follows

®)

0 otherwise

{(d/c)j—l if (d/c); > 1
61’]' =

The constraint function g(e) is then the summation of the exceeding ratios er of all design checks
applied to the structural element. Assuming that for the structural element e there is a number 1,4, of
design checks to comply to, the constraint function is written as

¢

g1(e) = Zer]- (4)

=1
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which means that g1(e) = 0 denotes a safe design that satisfies all the ;. design checks.
3. Solving the Optimization Problem

3.1. Foundamentals of Genetic Algorithms

GAs are based on the principle of genetic evolution in which only the best or “fittest” individuals
of a population survive to reproduce and create the next generation. During the process, some genes
of the new-born individuals are randomly mutated. This operation introduces new changes that could
make an individual stronger to survive in its environment, and therefore, more likely to reproduce and
pass those advantages to the next generation.

In the mathematical analogy a population consist of several design vectors (individuals), each
design vector is composed of a set of design variables (chromosomes) that can be modified within
a specific domain or search space during the algorithm execution. In the case of single-objective
optimization problems, a single objective function that assigns a fitness value to the design vectors
is defined. The natural processes of selection, reproduction and mutation are simulated through
numerical operations. At every iteration (or generation), the best design vectors of the population
based on their fitness value are selected, combined, and mutated to create a new stronger population.
The algorithm usually stops after a certain number of generations is completed, if no improvement is
observed after a specific number of iterations or if another convergence criterion is satisfied.

3.2. Genetic Algorithm with Elitism

The solution to the optimization problem is found by applying a single objective GA with elitism.
The algorithm used for the present study is briefly described in the following steps [14].

Step 1. Initialization. The algorithm starts at i = 0 by randomly generating multiple design vectors
e}, ey, ..., e ona search space that is based on their pre-specified domain and ranges. Each design
vector is denoted as an individual and all together they form the initial population P;, which has a size
of s = 100 individuals.

Step 2. Objective and constraint function evaluation. The objective and the constraint values are
computed for all the individuals of the current population P; based on Equations (2) and (4), respectively.

Step 3. Selection of the fittest. The best individuals from the current population are chosen
following the dominance-based tournament selection operator [15]. This operator takes two random
individuals from the current population {e;, ey} € P; to be compared or “fight” against each other.
The winner of the fight is chosen according to the following dominance criteria, where the symbol >
denotes dominance of a design over another:

e A solution e, that fulfils the constraint dominates a solution e}, that does not.

if (g(e;) = 0and g(ep) > 0) then
e; > €

©)

e  If both solutions fulfil the constraint, the one with the lowest objective value dominates the other.

if [(g(ea) = g(ey) = 0 and f(eq) < f(e}))] then ©)
e; > ey
e  Ifboth solutions violate the equality constraint, the one with the lowest constraint value dominates
the other.
if [(g(e;) > 0and g(ey) > 0) and (g(e;) < g(ep))] then
e; > €

@)
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After the winner of the first encounter is obtained, a new opponent is chosen randomly from
the current population to “fight” against the previous winner. This battling process is repeated for a
specific number of times known as tournament size ts. The winner of the final fight is the champion of
the tournament, and the outcome of the selection operator.

Since only one individual is selected per tournament, the process is repeated multiple times until
a set S; € P; that contains a number s-0.20 = 100-0.20 = 20 of individuals is obtained. After every
tournament, the champion is removed from the available pool to avoid selecting the same individual
multiple times.

Step 4. Crossover. The goal of the crossover operation is to generate new elements by the
reproduction of the strongest individuals. From the previously created pool S;, two individuals
{ey, ery} € S; are chosen and their decision variables (chromosomes) are combined to obtain two new
offspring {e, ey} € Q;. The selection process is repeated until Q; has a total of s:0.80 = 100-0.80 = 80
individuals. The simulated binary crossover algorithm (SBX) [16] is used for this operation.

crossover(S;) = Q; 8)

Step 5. Mutation. The mutation operation is introduced to the newly created population Q;.
The main purpose of the mutation is to maintain diversity and avoid the problem of getting trapped
into a local minimum. The mutation operator produces a small change to the decision variables using
the polynomial mutation scheme [17]. The mutation is applied with a probability of 1/, so that on
average, one variable per individual is mutated.

P;.1 = mutation(Q;) U S; )

Notice that elitism preservation is achieved by passing the selected elements S; unchanged to the
next population. This feature has proven to improve the efficiency of the algorithm by avoiding that
good solutions are degraded by the mutation or crossover operators.

Step 6. Termination. With the newly created population P;., steps 2-5 of the process are repeated
until a termination criterion is met. In this study, the algorithm stops after the objective function has
been evaluated MAXEVAL number of times. The design vector with the lowest objective value of the
final population is selected as the solution to the optimization problem.

Figure 1 shows a flowchart of the GA procedures described in the above steps 1-6.

S \ i=0 Initialize random P, Calculate objective ] Tournament

y population " and constraints values o aetion
S,
Pis1 NO d

LGS Simulated Binar
End > y
MAXEVAL? Crossover
YES
Pis1 Q
New population Q Polynomial
Pi11=S;LQ Mutation

Figure 1. Flowchart of the genetic algorithm with elitism.

4. Optimum Design of RC Rectangular Footings

The previously described methodology is applied to the design of rectangular footings in
accordance with the American Concrete Institute Building Code Requirements, ACI 318-19 [13].
In this section, a brief insight on the design procedures is provided. For a more detailed description,
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the interested reader is referred to [18,19]. Concrete footings have been chosen as an example of
the applicability of optimization algorithms in structural engineering because of the complexity of
their design where all design checks share a certain degree of dependency making the design process
particularly challenging.

The rectangular footing is first encoded into a total of five design variables, three for the geometrical
dimensions of the slab (horizontal dimensions Ly, Ly and thickness t) and two for the steel reinforcement
(areas Asy, Asy), as shown in Figure 2.

Ly
z
Vi Steel Reinforcement
Ao S
C [ [
L, J X 5
— Footing Slab
Cx A S
Sy y
o o Tt
— (] () (] (] (] (] ) (] L] (] 2 9
By

(a) (b)

Figure 2. Rectangular footing and its decision variables: (a) plan view; (b) elevation.

The design principles are based on the stresses generated on the soil and the concrete slab due to
the contact/bearing pressure acting between them. Such pressure is assumed to be linearly or uniformly
distributed along the contact area depending on whether or not there are eccentricities on the axial
load or moments acting on the column, as shown in Figure 3.

Column Column
centered eccentric

I o,

Linear
Uniform pressure

pressure

(a)

Figure 3. Pressure distribution along the contact area: (a) non-eccentric axial force; (b) eccentric axial
force or/and bending moment acting on the column.

For any point (x, y) inside the contact area, where (x = 0, y = 0) denotes the center point of the slab,
the bearing pressure is computed as

F. | 12My  12Myx

=+
Lely = Lyl LyL3

o(x,y) = (10)

Notice that Equation (10) depends solely on the geometrical properties and the acting forces in the
footing. This is due to the assumption that the concrete slab is considered as a rigid body. Furthermore,
Equation (10) is only valid when the full area of the footing is in contact with the soil (no uplift of
the footing). With the definition of Equation (10), the pressure applied on the soil or the stresses
generated on specific sections of the concrete slab can be accurately computed and compared with the
corresponding resistance, according to the design code provisions.
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4.1. Rectangular Footing Design Checks

The design requirements for two-way isolated RC footings are given in Sections 13.3.1 and 13.3.3
of ACI 318-19. The four principal design checks that must be satisfied are briefly described in the next
section. Note that in the following formulas, the stresses are considered in MPa and the geometrical
dimensions in meters. A description of the various variables used is given in Table 1.

Table 1. Description of the variables used.

Variable Description
d Effective depth of the concrete section
by Length of the cross-section perpendicular to the effective depth 4
by Perimeter of the critical section for two-way shear
A Factor required when light-weight concrete is used
Ny, Axial force normal to the face being analyzed
B Long-to-short side ratio of the column
fy Yield stress of the reinforced steel
fe Compressive strength of the concrete
As Reinforced area of steel in the section being analyzed
@r=0.90 Resistance reduction for flexural strength
Os =0.75 Resistance reduction for shear strength

Design check 1: Allowable soil pressure (section 13.3.1.1). Sufficient contact area must be
provided so that the maximum generated bearing pressure o(x,)y)max should not exceed the soil’s
allowable pressure ¢,. The allowable soil pressure must be determined by principles of soil mechanics
in accordance with the general building code.

(d/c); = 0(%,Y)max/qa (11)

Design check 2: One-way shear resistance (sections 8.5.3.1.1/22.5.1.2). The critical section for
one-way shear is located at a distance d from the edge of the column. For rectangular footings
with rectangular columns this condition leads to the possibility to have up to four critical sections,
two parallel to the x direction and two parallel to the y direction. The shear strength @;V, at every
critical section must be sufficient to resist the corresponding acting shear force V. The shear strength
of a concrete section can be computed as follows

Vi < (Ve +0.66 \/fbud) (12)
Ve = (0174 V7 + N o (13)
c — . c 6Ag w

The acting shear force V,, at the critical sections is obtained by integrating the bearing pressure
over the corresponding area, as shown in Equations (14), (15) and Figure 4.

X Y4

Vi = f f o(x, y)dxdy (14)

X1 W

Xy Y4
Vu,xz—ffo(x,y)dxdy (15)

X3 Y1
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Figure 4. Critical sections for one-way shear (perpendicular to x direction): (a) plan view;
(b) elevation view.

Notice that only the critical sections and shear forces perpendicular to the x direction are shown
in Equations (14), (15) and Figure 4. The critical sections perpendicular to y should also be checked in
a similar way. The demand-—capacity ratio (d/c), will be taken as the maximum of the four analyzed
critical sections.

(@/c)y = Vu/ ($sVn) (16)

Design check 3: Flexural resistance (section 8.5.2.1/22.3). The critical section for flexion is located
at the edge of the column. Similar to the one-way shear check, for a rectangular column there could be
four critical sections, two in each of the orthogonal x and y directions. The moment capacity @M, at
each of the critical sections must be sufficient to resist the corresponding acting bending moment M,,.
The moment capacity of a concrete section can be computed as follows

Cc
M, = As fy(d - %) (18)
A
co AH (19)
B1-0.85f by
0.85 17 < f/ <27
Br =085 28U 97 o o 55 (20)
0.65 £ >55

The acting bending moment M,, at the critical sections is obtained by integrating the bearing
pressure over its corresponding area and multiplying it with its lever arm to the critical section as
shown in Equations (21), (22) and Figure 5.

Xy Vi

My = ffo(x, y) - (x — x2)dxdy (21)

My, = ffo(x,y)-(x—ag)dxdy (22)
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Figure 5. Critical sections perpendicular to x for flexural resistance: (a) plan view; (b) elevation view.

Notice that only the critical sections and bending moments perpendicular to the x direction are
shown in Equations (21), (22) and Figure 5. Similarly, the critical sections perpendicular to y should
also be checked. The demand—capacity ratio (d/c); will be taken as the maximum of the four analyzed
critical sections.

(d/c)y = Mu/ (M) (23)

Design check 4: Two-way or punching shear resistance (sections 8.5.3.1.2/22.6.5.2). The critical
section for two-way or punching shear is the perimeter bj located at a distance d/2 from the column.
The shear strength @4V}, of this section must be sufficient to resist the acting shear force V,, that
is generated by the bearing pressure which produces a punching stress near the column edges.
The punching shear strength V;, will be taken as the minimum of three formulas, as shown below

0.33AsA A/l bod

Vi = min{ 0.17(1+ 3)AA y/flbod (24)
0.083(2 + $2)As y/f7bod

[ 2
f— —_—<
As 1+40.004d ~ ! 25)

40 interor columns
as = {30 edge columns (26)

20 corner columns

The acting shear force V,, at the critical section is obtained by integrating the bearing pressure
over its corresponding area to the critical section as shown in Equation (28) and Figure 6. The demand
capacity ratio (d/c), is then computed as follows:

(d/c)y = Viu/(PsVi) (27)

Xy Ya X3 Y3

Vu:ffo(x,y)dxdy—ffo(x,y)dxdy (28)

X1 N X2 Y2
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Figure 6. Critical zone consideration for two-way or punching shear.
4.2. Additional Constraints

Section 2 described the optimization methodology in a general form. The objective and the
demand-capacity ratio constraint functions are the core elements of the methodology. However,
some structural elements may require additional constraints to ensure that meaningful results will
be produced from the optimizer. In the case of rectangular footings, due to the bi-directional nature
of the design, an additional constraint has been defined to prevent the undesired characteristic of
having one side several times longer than the other orthogonal side. Such characteristic could be
more economical in terms of material cost but not practical for construction purposes. To prevent this,
a second constraint function g(e); is introduced that limits the dimensions to a maximum long-to-short
side ratio denoted as fmax. This additional parameter can be easily modified to allow for any desired
ratio before running the optimizer.

max(Ly, Ly)

g2(e) = y) = B < Pmax (29)
y

min(Ly, L

4.3. Optimization Problem Definition Particularly for the Design of Rectangular Footings

Now that all the required equations and concepts were defined, the optimization problem can be
formally written. In this case, there are m = 2 materials and the objective function to be minimized can

be written as
2

f(e) = ZU]'C]' (30)

j=1

where c1, c; are the unit costs of concrete and steel, respectively, and vy, v, are the volumes of concrete
and steel, respectively, that can be expressed as

01 = LyLyt (31)

0y = AscLx + AsyLy (32)

The two constraint functions are the following

<1(e) = erj=0 (33)

-

j=1

$2(e) < Pmax (34)
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5. Numerical Examples

Two numerical examples are examined in order to test the methodology and the efficiency of
the optimization procedure. Both dead and live loads are taken into consideration. The three load
combinations are presented in Table 2. The first design check corresponding to the soil capacity only
considers the service load combination while the other three design checks (one directional shear,
punching shear and flexural design) consider the ultimate load combinations Ul and U2.

Table 2. Load combinations used in the numerical examples.

Combination Dead Load Live Load
Service 1.0 1.0
U1l 14 0
U2 1.2 1.6

The methodology has been implemented into a custom-made application specifically for the
design of rectangular RC footings, using the Java programming language. The applied GA is a
combination of self-coding and the use of the open source package MOEA Framework. The 3D
graphics are generated using the JavaFX package.

The population size of the GA is s = 100, while the tournament size is ts = 5. The algorithm stops
after the objective function has been evaluated MAXEVAL = 10,000 times. The parameter fimax having
to do with the maximum long-to-short length ratio described in Equation (34), is set to 1.5. The material
properties used in both examples are shown in Table 3. We did not use real monetary values for the
cost of concrete and steel, as these values may vary with time and the exact values are not important
for this study. What is important is the relative cost of concrete and steel. We assume that the cost of
steel is 15 times higher than the corresponding cost of concrete, in volume terms, which is a reasonable
assumption based on the current prices of the two materials in most European markets.

Table 3. Material properties and other parameters.

Parameter Value Unit Description
fe 35 MPa Concrete compressive strength
fy 410 MPa Steel reinforcement yield strength
Ga 40 kPa Soil bearing capacity
c1 1 /m?> Concrete cost per m?
1653 15-c1 /m?> Steel cost per m3
Ve 24 kN/m3 Volumetric weight of concrete
Vs 78 kN/m3 Volumetric weight of steel
Te 5 cm Concrete cover

The design variables of the optimization problem are presented in Table 4 with their minimum
and maximum range. All variables are continuous, defined in the R domain.

Table 4. Design variables with their corresponding domains and ranges.

Design Variable Min Max
Ly (cm) 60 1500

Ly (cm) 60 1500

t (cm) 10 300

Asx (cm?) 1 1000

Agy (cm?) 1 1000
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5.1. Example 1: Rectangular Footing with Square Eccentric Column

The first example consists of the design of a rectangular footing with a column cross section of
50 x 50 cm. The column has an eccentricity of 20 cm to the footing center in the x-direction. The loading
conditions are given in Table 5.

Table 5. Example 1: Reaction forces in the column.

Load Case F, (kN) My (kN-m) My (kN-m)
Dead —-1500 0 1500 x 0.20 = 300
Live -850 0 850 x 0.20 =170

The progression of the algorithm is shown in Figure 7. Each data point in the plot corresponds to
a feasible design computed during the algorithm execution. The x axis shows the number of function
evaluations while the y axis shows the objective function value. Because of the population size (s = 100),
100 function evaluations correspond to one generation. In the first function evaluations, there is a high
variance in the data points because at this stage the algorithm is exploring a large area of the search
space. As the algorithm progresses further, the selection operator prevents the solutions with a high
objective value to pass to the next generations and the search space is greatly reduced in the direction
of the global minimum. A plot of the standard deviation of the objective values of all the individuals
of each generation is presented in Figure 8.

350

300 ’ i
& 250
o
o
B 200
o
0
S 150
100
50
0]
0 2,000 4,000 6,000 8,000 10,000
Number of Obj. Function evaluations
Figure 7. Example 1: Optimization algorithm progression.
80
70
60
c
S
-(*_B 50
>
()
O 404
2
©
2 30
k)
n

20

10

0 10 20 30 40 50 60 70 80 90 100

Generation

Figure 8. Example 1: Standard deviation of the objective values of all the individuals at every generation.
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The optimum design vector eopt and its corresponding objective value f(eopt) are shown in Table 6.
The demand-—capacity ratios of the optimum design vector achieved by the algorithm are shown in
Table 7, where an asterisk (*) denotes an active constraint. The first, third and fourth d/c constraints
appear to be active at the optimum, with values close to one. The p parameter takes a value of
1.4995 < 1.5 at the optimum, which also indicates an active constraint. Figure 9 shows the geometry of
the final design eopt and the contact pressure corresponding to the service load combination.

Table 6. Example 1: Optimum design vector and its objective value.

Variable Value
Ly 348.8 cm
Ly 233.8 cm
t 529 cm
Asx 153.2 cm?
Agy 122.9 cm?
f(eopt) 5.547

Table 7. Example 1: Demand-—capacity ratios corresponding to the optimum design vector.

Design Check d-c Ratio Value Active
Soil bearing capacity (d/c)1 0.999 *
One-way shear (d/c)r 0.231
Punching shear (dfc)s 0.993 *
Flexural resistance (d/c)4 0.962 *

233.8 cm

. 40 kPa

348.8 cm

52.9 cm

17 kPa

Figure 9. Example 1: Geometry and pressure distribution (service combination) of the obtained
optimum design.

5.2. Example 2: Rectangular Footing with Rectangular Center Column

For the second test example, the optimum design of a rectangular footing with a rectangular
cross section of 50 X 80 cm is sought. The column has a reaction force of —1600 kN and —900 kN
corresponding to the dead and live load cases, respectively. In this example, there are no eccentricities
or moments acting on the column. Similarly, to the results presented in the previous example, the
progression of the algorithm is displayed in Figure 10.

The results are shown Tables 8 and 9. Again, three of the d/c ratios appear to be active as constraints
at the optimum, with values close to one. One the other hand, the § parameter takes a value of
1.23 < 1.5 at the optimum, which indicates that this constraint is not active at the optimum.
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Figure 10. Example 2: Optimization algorithm progression.

Table 8. Example 2: Optimum design vector and its objective value.

Variable Value
Ly 213.9 cm
Ly 302.1 cm
t 49.1 cm
Asx 106.1 cm?
Asy 103.4 cm?
f(eopt) 3.98

Table 9. Example 2: Demand-—capacity ratios corresponding to the optimum design vector.

Design Check d-c Ratio Value Active
Soil bearing capacity (d/c)1 0.998 *
One-way shear (d/c)r 0.212
Punching shear (dfc)s 0.999 *
Flexural resistance (d/c)4 0.981 *

In order to verify the results, the values of the optimum design vector are substituted back into
Equations (10) and (11), to compute (d/c);. Due to the uniformity of the bearing pressure acting on the
soil, the shear forces and the bending moments on the critical sections can be computed easily without
the need of numerical integrations.

1600 + 900 + 80.21
Omax = —— o~z — = 399.29 kPa (35)
399.29
(d/c)y = g~ = 0998 < (36)

Note that the self-weight of the footing is included in the above calculation and it has a value of
80.21 kN. Similarly, using the optimum design vector and Equations (10), (24), (27), and (28), the (d/c)3
ratio is computed as follows

~1600-1.2+900-1.6 + 80.21
a 2.139-3.021

= 532.38 kPa (37)

Ou

V, = 532.38-2.139-3.021 — 532.38 - 1.24 - 0.94 = 2819.65 kN (38)
by = (1.24+0.94) -2 = 4.36 (39)
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d = 0.491 - 0.05 = 0.441 (40)
V, =0.75-0.33- V35-4.36-0.441 = 2815.36 kN (41)
2819.65

The values slightly differ with those found by the algorithm by a few decimals due to the rounding
operations done in the hand-calculations. The computer uses double precision variables and the real
value of (d/c)s is in fact equal to 0.999 when all the decimals are considered.

5.3. Discussion of the Results

In both examples, the optimizer has achieved a demand—capacity ratio close to 1.0 for three out
of four design checks. This corroborates a successful implementation of the methodology as further
reduction of the cost would not be possible without exceeding the element capacity in at least one of
its design checks. The results show that the dimensions L, and L, of the slab are controlled by the
allowable soil pressure (d/c);, while the thickness is controlled by the punching shear (d/c); and the
flexural capacity (d/c)4 as shown in Equations (35) to (41). The optimum dimensions of the slab for
both examples exhibit a rectangular shape, this is due to the eccentricity present in example 1 and
the rectangular shape of the column in example 2. The second constraint related to the factor fmax in
Equation (29) is also active for example 2, this constraint is particularly useful when a certain shape is
required (i.e., forcing a square-shaped slab by setting fmax = 1.0).

In terms of computational cost, the developed methodology shows high efficiency with a total
execution time for 10,000 function evaluations of only 4.8 s on a regular personal computer with a
i7-8550U 1.80 GHz CPU. The most computationally expensive operation is the numerical integration
required to obtain the total acting forces and moments. The developed algorithm could be additionally
optimized for faster computational speed, but this is not the main focus of this study.

The obtained optimum design for both examples is most likely to be a local minimum since the
design space appears to be highly non-convex. Two different executions of the algorithm with the
same parameters could lead to slightly different results, which is partly due to the stochastic nature of
the GA and partly because of the local minima in the design space. Therefore, achieving the global
minimum is a particularly challenging computational task and there is no guarantee that it will be
reached in the end. Nevertheless, the obtained design is always very close to the global optimum and
from an engineering point of view it is a well-suited solution to the problem.

6. Conclusions

A systematic methodology for optimizing the design of structural elements in terms of their
economical cost while satisfying all the safety and strength requirements imposed by the governing
building design code has been developed by means of a GA with elitism. The method was successfully
applied in two examples for the design of RC isolated footings in accordance with the ACI 318-19.
The input parameters include the dimensions and reactions of the column along with the strength of the
construction materials used. The design of the footing is checked to satisfy the ACI 318-19 requirements
for the allowable bearing pressure, one-way shear, punching shear, and flexural resistance. The results
in both examples shows that 3 out of 4 design checks are active with a demand—capacity ratio close to
1.0, which indicates that further reduction of the cost is probably not possible, and thus, confirms that
the obtained design is close to optimum in terms of the economic cost.

This study shows that OAs and in particular GA, can be practically applied to the design of
structural elements reducing the time and effort of the everyday-design routine of the engineer.
The main advantages of the methodology are highlighted as follows:

e High computational efficiency. The computational cost of the methodology is relatively low with
an execution time of only 4.8 s in the examined cases.
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e  Reduction of the design process time. The traditional design process of trial and error is replaced
by an automated design that finds the optimum dimensions quickly. This allows the engineer to
avoid repetitive design routines and focus on the big picture, the design control, and other more
important features of the overall design process.

e Simple implementation. While it is true that some expertise and coding abilities are necessary in
order to successfully implement OAs, this trend is rapidly changing with the development of more
user-friendly optimization commercial packages (i.e., MATLAB, MAPLE) that greatly reduce the
computational complexity. Therefore, the requirements for implementing the methodology for its
practical usage narrows down to the proper definition of the optimization problem itself, which
has been clearly presented in this study.

e  More efficient usage of material. By minimizing the cost of a structural element with modern
optimization techniques, less material is used compared to the traditional trial-and-error methods
without compromising the required level of safety and reliability of the structure. The exact cost
reduction depends on the complexity of the design problem, but it can easily be in the order of
10%—-20%. This is a remarkable achievement not only from an economical point of view, but also
in terms of the environmental impact. A more efficient usage of the construction materials can
significantly help to reduce the high carbon footprint of the construction industry.

7. Future Work

It is of great interest to expand and test the methodology for the design of more complex structural
elements such as reinforced concrete columns or shear walls. Having an optimum and automated
design routine of all the structural elements present in a building could open the possibility of obtaining
a cost-efficient structural design of the whole building in a very short time. This can have great
implications on the overall efficiency of the structural design process.

Although GA was successfully used in this study, the methodology can be easily adapted for its
use with other modern optimization algorithms such as particle swarm optimization [20], differential
evolution [21], and others. By doing so, a comparative study could be conducted to select the most
efficient algorithm for the examined optimization problem.
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