Using Local, Contextual, and Deep Convolutional
Neural Network Features in Image Registration

Raju Shrestha
raju.shrestha@oslomet.no
OsloMet - Oslo Metropolitan University
Oslo, Norway

ABSTRACT

Image registration is a well-known problem that arises
in many applications in the fields of computer vision,
remote sensing, and medical imaging. Many registration
methods have been proposed in the literature. However,
no single method works well in all kinds of images. In
this work, local features and context-based augmented
features are used in order to improve the accuracy of the
image registration. Furthermore, an attempt has been
made to use deep convolutional neural network features
on top of those features for further improvement. The
paper presents comparative results on image registration
with and without feature augmentation and the deep
convolutional neural network features. The results from
the methods on a widely used benchmark dataset from
the University of Oxford confirm improvement in the
accuracy of image registration when local and augmented
features are used.
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1 INTRODUCTION

Images of the same scene, when acquired by different
imaging devices (or sensors) or at different times or
from different positions, may not be well aligned. Accu-
rately aligning such images, the process known as image
registration, is crucial in many applications in various
fields such as computer vision, remote sensing, medical
imaging.

Image registration is a fundamental task for many
computer vision applications, such as object tracking,
image stitching, image fusion, 3D reconstruction, etc [24].
High precision image registration is critical in military
applications such as to improve precision strike capa-
bilities [7, 8], in agriculture applications such as to
record vegetation growth conditions [37], and in medical
imaging such as to obtain the exact location of organs
and tissues from multiple modalities such as CT, MR,
or PET |20, 28].

The image registration process involves spatially trans-
forming the test image(s), referred to as moving or source,
to align them with the reference image, referred to as the
target or fixed image. Ideally, mage registration methods
should be invariant to scaling, illumination, noise, and
geometric deformation [26]. Basically, image registra-
tion algorithm can be classified into two major classes:
intensity-based and feature-based [14]. Intensity-based
methods compare intensity patterns in images, while
feature-based methods find correspondence between im-
age features such as keypoints, lines, and contours. Be-
cause of their superior performance, we focus mainly
on feature-based methods in this article. Based on the
transformation model, the image registration algorithm
can also be classified into two classes: rigid and non-rigid.
Rigid image registration is global in nature, which uses
linear transformations that include scaling, translation,
rotation, and other affine transforms. Non-rigid image
registrations are used when there is a possibility of
localized complex deformations in the images and global
rigid image registration doesn’t work well [31]. This
article is focused on rigid image registration of planar
images as this has many applications, mainly in computer
vision and remote sensing. Here on, the term image
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registration is used to refer to feature-based rigid image
transformation, unless otherwise explicitly stated.

An image registration algorithm basically involves four
steps: 1. Keypoint (point of interest) detection in each
image, 2. Invariant feature description, a vector contain-
ing the keypoints’ essential characteristics 3. Feature
matching between the test and the reference images
using some dissimilarity measure between descriptors
and finding a projective transformation matrix, called
homography matrix, which is used to spatially transform
the test image [15], and 4. Warp the test image using
the homography matrix to register with the reference
image.

Many different methods are being proposed in the
literature for keypoint detection and feature descrip-
tion [19, 32, 34]. The scale-invariant feature transform
(SIFT) [19] is arguably the dominant algorithm for both
keypoint detection and feature description. Bay et al. [4]
proposed the speed up robust feature (SURF), which uses
Hessian matrices and distributed descriptions without
needing image sub-sampling, thus effectively reducing
descriptor dimensionality and significantly improving
speed. Rosten and Drummond [29] proposed the features
from the accelerated segment test (FAST) algorithm,
which was aimed at real-time detection of features. FAST
compares surrounding pixels to obtain keypoints using
machine learning. Calonder et al. proposed the binary
robust independent elementary features (BRIEF) by
using feature dimensionality reduction methods such
as principal component analysis (PCA) and linear dis-
criminant analysis (LDA), reducing the time needed to
generate feature descriptors [6]. Rublee et al. combined
FAST and BRIEF and proposed the oriented FAST
and rotated BRIEF (ORB) as an efficient alternative
to SIFT or SURF [30]. ORB is rotation invariant and
robust to noise. Alcantarilla et al. [1] proposed the
Accelerated-KAZE (AKAZE), a fast multi-scale feature
detection and description approach for non-linear scale
space, based on KAZE features [2]. AKAZE is also scale
and rotation invariant.

Once the keypoints are detected and features are
described, they are then used to match between the
test and the reference images, the process called feature-
matching. Feature matching methods traditionally use
the k-nearest neighbor (kNN) [3] or the brute force algo-
rithm [18] to match the features points. Then an outlier
detection algorithm such as random sample consensus
(RANSAC) [13] is used to eliminate mismatches or out-
liers. Zhang et al. [36] proposed a geometric-constraint
based feature matching method. Kahaki et al. [17] pro-
posed an invariant feature matching method, which is

effective under different image deformations, by measur-
ing the dissimilarity of the features through the path
based on eigenvector properties. Lu et al. [20] consid-
ered a similarity transformation for the misalignment
between two images for robust keypoint mappings on
multispectral images.

Keypoints corresponding to inlier features in the two
images are then used to estimate the homography matrix,
which is then used to transform the test image to obtain
the registered image. Many image registration methods
have been proposed in the literature [38]. With the
success of deep learning in many computer vision tasks
such as image classification, object detection, and seg-
mentation, many researchers have tried to use it in image
registration as well. Dosovitskiy et al. [11] proposed
an unsupervised feature learning with a convolutional
neural network (CNN). Yang et al. [35] proposed a
CNN feature-based multi-temporal remote sensing image
registration method, which is designed to gradually
increase the selection of inliers to improve the robustness
of feature points registration. DeTone et al. [10] also
proposed a deep image homography estimation, called
HomographyNet, using the VGG-like network (VGG is a
deep learning neural network architecture used in image
recognition [33]), with 8 convolutional layers and two
fully connected layers. As it uses a supervised approach,
this requires labeled pairs of data (ground truth), which
is not easy to obtain on real data. Nguyen et al. [27]
proposed an unsupervised deep homography estimation
model using VGG network, which uses a photometric loss
function adapted to the unsupervised approach. Despite
many image registration methods being available, no
single method works perfectly in all kinds of images.

In this article, we proposed a novel registration method
that combines keypoint features from the original image
and deep convolutional neural network (DCNN) features.
Furthermore, we use a new feature matching method,
called ContextDesc, which is based on cross-modality
context-based local descriptor augmentation, proposed
by Luo et al. [21]. This method augments local and high-
level regional features by aggregating the cross-modality
contextual information, including visual context from
high-level image representation, and geometric context
from 2D keypoint distribution. The augmented feature
helps to find more inlier matches, which in turn can help
in accurate image registration. ContextDesc method
performed the best in the recent image matching chal-
lenge at the image matching workshop, Computer Vision
and Pattern Recognition (CVPR) conference, 2019. The
method is briefly described in the next section.



2 CONTEXTUAL FEATURE AUGMENTATION

ContextDesc method has two main modules: preparation
and augmentation. In the preparation module, it extracts
K keypoints from the input image of dimension H x W x3
using SIFT and K x 128 local features using a lightweight
7-layer CNN from Luo et al. [22]. Furthermore, 25 x £2 x
2048 regional features are extracted using ResNet-50 [16],
a DCNN. In the augmentation module, a geometric con-
text encoder submodule generates 128-d feature vectors
from the K keypoints. Another submodule, visual con-
text encoder, produces K augmented features from the
regional features. Finally, an aggregated K augmented
features are obtained by combining the three different
features: local features, geometric context features, and
visual context features by element-wise summation and
L2-normalization, thus keeping the feature dimension-
ality unaltered. For more details about the method, we
refer to the original paper [21].

3 PROPOSED IMAGE REGISTRATION
METHOD

The proposed method uses the ContextDesc feature
augmentation method, which augments the standard
SIFT features with geometric and visual contextual
features in order to achieve better feature matching
between two images. The method also uses CNN features
from a DCNN architecture for further improvement in
image registration accuracy. DCNN has a cognitive capa-
bility close to the human level and exhibited remarkable
performance in image recognition and object tracking.

To incorporate CNN features, an appropriate, pre-
trained DCNN architecture can be used. Then selected
CNN layers from the network are used to extract aug-
mented features from each CNN feature image from
these layers. These CNN features are combined with the
features from the original image. The pseudo-code of the
algorithm is given below.

features < Get_features(given_image)
for layer_1l in selected_layers
features_l<—empty
for cnn_image_i in CNN_images
features_i<—Get_features(cnn_image_i)
features_1l<«— features_1 + features_i
features<—Combine (features, features_1)
Remove_redundancy(features)

In this work, one of the most recent DCNN architec-
tures, the Xception [9], which uses cross-channel (or
cross-feature map) correlation, is used. Three batch
normalized convolution layers namely blockl_convl_ bn,
blockl_conv2_bn, and block2_ sepconvl_bn are used.
As the size of the feature map images from the layers
further deep down is small and found to have no sig-
nificant contribution, they are not used. Both reference

and test input images are pre-processed and resized
to 299 x 299 x 3 according to the format required by
Xception before feeding them into the network.

The combined features thus extracted from test and
reference images are then used in feature matching
between the two images, and outliers are removed using
the random sample consensus (RANSAC) algorithm [13].
The keypoints corresponding to the remaining inliers
are then used to estimate the homography matrix [12].
Using the estimated matrix, the test image is warped
and registered to the reference image.

4 EXPERIMENTS

The performance of the proposed method is evaluated
using the Oxford dataset [25], a benchmark dataset from
the Visual Geometry Group, University of Oxford, and
four different metrics. The dataset and the evaluation
metrics are described below.

Dataset: The Oxford dataset [25] consists of eight dif-
ferent sets of images as shown in Figure 1. Each set of
images contains one reference image and five different
test images acquired under various different imaging con-
ditions: viewpoint, scale, blur, illumination, and JPEG
compression, from low to high changes. The dataset
includes ground truth homography matrices for each
reference-test image pair.
Blur Light
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Figure 1: Eight sets of images used in experiments. Texts
below the images show the names of the image set and above
show the changes in the imaging conditions in the image set.

Evaluation metrics: The performance of an image regis-
tration method is measured based on the number and
correctness of match points. A match point is considered
as correct if it is within four pixels distance (in line
with [5, 23] from the ground truth point, which is ob-
tained using the ground truth homography matrix. The
following four evaluation metrics are used to evaluate
the performance.

Number of match points and inliers: Number of match
points is the total number of match points detected by
a method, and inlier is the remaining number of match
points after the outliers are removed from the total.



Accuracy: is calculated as a ratio of the correct match
points to the total number of match points.

Error: is measured as a median of the Euclidean distance
(in pixels) of the match points from the ground truth.

Results from the methods which use SIFT features,
Local features (LF), and Augmented features (AF) both
with and without CNN features are used to compare their
performance. The software program for the experiment
was developed in Python 3.7 and executed in an Apple
MacbookPro with Intel Core i7 CPU 2.7GHz and 32GB
RAM. Code from [21] was adapted for the extraction of
local and augmented features and used the same ratio
of 0.8 for SIF'T, and 0.89 for LF and AF in finding good
matches.

5 RESULTS AND DISCUSSION

Table 1 shows the average values of the four metrics:
error, accuracy, match points, and inlier, produced by
the six different registration methods (SIFT, LF, AF,
SIFT+CNN, LF+CNN, and AF+CNN) with the eight
sets of images in the dataset. The results are also shown
graphically in Figures 2, 3, 4, and 5.

Table 1: Average metric values from different methods on the
eight image sets.

Metric | Method bark bikes boat graffiti leuven trees  ubc wall | Average
SIFT 285 021 210 25081 025 1.69 025 72.10 | 41.28
LF 281 023 378 17030 027 143 0.23 1.54 | 2257
AF 2.73 0.28 1.70 5.01 0.28 1.72 0.17 1.41 1.66

SIFT+CNN | 2.83 024 205 211.68 022 097 023 1.09 | 27.41
LF+CNN 284 021 136 13786 024 1.08 0.17 130 | 1813
AF+CNN 315 023 078 673 026 138 030 1.14 1.75

Error

SIFT 0.95 1.00  0.86  0.51 1.00  0.96 1.00  0.80 0.88
z LF 096 1.00 0.74 085 1.00 1.00  1.00 092 0.93
g AF 094 1.00 0.89 0.69 1.00 098 1.00 0.90 0.92
g |[SIFT+CNN| 096 1.00 0.87  0.52 1.00 098 1.00 0.92 0.91
< |LF+CNN 096 1.00 0.82  0.68 1.00 095 1.00 093 0.92
AF+CNN 092 1.00 094 0.80 1.00 096 1.00 0.94 0.95
SIFT 481 600 1179 419 811 482 1727 2208
_‘E LF 563 756 1757 633 1002 706 2311 2857
2 |AF 521 773 1684 604 1014 743 2405 2807
§ SIFT+CNN | 484 610 1181 438 818 500 1743 2226
§ LF+CNN 585 782 1779 679 1028 756 2373 2911
AF+CNN 545 808 1699 647 1041 803 2473 2863
SIFT 26 30 30 14 74 11 179 99
LF 29 35 29 13 68 11 173 110
E AF 28 34 30 13 73 11 173 122
E SIFT+CNN | 26 28 29 14 71 11 179 103
LF+CNN 27 31 27 13 74 11 156 112
AF+CNN 26 33 30 14 71 11 174 112

Results show that LF and AF methods perform better
than SIFT with all the eight image sets both in terms of
accuracy and error values. Performance of SIFT is close
to these methods in some image sets, however, it failed
badly in some other image sets, particularly with graffiti
and wall, where there are big viewpoint changes. Among
LF and AF methods, AF performs equally or better on
the average and in almost all image sets. Also, LF and
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Figure 4: Number of match Figure 5: Number of inliers.
points.

AF methods detect the similar number of match points,
but significantly higher compared to by SIFT. All three
methods produced a similar number of inliers. This infers
that a higher number of match points detected by LF
and AF helps to achieve more correct inliers and that
leads to better accuracy and reduced error.

Adding CNN features to SIFT, LF, and AF meth-
ods, in general, improves the results. However, the im-
provement is not so large except in some cases such
as SIFT+CNN reduced average error in case of wall
image set from 72 down to 1, and increased accuracy
from 0.8 to 0.92. The small improvement with LF+CNN
and AF+CNN could be because LF and AF already
incorporate some CNN features as they use high-level
regional features extracted using ResNet-50 [16].

Among the five different imaging condition changes:
blur, zoom+rotation, light, JPEG compression, and
viewpoint, most of the methods are capable of dealing
reasonably well with the first four changes. But SIFT
failed completely with large viewpoint changes. In the
meantime, LF, AF, LF4+CNN, and AF+CNN have shown
robustness towards viewpoint changes as well. As an
illustration, Fig. 6 shows matching and registration
results from AF+CNN in case of a big viewpoint change
(imageb) in the graffiti image set.

Even though accurate image registration is the main
concern in this work, computation time can be an impor-
tant issue in many applications, particularly in real-time
applications. It is worth noting here that extraction of
CNN features takes significantly long time, and consid-
ering small improvement, additional CNN features may
not be practicable in time-critical applications.



Test image

(b) Warped and registered images.

Figure 6: Illustration of matching and registration of a
complex image from the graffiti image set.

6 CONCLUSION

The research results show that feature-based rigid image
registration methods, which use invariant features such
as SIFT, work well in many images, but they are not
robust enough as they may fail in case of complex
image pairs with extreme imaging condition changes,
viewpoint change in particular. Use of local features and
contextual augmented features have shown improved and
robust results. Further adding deep convolutional neural
network features takes significantly long computation
time, however with not so significant improvement in
the accuracy of image registration.
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