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Problem Statement

Building Information Modelling, or BIM, is a relatively new concept within the AEC-

industry currently experiencing a massive rise in use. BIM implementation has over the

last decades developed from being experimental and untested to being an essential part of

most modern construction projects. Although BIM is now the norm, the vast majority of

structures across the world were designed in an era where BIM integration in projects

were an outlier. As a consequence, these structures does not have digital models which

can be used as a reference for assessment and adjustment of the structure at hand.

With the steady shift towards a technological society, many new technologies have emerged.

Some of these being laser scanning and parametric design. The emergence of these

technologies in combination with an ever-increasing BIM implementation, presents the

possibility of reverse modelling physical structures to digital, as-built versions of the

scanned structure. Currently, reverse modelling existing structures based on laser scanning

is a topic of lacking research and implementation within the AEC-industry. As of now,

the reverse modelling process is largely being done by hand, a tedious approach with

a substantial risk of human error. By automating this process, reverse modelling can

be done more efficiently while also decreasing the risk of human error. This not only

reduces the cost associated to reverse modelling, but can also increase the accuracy of the

finished digital model. If sufficiently accurate, the generated model can be a viable source

for, but not limited to, construction documentation, building information and structural

inspection.

In this thesis, a process of reverse modelling a physical structure to a digital 3D model

based on acquired scan data is created and investigated. The thesis aims to use state-of-

the-art software to accurately generate an as-built reverse model of a typical box girder

bridge. In order to evaluate the reverse model, the accuracy of the generated model

in relation to the acquired scan data is to be analysed, indicating whether or not the

proposed modelling method is of sufficient quality.
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Abstract

Building Information Modelling (BIM) has over the last decades brought the physical-

and digital worlds closer together. BIM implementation is now expected in construction

projects, ensuring interdisciplinary cooperation from concept to demolition.

In this thesis, a workflow for a reverse BIM modelling method specialized for as-built

box girder bridges is presented. The method takes advantage of state-of-the-art software

including both numerical and visual programming, parametric design, metrology tools, 3D

laser scanning and BIM software, to create scripts, algorithms and digital data in order to

digitally reproduce a physical bridge in its as-built condition.

The results show that the automatically generated reverse BIM model accurately resembles

the geometry of the studied box girder bridge. The created reverse modelling algorithms

were found to struggle with accurately modelling quickly changing geometry and areas

with much occlusion in the point cloud data. In areas with consistent geometry and

complete point cloud data, the reverse BIM model is a highly accurate representation of

the analysed bridge structure.

The work presented in this thesis provides an innovative method of generating as-built

BIM models of high accuracy. If of sufficient accuracy, the generated reverse model can

efficiently provide viable, digital construction information to be used in applications such

as structural assessments and geometrical inspections. With minor adjustments, the

proposed method is not only suitable for use in box girder bridges, but can also be adapted

to work for similar structural shapes.
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1 Introduction

Since ancient times, infrastructure has played an important role in the economic growth of

countries. The quality of its infrastructure is not only crucial for faster economic growth,

but also to ensure inclusive growth. With inclusive growth, the benefits which stem from

the economic growth is distributed across whole societies and creates opportunities for

entire populations. A well-developed infrastructure links society together and in that way

contribute to expanding the economy on a countrywide level [16].

Bridges are critical components in a nation’s infrastructure [2]. There exist a huge

variety of bridge types, all of them with the same task, creating a span over an obstacle.

Undoubtedly, some bridges are iconic, monumental, signature structures known all over

the world. However, the vast majority of bridges are smaller, unknown bridges simply

serving its purpose, as seen in Figure 1.1.

(a) Golden Gate Bridge [17] (b) Unknown Norwegian bridge [18]

Figure 1.1: Difference in bridge type, (a) Monumental bridge, (b) unknown small bridge

To preserve the road network and maintain the inclusive growth associated with high-

quality infrastructure, thus also improving the economy of entire nations, it is important

to extend the service life of existing bridges. Extending the lifetime of bridges is not

only environmentally friendly as it prevents material waste, it also prevents major traffic

congestion as roads experience less down-time. Due to the sheer amount of bridges
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throughout the world, it is challenging to maintain and monitor them all, making it

necessary to keep the focus on a selected number of bridges of critical importance, while

smaller bridges are often neglected. This is especially the case for monumental bridges

and bridges of historical heritage. Such bridges are often well maintained at the expense

of smaller, ordinary bridges in remote areas. It is understandable that bridges of great

importance which directly affects a large number of people are prioritised. However, by

improving the accuracy and efficiency of bridge inspections, the amount of bridges which

can be monitored and maintained increases, making it possible to increase the amount of

bridges being kept in a structurally safe condition.

With the high number of bridges that already exist, there is a pressing need to lower the

cost and effort required for modelling existing bridges. Reports from several countries

show that a large number of their bridges are classified as structurally deficient and are

missing required inspections [2, 3, 19]. To streamline the comprehensive inspection and

maintenance work, there is a huge market demand for new technology that can efficiently

boost bridge management productivity.

Many parameters of a bridge structure must be periodically inspected to determine

its condition. Cracking, delamination, water infiltration, vehicular impact, biological

attack, corrosion of reinforcement, spalling, blocked expansion joints, vandalism and/or

geometrical deviation are all common conditions that decrease a bridges lifetime [20].

For most of them, geometry plays an essential part in the detection of damages. As

a consequence, modern inspection techniques capable of quickly detecting geometrical

deviation with high accuracy would be very useful.

Within the last couple of decades, the AEC-industry has experienced tremendous digital

development, resulting in increased collaboration, shared knowledge and information

exchange. Much because of the introduction of Building Information Modelling (BIM).

A building information model, further referred to as a BIM model in this thesis, is in

short a digital 3D-model with integrated information about the modelled structure. The

growth of BIM implementation has increased a lot in recent years and is expected to keep

growing in the coming years [21].

However, BIM is mainly used for as-designed models of new structures and not as-built

models of existing structures, the issue being that as-designed models often do not
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accurately portray the condition of the finished structure. As-built models can be used for

many applications within the AEC-industry such as a reference for geometrical deviation

inspection, Laser-scanning technology has changed this, making it possible to accurately

collect large amounts of data of existing structures in order to model as-built. The

collected data can be converted to a 3D point cloud data (PCD), which in turn can

be used to create reverse 3D models representing the as-built condition of the scanned,

physical structure. This concept, as shown in Figure 1.2, is currently being done manually,

with the designer trying as best as possible to draw a 3D model by hand which fit the

PCD, like a 3D blueprint.

Figure 1.2: Reverse model based on point cloud data [1]

Automating this process of reverse modelling will lower the cost and effort of creating

as-built models of existing bridges. As-built BIM models of a bridge will ease the bridge

detection process, while also reducing the possibility of human modelling error. Reverse

modelling will have a significant impact on how maintenance and rehabilitation are planned

and implemented, which can reduce the risk of structural failure of bridges on a global

scale.
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1.1 Research Background and Significance

The U.S. has more than 600.000 highway bridges. According to the infrastructure report

card from America’s Society of Civil Engineers (ASCE), almost 10% of all bridges in the

U.S. were structurally deficient in 2016. With four out of ten bridges being over 50 years

old and a backlog of rehabilitating project estimated to $123 Billion, there is a pressing

need for new technologies and materials which can help engineers to both build, and

improve the maintenance on bridges [2].

In the U.K. 4% of the approximately 88.000 bridges on the road network were considered

substandard, i.e. not satisfying the set requirements, by the RAC Foundation. It is

apparent that there also in the U.K. is a need to improve the standard and inspection

method [3].

With a 2-year inspection cycle, as recommended in the Design Manual for Roads and

Bridges used in the U.K. [22], there is a need for over 400.000 bridge inspections each

decade only in the U.K.. The United States and the United Kingdom combined need to

perform at least 340.000 inspections every year.

In Norway, much of the same problems exist. The Norwegian Public Roads Administration

(NPRA) manages approximately 17 500 bridges and ferry docks all over the country,

which has to be structurally safe [23]. In 2017, VG (a Norwegian newspaper) published an

in-depth article about how the NPRA was violating the rules set in place to assure that

the bridges of Norway are structurally safe for road users [4]. The conclusion was that

6% of the bridges in Norway were structurally deficient. In addition to this, in 2016 and

2017, the Norwegian Road Supervisory Authority conducted supervision of how bridge

inspections were carried out in two Norwegian regions. Both of the reports revealed that

many inspections were not planned and carried out in accordance to the set inspection

requirements and that the faults found during the inspections were, in many cases, not

followed up and corrected.
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Figure 1.3: Percentage of structurally deficient bridges in the U.S., U.K. and Norway
[2], [3], [4]

NPRA have developed manuals as a supplement to Eurocodes. These manuals contain

supplementary provisions for calculation and design of bridges, ferry docks and other load-

bearing structures. The N400 manual contains requirements for reliability and capacity,

durability, traffic safety, accessibility and maintenance [24]. To ensure the condition of a

bridge, inspections are carried out according to the bridge inspection manual V441 [18].

An inspection shall form the basis for operation and maintenance, which provides a safe

and efficient road system with safety and good regularity for road users. These inspections

form the basis for the preparation of preventive and corrective measures on the bridge

body mass. An inspection plan must be available according to the needs and condition of

the objects. As a standard, a bridge shall have a simple inspection every year, detecting

visual defects that can have consequences for the bridge capacity, road safety, maintenance

or affect the environment. In addition, a more thorough inspection shall be carried out

every 5th year [18]. Although superficial, the time it takes to conduct annual inspections

of all existing bridges quickly accumulates. Developing more time-efficient methods for

inspections can have a huge impact on the AEC-industry in terms of both economic cost
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being reduced due to time-efficiency, as well as increasing the amount of structurally safe

bridges due to an increased amount of inspections.

To manage these constructions, a proprietary bridge management system called BRUTUS

is developed. BRUTUS is NPRA’s information and planning tool for the management,

operation and maintenance of bridges and other road network structures in Norway [25].

In the aforementioned article from VG, access to BRUTUS showed that the yearly

inspection was violated for over half of the Norwegian bridges. In Oslo, the capital of

Norway, 96% of the bridges missed either the annual inspection, the main inspection, or

both [4].

With this knowledge of the bridge status in the U.S., the U.K., Norway, and presumably

many other countries across the world, it is apparent that an extensive upgrade to

the current inspection practice with less labour-intensive documentation techniques is

needed. Norway spent 100 million NOK on bridge administration in 2017 alone [19]. By

streamlining and digitising the bridge administration work, it is possible to significantly

reduce its cost, but also develop more accurate, extensive and secure inspection methods.

This minimises the risk of human error due to subjective judgement, observational skills

and personal experience.

One of the stated objectives of NPRA is to ensure effective development, use of new

technology and digitisation of services and processes [26]. The work in this thesis applies

modern, digital technology to improve current processes which limits the effectiveness of

current inspection methods, falling well within the objectives set by NPRA.
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1.2 Research Status Worldwide and in Norway

In this section, an overall overview of the current practice within BIM, 3D laser scanning

and reverse modelling from point clouds across the world, as well as in Norway, is presented.

Relevant standards, organisations and research documents are collected and discussed in

relation to its connected research topic, with the aim of detailing the possibilities these

topics can bring forth, and elements of potential improvements.

1.2.1 Research Status Worldwide

As the research presented in this master thesis is globally relevant, the worldwide research

status on BIM, 3D laser scanning and reverse modelling based on point clouds are presented

below focusing on the U.S., the U.K., and Asia as a whole.

1.2.1.1 BIM

All around the world, massive urbanisation is happening. Modern concepts such as smart

cities and digital twins are gaining momentum, and BIM gets more and more attention.

The implementation of BIM in the AEC-industry is steadily increasing on a global scale.

Collaboration, standardisation and governmental engagement are playing a big part in

how each country is shifting towards a digitised industry with a common BIM language.

The European Committee for Standardization (CEN), is an organisation officially

recognised by the European Union which is "responsible for developing and defining

voluntary standards at European level." [27]. CEN brings together the national

standardisation bodies of 34 European countries.

Because of the rapid development and implementation of BIM in the European AEC-

industry, CEN has started a program designed to develop new standards to support

BIM processes. CEN also established a BIM-committee named "CEN/TC 442 - Building

Information Modelling (BIM)" responsible for the standardisation of BIM processes in

Europe. The scope of the committee is "standardisation in the field of structured semantic

lifecycle information for the built environment. The committee will develop a structured

set of standards, specifications and reports which specify methodologies to define, describe,

exchange, monitor, record and securely handle asset data, semantics and processes with
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links to geospatial and other external data." [28]. Implementing openBIM, which in short,

is a collaborative process within the AEC-industry which aims to promote interoperability

between fields by taking use of open standards, workflows and file formats to openly share

information with all participants in a project at any given time (read more about openBIM

in [29]), as well as adopting the ISO-standards to European standards are important steps

in their work. Amongst the more relevant standards for this thesis work are the three

buildingSMART- standards IFC [30], IFD [31] and IDM [32], as well as the information

management standard ISO 19650 [33, 34]. The increased collaboration achievable through

openBIM is illustrated in Figure 1.4.

Figure 1.4: Improved interoperability with openBIM

ISO 19650 is a series of international standards, based on the U.K. 1192 series. The

standards were finished in late 2018 and deal with information management using BIM.

The U.K. has one of the most extensive BIM strategies in the world. The BIM development

is divided into four levels of maturity, from level 0 to 3, all with its objective, tasks and

achievement indicators. The U.K. government now require that all projects funded by the

government must be delivered with a fully collaborative 3D BIM. All government projects

now require a level 2 compliant. According to the National Building Specification from

the U.K., the overall trends of BIM awareness and adoption in the U.K. has increased

from approximately 13% in 2011 to around 69% in 2019 [5].
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Figure 1.5: BIM adoption over time in the U.K. [5]

The U.S. started using BIM early, already in the 1970s. But the implementation of BIM

slowed down, to this date, there is no governmental mandate to use BIM. However, it

does not mean that they do not use it. Most construction projects today utilise BIM,

and some states have already put mandates in place. The U.S. has many different federal

departments working on BIM standards. However, a lack of collaboration between the

departments has led to confusion in the industry, having different methods with every

new client and project. The lack of a standardised BIM method makes it difficult to

implement BIM in the AEC-industry efficiently. Even so, the U.S. is gradually making its

way back as a BIM pioneer, taking more responsibility in implementing BIM properly

and having one of the world strongest technological communities.

In Asia, BIM has experienced a boom in the AEC-industry. Governments, associations,

companies, and research institutes have seen the importance of BIM, with the application

of BIM technology being promoted from the design to the construction phase.

Asia’s largest country, China, recently started using BIM. Even though BIM is new, its

development has been very fast, according to Bernstein et al. [35] one of fastest-growing

BIM implementation in the world. The fast-growing BIM implementation reflects how the

country economy increases. China’s economy is among the fastest-growing in the world

and is now the world’s second-largest economy.
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With the aforementioned economic boost and simultaneous technological investment,

many Chinese workers are going from farming to industrial and technological jobs. Such

jobs are mostly located in the cities, leading to increased urbanisation. Hundreds of

millions of people are moving into the rapidly-growing megacities. To accommodate this

enormous migration, the country is investing massively in upgrading its infrastructure

and are hugely benefiting from the application of BIM.

Now, China has set a national mandatory requirement with more than 90% use of BIM in

major projects by 2020. Furthermore, more than 10 BIM standards are published in the

last five years.

Overall, it is apparent that BIM is a subject of rapid development and research across the

world. Especially in recent years, as the AEC-industry and governments alike have been

recognising the opportunities which arise from the implementation of BIM.

1.2.1.2 3D Laser Scanning

The development of surveying and mapping technology is constantly being updated along

with the continuous development in the field of science and technology. The methods

have developed from using traditional flat maps to total stations and GPS, to the rapid

development of high precision instruments in the field of 3D measurement, using tools

like 3D laser scanners.

Due to technological advances, 3D terrestrial laser scanning, photogrammetry and other

long-range, non-destructive imaging tools, has made it possible to perform architectural

surveys with high accuracy and precision. 3D laser scanning technology is a technology

which is used to obtain a 3D surface data of a target object, as illustrated in Figure 1.6.

The 3D laser scanner can quickly obtain massive point clouds in a digital format, which is

very convenient for post-processing in software.



1.2 Research Status Worldwide and in Norway 11

Figure 1.6: Laser scanning concept [6]

3D laser scanning technology is a relatively new technology and is still in its early

beginnings around the world. The value of the technology is demonstrated in the rapid

growth of laser scanning hardware and supporting software. Laser scanning is considered

to be the best available technology to capture 3D information of an object.

Even though laser scanning can have a significant impact on the industry, it has limiting

factors. The instruments are very expensive, making it difficult for smaller companies to

make use of the technology. The technology is still developing, application accuracy will

continue to improve, and the integration between systems will gradually be strengthened.

There are no technical standards developed on the subject, and data processing methods

are quite time-consuming.

3D laser scanning has a huge potential in a wide variety of fields. It can be used for

3D reconstruction, numerical calculation (measurement, volume calculation, etc.), and

deformation analysis. Some application fields are; Mining, surveying and mapping,

structural surveying, reverse engineering, digital city, digital factory, cultural relic

protection, virtual reality, medicine, entertainment, etc.

Within the AEC-industry, a promising field of research is automating the process of using

PCD for structural evaluation. Terrestrial laser scanner used for developing processes

and algorithms for: as-built modelling [36, 37, 38, 39] , quality assessment of existing

infrastructure and construction sites [40, 41, 42, 43], progress tracking [44, 45, 46, 47],

and structural health monitoring [48, 49, 50, 12].
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1.2.1.3 Point Cloud Reverse BIM Modelling

In the AEC-industry, there is a growing interest in how to integrate BIM for existing

structures. Now that the industry is experiencing the benefits of BIM for new designs,

they also want to implement as-built BIM. As-built BIM is used in a wide variety of ways,

including documentation, maintenance and quality control. Common for most as-built

BIM projects, is that they are based on 3D point clouds gathered from terrestrial- or

mobile laser scanners.

A BIM model created during the design of a structure will most certainly vary significantly

from the actual, as-built condition. Errors during construction, undocumented design

changes or renovations will all lead to differences between the designed BIM model and

the built structure.

As described in the previous section, growth of laser scanning hardware and software

have had an exponential growth the last decade, and now a big part of development

is focusing on the interface between the scanned data and the BIM model. With the

use of 3D reconstruction, BIM tools can be used to incorporate the existing structure

and make calculations of design alternatives, cost estimates, material quantification,

data management, as-built documentation, constructive state analysis, execution plans

and more [51]. Using 3D reconstruction tools, such as laser scanning, in combination

with reverse modelling software, it is possible to significantly reduce tedious, repetitive

modelling by automating the process.

In Europe, approximately 80% of all buildings were constructed before 1990. Effectively,

these buildings do not have accessible BIM models, meaning that renovations, structural

assessment, rehabilitation, city planning and similar, becomes challenging and inaccurate.

Much of the same situation can be seen for old bridges which lack sufficient documentation.

By using 3D reconstruction tools such as laser scanners which can be used for reverse

modelling, as-built BIM models can be generated either manually, semi-automatically or

automatically. This is an aspect of as-built BIM which is currently gaining in popularity

and usage [52].

An as-built BIM enables a component level analysis and manipulation instead of changes

at the individual point level of PCD. However, the current generation of as-built BIM
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modelling methods are labour-intensive and prone to errors. The geometric modelling of

the existing structures depends on dense spatial measurement, typically acquired by 3D

laser scanners or photogrammetry. The procedure of converting a 3D point cloud to a 3D

BIM model is referred to as Scan-to-BIM.

The creation of BIM models of existing structures is very limited due to the lack of

research and experience within the AEC-industry to automatically create as-built BIM

models from PCD. Thus, a realistic approach to introduce the concept of reverse modelling

of physical structures to as-built BIM models within the AEC-industry is to gradually

implement the technology starting from a simple, mostly manual method while working

towards a fully automatic reverse modelling process. Either way, such a process often

consist of three main consecutive steps:: Segmentation, classification and reconstruction.

Much research has been done on how to segment a geometric model. Segmentation can be

divided into three parts: Geometry based segmentation (using local geometric features),

topology-based segmentation (dealing with shapes, bodies, spaces, surfaces, curves) and

interactive segmentation which is common in software. A software of such capabilities is

Geomagic®Control X™(Geomagic), a 3D inspection and metrology software also used for

reverse engineering, creating CAD models of 3D scans and more. The program has an

auto segmentation tool for feature recognition [53]. Mejia et al. [54] propose an automatic

hybrid method, using both the geometrical and topological approach. Qi et al. [55] uses

local concavities as an indicator for part boundaries, and Arbeláez et al. [56] propose a

method for detecting regions at an object.

For buildings, reconstruction of walls, floors, ceilings and openings (doors and windows)

is the main target. Much research is done on this and the problems associated [57, 58].

[36] also use 3D point cloud as an input and automatically identifies and models floor,

walls, ceilings and openings and produce a semantically rich 3D model. The approach

does not rely on hand-coded rules to identify surfaces and is therefore not a subject to

noisy measurement and cluttered environment. To avoid the problems associated with the

aforementioned automatic segmentation methods used to reconstruct physical building

elements to digital 3D models, while also maintaining better control of the segmentation

process, manual segmentation with software such as Geomagic is an option.
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1.2.2 Research Status in Norway

In the following sections about research status in Norway, a summary of reports and

research done in the different fields; BIM, 3D laser point cloud and point cloud reverse

modelling is presented. The section is also based on an interview done with Sigmund

Reinsborg Log, Head of control and validation at NPRA. The statements are not

documented but are considered by the authors as interesting points and considerations.

1.2.2.1 BIM

Norway is a small country, with a small AEC-industry in comparison to international

powerhouses like the U.S., U.K. and China. On a national scale however, the AEC-industry

is the largest mainland industry in Norway. Due to the cold and harsh environment

of Norway, structures often have high requirements in terms of durability - resulting in

projects and structures which are overall more complicated and expensive than what

would be obtainable in more forgiving climates. A useful method to handle an increased

project complication is to implement BIM in the projects. Norway has a tradition of

standardisation which is an important part of streamlining the BIM process. Some

advantages of standardisation is that it makes it easier to collaborate between fields,

understand the work of others and re-visit old projects. A BIM concept highly integrated

in the Norwegian AEC-industry is openBIM, as defined in Section 1.2.1.1. openBIM has

contributed to placing Norway in a front-running position in the gradual change towards

a digitised AEC-industry. Now, many Norwegian construction projects implement BIM

requirements within the project contracts, due to the benefits which well-integrated BIM

entail.

Norway is a pioneer in BIM. BIM is no longer anything new, but a well developed and

valuable tool. It is being used in a lot of construction projects and is now a contract

requirement for many builders and contractors.

A common digital roadmap for the AEC-industry shows an overall framework of how the

industry must work to become a fully digital, competitive, sustainable and serious industry

in 2025. In the roadmap, BIM plays a major part in reaching the goal to reduce the

greenhouse gas emissions by 50%, have 50% faster project execution and a considerable

reduction in cost. This goal is drawn from U.K.’s strategy "Construction 2025" [59].
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Digital tools will be important in the future, but to make these systems work, the

information given to the database is crucial. This information includes information about

building objects and products. All this information is based on stored data. The data is

stored in defined export formats. To improve interoperability and have information that

is usable by several users and software in the industry, as shown in Figure 1.4, the data

format should be open.

The construction industry is constantly moving closer to all information being stored in

open formats. An example of an open file format which is commonly used in Norway

is IFC (Industry Foundation Classes). Norwegian state actors, such as Statsbygg, is at

the forefront of implementing this system. The IFC format provides information and

properties of objects and is the preferred format when buildings and bridges are being

modelled. For geographically dependent elements, such as roads and transport, GML

(Geography Markup Language), another open format, is the most common. In addition

to these two open formats, the Norwegian Mapping Authority uses a special Norwegian

open format, .SOSI, a text format representing points, lines, areas, along with other

geographical information.

BuildingSmart and Open GIS Consortium are two organisations responsible for respectively

IFC and GML. Today, a cooperation between the two is lacking, and an open format

usable for both buildings and roads are unlikely. However, the Norwegian Mapping

Authority and the Norwegian Building Authority have taken up roles as project leaders in

an international project with a goal to improve cooperation between the two organisations.

Statsbyggs position as Norway’s largest builder, as well as being state-owned, gives it an

important role to set the course for BIM-development and usage in Norway. Statsbygg

is following a project model which implements BIM for all their projects. This model

is being used in all phases of the projects to secure a uniform and proper project from

the start to the end. The project model shall strengthen the planning, management and

implementation of the project. One of the parts of doing this is Digibygg.

Digibygg is an executive project that aims at promoting the use of digitisation and smart

technology in Statsbygg‘s business areas, throughout the whole value chain from idea and

plan to operation. Digibygg is working on meeting the requirements and goals set by the

Building Society’s National Association (BNL), published in the “digital roadmap towards
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2025” with cost reduction, reduced completion time and climate emissions as its main

topics [60].

Statsbygg is working to change the AEC-industry by increasing the digitisation of the

buildings entire lifecycle, from planning and design, during the construction phase, usage

phase and up to the end-of-life. They are setting requirements that all the design must be

done in the BIM-model and that the building site has to be paper-free.

The use of BIM is not new in Norway, but is highly dependant on the requirements from

the customer and owner. Often, this results in projects being delivered with paper-based

construction drawings made with traditional design methods, with a BIM model being

attached as a supplementary delivery. A proper BIM-model has the ability to replace

paper-based drawings, meaning that delivering both a digital BIM-model as well as

physical drawings, is an inefficient design method both in terms of necessary work-hours as

well as increased project complexity. This is what Statsbygg wants to improve by making

the BIM- model the “master” information source. Paper drawings will be replaced with

digital models. In the transition phase between paper and a paper-free construction site,

the drawings should be made by the BIM-model and not trough individual, independent

drawings. This way, drawings automatically updates in sync with project alterations.

In order to have a paper-free building site, the workers have to use digital tools such as

smartphones, tablets and BIM-booths to see the digital model of what they shall build.

Such a change may be difficult for many workers, whom are not experienced in digital

tools. Transitioning from physical drawings to digital models will, therefore, require

investments in not only the design process, but also in the workers on-site which are

actually implementing the changes.

1.2.2.2 3D Laser Scanning

In the digital roadmap of Norway, private and public commissioners have a particular

responsibility for making demands on digital deliveries, where "digital construction site"

and "digital twin" are important products [59].

To get a digital twin, or at the very least a digital mirror model, laser scanning plays

an important part. The difference is that a digital twin is a virtual representation of a

real-world object with real-world data updating in real-time, see Figure 1.7. In contrast,
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a digital mirror model is merely a geometric reconstruction of the object which does not

update according to its environment and state.

Figure 1.7: Digital Twin [7]

In Norway, the use of laser scanning is an emerging concept within the AEC-industry.

Laser scanning has become a practical and accurate tool for measuring and perform

control of structures. Some examples of its use are control of bridge constructions [61],

measurement of homogeneity on asphalt pavements [62] and scanning of buildings [63].

Due to a widespread oil and gas industry, Norway has been far ahead with the use of

scanning technologies. Laser Detection and Ranging (LADAR) is a common scanning

method which is used in the oil and gas industry to map bedrock surfaces, analysing

geometries and structures to find information on how oil reservoirs are constructed.

The technology has also been used to survey the danger of collapse of mountainsides [64]

and the consequences of environmental changes, such as monitoring changes in glaciers

over time [65].

In an ongoing project called "Nasjonal detaljert høydemodell", or "National detailed

elevation model", the Norwegian Mapping Authority are using laser scanners mounted on

planes or helicopters to gather detailed elevation data and terrain models of the whole

country. This data is free for everyone to use, and the fact that an entire country can be

scanned is an excellent example of how efficient laser scanning can be [66].

Just outside the capital of Norway, Oslo, a new indoor ski hall named "SNØ" was built

with the help of laser scanning technology on a drone to get accurate mass calculations.

NPRA issued a report in 2019, where drones were used for bridge inspections [67]. In this

report, although laser scanning was not used, the drones took images and videos. With
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the use of such drones, it is possible to obtain more representative images that illustrate

damage and/or the extent of needed repairs compared to inspection by people from the

ground or when using any form of bridge inspection platform. Furthermore, using drones

to access hazardous areas of a bridge increases safety on the work-site, and may even

require less equipment and personnel than a standard bridge inspection. After this report,

NPRA recognised the benefit of using drones to obtain a better representation of a bridge

and started testing the use of also implementing 3D laser scanning with UAVs.

1.2.2.3 Point Cloud Reverse BIM Modelling

Reverse BIM modelling is being used more and more for rehabilitation work on buildings

in Norway. However, the process commonly used is not an automatic process of recognising

structural elements. The PCD is only used as a guideline when manually modelling the

existing structure to a 3D BIM model. This can be a tedious process, and can in many

cases be of insufficient accuracy.

The oil industry uses laser scanning and reverse modelling to update the model of offshore

installations continually. The size and complexity of an oil platform combined with the

distance to land and the safety of inspections mean that a fully updated model can be

used by workers onshore. This dramatically simplifies work needed to be done at the

platform. The oil and gas industry was early to implement 3D reconstruction technologies,

which they are now benefiting from.

Figure 1.8: Point cloud of an oil platform [8]
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The AEC-industry has not followed this trend and is lagging on the use as a result of

this. While many industries have increased efficiency, the AEC-industry has decreased in

efficiency over the last couple of decades. Statistics Norway (SSB) provides data, as seen in

Figure 1.9, which show that over the last 20 years, the work productivity, i.e. the generated

value in comparison to the resources invested, decreased between 1992 and 2012 [9]. A

contributing factor to this negative development is the relatively slow implementation of

new technologies in the AEC-industry in comparison to other fields. A consequence of

the slow implementation of new technology in the Norwegian AEC-industry is that no

bridges today have used a scan-to-BIM approach, and buildings have just started using

PCD to create reverse BIM models.

Figure 1.9: Work productivity, relative growth 1992-2012 (SSB) [9]

1.3 Research Content and Technical Route

In this section, the research content of this master thesis is presented, with a subsequent

technical route describing the methodology used in the thesis work. Firstly, the research

content is presented together with information on the bridge, which is to be reverse

modelled. Second, the technical route, methodology and reverse modelling workflow is

presented. Lastly, the applied hardware and software tools used in the master thesis is

presented in order of usage.



20 1.3 Research Content and Technical Route

1.3.1 Research Content

With the steady increase in BIM implementation, laser scanning technology and 3D

reconstruction in the AEC-industry, as detailed in Section 1.2, the approaches for object

detection and recognition algorithms to process PCD are steadily increasing in quality.

As detailed in the problem statement, the aim of this thesis is to accurately reverse model

a physical structure to a digital 3D model. The chosen structure is a box girder bridge

called the "Dade Bridge".

The Dade Bridge is 15.000 ton concrete bridge at a railway and expressway conjuncture

in Chuxiong City in the Yunnan Province in southwest China, shown in Figure 1.10.

The bridge is a part of the Qinfeng-Heping section of an elevated expressway connecting

Hangzhou in east China and Ruili in west, an airline distance of over 2.300 km. The

bridge geometry is presented in table 1.1. Some pictures of the bridge can be seen in

Figure 1.11

Figure 1.10: Location of Chuxiong City, China
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Table 1.1: Dade Bridge, Yunnan China, Bridge geometry

Length Height Width
130m 19m 33,5m

(a)

(b) (c)

Figure 1.11: Pictures of the Dade bridge, Chuxiong City, Yunnan, China.
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1.3.2 Technical Route

The methodology applied in this thesis varies depending on which task is to be solved.

Section 1 provides the reader with relevant background information collected from various

sources, with the intention of clarifying the significance of the thesis topic both in Norway

as well as worldwide. Section 2 through 6 are similarly structured, as shown in Figure

1.12 by firstly introducing the technology and concepts which are to be applied in their

respective sections. Subsequently, the relevant work with its corresponding results are

presented and discussed throughout the main body of the section. In practice, this means

that both theory and results are presented as it becomes relevant throughout the thesis.

To end, in Section 7, key elements of the thesis are discussed and evaluated. Further work

which can improve the presented thesis work are presented, and the results are evaluated

in regard to the thesis problem statement.

Introduce theory Present results
from applied theory Discuss results

Figure 1.12: Section organisation

In Figure 1.13, the main tasks within each section are presented together with the hardware

and software used for the relevant task. The reverse model produced in Section 5 forms the

foundation of which the problem statement is evaluated. To generate the reverse model,

data from laser scans were collected, as expanded upon in Section 2. Before the reverse

model could be generated in Section 5, the quality of the data was checked and processed

as necessary in Section 3 and 4 by the authors using MATLAB R2019b (Matlab) and

Geomagic Control X (Geomagic). In Section 6, to analyse the accuracy of the generated

reverse model, both a visual comparison using Revit 2020 (Revit) and a deviation analysis

using Geomagic was performed. The visual analysis in Revit is subjective, however, it

does provide the reader with a general impression of the overall quality of the result. To

counter the subjectivity of the visual analysis, an objective deviation analysis is necessary

in order to provide accurate, detailed information of the results quality. A deviation

analysis can highlight local areas where issues occur and provide objective, numerical

results which indicate the quality of the reverse model. By using the attachments, software

and methodology as presented in this thesis, the resulting work is reproducible for anyone

with access to a sufficiently powerful computer containing the aforementioned software.
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Chpt. 2 - Data collection Scanning Leica Scan station P50

Chpt. 3 - Data processing Noise reduction

Point cloud registration

Segmentation

Matlab R2019b

Geomagic Control X

Geomagic Control X

Chpt. 4 - Feature fitting Feature extraction
of pier columns

Feature extraction
of box girders

Feature extraction
of pier foundation

Matlab R2019b

Matlab R2019b

Matlab R2019b

Chpt. 5 - Reverse
modelling

Reverse BIM model
of box girders

Reverse BIM model
of pier columns

Reverse BIM model
of pier foundation

Revit 2020 +
DynamoRevit

Revit 2020 +
DynamoRevit

Revit 2020 +
DynamoRevit

Chpt. 6 -
Accuracy analysis

Visual comparison

Deviation analysis

Revit 2020

Geomagic Control X

Figure 1.13: Technical route of the thesis
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1.4 Applied Tools

The work presented in this thesis relies heavily on the use of advanced tools in order to

collect, process, analyse and reverse model the gathered point clouds from 3D point data

based on real-world structures to accurate 3D BIM-models. In the following sections, the

main hardware- and software tools used to complete this work is presented in chronological

order of usage.

1.4.1 Hardware

Although this thesis mainly revolves around the usage of software tools, top-of-the-line

hardware is a necessity in order to collect accurate and trustable data to be implemented

in the various software later in the process. For this thesis, a stationary 3D laser scanner

was used to collect accurate point cloud data from real-world structures.

Leica Scanstation P50

Leica ScanStation P50, a long-range terrestrial laser scanner is used to capture the

geometry of the Dade bridge. The high quality, together with ranges up to 1km makes

it the perfect tool for gathering PCD of large infrastructure projects. More detailed

information about the Leica Scanstation P50 can be found in Section 3.1.1.

1.4.2 Software

Usage of state-of-the-art software is the main part of this thesis work. The main use of

the software is to combine, process, reverse model and analyse the gathered data from

the 3D laser scanner. In the following text, a brief introduction to the used software is

presented in order of usage.

MATLAB R2019b

Matlab is a programming platform by MathWorks, often utilised by scientists and engineers

to develop algorithms, analyse data, visualise results and much, much more. When it

comes to programming-based software, the range of application is mostly limited by the

knowledge of the user, instead of the limitations of the software. The platform takes
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use of its own matrix-based programming language, also named MATLAB, which in this

thesis is used for two main tasks within the thesis; merging the laser scans as detailed in

Section 3.2.2, and preparing the point cloud for reverse modelling in Revit and Dynamo,

as detailed in Section 4.

Geomagic Control X

Geomagic is an inspection software by 3D Systems, which in this thesis is used to further

process the point cloud by denoising the data set. This processing is done to reduce the

file size and necessary calculation time, which is especially important in large data sets

such as a complete point cloud of a full bridge. Geomagic was also used to segment the

bridge point cloud into its individual building parts for further processing. This process is

detailed in Section 4.

Further, Geomagic is used to analyse and assess the accuracy of the reverse BIM model

compared to the merged laser scans collected with the Leica Scanstation P50. The

accuracy analysis can be reviewed in further detail in Section 6.

Revit 2020

Revit is a powerful BIM software by Autodesk which can create intelligent, parametric, 3D

models of structures with its corresponding construction drawings. Revit is widely used

in the AEC-industry today, and its functionality can easily be extended with numerous

interoperable software and plugins such as Dynamo. In this thesis, Revit is used to view

and combine the generated reverse model of the Dade Bridge, as well as for the visual

accuracy analysis. Revit is detailed further in Section 5.2.1.

DynamoRevit

Dynamo is an open source visual programming tool by Autodesk, automatically installed

as part of Revit since Revit 2020. It provides an alternate method of both customising and

creating geometry in Revit which otherwise could be very difficult or even impossible to do

manually. Its visual programming interface is well suited for inexperienced programmers,

as its node-based language with lines connecting the different nodes is for many considered

a more intuitive approach to programming than text-based languages such as MATLAB.

The parametric capabilities and seamless integration of Dynamo in combination with
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Revit, as illustrated in Section 5.2.1, makes Dynamo a suitable plugin for reverse modelling

of point clouds to 3D BIM-models. The use of Dynamo in this thesis is detailed throughout

Section 5.

ReCap Pro

ReCap Pro (Recap) is a reality capture and 3D scanning software by Autodesk well suited

to generate point clouds from laser scan data. Recap is used due to its synergy with

Revit, both being produced by the same company, Autodesk. As Revit can only read

point clouds with the file formats of *.rcp (Point Cloud Projects) and *.rcs (Point Clouds),

both of which Geomagic does not support, Recap is used to convert the raw data from

Geomagic to a file format supported by Revit. This step is necessary to combine the point

cloud and the reverse BIM model in the same Revit-workspace, used for the accuracy

analysis in Section 6.
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2 Bridge Point Cloud Data Collection

Technology

In order to create a reverse model from a physical structure, digital data representing the

structure in question must first be collected. Doing this by hand with manual measuring

devices is a tedious and inaccurate process, while at the same time making it severely

difficult to gather data from parts of the bridge which are difficult to access. Furthermore,

manual data collection is not directly translatable from physical measurement data to

digital measurement data, resulting in an additional, time-consuming and labour-intensive

step to convert the data which has to be added to the reverse modelling workflow. As

efficiency is already an issue within the AEC-industry, reducing the amount of time-

consuming labour in the workflow is of major importance.

With the rapid evolution of technology over the last couple of decades, traditional methods

in industries across the world are shifting towards methods based on information technology.

New technology is drastically changing industries and methods - including the measurement

and data collection of bridges. Technologies used to create 3D models of a physical object

is a subject of an increasing number of research reports, in fields of architecture, civil

engineering, industry, to name a few [68, 36, 69]. The appropriate scanning approach

depends on the accuracy required for the task at hand, and the structure type, which is

to be scanned.

To gather 3D data of a bridge, terrestrial or mobile laser scanning and video or

photogrammetry, are all valid approaches which can achieve a satisfactory level of detail.

These methods are both non-contact scanning methods, feasible for scanning large objects.

Both techniques have significantly evolved over the last few years, and both are capable

of providing high accuracy point clouds which would otherwise not be achievable using

traditional measuring devices.

By taking advantage of innovative laser scanning methods, the efficiency of inspection

and analysis of existing structures can be significantly increased. The added detail and

accuracy in combination with the easily accessible digital data which such scanning

methods provides, makes it possible to use the gathered data to assess whether old,
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degrading structures are in need of repairs or rehabilitation to extend their service life.

Taking care of existing structures instead of demolishing and rebuilding without a second

thought, is an important step towards a more sustainable future. Furthermore, the use of

laser scanners greatly reduces the risk of accidents on-site, as the scanning devices can

easily collect data at inaccessible and hazardous places.

Other techniques using single point coordinate precision or a small number of discrete

points, such as total stations and inclinometers, fail to cover a full area of a structure.

In the following sections, 3D laser scanning will be in focus. Specifically, Terrestrial Laser

Scanner (TLS), which is the approach matching the tasks in this report, producing a

dense point cloud data of the bridge.

2.1 3D Laser Scanner

3D laser scanning is the method of choice to gather 3D digital data of the Dade Bridge.

In the following sections, common 3D laser scan technology is presented along with the

working principle of point cloud acquisition.

2.1.1 Type Introduction of Scanning Instrument

Laser Detection And Ranging (LADAR) technology is an automatic measurement

technique which makes use of a sensor of known location to obtain the spatial coordinates

of each point on a target surface and construct a detailed 3D model of the target from

the collected measurement data. 3D Laser scanners produce an accurate representation of

objects, represented with a point cloud making it an effective and non-destructive way of

collecting the wanted data. LADARs depend on two information types, range (distance)

and intensity (the strength of the return signal) [70].

A 3D laser scanner is the ultimate tool for solving complex measurement tasks. The

measuring instrument creates a photorealistic, three-dimensional image of real-world

objects. The basic method and principle of a 3D laser scanner are similar to that of

a total station. The scanner has a rotating laser that is used to measure the distance

to the object, together with the device rotation angle data. By measuring the time of

the laser flight from the scanner with known coordinates, to the object and back to the
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scanner, the coordinates in three-dimensional space of each scanned point on an object is

established. The collection of several millions of such 3D-coordinates results in a complete

three-dimensional expression of the scanners surroundings called a point cloud. The

geometrical properties are captured at high speed, with extreme precision and detail. The

point cloud data obtained by the 3D laser can reach millimetre-level sampling intervals,

which can be applied in ways such as topographic surveys, cultural relics protection,

ground site disaster monitoring and deformation monitoring.

2.1.2 Working Principle of Point Cloud Acquisition

In order to make a complete three-dimensional representation of a structure, it is necessary

to carry out a large number of scans from different positions. The scanning position needs

to be carefully planned with some overlapping to have a complete overall result from

all necessary angles, as occlusions such as vegetation and objects occluding each other

can block the laser from reaching the target surface. The overlapping is used to collect

common points between the scans, to improve the accuracy when merging the scan data.

Although overlapping scans can accurately merge scan data, another possibility is to

include shared target points when scanning. The use of shared target points can increase

the accuracy even further when merging scans. Although not deemed necessary in the

data collection for this thesis, the method of shared targets is detailed below:

A shared target is a physical object that is placed on the scene of the scan. Several of

these targets will be used as references to mark common points between each scan. It

is common to use 3-5 shared targets between a scan at one scanning position, and its

neighbouring scan, as illustrated in Figure 2.1. Software can use these common points

to overlay the different scans on top of each other, and put them in the same coordinate

system. This process registration can be performed either manually or automatically

using processing software. Well planned placement of the shared targets is important as it

will result in effective collection of point cloud data and provide a sufficient base of which

the scans can use to overlap each other. However, both when using shared targets as well

as when scanning in general, it is important to keep in mind occluding elements such as

vegetation, terrain and other physical objects, which can reduce the quality of the point

cloud as well as block overlapping points between scans.
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Figure 2.1: Example of placement of shared targets

The result from either a regular scanning process, or a scanning process using shared

targets, is a highly accurate point cloud of the scanned object which can be used as a

basis for further reverse modelling into a complete BIM model.

2.2 Measurement Accuracy Analysis of 3D Scanner

The reliability of the generated 3D point cloud, thus also the subsequent 3D BIM model

which is to be reverse modelled, depends on the accuracy and precision of the laser scanner.

Accuracy is the degree to which a measurement expresses the true value. Precision is

defined as the scatter or variation in repeated measurements.
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2.2.1 3D Scanner Reliability

TLS are subject to a variety of interference factors, including instrument error, error

related to the measured object, environmental error and algorithm error [71, 72, 73].

Vertical index error, collimation error, eccentricity error are examples of instrument

errors. Errors related to the scanned object most often refer to the size of the target, its

colour, material, roughness or distance. Environmental errors mainly include temperature,

pressure, humidity, etc. Algorithm errors are errors from point cloud registration.

For accurate results, the laser scanner needs to be properly calibrated and given suited

settings for its intended use. Resolution and quality are two settings on a laser scanner

affecting the scan duration, scan size (vertical and horizontal scan points), and million

points (MPts), i.e. the number of points you get from the scan. Also, the point density

will be determined by the quality parameter. For a typical laser scanner, the measurement

of point distance is [mm/10m], i.e. a measurement from a 10 meter distance, should

result in a point cloud of scan points with 1 millimetre distance between each other. The

accuracy for the scanner used to capture the data of the Dade Bridge is presented in 3.

In 2013, Brown and Hugenholtz researched "Quantifying the effects of terrestrial laser

scanner settings and survey configuration on land surface roughness measurement.",

demonstrating how the user-defined TLS settings and scan geometry influence the accuracy

[74]. Key findings from the article important to keep in mind when preparing a scan using

TLS is that:

• The laser point spacing distance should be considerably smaller than the smallest

element of interest.

• In order to reduce occlusions, TLS should be performed from at least three vantage

points around the object.

• Composite point clouds can cause a positional error.

The resolution and quality vary from instrument to instrument and are generally

programmable. These parameter settings can be changed in accordance with the target

object, its environment and the requirements for data quality and accuracy. The quality

can be reduced to accelerate the scanning process.
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The quality of the digital model depends on its application. For applications associated

with quality control and reverse modelling, geometric accuracy can be the most crucial

factor. For other applications, such as virtual walk trough, the photometric accuracy can

be more important.

Research has shown that 3D laser scanning has high geometric accuracy [75, 76]. The

geometric accuracy is crucial when performing a scan-to-BIM process and will, therefore,

be the accuracy of importance in this thesis. For bridges that need to be inspected

periodically, the geometric data is the most relevant, making it possible to determine

settling or other movements.

2.2.2 Data Volume Analysis of Point Cloud

In addition to instrument errors, also the data processing contributes to the model accuracy.

The model accuracy is affected by the data volume, i.e. the number of points, in the point

cloud. In a point cloud based on two or more scans from different locations, the method

of scan registration in a common reference frame and the method of noise filtering, both

affect the point cloud accuracy.

The output from the laser scanning technology is highly dependent on the scanner positions.

The scanning range is limited, and distance can affect the accuracy of the point cloud.

3D laser scanners are also known to produce errors at edges [75].

Accuracy and point cloud density are two important parameters for evaluating the point

cloud quality. Errors or imperfections can originate from different sources; however,

common for all laser scanners is the laser itself. Laser scanners calculate the distance

from the sensors to the target using the time-of-flight of the laser beam, which relation is

described as d = t·c
2
with a distance, d, time, t, and speed of light, c, affecting the accuracy

of measurement [74].

The signal strength of the returned signal is mainly dependent on the distance between

the scanning instrument and the target object, as well as the reflectance of the scanned

material. The reflectivity of an object is a function of its colour, texture and specularity.

Furthermore, distance, colour and angle of incidence all affect the range accuracy. In a

study on calibration of laser scanners, Cheok et al. found that the colour of the target is
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of little effect. However, less reflective targets give less accurate results from longer ranges.

The angle of incidence has more impact on the range accuracy, especially combined with

highly reflective targets [70].

In 2017, Rui and Liu [77] published an article on "Research on Applied Talents Training

of Urban and Rural Planning Major Based on 3D Laser Scanning Technology" in the

Journal of Beijing City University which confirms that the colour and roughness of the

target object does not have a significant effect on the accuracy of the point cloud. An

important factor, however, affecting the accuracy of the point clouds is the number of

points that make up the point cloud. The research shows that the number of points

is inversely proportional to the scanning distance. The laser emitted by the scanner is

continuously enlarged due to the divergence of light as the distance increases. This effect

can make an object with 2000 points on a range of 5meters, get as little as 50 points from

a 30meter distance. Naturally, a dense point cloud will be a more accurate representation

of the target object and should be strived for.

Figure 2.2: Difference in point cloud density (low density: left, high density: right)

Within the accepted range of the instrument, the number of points is negatively related

to the distance. When using a 3D laser scanner to model a target, it should be as close

to the target as possible in order to obtain more points and avoid modelling errors from

data holes.

Distance also has the effect that size and complexity of the object has to be taken into

account together with the accuracy needed when evaluating how many scans will be

required to get a satisfactory result. A shadowing effect can have a big impact on the

composite point clouds, and thereby the number of scans needed. If the instrument is

placed close to the object, the shadowing effect gets large with a high degree of obstruction.
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For complex structures, it means that the number of scans needed to get a point cloud

without data holes, will be high.

2.3 Common Point Cloud Collection Methods

To collect point cloud data, there are several different scanning methods available. The

two most common methods being 3D laser scanning and processing photographs.

For 3D laser scanning, there are a wide variety of scanning instruments available for use

today, all providing high resolution scans with accurate data collection. Some of the

different types are introduced in this section.

Airborne LADAR mounted on planes, helicopters or UAV (unmanned aerial vehicle) is

one kind of laser scanning. Using an airborne laser will result in fast readings over a large

area. However, the point density is relatively low. This method is most suited to get

an overhead view of large areas, often a technique used for capturing the earth surface,

topographic height and environmental data [78].

Mobile LADAR can be mounted on moving objects, such as vehicles, backpacks, or drones.

This method has a higher point density but a shorter range than that of airborne mounted

LADAR. This method is most common in road inspections, where the mounted laser

scanner can collect data on-the-go, which in turn can be used to analyse the condition of

the road which the mounted-vehicle drives on [50].

A TLS is a stationary, ground-based LADAR. These scanners are often used for as-built

modelling of structures or terrain mapping within the range of 50-300m. However, long-

range laser scanners with a range, up to 1 km are also available on the market. When

using TLS, the stationary instrument should be moved several times to get a complete

scan of the target object due to occlusions. Many of these scanners take high definition

pictures along with the laser scan, meaning that pictures can be overlaid on top of the

collected point cloud. This is especially practical for situations where a point cloud is to

be manually processed, i.e. analysed, filtered, segmented and similar.

A TLS has high accuracy, high data acquisition rate and high data density [79], making it

suitable for use on structures to be analysed.

Photogrammetry is using a series of photographs to create a point cloud. Matching
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points are found in the different photographs, which the point cloud is derived from.

Photogrammetric systems are advantageous in the sense that high-resolution images

are rich in information about texture and colour. In addition, the collection method

is relatively fast. However, the method is sensitive to different weather conditions and

lighting, thus making it more suitable for controlled environments such as an indoor

studio.

To collect the 3D point cloud of the Dade Bridge, the Leica ScanStation P50 TLS was

used. This laser scanner is an intuitive measurement tool for long-range scanning. With

the P50-model, the scanning of inaccessible places can be executed in a fast and safe

manner. An integrated HDR-camera captures detailed imagery with colour overlaying the

scan data. It is a mobile instrument for fast, secure and reliable scanning [80].
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3 Collection and Processing of Bridge Point

Cloud Data

In this section, the point cloud collection method and processing of the point cloud data

of the Dade Bridge is presented. Firstly, the point cloud data collection is described by

introducing the scanning instrument and how the scanning itself was executed. Subsequent

to this, the pretreatment of the acquired bridge point cloud is described in detail from

preprocessing algorithms to point cloud filtering. Further, the segmentation process of

the merged point cloud of the Dade Bridge is detailed.

3.1 Bridge Point Cloud Data Collection

In order to generate an accurate reverse model, the initial point cloud data has to be

as true to the built condition of the scanned structure as possible. To achieve this, it is

important to know how the applied hardware should be used. In this section, the laser

scanning instrument used in this master thesis is presented, along with a general workflow

to collect 3D point clouds with laser scanners. Lastly, the scanned point cloud is presented

and discussed in its completion.

3.1.1 Introduction of Scanning Instrument

Leica ScanStation P50 - Long Range 3D Terrestrial Laser Scanner was used to 3D capture

the Dade Bridge. Lecia P50 delivers high-quality point cloud and HDR imaging with

a scan rate of 1 million points per second at ranges >1 km. A long-range scanner can

provide a fast and safe scanning procedure of a large structure [80].

The longer range allows measuring of unreachable sites from a remote and safe location,

less field time due to a reduced number of setups, higher flexibility finding a suitable

scanning position and more object details from each scanner position. The time and cost

savings with these properties are significant. Fewer setups reduce not only the time spent

in the field, but also the required office time due to easier processing [80].

The safety aspect is one of the main reasons for using Leica P50. There will always be

certain safety risks on the scene of scanning large infrastructures. Increasing the range
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gives the opportunity to scan dangerous and inaccessible sites from a safe distance. The

increased range can also provide a higher sensitivity at shorter distances, and difficult

surfaces are easier to scan at short range [80].

When performing a long-range scan of a large structure, like a large infrastructure, the

use of targets is not necessary. The scanning positions are too far apart for the targets to

produce any effect on the accuracy.

The Lecia P50 can be used for a complete 360° overview scan as well as for detailed

scans of selected areas [80]. When scanning a specific object, using a reduced field of view

instead of a full 360° overview, will result in a dense point cloud of the target object

with less noise from the surrounding area. Scanning with a reduced field of view is used

when scanning the Dade Bridge in order to collect data from the actual bridge and not

unnecessary surrounding terrain. This also reduces the file size of the point cloud since

fewer data points are stored.

The scan parameters of the Leica P50 scanner are distance, range accuracy and reflectivity.

Some standard modes used when scanning are presented in table 3.1. For the Dade Bridge,

the parameters of Mode 3 matched the desired quality and size of the scanning area.

Table 3.1: Technical parameters of four scanning modes of Leica ScanStation P50 [13]

Scanning mode distance (m) reflectivity Range accuracy
Mode 1 >1000 80% 3mm+10ppm
Mode 2 570 60% 3mm+10ppm
Mode 3 270 34% 1.2mm+10ppm
Mode 4 120 8% 1.2mm+10ppm

3.1.2 Scanning Scheme Design

There are no standards on how to perform a 3D laser scanning of a structure. However, a

sequence of tasks certainly needs to be carried out to get a satisfying result. The scanning

workflow used in this thesis is presented below, see Figure 3.1. Some of the processes are

almost automatic, while some need manual work.
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Survey planning

Plan the scanner positions

Find optimal scanner setup

Fieldwork

Set up the scanner

Configure the
scanner settings

Data collection Scan the object

Figure 3.1: 3D point cloud collection workflow

A total of eight scans were performed. Six scans from ground level around the bridge

and two on top of the bridge deck. A rough layout of the scanning position can be seen

in Figure 3.2. The scanner was positioned at approximately these positions, with slight

variations due to the terrain of the site.

Figure 3.2: Placement of 3D laser scanners
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3.1.3 Bridge Point Cloud Scanning

The complete point cloud consisting of all eight scans had a total of more than 150 million

individual points. The unfiltered scans resulted in the point cloud seen in Figure 3.3.

From the images, it is apparent that the point cloud is quite dense around the bridge part,

while the points for the surrounding terrain further away from the bridge are scattered.

This is intentional, as the bridge and its immediate area is the focus of this thesis.

(a) Overview 1

(b) Overview 2

Figure 3.3: Complete Point cloud

Some images of the scanning procedure of the Dade Bridge can be seen in Figure 3.4.

Here, the TLS is placed at several different locations in order to generate a complete 3D

point cloud representing the as-built Dade Bridge.
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(a) (b)

(c) (d)

Figure 3.4: Scanning pictures
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3.2 Pretreatment of Bridge Point Cloud

Before the point cloud data can be exported to the feature fitting process, the bridge point

cloud must be pretreated. Firstly, the point cloud preprocessing is presented along with

its theory. Second, the theory is applied during the point cloud registration, preparing it

for the last pretreatment step: noise reduction.

3.2.1 Introduction to Point Cloud Preprocessing

Preprocessing a large set of 3D laser scans is demanding. The scans must be merged to

form a single 3D representation of the scanned object. This can be done with software

such as Autodesk Recap. However, it is also possible to use the Iterative Closest Point

algorithm (ICP), an algorithm which has become the dominant method for geometric

alignment of three-dimensional models. The ICP algorithm can register point clouds

generated from different viewpoints at the same scene in the same coordinate system. ICP

estimates the best alignment of two point clouds [81].

With multiple scans overlapping each other, the ICP algorithm is minimising the distance

between the corresponding point pairs. Many variations of the ICP-algorithm exist, all of

which affect different elements within the algorithm, i.e. its process, selection, matching,

minimisation and transformation. For data containing a large number of points, the

registration speed and accuracy is affected. An ICP algorithm based on the k-d tree is

used to increase efficiency and accuracy when merging the scans of the Dade Bridge to

counter the large amount of points [81, 82].

The k-d tree is a data structure used in computer science. The process is a binary space

partitioning creating a binary search tree used to find the point neighbour [10]. The k-d

tree provides an accelerated search for neighbouring points by conditionally excluding

points, which in turn reduces the number of distance calculations. Figure 3.5 illustrates

the process for points in two dimensions.

The improved ICP algorithm combining the k-d tree and the traditional ICP algorithm

shows great improvements on speed and accuracy [81, 83].
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Figure 3.5: (a): A two-dimensional point cloud which has been divided using binary
space partitioning. (b): The corresponding k-d tree [10]
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3.2.2 Bridge Point Cloud Registration

For a huge structure like the Dade Bridge, multiple scans have to be performed to get an

accurate representation of the object. This result in a massive amount of points from each

scan that must be merged. In this thesis work, the improved ICP algorithm implementing

k-d trees is used to merge the scans into one.

For illustration purposes, a point cloud of a simple bridge pier is used to describe the

improved ICP method in practice, instead of the complete Dade Bridge. This is done due

to the complexity of the overlapping scans of the Dade Bridge. In Appendix A1 the ICP

algorithm for the Dade Bridge is showed.

For this pier, the point cloud of two overlapping scans are merged, namely "A" and "B".

Each point cloud, only showing the unprocessed pier, consist of approximately 36.000

individual points, each with its own position in 3D space. The goal is to move A, so

that A and B properly connects and becomes a complete, merged point cloud. With the

improved ICP algorithm, a new A, "A0", is generated and placed so that it connects with

B with the use of spatial translation and rotation transformation of A. As seen in Figure

3.6, point cloud A is copied and moved to the position of A0, forming a complete, merged

scan with B.

Figure 3.6 (a) shows the merged point cloud A0 (green) and B (blue). It also contains

the original A (yellow) before it was moved. Figure 3.6 (b) shows how much A0 was

moved from its starting position, A. The pictures both show how significant the move

is, reaching a much better overlap between B (blue) and A0 (green). Precise possessing

of the scans are crucial for the accuracy of the point cloud and the subsequent reverse

modelling. Using the k-d tree in combination with the ICP algorithm can prove to have a

significant impact on the results.
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(a) The two scans A(Yellow) and B(blue) and
the moved A0(green) (b) How much A(Yellow) has moved to A0(green)

Figure 3.6: Iterative Closest Point concept illustration

3.2.3 Noise Reduction of Bridge Point Cloud

The data provided by a 3D scan is often noisy, as seen in Figure 3.3. When creating a 3D

model of the bridge, only the points representing the bridge are relevant. All noisy data

cluttering the model should be removed for accurate results as well as to reduce the sheer

size of the point cloud.

The reduction of noise is performed in the software Geomagic Control X. From the original

point cloud with 150 million individual points, the noise reduction decreased the number

of points to approximately 23 million points, i.e. a reduction of approximately 85%.
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The noise is first removed automatically with the "filter noise" function in Geomagic. This

function filters out noise clusters that have a maximum of a user-defined amount of points.

Being the target of scanning, the bridge is the biggest cluster. Nevertheless, some smaller

clusters can occur. Selecting a low number ensures that none of the points representing

the bridge itself are removed. This automatic reduction removes a significant portion of

noise, the rest is manually removed by simply selecting and deleting it. How the number

of points in the point cloud is reduced from the original scan to the cleaned-up point

cloud is presented in table 3.2, and the cleaned-up point cloud can be seen in Figure 3.7.

Table 3.2: Amount of points at different stages of the noise reduction process

Original scan Post automatic reduction Post manual removal
150 million 29 million 23 million

Figure 3.7: Cleaned point cloud
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3.3 Structural Segmentation of Bridge Point Cloud

Although the laser scans are now merged into a single, combined point cloud, it is not yet

ready for reverse modelling. First, the bridge must be segmented into its main structural

parts, i.e. its superstructure and substructure. This section starts out by introducing

the segmentation software used to segment the main structural parts, with a subsequent

description of the super- and substructure to be segmented.

3.3.1 Introduction of Bridge Point Cloud Segmentation Software

Geomagic Control X (Geomagic) is a powerful inspection software from the American

3D Systems. The software can be used for processing, handling and analysis of massive

3D point clouds. It also offers CAD deviation analysis, excellent for metrology-level

inspection.

In addition to applications in civil engineering, Geomagic, is used in other fields such as

manufacturing and medical research. It is the only software built specially built around

the customer preference of design engineers, with fast and easy execution of inspection

processing and CAD-like user interface.

3.3.2 Superstructure Segmentation

The bridge structure that directly receives the live load is referred to as the superstructure

of a bridge. The portion of the bridge supports the deck and connects to the substructures.

To keep the bridge self-weight at a minimum, box girder bridges are a commonly used

structure type that is indispensable for long-span bridges, often used for highway bridges.

Box girder bridges are normally built in concrete, but can also be made of composite

of steel and concrete. A typical box girder structure can be seen in Figure 3.8, with an

explanation of its structure. The webs often vary in height and can have a parabola-shaped

variation in height for optimal adaption to the load effects.
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Figure 3.8: Explanation of box girder structure [11]

A box girder made of concrete is the superstructure of the Dade Bridge. It has a parabola

shaped variation of web height. With Geomagic, the superstructure is manually segmented

from the rest of the bridge, resulting in the isolated point cloud segment, as shown in

Figure 3.9.

Figure 3.9: Highlighted superstructure of the Dade Bridge

3.3.3 Substructure Segmentation

The substructure supports the superstructure and distributes the bridge loads to its

foundations and the ground. The piers and foundation shown in Figure 3.10 are the

isolated point clouds of the substructure of the Dade Bridge.

Figure 3.10: Highlighted substructure of the Dade Bridge
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4 Feature Extraction of Bridge Point Cloud

Data

The characteristic features of the super- and substructure of the Dade Bridge shall in this

section be extracted with the intention of generating the intersection points which will

eventually be used for reverse modelling. This section of the master thesis is structured in

three main sections, each focusing on feature extraction of the box girder, pier columns and

pier foundation respectively. Each main section is further split in three smaller sections,

presenting the feature extraction process from point cloud segmentation to feature fitting

and eventually a summary of the results from the applied process for each structural

segment.

The characteristic features of each bridge part is extracted by creating comprehensive

self-composed algorithms processing the point cloud data in Matlab. The complete scripts

of the different bridge parts is attached in Appendices A.

4.1 Feature Extraction of Box Girder

Firstly, the features of the box girder is to be found. This section presents the process of

segmenting the point cloud of the box girder into smaller, more workable segments in order

to perform the feature fitting of the box girder point cloud segments. The feature fitting

is a complicated procedure, with key elements being detailed throughout the section. To

end, the characteristic parameters, i.e. the coordinates of the intersection points, of a

randomly picked box girder segment is presented and discussed.

4.1.1 Point Cloud Segmentation

The parabola-shaped geometrical variation of the web height over the bridge span, and

the huge number of points (over 20 million points for the complete box girder) makes it

necessary to slice the box girder into smaller segments due to geometric variations and

limited computer processing power.

Each slice is done manually in Geomagic, trying to keep the change in cross-section at a

minimum. This slicing also keeps the number of points in each segment at an acceptable
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level, making the processing speed of the following tasks relatively fast.

The box girder is divided into 18 segments of varying size. The segments are shorter

where the web height varies the most, and longer where the web height is stable, as seen

in Figure 4.1. This is necessary in order to reduce the risk of algorithm errors due to

geometrical variations.

Figure 4.1: How the box girder is sliced into 18 segments

Further work with the feature extraction of the box girder shows that the method presented

in the following sections is less prone to error with the box girder carefully segmented

in accordance to geometrical variations. Another important factor to consider when

performing the segmentation is the change in point cloud quality. If a part of the point

cloud is missing, or if there is a change in the structure’s geometry, thoughtful segmentation

should be carried out.

The point cloud in this project had a small part of the box girder side missing for half of

the bridge, as highlighted in Figure 4.2, likely due to inaccessible scanning position or

material reflection. This missing part has a consequence for the accuracy of the feature

fitting of the box girder, and is manually mended as detailed in Section 4.1.2.
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(a) Overview of the bridge showing the missing part

(b) Side view of missing part

Figure 4.2: Missing part at the one side of the box girder

4.1.2 Feature Fitting of Point Cloud Segments

The feature fitting of the box girder segments is done by creating an extensive Matlab

script for each segment of the box girder, attached in Appendix A2-A5. The target of these

scripts is to find the characteristic parameters of the box girder, i.e. all of its intersection

points.

Typical box girder structures are presented in Table 4.1. The most common box girder

shape has an inclined exterior web. However, the webs can also be vertical. The difference

between single-cell and multi-cell box girders is the number of interior webs. Although

easily noticeable in a cross-section of the box girder, an exterior laser scan is unable to

differentiate between a single cell- and multi-cell box girder. Some prerequisite knowledge

is, therefore, necessary to produce the interior details of a structure based on external

laser scans. In this thesis, only the exterior of the bridge is to be modelled. The exterior

geometric similarities of the superstructure, be it single-cell or multi-cell box girders,

makes the script written in this thesis adaptable for many different bridges.
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Table 4.1: Typical cross-section of box girder bridges

Typical cross-section Name

Single cell box girder [11]

Multi-cell box girder [11]

Box girder with vertical web [84]

Simplified, these structures will have 8 or 9 intersection points, depending on the curve

of the bridge deck, which when connected forms the shape of the box girder. Having a

normal crown makes nine intersection points in total, as the case is for the Dade Bridge

seen in Figure 4.3. The intersection point numbering shown in the figure is the same as

will be used further on in this thesis.

Figure 4.3: Cross section of the Dade Bridge box girder with 9 intersection points
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Because of the complexity of the Matlab script, only the main parts of the process will be

described in the paper. The different steps of the process are showed like pictures and

simplified codes in the following pages. The complete scripts is attached in Appendix

A2-A5.

To find the intersection points of the box girder segments, a Matlab script was written

and ran for each individual segment. Each segment contains between 300 thousand and 2

million 3D points with x-, y- and z-coordinates, depending on the size of the box girder

segment.

As it is highly unlikely that a scanned bridge is perfectly orientated with its span towards

the x-axis, the first step of the process is to rotate the segments in the xy-plane so that

the bridge spans along the x-axis. This was done using the rotation matrix around the

z-axis. When the rotation is done, the span of the bridge is in the x-direction, width in

the y-direction and height in the z-direction, making the dataset much easier to work

with, as illustrated in (B1-B2) below.

Even though the box girder is initially segmented into smaller parts, each segment is

further divided into vertical slices in the x-direction, as seen in (B2-B3), taking small

changes in the geometry into account, trying to get the results as accurate as possible.

Each vertical slice, as shown in (B3), forms the basis of a cross-section with 9 intersection

points, as will be detailed in the coming steps.
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B1: Unrotated

1: Read txt-file of point cloud

2: Extract 3D coordinates

3: x=(:,1)

4: y=(:,2)

5: z=(:,3)

B2: Rotate

1: Vector between points=[
maxX −XatMinY Y atMaxX −minY

]
2: theta = angle of rotation

3: Rotation matrix(z-axis) =
cos(theta) −sin(theta) 0

sin(theta) cos(theta) 0

0 0 1


4: Rotate box girder

B3: Slice

1: Range in x-direction= min : 0.25 : max

2: for Every slice do

3: find x-values in range

4: find corresponding coordinates

5: end for
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The next step is the most complex, and most important part of the feature fitting. To find

the intersection points, the box girder needs to be divided into smaller parts, facilitating

for the use of intersecting regression lines which will indicate where the intersection points

shall be placed.

As the geometry of the box girder varies considerably, this partitioning must be done in

several steps, outlined below

First of all, the outermost sides of the top flange are sectioned out, as shown in (B4).

This is done by splitting the points in numerous thin, vertical slices, which are then section

out by selecting a couple of the first and last rows with the largest number of points.

Now that the two outermost sides have been sectioned out, further partitioning can be

executed.

In the next step, (B4-B5), the box girder is further partitioned in thin, horizontal slices,

as illustrated in the conceptual Figure 4.4. It should be noted that the actual, thin

horizontal slices are much thinner (50mm), however, for illustration purposes they are

drawn quite large. From the figure in (B5), it can be seen that horizontal slices containing

the magenta, yellow and cyan point segments will have a large amount of points in each

slice, while the red, green and blue point segments will lead to slices containing less points.

Figure 4.4: Concept of partitioning using thin horizontal slices

To partition the main horizontal parts, the change in amount of points from horizontal

slice to horizontal slice is used. Since the amount of points vary from large amounts, to

less amounts, back again to large, then less and lastly large again, the horizontal segments

is cut at the point of change between max→ min→ max→ min→ max points, as shown

in (B5).
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B4: Vertical cut to find outer parts

1: for Every slice do

2: Split vertically (maxY-minY)/0.01

3: for every vertical slice do

4: find points in range

5: end for

6: Combine a few slices from each end

7: Remove top and bottom part

8: end for

B5: Horizontal cut

1: for Every slice do

2: Split horizontally (maxZ-minZ)/0.05

3: for Every horizontal slice do

4: find points in range

5: Find change in amount of points

6: end for

7: Cut position = max→min→max→min

8: Split parts at cut position

9: end for
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Now that the box girder points are partitioned in four horizontal parts (magenta, yellow,

blue and cyan), the splitting of the sides can be done easily by splitting the list of micro-

segments in half, like seen in (B5-B6). Since the bottom flange (cyan) is a single side it

is not split in half.

The box girder has now been divided into nine parts, visualised in (B6), splitting the

point cloud at every geometrical change. The geometrical transitions, i.e. the corners,

are removed to compensate for inaccurate splitting with the added benefit of ensuring

that the points in every part forms an as-straight line as possible. By having points in a

relatively straight line, the linear regression will be more accurate in comparison to the

reference points due to a tighter spread.

After the box girder segment is divided into nine parts with small gaps in-between, the

intersection points can be located. The aforementioned vertical slices in the x-direction

from (B3), is being reused to divide the whole box girder segment into numerous smaller

segments, which can then form as many intersection points as there are slices. As shown

in Figure 4.5, all of the points within each vertical slice is flattened to the first x-value of

each slice, placing all of the points in each slice at the same yz-plane. A regression line is

subsequently generated through each of the nine point groups, and intersection points are

placed at the coordinate of each neighbouring intersecting regression line, as shown in

Figure 4.5 and (B7).
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(a) Side-view of vertical box girder slices (b) Flattened vertical slices of box girder

(c) Cross-sectional view of a flattened slice with regression lines forming intersection points

Figure 4.5: Illustration of flattening method and regression lines to find intersection
points

Although the intersection points are placed in 3D space, and the outline of the box girder

is complete, the box girder is not yet ready for reverse modelling. Lastly, as shown in

(B7-B8), the intersection points are rotated back to the original position of the box girder

by multiplying the coordinates of each point with the inverse rotation matrix displayed in

(B2). The coordinates of the intersection points of the box girder segment is lastly stored

in an Excel-sheet, ready to be exported to a suited software for reverse modelling, in this

case, Dynamo.
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B6: Vertical cut

1: for Every slice do

2: split the horizontal cuts in half, splitting the sides

3: end for

4: for each part do

5: Split vertically→ remove ends

6: end for

B7: Intersection points

1: for Every slice do

2: Assign one x-value to all points

3: for Every part do

4: Make linear regression line between points

5: end for

6: Find intersection points at intersecting regression lines

7: end for

B8: Rotate Intersection points

1: Rotate intersection points back to

original position
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The Matlab code contains almost the same steps for all of the box girder segments.

However, there are some alterations made between the first nine box girder segments, and

the last nine.

As described in the previous section, Section 4.1.1, the second half of the bridge is missing

a side from the scan. When not taking this missing side into account, the Matlab script

crashes. In order to address this issue, a separate script was made for the last nine box

girder segments where the missing side is located. The script contains almost all the

same steps as the first nine, only omitting the codes from the one part which is missing.

Without this part, two intersection points are lost. To correct the error, the two missing

intersection points need to be created using the concept shown in Figure 4.6, taking

advantage of the existing groups of points to manually generate new intersection points

approximately at the position where the top flange can be expected to end. The concept

of finding these intersection points is shown in Figure 4.6, described in 2D with x- and

y-axis. "B" is the end point of the point cloud, the point with the highest x-value. "A" is

the endpoint of the top flange point cloud. By taking the x-value of "B" and by extending

the linear function of the top flange through "A", intersection point "C" is found on the

intersecting lines.

Figure 4.6: Finding the missing intersection points
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For the first and last box, i.e. box girder segment 1 and 18, the point cloud is incomplete.

The original scanning does not have a clean cut at the bridge ends, and can therefore

not produce intersection points at all corners of the box girder. Missing intersection

points makes it impossible to accurately reverse model the box girder segment, and must

subsequently be avoided.

To easily correct the problem, the incomplete part is removed by performing a straight,

vertical cut in Matlab at a suited length from the end, found manually with measuring

tools in Geomagic. Cutting in Matlab produces a cleaner cut than by doing it manually

in software such as Geomagic. Naturally, cutting the point cloud will result in a reverse

model which is shorter than the original point cloud. To avoid this, box girder extensions

are modelled using data from the original, uncut point cloud, as detailed within the reverse

modelling of the box girders in Section 5.3.1.

4.1.3 Characteristic Parameters of Box Girder

The result from the Matlab script has nine intersection points for each slice of the box

girder segments. The amount of slices each box segment consists of depends on the length

of the sections they are divided into. The length and number of slices in each box segment

is presented in Table 4.2. The box girder has one slice at every half meter, i.e. box girder

segment 2 with a length of 8,71m is made up of 17 slices.
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Table 4.2: Table of length and number of slices for every box segment ((x)=after cutting)

Number Length (m) Slices
Box 1 16,23 (14,23) 33 (28)
Box 2 8,81 17
Box 3 8,71 17
Box 4 8,61 17
Box 5 6,92 13
Box 6 5,56 11
Box 7 4,82 9
Box 8 3,83 7
Box 9 7,42 14
Box 10 5,03 10
Box 11 5,35 10
Box 12 5,01 10
Box 13 8,70 17
Box 14 7,18 14
Box 15 8,96 17
Box 16 8,72 17
Box 17 7,63 15
Box 18 7,14 (5,14) 15 (10)

In Table 4.3, the intersection point of box girder segment 9 is presented. This box is

divided into 14 slices and show the x-,y- and z-coordinates for each of the nine intersection

points within each slice. The 9 intersection points correspond to the number sequence

previously seen in Figure 4.3.

The intersection points displayed in the table, and also in the last part of the Matlab

script, seen in (B8) shows promising results. Most of the points form straight lines. Only

the 5th intersection point, the one on the top flange separating the two sides of the road,

have trouble creating an exact crossing point. These irregularities are caused by the small

angle between the two parts, increasing the inaccuracy of their intersection points. Small

bumps or a rough road can be enough to cause such changes in the intersection points.
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Table 4.3: Characteristic parameters (x-, y-, z- values [m]) of box girder 9

Intersection Points
1 2 3 4 5 6 7 8 9

S
L
I
C
E

N
U
M
B
E
R

1
X -58.98 -60.05 -62.66 -62.59 -49.67 -37.72 -37.59 -40.24 -41.34
Y -39.94 -38.98 -36.65 -36.71 -48.27 -58.97 -59.08 -56.71 -55.73
Z 12.24 17.82 18.26 18.60 18.92 18.61 18.22 17.79 12.23

2
X -58.72 -59.80 -62.40 -62.33 -49.47 -37.46 -37.33 -39.98 -41.08
Y -39.66 -38.69 -36.36 -36.42 -47.94 -58.68 -58.79 -56.43 -55.44
Z 12.20 17.82 18.25 18.59 18.92 18.59 18.21 17.79 12.18

3
X -58.39 -59.46 -62.07 -62.00 -49.27 -37.12 -37.01 -39.65 -40.74
Y -39.28 -38.32 -35.99 -36.05 -47.45 -58.31 -58.41 -56.05 -55.07
Z 12.19 17.82 18.25 18.59 18.91 18.59 18.21 17.78 12.18

4
X -58.06 -59.14 -61.71 -61.66 -49.22 -36.79 -36.68 -39.31 -40.40
Y -38.90 -37.94 -35.63 -35.68 -46.81 -57.94 -58.03 -55.68 -54.71
Z 12.19 17.82 18.24 18.58 18.91 18.58 18.21 17.78 12.19

5
X -57.73 -58.80 -61.39 -61.33 -49.01 -36.46 -36.36 -38.98 -40.06
Y -38.53 -37.57 -35.26 -35.31 -46.34 -57.57 -57.66 -55.31 -54.35
Z 12.19 17.78 18.26 18.57 18.90 18.59 18.22 17.73 12.19

6
X -57.40 -58.47 -61.04 -60.99 -48.62 -36.12 -36.02 -38.63 -39.72
Y -38.15 -37.19 -34.88 -34.93 -46.00 -57.19 -57.27 -54.94 -53.97
Z 12.18 17.78 18.26 18.57 18.89 18.58 18.21 17.73 12.19

7
X -57.08 -58.15 -60.72 -60.66 -48.16 -35.79 -35.70 -38.31 -39.39
Y -37.78 -36.82 -34.52 -34.57 -45.76 -56.82 -56.91 -54.57 -53.60
Z 12.18 17.78 18.25 18.57 18.89 18.57 18.21 17.71 12.20

8
X -56.74 -57.82 -60.38 -60.33 -47.71 -35.46 -35.35 -37.96 -39.05
Y -37.40 -36.44 -34.14 -34.19 -45.48 -56.45 -56.54 -54.21 -53.23
Z 12.19 17.79 18.24 18.57 18.88 18.57 18.20 17.71 12.20

9
X -56.41 -57.50 -60.05 -59.99 -47.54 -35.12 -35.02 -37.62 -38.71
Y -37.02 -36.04 -33.76 -33.82 -44.96 -56.07 -56.16 -53.84 -52.86
Z 12.19 17.84 18.21 18.56 18.88 18.57 18.17 17.73 12.21

10
X -56.09 -57.17 -59.72 -59.66 -47.38 -34.79 -34.70 -37.30 -38.37
Y -36.65 -35.68 -33.40 -33.45 -44.43 -55.70 -55.78 -53.46 -52.50
Z 12.18 17.79 18.22 18.55 18.86 18.56 18.17 17.69 12.21

11
X -55.75 -56.85 -59.38 -59.32 -47.11 -34.46 -34.37 -36.96 -38.03
Y -36.27 -35.28 -33.02 -33.08 -44.00 -55.33 -55.41 -53.09 -52.13
Z 12.18 17.83 18.20 18.55 18.85 18.56 18.16 17.70 12.20

12
X -55.43 -56.53 -59.04 -58.99 -46.65 -34.13 -34.02 -36.62 -37.70
Y -35.90 -34.91 -32.66 -32.71 -43.75 -54.96 -55.05 -52.73 -51.76
Z 12.19 17.83 18.20 18.54 18.84 18.56 18.15 17.69 12.20

13
X -55.09 -56.20 -58.71 -58.65 -46.30 -33.79 -33.67 -36.28 -37.36
Y -35.52 -34.53 -32.28 -32.33 -43.39 -54.58 -54.68 -52.35 -51.39
Z 12.18 17.83 18.19 18.53 18.83 18.55 18.15 17.68 12.19

14
X -54.75 -55.87 -58.38 -58.31 -45.92 -33.45 -33.34 -35.95 -37.02
Y -35.14 -34.15 -31.90 -31.96 -43.05 -54.21 -54.31 -51.97 -51.02
Z 12.17 17.83 18.19 18.52 18.83 18.54 18.15 17.67 12.19
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4.2 Feature Extraction of Pier Column

The feature extraction process for the pier columns is similar to that of the box girder,

with some alterations due to the different geometry. The segmentation of the pier columns

is first presented, and key details for the feature fitting of the different piers is presented

step-by-step using a combination of illustrations, simplified codes and textual explanations

and discussions with potential improvements to the scripts. To end, the characteristic

parameters, i.e. the coordinates of the intersection points, of a randomly picked pier

column is presented and discussed. The complete scripts for the pier columns can be seen

in Appendix A6-A7

4.2.1 Point Cloud Segmentation

After dividing the substructure from the superstructure. The substructure is further

divided so that each pier has a separate point cloud segment, as seen in Figure 4.7. Each

of the six pier point clouds are separated from the complete point cloud of the Dade Bridge

using Geomagic. Of the six piers, there are two in each end and two at the mid-span of

the bridge. The two mid-span piers are identical, but have a different geometrical shape

than the outer piers. The general geometry of the pier columns are presented in Figure

4.8. Notably, pier column 3 and 4 have a more severe change in cross-section than pier

column 1, 2, 5 and 6.

Figure 4.7: How the six pier columns are named



64 4.2 Feature Extraction of Pier Column

(a) Shape of end pier column 1, 2, 5 and 6 (b) Shape of mid-span pier column 3 and 4

Figure 4.8: Geometry of the Dade Bridge pier column

Due to the fact that piers go down to the ground, the chance of having disturbance in the

scanning is high. Trees, shrubs, cars, and other occlusions often results in incomplete 3D

scans. This is also the case for the Dade bridge, as described in the noise removal section,

Section 3.2.3.

The geometry of the piers are much simpler than that of the box girder, so unlike the box

girder, the piers are not further sliced into smaller parts within each segment.

4.2.2 Feature Fitting of Point Cloud Segments

The feature fitting of the point cloud is done in a similar way as with the box girder,

creating an extensive Matlab script and finding the intersection points between the sides

of the pier.

A Matlab script that can be used for different pier geometry in general will be very useful

in the preparation of a BIM 3D-model. The variety of geometry used for bridge piers is

large. This script, however, will work for most square, four-sided piers, just performing

some small alterations to the code. Most of the script was made using a quadratic pier of

another bridge, and was subsequently adjusted so that it works for both the quadratic pier

as well as the six piers of the Dade Bridge. The geometry of the four end-piers, mid-piers

and the original quadratic pier which the script is based on, is presented in Table 4.4.

The Pier Column intersection point numbering used throughout this thesis is presented in
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Figure 4.9

Figure 4.9: Cross section of a Dade Bridge pier column with 4 intersection points

Table 4.4: Geometry of the pier columns which the script is based on

End pier column Midspan pier column Alternative quadratic pier column

As for the box girder, the first task is to make the point cloud easy to work with. In

Matlab, the pier is flipped so that the original height is laid along the x-direction as seen

in (P1-P2), and subsequently rotated in the yz-plane using the rotation matrix shown

in (P2-P3). By doing so, the pier lies flat on the y-axis with its height going in the

x-direction, as shown in the cross section of (P3).
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P1: Original

1: Read txt-file of point cloud

2: Extract 3D coordinates

3: x=(:,1)

4: y=(:,2)

5: z=(:,3)

P2: Flip
P2: Unrotated

1: Flip matrix

2: x=(:,3)

3: y=(:,2)

4: z=(:,1)

P3: Rotate

1: Vector between points=[
maxY − Y AtMinZ ZAtMaxY −minZ

]
2: theta = angle of rotation

3: Rotation matrix(y-axis) =
1 0 0

0 cos(theta) −sin(theta)

0 sin(theta) cos(theta)


4: Rotate box girder
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With the pier lying in this way, it can easily be divided into vertical slices along the x-axis,

as was done with the box girder segments, seen in (P5) with each colour representing a

slice.

A good scan of an object will result in a complete point cloud. However, this is not always

the case. Because of the described disturbance caused by occluding objects, a complete

point cloud can be difficult to obtain. Since this occlusion also occurs in the pier columns,

the first and last couple of slices are manually removed with Matlab when necessary,

i.e. when the slice lacks points at a whole side, making it impossible to later generate

intersecting regression lines.

The damaged part can be seen by comparing the bottom part of illustration (P2) and

(P4), and is removed by performing a cut at a specified x-value, resulting in the shortened

pier column shown in (P4).

P4: Cut

1: Delete damaged part of the pier in X-direction

P5: Slice

1: Range in X-direction= min : 0.25 : max

2: for Every slice do

3: find x-values in range

4: find corresponding coordinates

5: end for
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With the pier column point cloud now consisting of only complete slices, the sides of the

piers need to be divided into separate parts. This splitting is done by finding the centre

of the pier and then finding the appropriate length from the centre and out to where the

corner starts. Figure 4.10 shows a cross-section illustrating the general concept for finding

these lengths for a general, four-sided pier column. For the vertical sides this means that

the point cloud is cut at the centerpoint ±lz, while the horizontal sides of the point cloud

is cut at ±ly. To isolate the vertical sides, the points above and below the blue horizontal

lines are removed, while the horizontal sides are found by removing the right and left side

of the vertical blue lines. By doing this, the corners are also removed, making it easy to

perform linear regression through the points as will be detailed in the coming steps.

Figure 4.10: General concept of dividing the sides into separate parts by finding the
length from the centre and out

When the horizontal and vertical sides are divided and the corners are cut out, as seen

in (P6), the pier column is further partitioned into a total of four separate parts, two

horizontal- and two vertical point clusters for each side. As with the box girder, this is

done by partitioning the whole point cloud in thin slices as shown the previous Figure

4.4 and subsequently count the amount of points within each slice. However, different to

the box girder, in this case the thin slices are made both horizontally and vertically, and

the change in amount of points from slice to slice is used to decide where to partition the

points. This method is illustrated in (P6-P7).
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P6: parts

1: for Every slice do

2: Length from center Z-axis=(max-min)/2-1

3: Length from center Y-axis=(max-min)/2-0.5

4: Find points in range→Y-matrix

5: Find points in range→Z-matrix

6: end for

P7: Sides

1: for Every slice do

2: Split horizontally (maxZ-minZ)/0.005

3: Split vertically (maxY-minY)/0.005

4: for Every horizontal slice do

5: Find points in range

6: Find change in amount of points

7: end for

8: Split Y-matrix→Find sides

9: Split Z-matrix→Find sides

10: end for

Now that the pier column point cloud is separated in four sides of points, the rest of

the script has a similar procedure as for the box girder. As illustrated in 4.11, all of the

points within each vertical slice of the pier column segment is now flattened to the start

of each slice, placing all of the points from each slice on the same yz-plane. Regression

lines are then dragged through the four sides, and intersection points are found where the

regression lines intersect.
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(a) Side-view of vertical pier column slices (b) Flattened vertical slices of pier column

(c) Cross-sectional view of flattened slices with regression lines forming intersection points

Figure 4.11: Illustration of flattening method and regression lines to find intersection
points

The intersection points of the pier column can now be seen in 3D space, as visualised in

(P8), however, the points must be rotated back to its orginal position before it can be

reverse modelled. This is simply done by multiplying each point with the inverse rotation

matrix previously used to rotate the pier to lay flat on the y-axis, and subsequently flip

the pier back to an upwards position, seen in (P9-P10).
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P8:Intersection Points

1: for Every slice do

2: Assign one X-value to all points

3: for Every side do

4: Make linear regression line between points

5: end for

6: Find intersection points at crossing

regression lines

7: end for

P9:Rotated Back

Rotate intersection points back to

original position

P10:Flipped Back

Flip intersection points back to

original position
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This Matlab script is used for all of the Dade Bridge piers. The only part that needs to

be adjusted in the algorithm is the removal of the damaged part for each pier column, as

some columns are less complete than others, and vice versa.

A solution to automate this process was developed and is presented in the next section,

Section 4.2.2.1. However, because of incomplete point cloud scans, this method did not

give a satisfactory result for the majority of the piers and was not used.

As described throughout the thesis, the level of noise will affect the feature fitting of the

bridge parts, therefore, the noise are carefully removed. For pier column 1, the noise

removal was not good enough and some points were causing a disruption in the intersection

points. How this was sorted out is explained in Section 4.2.2.2

4.2.2.1 Alternative Cutting Method

For some piers, the removal of slices could have been done by finding the place where

the change in the number of points is at its largest. This method is based on the fact

that incomplete, i.e. "damaged", slices will contain considerably less points than that of a

complete neighboring slice. This indicates the position where the scan transitions from

"damaged" to complete. This method is dependent on what is causing the damage and to

what extent the point cloud is damaged.

The scanning of the piers done in this project does not have one clear line for where the

damage starts, in fact, many of the piers show damage which is too big to perform an

automatic cutting with the method described.

For one pier, pier column 2, the method can be used. The pier only has smaller damage,

and the lines caused by the damage are quite straight, forming a clearer change in the

point cloud. The two lines in Figure 4.12 show the lines between damage and complete

point cloud.

To automate the cutting for this pier, first, the pier is divided into much smaller slices.

Every slice is having a great variation in number of points. To smooth out the variation,

the average over a number of slices is taken. By doing this several times, the variation

shows a quite smooth curve, as seen in Figure 4.13. Now it is possible to see where the

biggest leap in the number of points is. A curve that better shows this leap is presented



4.2 Feature Extraction of Pier Column 73

in Figure 4.14. This figure shows the change in the number of points over the entire pier.

Two peaks stand out, one at approximately slice 25 and one at slice 100. In addition,

there are two dips at the end of the curve, where the biggest is near slice 330 and the

next is near slice 310. By cutting at the last peak and the first dip, this method will be

cutting the pier at the exact right location.

Figure 4.12: Graphical representation of changes in number of points for pier column 2
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Figure 4.13: Development in number of points for Pier 2

Figure 4.14: Change in number of points for Pier 2

If the pier has larger damage, the variation can be harder to find. Figure 4.15 illustrates

how the case is for another pier point cloud (pier column 6) in this project. In this figure,

there are not two big transition between damaged and complete scan but three, and the

place of cutting is not at the biggest difference in points. The curvature of point change

for this pier is shown in Figure 4.16. The two first peaks represent the first two lines

marked in Figure 4.15. But the third, and correct, place to cut is more difficult to spot.

Doing this for all the piers, finding no similarities in curvature between the point cloud
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differences and the correct cutting position, the solution is manual cutting, measuring

the length of the damaged part in Geomagic and inserting the lenght-value to Matlab to

perform the cut. Almost all of the piers of the Dade Bridge scan needs manual cutting.

Figure 4.15: Figure of where the damages on the scan are located on pier column 6

Figure 4.16: The curvature of the change in the number of points for pier column 6
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With a more complete point cloud of a bridge pier, the proposed method would have given

a good result, automatically cutting away the damaged scan pieces.

In any case, the incomplete parts must be removed from the scan data in order to create

intersection points to be used for reverse modelling. As with the box girder, the cut-away

part must also be modeled by extending the now cut-short pier columns. The reverse

modelling method of the pier column extensions is detailed in Section 5.3.2.2.

4.2.2.2 Pier Point Cloud Sampling

A method of removing noisy data that is not obvious noise, is downsampling.

Downsampling decreases the amount of data within a data set, while maintaining the

general shape of the data. For point clouds, the data size is reduced and less obvious

noisy points can be removed.

Downsampling can also give less accurate data, removing important points. In this project,

accuracy is crucial. Thus, downsampling is avoided as much as possible. Precise removal

of noise without the use of downsampling, will in most cases give satisfactory results. This

is the case for almost all parts of the bridge. However, for the point cloud of pier column

1, inaccurate intersection points were found and downsampling was carried out to counter

this.

The original point cloud of pier column 1 shows some intersection points not representative

for the pier geometry. Not finding any obvious noise, a downsampling was performed

using a sampling ratio of 30%, reducing the number of points from almost 578 thousand

to 173 thousand. Geomagic was used to perform the downsampling. Table 4.5 show how

the downsampling affect the point cloud and how it changes the feature fitting, i.e. the

generated intersection points.
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Table 4.5: Table showing how the downsampling of pier column 1 affect the point cloud
and its feature fitting

Original point cloud Downsampled point cloud
Number of points 578.118 173.435

Point cloud

Intersection points

4.2.3 Characteristic Parameters of Pier Columns

The pier has four intersection points, one at each corner. Every intersection point contains

a coordinate with x-,y and z-values.

Because of the bridge height, each pier is sliced many times as can be seen in Table 4.6.

Each of the pier columns have a been sliced at every 25 cm. The presented intersection

points in Table 4.7 show the coordinates for the intersection points at slice 20 to 33 to

present how the data output from the Matlab scripts look. This concept is the same for

all of the intersection points at each pier column, and forms the outline of which the pier

columns will be reverse modelled from.
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Table 4.6: Pier overview

Pier 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 6
Height (original) (m) 16,92 17,36 9,87 9,87 13,32 13,41

Height (after cutting) (m) 11,50 14,94 8,42 9,58 10,51 8,84
Number of slices 47 60 35 39 43 36

From the values in the table, one can see some consistency.

• The height, Z-axis, gets higher for every slice.

• The Z-coordinate is equal for all intersection points in each slice.

• The X- and Y-coordinates at one intersection point is quite similar for every slice.
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Table 4.7: Characteristic parameters (x-, y-, z- values [m]) of pier column 2

Intersection Points
1 2 3 4

S
L
I
C
E

N
U
M
B
E
R

1-19

20
X -12.56 -8.09 -9.58 -14.04
Y 11.32 7.44 5.81 9.69
Z 3.96 3.96 3.96 3.96

21
X -12.56 -8.09 -9.58 -14.05
Y 11.31 7.44 5.81 9.69
Z 4.27 4.27 4.27 4.27

22
X -12.56 -8.09 -9.58 -14.05
Y 11.31 7.44 5.81 9.69
Z 4.54 4.54 4.54 4.54

23
X -12.57 -8.09 -9.59 -14.05
Y 11.31 7.44 5.81 9.69
Z 4.66 4.66 4.66 4.66

24
X -12.57 -8.09 -9.59 -14.05
Y 11.30 7.44 5.81 9.69
Z 4.95 4.95 4.95 4.95

25
X -12.57 -8.09 -9.59 -14.05
Y 11.30 7.44 5.81 9.68
Z 5.13 5.13 5.13 5.13

26
X -12.57 -8.09 -9.58 -14.05
Y 11.30 7.44 5.81 9.68
Z 5.48 5.48 5.48 5.48

27
X -12.57 -8.09 -9.58 -14.05
Y 11.30 7.44 5.81 9.68
Z 5.77 5.77 5.77 5.77

28
X -12.57 -8.09 -9.58 -14.05
Y 11.30 7.44 5.81 9.68
Z 5.82 5.82 5.82 5.82

29
X -12.57 -8.09 -9.58 -14.05
Y 11.30 7.44 5.82 9.68
Z 6.18 6.18 6.18 6.18

30
X -12.56 -8.09 -9.58 -14.05
Y 11.30 7.44 5.82 9.68
Z 6.49 6.49 6.49 6.49

31
X -12.56 -8.09 -9.58 -14.05
Y 11.30 7.44 5.82 9.68
Z 6.63 6.63 6.63 6.63

32
X -12.56 -8.09 -9.58 -14.05
Y 11.30 7.45 5.82 9.68
Z 6.82 6.82 6.82 6.82

33
X -12.56 -8.09 -9.57 -14.06
Y 11.30 7.45 5.82 9.68
Z 7.29 7.29 7.29 7.29

33-60
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4.3 Feature Extraction of Pier Foundation

The feature extraction process for the pier foundation is different than that of the box

girder and pier columns. Firstly, as there is only one visible foundation in the Dade Bridge

point cloud, segmentation beyond isolating the pier foundation from the rest of the bridge

point cloud is not needed as it was in the aforementioned structural elements. Further,

the feature fitting is not reliant on intersecting regression lines, as the foundation does

not have any intersecting lines. In this section, the feature fitting of the pier foundation

will be detailed with illustrations and simplified code, with a subsequent presentation of

selected characteristic parameters of the pier foundation. The complete script for pier

foundation is seen in Appendix 8.

Figure 4.17: The point cloud of the pier foundation

4.3.1 Feature Fitting of Point Cloud Segment

There is only one visible foundation for the Dade bridge. This is under the two midspan

piers and is actually used to turn the whole bridge after construction. In that way the

construction caused a minimal delay for the heavily trafficked trainline going under it [85].

The foundation has a cylindrical form, and the method of feature fitting presented can be

used for all cylindrical structures, such as cylindrical piers.

The process is much simpler than the other bridge parts presented. It uses the least-squares

method to form a circle best fitting the points in the xy-plane. The cylinder is segmented

in several horizontal slices, and the method is used to find the centre and radius of each
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circle around each slice centerpoint [86].

Ordinary least-squares method is an important tool for curve fitting. The method finds

the parameters that best minimise the total squared difference between the measured

values and the value of the function. Figure 4.18 shows how the fitted circle mathces up

to the point cloud of the pier foundation.

Figure 4.18: Least-squares method, fitted circle of the pier foundation point cloud

As shown in (F1-F3), the least-squares method is used on each of the horizontal slices,

finding the centerpoint and radius of each slice. Further, the maximum and minimum

z-value of the original pier foundation scan is stored to be used in the reverse modelling

process later on.
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F1: Original

1: Read txt-file of point cloud

2: Extract 3D coordinates

3: x=(:,1)

4: y=(:,2)

5: z=(:,3)

F2: Slice

1: Range in Z-direction= min : 0.5 : max

2: for Every slice do

3: find x-values in range

4: find corresponding coordinates

5: end for

F3: Circlefit

1: for Every slice do

2: Least square method→Center→Radius

3: end for

4: Find maxZ and minZ
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4.3.2 Characteristic Parameters of Pier Foundation

The method above gives the characteristic parameters of the pier foundation. The data

is shown in Table 4.8 and shows the centrepoint of each slice and its corresponding

radius. For the position in z-direction, the max and min value of the original scan data

is gathered from Matlab and evenly distributed between the two values, matching the

amount of intervals to the amount of slices. How each circle is placed in z-direction is

further described in the reverse BIM model section for the pier foundation, Section 5.3.3.

Table 4.8: Characteristic parameters [m] of pier foundation

X Y Radius

S
L
I
C
E

1 -48.09 -45.48 5.52
2 -48.08 -45.50 5.51
3 -48.06 -45.50 5.52
4 -48.06 -45.50 5.51
5 -48.06 -45.50 5.51
6 -48.06 -45.50 5.51
7 -48.06 -45.50 5.51
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5 Reverse BIM Modelling of Bridge Point

Cloud Data

In this section, the process of reverse modelling a physical structure - in our case, the

Dade bridge - to a digital 3D BIM model is presented. The resulting work in this section

is dependent on the data collection, processing and feature extraction detailed in Section

3 and 4. The aforementioned work can be considered to be the input of which the reverse

model (output) is based on. In order to end up with a reverse BIM model of high quality,

it is crucial that the input is of a high standard.

As the applied technology needed to reverse model a physical structure is fairly new in

the AEC-industry, the following sections provides the reader with an introduction to the

concept of BIM, some of its applications and the historic development of BIM. Subsequent

to this brief introduction, selected BIM software are presented before the process of reverse

modelling the Dade Bridge and its immediate terrain is detailed.

5.1 Introduction to BIM

In recent years, the concept of BIM and digital construction projects, in general, has

experienced an increase in popularity in the AEC-industry. The main reason for this

is the rapid development in the field of computer technology, bringing the physical and

virtual worlds closer together than ever before.

BIM, or Building Information Modelling, presents a very wide set of possibilities and

therefore also a wide variety of definitions. The basic idea of BIM is that different

stakeholders work on the same intelligent building information model to add dynamic and

intelligent, virtual building components to a model that consists of a large quantity of

information about the identity and geometry of the model. Modern construction projects

are, more often than not, heavily reliant on multi-disciplinary collaboration work. With a

BIM-model, a change from either the architect, engineer or contractor will automatically

be processed and updated in the model, meaning that all involved parties can collaborate

in real-time on the same construction project. This assures consistency in the model

throughout all of its phases, from planning to demolition.
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Global trends are consistently making AEC-projects more and more complex, and with

BIM technology the industry can increase its efficiency, which in Norway, as mentioned in

section 1, has declined the last 20 years. The data integrated in a BIM model defines the

design elements and establishes behaviour and relationships between model components.

When an element in the model is changed, every connected view is updated with the new

change appearing in section, elevation and sheet views. The information in the model

can be used to improve the design of a structure before it is built, and in this way retain

model intelligence all the way from concept to construction, minimising change orders,

reducing coordination issues, providing extra documentation and ultimately contribute to

automating the construction process.

BIM provides insights into a design’s constructability, but also a better understanding of

the constructions future operation and maintenance. Owners can use BIM for predictive

maintenance, asset tracking and facilities management, and for future renovation. Working

with BIM can result in reduced project risk, improved timelines and cost savings, and

better project outcomes.

The power of BIM is now growing with the use of cloud-connected technologies, virtual

reality, augmented reality, laser scanning, sensors and much more. Although the term

"Building Information Modelling" implies that BIM is used for buildings only, it is in fact

a general term used for a variety of structures such as roads and bridges. For bridges, some

have started using the term BrIM, or Bridge Information Modelling. As with BIM, also

BrIM is an important topic in the industry. BrIM is a subcategory of BIM, specialising

in the design and construction of bridges. Much of the BIM development is designed for

vertical structures like buildings and not horizontal structures such as bridges. Information

modelling for bridges has seen an increasing popularity, and the infrastructure industry

is constantly developing technology specially designed for bridge structures to increase

productivity and cope with tight deadlines and sustainability issues.

As information modelling of bridges is increasing in popularity, the term BrIM is still

not a well known abbreviation. Therefore, BIM will be the term used in this thesis, also

because reverse modelling as a concept is not limited to bridges, although the method

presented in this thesis is designed for box girder bridges.
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5.1.1 A Brief History of BIM

BIM is a computer-based 3D modelling process that has drastically changed the AEC-

industry since its early beginnings in the 1960s. At the time, specialised teams of drafters

would meticulously draw two-dimensional construction plans by hand. Naturally, this

was a time-consuming process with substantial limitations compared to what would soon

become available to the industry due to an increased global digitisation.

The start of computer-aided design, CAD, is often attributed to Ivan Sutherland’s

graphically interfaced CAD-program from 1963, Sketchpad, which made it possible to

create 2D polygons on a graphical surface [12]. As seen in Figure 5.1, Sketchpad made

it possible to create drawings with dimensions and execute simple truss calculations.

However, due to the expensive hardware required to take use of CAD technology at the

time, its use was limited to only a selected few companies such as General Motors and

Boeing of the United States. Although the uses of CAD was limited due to its 2D approach

with simple geometric capabilities, Sutherland’s CAD-software can be seen as the seed of

which the modern BIM-process emerged from.

Figure 5.1: Dimension lines and simple force distribution of an arch bridge with varied
support setups, generated and visualised in Sketchpad [12]

Over the next decade, cost of computers decreased while their processing power steadily

increased. Although still in its early phase, CAD experienced a boom in use in the

early 1980s when Autodesk released the publicly available CAD-software AutoCAD -

originally created for mechanical engineers but quickly adopted by other AEC-branches

such as structural engineers and architects. Onward, CAD-software developed quickly

and eventually reached somewhat of a plateau in the early 2000s due to limitations within

the concept of 2D CAD such as, but not limited to the:
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• unintuitive approach of conceptualising 3D models with 2D drawings

• drawings being independent of each other without automatically updating with

project changes

• lack of integration between project collaborators

• limited scope of application - 2D CAD does not describe the full life cycle of a

structure

As it became apparent that the fundamental approach of CAD was insufficient to evolve

with an increasingly digital society with complex projects, the emergence of BIM-technology

quickly replaced CAD-software. In the early 2000s, BIM-technology boomed, with Revit

being a front-running software for architects, engineers and designers. Not only capable of

creating 3D BIM models containing information of individual element properties connected

to automatically updating 2D drafting sheets, BIM-software such as Revit introduced

collaborative projects and 4D (addition of the dimension of time) capabilities making it

possible for all the involved fields to simultaneously plan and track the whole life-cycle of

a structure from concept to demolition.

Furthermore, parametric design emerged in the late 2000s, paving the way for an even more

efficient modelling method well suited for a construction industry with increasingly complex

geometries of large scale. In short, parametric design is a highly customisable design

method where complete digital models can be adjusted and optimised dependent on given

design goals by tinkering with set input parameters. Although basic parametric capabilities

are implemented in BIM-software such as Revit, specialised software for parametric design

have the potential to dramatically increase both the geometric complexity of models as

well as the modelling efficiency in regard to time spent. A common software of this nature

is Dynamo, a visual programming tool which last year (April 2019) became an integrated

extension of Revit. The uses of Dynamo and its integration with Revit is further detailed

in section 5.2.1.
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5.2 Introduction to BIM Modelling Software

When it comes to BIM modelling software, there exist a variety of options. Although

many of these software has similar areas of application, the functions of each software

often differ to some extent, making certain software better suited for certain applications,

and vice versa. In this section, the BIM software Revit, and its integration with the visual

programming software Dynamo is detailed.

5.2.1 Revit + Dynamo

Revit is a Building Information Modelling (BIM) software originally developed by Charles

River Software in 1997, bought by Autodesk in 2002. Revit provides the user (mostly

designers, architects and structural engineers) with the ability to model structures in 3D,

using parametric, object-based elements. In BIM-models made in Revit, it is possible to

integrate various parameters to each instance of an element, including but not limited

to unit cost, material use, construction phase, placement and volumes. The designer

can choose to model in 3D, or create 2D views such as floor plans and section views

and model in those instead. A change in one view, changes all views within the project.

It is also possible to collaborate online with other users, making it a great software to

use in multi-disciplinary projects where it is advantageous for multiple branches such as

architects, MEP-engineers and structural engineers at different locations to work together

simultaneously. The option to export 3D BIM-models made in Revit, to open formats

such as IFC, also contributes to this interdisciplinary interaction.

Although a very powerful BIM software, there are cases where the core functionalities of

Revit are insufficient, such as the semi-automatic reverse modelling based on point clouds

which is to be done in this thesis. However, Revit supports add-ins which can extend the

functionalities of Revit beyond its core applications.

One of these add-ins is Dynamo. Dynamo is an open source graphical algorithm editor,

which in April 2019 became an integrated add-in within Revit version 2020. Dynamo

is based on visual programming with lines being dragged between nodes, making it an

intuitive tool for many users whom are inexperienced with regular programming. The

integration between Dynamo and Revit makes it possible to easily select, modify and
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transfer elements between the software in ways that stand-alone Revit cannot.

In Figure 5.2, a simple cylindrical column with parametric capabilities is generated using

nodes in Dynamo and exported to the Revit workspace as a solid geometry. The nodes

which define the characteristic properties of the column, i.e. the bottom centerpoint,

the radius and the column height, can be easily adjusted using connected integer sliders,

subsequently changing the box component in accordance with the input adjustments. Both

the Dynamo- and Revit-workspace is continually updated in sync with the adjustments

made to the nodes which together amounts to what is called a Dynamo-graph.

(a) Dynamo-graph generating a cylindrical column with parametric capabilities

(b) Cylindrical column exported to Revit as a solid element

Figure 5.2: Modelling process of a simple parametric cylindrical column in Dynamo and
Revit
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5.3 Reverse BIM Modelling

From the calculated intersection points of the box girder, pier columns and pier foundation

from Section 4, a reverse BIM model is to be made. The coordinates of the intersection

points are collected in matrices within Excel-sheets, and need to be exported to a suited

software for reverse modelling. At this point, the 3D coordinates are simple number

values which must be further processed and converted to solid 3D elements to accurately

represent the geometry of the different bridge parts, i.e. the box girder, pier columns and

pier foundation.

As the points must be converted from coordinate values to solid 3D elements, a software

which can further process and modify the calculated intersection points is needed. The

visual programming interface of Dynamo and its synergy with Revit, as detailed in Section

5.2.1 is well suited for this work, and is thus the software of choice for this task.

The concept of reverse modelling is quite similar for all of the bridge elements. As shown

in Figure 5.3, the 3D coordinates of the intersection points, collected in matrices like

seen in Table 4.3, 4.7 and 4.8, are first imported in Dynamo. Then, these coordinates

are sorted and converted to 3D points in space, which are further grouped into segments

along the span length of the element to be made. A polygon is made of each group along

the span length, contouring the shape of the element. A solid is then lofted from polygon

to polygon, and subsequently exported to Revit where all the individual elements are

combined in the same workspace.

In cases where the point cloud of the element is occluded, thus activating the cutting

algorithm in Matlab, the solid element in Dynamo has to be extended to represent the

original geometry as closely as possible. Although the extension method differ slightly

depending on whether the element is a box girder, pier column or a pier foundation,

similar for all methods is that extension data is collected with Matlab from the uncut

point cloud data and is used to simulate new intersection points at the beginning and end

of the original span length of the element. From these new intersection points, polygons

are made, and a solid is lofted from the extreme values of the existing solid to the extreme

values of the new polygons. The new solid consisting of both the originally generated

solid and the extended part of the solid is then exported to Revit.
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Import intersection
point coordinates

Place intersection
points in 3D space

Group intersection points

Draw polygons from
intersection points

Loft solid from polygons

Is extension
needed?

Import extension data

Export geometry to Revit

Yes

No

Figure 5.3: Reverse modelling workflow

In theory, all of the bridge elements could be reverse modeled within the same Dynamo-

script. However, due to limited processing power of the author’s PC, and the ongoing

lock-down at Oslo Metropolitan University as a preventative measure against the spread

of COVID-19 as this thesis was written, the access to better hardware was prevented, and

the Dynamo-scripts needed to be split into three files: pier columns and pier foundation

in one, box girder 1 to 9 in one, and box girder 10 to 18 in one. Naturally, dividing

the script in three parts instead of combining everything in one, will be slightly more
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time-consuming to execute as the scripts must be ran one at a time. However, the quality

of the end result is not affected by this.

In the following sections, the process of reverse modelling the complete bridge is detailed.

Due to slight differences in the method for reverse modelling the box girder, pier columns

and pier foundation, individual sections are dedicated to each bridge element category.

Firstly, the modelling process for the box girder is detailed, then the pier columns and

lastly the pier foundation. Each Dynamo-script is connected to a shared Revit workspace

where all of the reverse modelled elements are combined, as shown in Figure 5.4.

Figure 5.4: The finished reverse model of the complete Dade Bridge in Revit

As the Dynamo-graphs are quite large and complex, it is of no use to simply paste the

nodes from the Dynamo-graphs into the thesis. Instead, to illustrate the work done in

Dynamo, a simplified conceptual algorithm for each reverse modelling method is presented

throughout the text. For the complete, original Dynamo-graphs for each reverse modelling

process, see Appendix B.

5.3.1 Reverse BIM Model - Box Girder

The box girder, as outlined in Figure 5.5, was previously split into 18 segments along its

span length. From each of the 18 boxes, intersection points were calculated in Matlab and

exported to the Dynamo workspace. Even though the Dynamo-scripts for the box girders

are split in two, from box girder segment 1 to segment 9 and box girder segment 10 to

segment 18, the concept remains the same for both scripts, i.e. the modelling method for

box girder segment 5 is the same as the method for box girder segment 15.
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Figure 5.5: The point cloud of the Dade Bridge with its box girder outlined in red

Due to the flattening algorithm which was executed in Matlab (read more about this

in Section 4), the data gathered from Matlab is missing a small part of the point cloud

at the end of each box girder segment, creating an empty gap between each segment.

Further, the cutting algorithm in Section 4 cuts off the start of the point cloud for box

girder segment 1, and the end of box girder segment 18. The reverse modelling process

can thus be divided into two main tasks. First, reverse modelling the main parts from the

intersection points found in Matlab, then, filling in extensions in between the box girders

as well as the start and end where the Matlab algorithm cuts the point cloud due to lack

of quality. The generated reverse model of the box girders from the intersection points,

the infilling extensions and the combined reverse model of the box girder with infillings

and extensions, is shown in Figure 5.6. In the following section, the reverse modelling

processes for the box girder and its extensions are detailed.

Figure 5.6: Screengrab from Revit of the a) extensions, b) box girder segments and c)
combined reverse model of the complete box girder
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5.3.1.1 Main Part

The simplified conceptual algorithm for the main part of each box girder segment is

presented in Figure 5.7. The algorithm is applicable to all of the box girder segments, and

is for all practical purposes a simple copy-paste from segment to segment. The complete

Dynamo-script for the box girders can be found in Appendix B1, while some key details

of the script crucial for the reverse modelling of the box girders, such as the special case

of the intersection point line 5, will be presented in further detail throughout this section.

Import intersection
point data

Organize intersection
point data

Generate points at each
line of intersection points

Generate polygons
by connecting points

Generate solid lofted
between polygons

Export solid to Revit

Create regression line
through intersection points

Place points at
equal intervals

along regression line

IP#5 only

Figure 5.7: Simplified conceptual algorithm for the box girder segments

The general outline of the box girders are first seen when importing the Excel-sheets filled

with the intersection point coordinates for each box girder. Each point is represented

in the sheets by a row with an x-, y- and z-value, which the Dynamo graph gathers

and creates 3D points in space from, based on the given coordinates. These points are

subsequently sorted into groups of 9 in the vertical plane along the span length of the box

girder, as illustrated in Figure 5.8. Since the size of the box girders varies from segment to

segment, the Dynamo-graph is generalised to automatically account for differing amount

of intersection points, and consequently organises the points into the correct amount of
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groups based on the length of the box girder. As can be seen in the Dynamo-graph in

Appendix B1, the script can create everything from 1 to thousands upon thousands of

point groups, depending on the imported intersection point data size.

Figure 5.8: Regrouped intersection points of box girder 9, from Dynamo

After the intersection points are grouped, the Dynamo-graph generates closed polygons

from each group of intersection points along the box girder, as illustrated in Figure 5.9.

A solid is then lofted from polygon to polygon within each box girder, and eventually

exported to the Revit-workspace as a family instance, as illustrated in Figure 5.10. This

process is done for each box girder, and each girder family is named in accordance to its

segment, i.e. the box girder generated from segment 9, is named "Box Girder 9", 10 is

named "Box Girder 10" and so on. Important to note, is that even though the reverse

model of the box girder appears to be shell structures due to the openings at each side,

as seen in Figure 5.10, each box girder segment is actually modeled as a solid, and both

exported and read as solids in Revit.
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Figure 5.9: Closed polygons of box girder 9, from Dynamo

Figure 5.10: The solid of the reverse model of box girder 9, visualised in Dynamo (left)
and exported to Revit (right)

Although the Dynamo-graph is quite straight forward for most of the intersection points,

at intersection point line 5, i.e. the intersection points marking the road crown, varies

considerably in the xy-plane due to the slope from the road centerline to the road edge

(see more in Section 4.1.3). To even out the would-be jagged line between each of these

intersection points, a regression line from the first coordinate to the last coordinate of

the intersection point line 5-group is made, as illustrated in Figure 5.11. New 3D points

are then placed at equal intervals along this line, matching the amount of intersection

points of each box girder segment. This is an important step to generalise the script

to work for all box girder segments, as the box girder segments differ in size, meaning

that the amount of intersection points also vary from segment to segment. The created
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algorithm is dependant on the generation of polygons along the span length of each

segment, making it crucial to match the amount of new 3D points along the regression

line with the original amount of intersection points. If the amount of interval points does

not equal the imported intersection points, it is impossible to generate the polygons of

which the solids are eventually lofted from.

(a) Top-view of interval points at intersection point line 5

(b) 3D view with difference between original points (left) and added interval points (right) at
intersection point line 5

Figure 5.11: Interval point distribution at intersection point line 5, from Dynamo
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5.3.1.2 Extensions

The simplified conceptual algorithm for the box girder extensions is presented in Figure

5.12. The created Dynamo-graph is integrated within the graph for the main part of the

box girder segments, and can be seen in its complete state in Appendix B1. The modelling

process for the extensions varies somewhat depending on whether an infilling extension

or a start- or end-extension is to be modeled, all of which will be detailed within this section.

Extension
category

Group polygons

Loft solid
between polygons

Export solid to Revit

Select outermost points

Generate extended
regression line

Generate points at ends

Generate polygon
between endpoints

Import extension data

Fill Start/end

Figure 5.12: Simplified conceptual algorithm for the box girder extensions
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Fill Extensions

Up until this point, only the main part of the box girders have been modeled. Due to

the flattening of each segment slice, the last intersection point of one box girder does not

equal the first intersection point of the next box girder. Consequently, small gaps are

found in between the main part of each box girder, all of which have to be filled, as shown

in Figure 5.13.

Figure 5.13: Highlighted extension between box girder 8 and 9, visualised in Dynamo

To fill these gaps, the Dynamo-graph collects the last polygon of one box girder and the

first polygon of the next box girder into a combined list, as illustrated in Figure 5.14.

From these polygons, a solid is lofted and subsequently named and exported to the shared

Revit-workspace in the same manner as previously done with the main part of the box

girders.
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(a) Missing gap (b) Grouped polygons

(c) Lofted solid between polygons (d) Finished extension model

Figure 5.14: Modelling process for extension between box girder 8 and 9, visualised in
Dynamo

As the Dynamo-graphs are divided into two files of box girder segments 1-9 and box girder

segments 10-18, a small addition to the script for box girder segments 1-9 has to be made

in order to generate the extension between box girder segment 9 and box girder segment

10. The intersection points of box girder segment 10 are imported to the Dynamo-file for

segments 1-9, however, the main part of box girder 10 is not modeled as a solid. Only

its first polygon is collected, and afterwards put into a list with the last polygon of box

girder 9. A solid is then lofted between these two polygons, creating the infilling extension

between box girder segment 9 and 10.

Start/end Extensions

Box girder segment 1 and 18 was previously cut off due to insufficient manual cutting .

Generating extensions, as highlighted in Figure 5.15, for these box girders is therefore

necessary in order to accurately portray the real Dade Bridge. For the extensions of box

girder segment 1 and 18, i.e. the first and last box girder segment, a different modelling

method is applied. As there are no adjacent box girders to gather extension data from,

the data must be collected from the original scanned 3D point cloud, before the cutting

algorithm is executed in Matlab.
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Figure 5.15: Highlighted extension at start of box girder 1

In order to extend the model as accurately as possible, while also replicating the shape

of the box girder to represent its actual condition, 9 new points are generated in the

Dynamo-graph based on the existing groups of intersection points. As illustrated in Figure

5.16, a straight regression line is generated based on the 5 points closest to the extension

to be made. This is done for all of the 9 intersection points. The lines are then extended

by the distance between the outermost point of the original point cloud, and the outermost

point of the imported intersection points. This value is calculated in the Matlab-script for

both box girder 1 as well as box girder 18 from Section 4. The formula collects the extreme

x-value of the original, uncut and rotated box girder point cloud (maximum or minimum,

depending on whether the box girder is for segment 1 or 18). The absolute value of the

difference between this extreme value, and the closest x-value of intersection point 1, is

then exported to an Excel-sheet which in turn is imported into the Dynamo-graph and

used as the distance of which the generated regression lines are extended. A point is then

placed on the end of the 9 generated regression lines, and subsequently grouped. From this

group of points, a polygon is generated. A list is then created consisting of the generated

polygon and its closest polygon (either the first polygon of box girder segment 1, or the

last of 18). A solid is lofted between these two polygons, named and exported to the

Revit-workspace as a family instance. This is done for both the start- and end-extensions,

and ends up looking like shown in Figure 5.17.
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(a) 5 start points of box girder 1 (b) Generated points at end of extended
regression lines

(c) Grouped polygons from generated points and
first polygon of box girder 1 (d) Lofted solid between grouped polygons

Figure 5.16: Modelling process for extension before box girder 1 and after box girder 18

Figure 5.17: The solid of the finished extension model at start of box girder 1, visualised
in Dynamo (left) and Revit (right)

5.3.2 Reverse BIM Model - Pier Columns

Figure 5.18 outlines the six pier columns which are to be reverse modelled with the use of

Dynamo graphs in this section. A similar concept to that of the reverse modelling for the

box girders is also applied for the pier columns.
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Figure 5.18: The point cloud of the Dade Bridge with its pier columns outlined in red

As with the box girder segments, also the pier columns are missing some data necessary

to accurately portray the actual Dade Bridge in its as-built state. In Section 4, the point

cloud data for the pier columns were cut due to occlusion causing incomplete point clouds

of the piers. For this reason, also the reverse modelling process for the pier columns is

split into two main graphs; the main part, and the top- and bottom- extensions due to

cutting. The finished reverse model of the pier columns which are to be modeled in this

section, along with an exploded view of the main part and the corresponding extensions,

is shown in Figure 5.19.

Figure 5.19: Screengrab from Revit of the a) extensions, b) cut pier columns and c)
combined reverse model of the complete pier columns
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5.3.2.1 Main Part

The simplified conceptual algorithm for the main part of the pier columns is presented in

Figure 5.20 below. The Dynamo-graph, as seen in full in Appendix B2, is applicable for all

of the pier columns, and can in theory be copied and pasted as many times as necessary

depending on the amount of four-sided pier columns to be modeled. The following section

details the reverse modelling process of the main part of the pier columns.

Import intersection
point data

Organize intersection
point data

Generate points from
intersection point data

Generate polygons
between intersection points

Loft solid
between polygons

Export solid to Revit

Figure 5.20: Simplified conceptual algorithm for the main part of the pier columns

As with the main part of the box girders, firstly, the Excel-sheets containing the coordinates

of the calculated intersection points from Section 4 are imported into the Dynamo

workspace. The pier columns are quite similar in shape, i.e. they are all four sided made

up of four lines of intersection points, meaning that the graph for one pier column can

be used for all of the six pier columns, the only difference being the imported input

data. As illustrated in Figure 5.21, from the imported coordinates, 3D points in space are

generated and grouped in the xy-plane along the z-axis, outlining the piers which are to

be generated.
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Figure 5.21: Regrouped intersection points of pier 2, from Dynamo

Subsequently, as seen in Figure 5.22, polygons connecting the points within each of the

aforementioned groups are generated. A solid is then lofted from polygon to polygon

along the z-axis, forming the main part of the pier column. Finally, the solid is named,

a family is created and the generated model is exported to the Revit-workspace at its

corresponding coordinates.
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(a) Closed polygons of pier 2, visualised in Dynamo

(b) The lofted solid of the reverse model of pier 2, visualised in Dynamo (left)
and exported to Revit (right)

Figure 5.22: Reverse modelling process for the main part of pier 2
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5.3.2.2 Extensions

The simplified conceptual algorithm for the pier column extensions shown in Figure 5.23 is

almost the same for both the top- and bottom- extension, the difference being the amount

of points forming the basis of the extended regression line. Due to the relatively large

curvature in the top parts of the piers, fewer points (3) could be selected to form the basis

for the creation of regression lines. The bottom part is straighter in shape, and can use

more points to form the regression lines (5). This can be seen in the full Dynamo-graph

in Appendix B2.
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Extension
category

Select first 5 points Select last 3 points

Import extension data

Generate extended
regression line

Generate points at ends

Generate polygons
between intersection points

Group polygons

Loft solid
between polygons

Export solid to Revit

Bottom Top

Figure 5.23: Simplified conceptual algorithm for the pier column extensions

In Section 4, the top of all six pier columns were cut due to inaccurate segmentation

caused by incomplete point cloud data. The bottom of all of the piers, except for pier 4

which was good enough to keep, were also cut as a result of incomplete scanning data,

likely due to occlusion. As with the box girder, including the cut parts in the reverse

model is crucial in order to accurately create a reverse BIM model of the Dade Bridge in
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its actual state as it were when it was scanned with the 3D laser scanners. The modelling

method for the top and bottom extensions of the piers are quite similar to that of the box

girder, with some alterations to certain details of the Dynamo-graph.

As shown in Figure 5.24, the concept starts out by generating straight regression lines

through the five lowest, and three highest intersection points at each line of intersection

points for the bottom and top extension, respectively. The generation of regression lines

results in four straight lines by best fit in both the top and the bottom part of each

pier (except for the aforementioned pier 4 of which the bottom was not cut, thus not in

need of extension). For the bottom extension, each of these lines are then extended by

the distance between the lowest z-value of the original point cloud of the pier column in

question, and the lowest z-value of the first intersection point, and vice versa for the top.

On the end of each extended regression line, an extension point is placed, forming the

outline of a quadrilateral. The placed points are grouped, and four-sided polygons are

drawn between them. As with the start- and end-extensions of the box girder, also here

the closest polygon from the intersection points of the pier is grouped together with the

newly generated polygon, as outlined in red and green in Figure 5.24. Between these

polygons, a solid is lofted. This is done for both the top and the bottom extension of

the piers, the only difference being that the closest polygon to the generated extension

points is the lowest polygon for the bottom extension, and the upper polygon for the top

extension.
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(a) Selected outermost points of pier 2 (b) Generated points at end of
extended regression lines

(c) Grouped polygons from generated
points, and first and last polygon of
pier 2

(d) Lofted solid between grouped
polygons

Figure 5.24: Modelling process for top and bottom extension for pier 2
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The solid for each pier column is subsequently named, and a family instance for each

element is exported to the Revit-workspace at the given coordinates of the intersection

points. Similar looking to the extensions of all pier columns, the finished reverse model of

the pier column extensions of Pier 2 can be seen in Figure 5.25.

Figure 5.25: The solid of the finished extension models of pier 2, visualised in Dynamo
(left) and Revit (right)

5.3.3 Reverse BIM Model - Pier Foundation

To complete the reverse model, the pier foundation must also be modeled. In the section

of the Dade Bridge, which is analysed in this thesis, only one pier foundation can be

found, as outlined in 5.26.
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Figure 5.26: The point cloud of the Dade Bridge with its pier foundation outlined in red

The pier foundation is of a cylindrical shape, with its width being larger than its height.

The geometry of the point cloud is fairly simple, reproducible by calculating some key

values from Matlab, as detailed in Section 4.3.

Opposite to the method for reverse modelling the box girders and pier columns, the

Dynamo-graph for the pier foundation is not based on intersection points due to its

cylindrical shape. Instead, Matlab is used to divide the foundation into numerous

horizontal slices along its z-axis, and subsequently locate the x- and y- values for the

centerpoint of each slice. The centerpoints are exported to an Excel-sheet along with the

corresponding radius of each slice, as shown in Table 4.8. Notably, the z-values of the

centerpoints are not exported. Instead, the two z-values at the top and bottom of the

original pier foundation point cloud segment are exported. By doing this, the small gap

which would be created between the topmost centerpoint and the highest z-value of the

pier foundation point cloud due to the centerpoint algorithm which flattens each pier

foundation slice to its center, is avoided. Further, this solves the issue of the missing pier

foundation data at the bottom, which is cut in Matlab with the cutting algorithm due to

the incomplete point cloud. In Figure 5.27, a simplified algorithm of the Dynamo-graph

for the reverse modelling of the pier foundation is presented. The full script can be seen

in the Dynamo-graph in Appendix B3.
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Import
characteristic values

Extract x-values Extract y-values Extract max
and min z-values Extract radiuses

Count instances

Evenly distribute z-
values in #count

amount of instances

Generate centrepoints

Generate circles

Loft solid between circles

Export solid to Revit

Figure 5.27: Simplified conceptual algorithm for the pier foundation reverse modelling

When assembling the pier foundation in the Dynamo-graph, the x- and y-values for each

slice with the corresponding radius of the foundation at each centerpoint is imported. The

amount of centerpoints are counted, and the difference between the extreme z-values are

divided into points of equal intervals amounting to the counted value.

At each of the centerpoints, now with x-, y-, and z-values, as shown in Figure 5.28, a

horizontal circle is generated using the calculated radiuses. The radiuses differ slightly

from the lower part of the foundation to the top, with values of approximately 5511,8 mm

to 5523,4 mm respectively. As with the polygons of the box girders and pier columns, a

solid is lofted from circle to circle throughout the pier foundation, then exported to Revit

as a named family element.

With this method, potential damages to the foundation affecting the geometry can be

accurately modeled, as the cross-section can vary from slice to slice throughout the

cylindrical foundation. The maximum difference in radiuses is only approximately 11,6

mm across the almost 3,5 m tall foundation, meaning that the cylindrical geometry of the
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pier foundation is almost perfectly straight. More detailed analysis of each bridge part

can be found in the following Section 6.

(a) Generated centerpoints in equal intervals (b) Generated circles at each centerpoint

(c) The lofted solid of the reverse model of the pier foundation, visualised in Dynamo (left) and
exported to Revit (right)

Figure 5.28: Reverse modelling process for the pier foundation
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5.3.4 Reverse BIM Model - Terrain

Although the complete BIM model of the Dade Bridge provides an accurate representation

of the bridge geometry, in order to form a better understanding of the overall situation on

the site, the bridge should be placed in the correct terrain model. The terrain adjoining

the bridge structure is an important part of a bridge inspection. Landslides, soil erosion,

damage to slope protection, unintentional removal of embankments or fill, flood scouring

and other ground movements can have catastrophic consequences for the bridge structure.

These kind of ground movements are the most common cause of bridge failures or severe

damages on bridge structures [87]. As such changes can be difficult to inspect with the

naked eye, a Digital Terrain Model (DTM) will give an accurate representation of the

ground around the bridge and the maintenance that must be performed as a result of any

damage.

5.3.4.1 Terrain Point Cloud Processing

The terrain was earlier in this thesis classified as noise and subsequently filtered out of

the full point cloud, leaving only the bridge point cloud remaining. In order to generate a

DTM, the terrain point cloud of the bare earth needs to be utilised. The original merged

scan was used to create the DTM under the bridge. Because of the use of a long-range,

terrestrial laser scanner with a defined scanning area and a relatively small amount of

executed scans, the point cloud of the ground was quite deficient, as can be seen in

Figure 3.3. A comprehensive reconstruction of the terrain was needed in order to create a

correct representation of the site. This would likely be avoided by taking advantage of

UAV-mounted laser scanners instead of TLS to collect scan data of the terrain surrounding

the bridge.

Geomagic was used for the processing of the terrain point cloud. From the complete point

cloud of the bridge, the points that did not belong to the terrain was manually deleted.

The terrain that is far away from the geometry of the bridge was also removed not only

because it is irrelevant for inspection, but also because it was deficient and would not

have given a good representation of the reality. After the initial processing, the bounded,

cleaned up point cloud representing the terrain in the immediate area around the Dade

Bridge is created, as shown in Figure 5.29.
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Figure 5.29: Point cloud of terrain model

However, this point cloud does also have some areas which are deficient. Blank areas with

missing points were filled with new points representing the ground. Figure 5.30 show the

supplemented terrain point cloud.

Figure 5.30: Supplemented terrain model

The supplemented terrain point cloud consists of a large number of points. However, a

small portion of the points are sufficient to create an accurate DTM. By downsampling,

the point cloud of the terrain model is reduced to a more suitable amount of points for

terrain regeneration. The downsampled terrain point cloud can be seen in Figure 5.31.
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Figure 5.31: Sampled terrain model

5.3.4.2 Reverse Modelling of Terrain Model

To make a DTM of the terrain under the bridge, the sampled point cloud is imported to

Revit through Excel. In Revit, a topographic surface was generated by using the position

and z-value of each point. The result is an accurate terrain model with contour lines, as

seen in Figure 5.32. The contour lines show the difference in elevation, with each contour

line representing a difference in elevation of one meter.

Elevations on existing terrain are basic data that form the basis for planning, design and

building of infrastructure projects. The elevation data often consists of a quality point

cloud from scanning or measurement data from total station. Terrain scanning can be

done by UAV, plane, helicopter, car or TLS.

This short section describing the process of creating a reverse model of terrain data

acquired from a TLS have shown how easily a laser scan can be used to generate a DTM.

This DTM can be used to discover terrain changes critical to a bridge structure. To have

a greater representation of the surrounding terrain, scanning from the skies, or performing

a full 360° scan should be considered, in combination with more accurate planning of the

scanning positions to fully capture the terrain and not only the bridge.
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(a) Top view
(b) Side view

(c) With bridge reverse model

Figure 5.32: Terrain model, contour lines at every meter
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6 Accuracy Analysis of Reverse BIM Model

Checking consistency in models is an important part of reverse modelling. Without

knowing the consistency and accuracy of the reverse model, the model cannot be trusted

for further use. A consistent model in this context is a model with a geometrical accuracy

when it comes to shape, size, location and direction.

Two different comparison methods are used to find the accuracy of the bridge BIM model,

one visual and one deviation analysis.

The next few sections will show and describe the similarities and differences between the

reverse BIM model and the point cloud, first in a visual matter using Revit and then by

putting numbers on their deviation performing a deviation analysis with Geomagic.

6.1 Visual Comparison

The visual check is performed in Revit. The point cloud is imported via Recap into Revit,

reasoned in Section 1.4.2, and aligned with the BIM model.

The bridge point cloud and BIM model show significant similarity. The BIM model has

the same size and geometry as the existing bridge, represented as the point cloud. The

only place a difference is observed is at the bottom of the columns, where the extension is

done as compensation for the poor scan quality in this area. The geometrical similarities

of the complete bridge can be seen in Figure 6.1.

Figure 6.1: Point cloud and BIM model comparison

In order to perform a more thorough comparison, each part of the bridge needs to be

closer examined. First, the overall accuracy will be presented for both the box girder,

pier columns and pier foundation, and then selected areas with larger deviation will be

analysed.
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6.1.1 Box Girder

The reverse BIM model of the box girders is a good representation of its point cloud, seen

in Figure 6.2.

Figure 6.2: Comparison of box girders

Having a total of 18 boxes, only some representative figures of the BIM model accuracy

will be shown. The results from box girder 9 were presented earlier in this thesis and is

the one being presented with a close-up comparison between the reverse BIM model and

the point cloud, shown in Figure 6.3.

(a) Whole side

(b) Top part of the pier.
(c) Top flange

(d) Bottom part

Figure 6.3: Visual comparison of box girder 9
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All the box girder sides show quite good accuracy. Zooming in even more, show that all

the corners and the outer part (intersection point 3,4 and 6,7, see Figure 4.3), have the

biggest deviation from the point cloud. This will be further explained in Section 6.1.4.

Since one part of box girder 10-18 was missing from the scan, the intersection points

6 and 7 had to be established manually based on geometry, as previously detailed in

4.1.2. Figure 6.4 show how this missing side corresponds to the point cloud and how it

looks compared to the side with a complete point cloud. The created side, show a good

interpretation of the bridge, maybe even more correct than the side modelled based on

the point cloud and the deviation at this part due to geometrical changes.

(a) Side with point cloud

(b) Side with missing point cloud

Figure 6.4: Comparison of missing part in box 10-18
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6.1.2 Pier Column

The substructure is examined in parts, firstly the pier columns, then the pier foundation.

Each pier column is controlled, and some of the typical results will be presented. Since

there are two different pier geometries, i.e. pier column 1, 2, 5, 6 and pier column 3, 4,

each geometry will be presented by itself. Figure 6.5 show the visual comparison of all

the piers.

Figure 6.5: Comparison of the piers

For pier column 1,2,5 and 6, the comparisons show great similarities. Due to these

similarities, only the visual comparison of pier column 2 will be closer examined in this

section. The comparison of pier column 2 is seen in Figure 6.6. Some close-ups in Figure

6.7 also show how good the accuracy is for this pier geometry. The point cloud is laying

right on the BIM models edge for all parts of the pier column, and the extension in the

bottom part has the correct length.
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(a) Whole side

(b) Top

(c) Mid

(d) Bottom

Figure 6.6: Visual comparison of pier column 2
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(a) Top part
(b) Mid part

Figure 6.7: Close-ups of how accurate the BIM model can be

The mid-span piers, pier column 3 and 4, have a different geometry than the piers in the

outer edge of the bridge. The geometry of these piers have a changing cross-section and

are harder to perform reverse modelling on. Figure 6.8 shows the short side of pier column

4, and Figure 6.9 shows the wide side. The short side has no change in geometry, which

cause the accuracy of the wide side of the BIM model having perfectly fitting edges with

the point cloud. However, the accuracy on the short side of the mid-span piers are not

satisfying. The increasing cross-section on the pier wide side is having an impact on the

feature fitting and reverse modelling of this part. The intersection points are not accurate

enough, and as a consequence, the line between them gets wavy, Figure 6.9 b.

In order to fix the inaccuracy of the mid-span of pier columns 3 and 4, a couple of different

measures could have been done. In Section 4 the pier could have been divided into smaller

slices. Using smaller slices could have contributed to getting a smaller distance between

the intersection points and in this way have the undulating sides smoothed out. Another

method could have been to change the way the line between intersection points in Section

5.3 was created. It is possible to create regression lines between the intersection points,

and then place new points along the generated regression line in equal intervals. This

would guarantee smooth curves in the reverse BIM model. However, this method would
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not accurately model possible geometrical errors, and would thus not be usable for bridge

inspection. The wavy BIM model is therefore deemed to be a more usable result than a

regression-based method.

(a) Whole side

(b) Side

(c) Bottom

Figure 6.8: Visual comparison of pier column 3 and 4, short-side
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(a) Whole pier

(b) Side

(c) Bottom

Figure 6.9: Visual comparison of pier column 3 and 4, wide-side
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6.1.3 Pier Foundation

Other than the bridge pier columns, the foundation under the mid-span pier columns is

also a part of the substructure. The accuracy of the mid-span foundation can be seen in

Figure 6.10. Both the height and the circle have what looks like a perfect fit with a visual

conception.

(a) Top view

(b) Close-up, top view

(c) Side view

Figure 6.10: Visual comparison of mid-span foundation
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6.1.4 Recurring Accuracy Errors

Some of the deviations between the BIM model and point cloud is caused by an insufficient

method of feature fitting and 3D modelling, and are inaccuracies which are repeated

several times. These deviations will be presented in this section.

Close-ups at the most vulnerable places can show errors in the reverse 3D BIM model.

Although the following figures present areas where the reverse model is not perfectly

accurate with the point cloud, these issues does not necessarily provide an overall

representation of the model, as will be clarified in the following deviation analysis in

Section 6.2. However, the figures can give a good indication of improvements in areas

where the feature fitting and reverse modelling of the point cloud is insufficient.

The method used for reverse modelling of both box girder and pier columns are not able

to model rounded edges. When creating the 3D BIM model, a straight line between

intersection points make up the model, and this modelling method will only create sharp

corners. Corners, where the point cloud have the largest radius, is where the deviation

is at is biggest. In Figure 6.11, the deviation in a typical corner for a box girder can be

seen in (a), and in (b), a corner of a pier column is seen from the top. It is apparent

that the intersection points which are generated from regression lines through each side of

the four-sided pier column, is a cause of inaccuracy due to the rounded edges of the pier

column point cloud.
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(a) Box girder, intersection 2 and 8. (b) Pier seen from top

Figure 6.11: Deviation in rounded corners

Corners are geometrical changes where the BIM model accuracy is not at is best, but

other geometrical changes can also be hard to perfectly remodel. In Figure 6.12, two

geometrical changes can be seen, (a) shows the outer part of the box girder and (b) the

top part of a pier. None of them are easily remodelled and will cause deviation in the

BIM model. I.e. the section of the box girder presented in Figure 6.12(a) is impossible to

accurately model using only two intersection points as was done in this reverse modelling

process.
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(a) Box girder, outer part

(b) Pier column, top part

Figure 6.12: Deviation at geometrical changes

Another cause of inaccuracies is a noisy point cloud. A noisy scan data will be seen as

a visual deviation. A good example of this is a part of the pier foundation where noisy

data are causing a deviation between the BIM model and the point cloud, see Figure 6.13.

This uneven line of points looks like a deviation from a distance. However, zooming in

reveals that the line consisting of the most points are actually laying closer to the BIM

model edge. This kind of deviation is only an analysis problem and are not causing actual

deviations in the BIM model.
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Figure 6.13: A noisy point cloud affecting the comparison accuracy of the pier foundation

6.2 Deviation Analysis

A deviation analysis to compare the BIM model with the point cloud is executed in

the inspection software Geomagic. The model is exported from Revit, using the CAD

format, ACIS (.sat), and imported in as reference data in Geomagic, the point cloud is the

measured data. In Geomagic a coloured deviation map is created using the function "3D

compare", and 2D comparison is used to see the deviation within specific cross-sections.

The complete deviation analysis report is attached in Appendix C.

A coloured deviation map is a graphical depiction of the deviation between two objects,

in this case, the point cloud and the reverse BIM model of the Dade Bridge. The 3D

compare function will measure how the surface of the parts differ between the reference

and measured data by searching for the deviation between them. The coloured deviation

map will display blue data which indicates measured data under or behind the reference
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data, yellow to red areas indicate the measured data is above or in front of the reference

data. Green data is the data inside the chosen tolerance range.

The as-built BIM model should be as close to the built structure as possible. The bridge

design manual, N400 of NPRA, state that manufacturing and build tolerances is given

in the manual, R762: Standard specification text for bridges and quays [24]. Chapter

84 of the R762 manual includes structural parts of concrete, a great base for setting

tolerance level for concrete bridges. If the reverse BIM model is used for maintenance or

remodelling in Norway, the BIM model must satisfy the tolerance level of this manual.

The manual states that the geometrical tolerances are linked to the safety, durability,

usage characteristics, and the structures aesthetic appearance [14].

The tolerance classes for different structural components are set to class B if there are no

special project specifications. What this means for the different structural components

are given in Table 6.1. Table 6.1 is a reproduction of relevant content in table 84-1 and

84-2 from R762 put together. These tolerance levels are used to perform the deviation

control for the BIM model in this thesis.

Table 6.1: Overall structural tolerance [14]

Structural component Tolerance level
Foundations ±100mm

Piers ±30mm
Box girder ±30mm

The deviation map of the complete bridge BIM model can be seen in Figure 6.14. The

tolerance level of the complete bridge is set to ±30mm, similar to the tolerance for the

main parts of the bridge. With ±30mm tolerance level, most of the bridge display a green

colour, indicating data inside the tolerance.

Table 6.3 contains the statistics of the 3D comparison. The two average values of positive

and negative gap distance (±Avg) are a good indication on the accuracy of the reverse

BIM model. +Avg is the average deviation of the points in front or over the model, while

-Avg is the average deviation of the points behind or under the reverse model. Thus,

the average of these two values gives the overall average deviation. For the complete

bridge the +Avg(12,2907mm) and the -Avg (-11,5196) results in an average gap distance

of 11,9mm, i.e. far within the set tolerance level. Further, from the analysis it is found
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that approximately 97% of the data is within the tolerance level of 30mm.

The deviation map and the statistics also reveals some parts of the model having a greater

gap distance than the accepted tolerance, mainly at the pier extensions and at the missing

side of half of the box girders. These deviations are for the most part connected to errors

in the point cloud, and caused by the railing not being a part of the reverse modelling in

this thesis. These errors interfere with the actual accuracy of the reverse model, as the

missing points increases the average deviation values.

The percentage of measured data under or behind the average is approximately the same

as the data laying over or in front of the model. This even distribution indicates that the

alignment of the BIM model and the point cloud is accurate.

In the next few sections, each part of the bridge will be compared, and the results will be

interpreted.

An explanation of the different statics are presented in Table 6.2:

Table 6.2: Explanation of statistics [15]

Avg The arithmetic mean of all the gap distances.
+Avg The mean of all the positive gap distances.
-Avg The mean of all the negative gap distances.
Std.Dev Standard deviation of all the gap distance values.
Within Tol. (%) The percentage of points that have a gap distance within the defined

tolerance.
Beyond Tol. (%) The percentage of points that have a gap distance beyond the defined

tolerance.
Over Avg (%) The percentage of points within tolerance that are greater average.
Under Avg (%) The percentage of points within tolerance that are less average.
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Figure 6.14: Deviation map of the complete bridge

Table 6.3: Deviation statics of the complete bridge

Avg. 0,5772 mm
+Avg. 12,2907 mm
-Avg. -11,5196 mm

Std. Dev. 20,4472 mm
Within Tol.(%) 97,4283
Beyond Tol.(%) 2,5717
Over Avg(%) 47,9193
Under Avg(%) 49,5090

6.2.1 Box Girder

A 3D analysis of the superstructure, Figure 6.15, show the deviation map of the bridge

box girders, and Table 6.4 its statistics. Most of the measured data lay within the

tolerance level and are displayed in green. The average deviation is calculated to 1,3mm,

and approximately 97% of the BIM model has an accepted gap distance between the
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model and the point cloud. The average gap distance calculated from the ±Avg values is

10,4283mm, i.e. well within the set tolerance level.

A low standard deviation indicates values close to the mean value and an accurate model.

In Table 6.4 of the box girders, the standard deviation is 20mm, almost the same as for

the complete bridge (20.45mm) and inside the tolerance level of 30mm.

Figure 6.15: Deviation map of the box girders

Table 6.4: Deviation statics of the box girders

Avg. 1,3340 mm
+Avg. 11,5368 mm
-Avg. -9,3398 mm

Std. Dev. 19,9553 mm
Within Tol.(%) 96,7414
Beyond Tol.(%) 3,2586
Over Avg.(%) 47,2546
Under Avg.(%) 49,4868

In order to better estimate the tolerance level and analyse the impact that the deviations
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will cause, several comparisons of a single box girder must be made. A randomly picked

box girder segment is analysed, and its result can be seen in the following figures and

tables.

Figure 6.16 shows the deviation map of box segment 5. The analysed area is the part of

the BIM model corresponding to the point cloud segment of Box 5, including the main

part of the BIM box girder segment and part of the extensions on both sides. Most of

the segment lies in the tolerance level of 30mm, displaying a green colour. The largest

deviations can be seen in the middle and the outer edge of the top flange. Both of these

areas are positions where a bridge railing was originally placed but was cut out of the point

cloud during the early point cloud processing steps since the railing is not of structural

importance. Thus, it is reasonable to consider these areas of the point cloud as irrelevant

for the box girder comparison.

In Table 6.5, as well as in the histogram in Figure 6.17, key deviation statistics for the

accuracy analysis of box girder segment 5 is presented.

The average gap distance calculated from the ±Avg values is 6,1410mm, i.e. much lower

than the similar value for the complete box girder. The standard deviation for box girder

5 is also lower than for the complete box girder, meaning that the deviations in general

lies closer to the average and that the fit between the reference and measured data is

better for this segments than some of the other segments.

The histogram in Figure 6.17 is a normal distribution curve (Gauss’ Bell curve) of the

deviations, showing the average value in the centre, and 87% of the points laying within

±1 standard deviation of 11,6mm. With a tolerance of 30mm, over 96% the measured

data will have an accepted gap distance.
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Figure 6.16: Deviation map of box girder segment 5

Table 6.5: Deviation statistics of box girder segment 5

Avg. 0,4294mm
+Avg. 6,9769mm
-Avg. -5,3051mm

Std.Dev. 11,6015mm
Within Tol. (%) 95,2279
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Figure 6.17: Histogram of the variation in deviation for box girder segment 5, with
standard deviation indicators

Figure 6.18 shows a 2D comparison of the one half of box girder 5 with the most deviations.

(a) shows the real gap distance, while in (b) its corresponding distance indicators are

multiplied by 10 to provide a better visualisation.

Other than deviations caused by noise coming from the railing point cloud, two of the

three biggest gap distance lies on the top flange of the box girder. In general, the top

flange is responsible for a big part of the points outside the tolerance level. The reason for

this is a combination of less accurate scan data from uneven pavement and the slightly

less accurate feature fitting caused by the small angle in intersection point 5, see Figure

4.3, both described in Section 4.

The biggest gap distance, except the position of railings, is at the rounded corners which

are not perfectly modeled, as the generated intersection points create sharp corners instead

of rounded, as remarked in the visual analysis previously done in Revit. A deviation of

141,5mm at intersection point 8 occurs for this reason. However, the deviation is confined
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to a small area and will not be of a significant impact for the rest of the model.

It is important to note that the presented gap differences display the single biggest gap

differences in the model, and that approximately 95% of the data is well within the

accepted level of tolerance, see Table 6.5.
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(a) actual deviation

(b) 10x actual deviation

Figure 6.18: 2D analysis of box girder segment 5
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6.2.2 Pier Column

The deviation map, Figure 6.19 and the deviation statics, Table 6.6, displays that the

reverse BIM model of the pier columns generally lies inside the tolerance level of ±30mm,

see Table 6.1. The average deviation of the pier column lies approximately 1mm under or

behind the measured data, unlike the average deviation for the complete bridge and the

box girder both having the average deviation laying over or beside the measured data.

The averages are all close to zero and the different sign have little impact. Taking the

calculated average from the positive and negative gap distances, the value 7,6032mm is

indicating a higher overall accuracy for the piers than for the box girders.

7,6mm average deviation is considered a very good approximation, and with a standard

deviation at 18,6mm, the reverse BIM model of the pier columns lies closer to the point

cloud data than that of the box girder. The other statistics in Table 6.6 supports this

statement, by generally having values closer to zero deviation.

Figure 6.19: Deviation map of the pier columns
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Table 6.6: Deviation statics of the pier columns

Avg. -1,0483mm
+Avg. 6,5787mm
-Avg. -8,6276mm

Std. Dev. 18,5816mm
Within Tol.(%) 92,4221
Beyond Tol.(%) 7,5779
Over Avg.(%) 46,3234
Under Avg.(%) 46,0987

A close-up of pier column 2 and 5, see Figure 6.20, reveals the bottom part of pier column

2 to be significantly worse than that of 5, i.e. the bottom extension of the pier columns

are the most critical area of reverse modelling. This bottom extension is the only area of

the slim pier columns (2, 3, 5, 6) where the data consistently lies outside the accepted

tolerance level. In Figure 6.19, pier column 2 (to the right) is one of the two piers showing

the largest deviations in the extension at the bottom of the piers.

Table 6.7 shows that pier column 2 has a significantly bigger standard deviation than pier

column 5, likely caused by a more accurate lower extension. This extension is a trouble

area for all the pier columns, and creates disruptions in the deviation statistics. The

calculated average value of gap distance for pier column 2 is 9,5212mm, i.e it is increasing

the overall average for all the piers combined, while pier column 5 has an average of

7,5564mm, decreasing the overall value.

The histogram for pier column 2, presented in Figure 6.21, shows the distribution of gap

distance. With the standard deviation at 15,6mm, approximately 84% of the points lay

within ±1 Std.Dev. and almost 97% of the compared points lay within the tolerance

range. It is clear that most of the data have a good fit and that most of the remaining

three percent outside the tolerance is caused by inaccuracies in the bottom part extension.
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Figure 6.20: Deviation map of pier column 2 (left) and 5 (right)

Table 6.7: Deviation statistics of pier column 2 and 5

Pier 2 Pier 5
Avg. -0,6589mm 1,767mm
+Avg. 8,4657mm 8,3505mm
-Avg. -10,5767mm -6,7622mm

Std.Dev. 15,5623mm 11,2753mm
Within Tol. (%) 96,8634 96,8252
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Figure 6.21: Histogram of the variation in deviation for pier column 2, with standard
deviation indicators

A 2D comparison analysis for pier column 2 is carried out in xy-direction in the cross-

section slice shown in Figure 6.22. The 2D comparison in Figure 6.23, show a pier that

is well within the set tolerance range, except for the corners. As described in the visual

comparison section, the method of reverse modelling in this thesis does not model the

rounded corners. In the 2D analysis, the largest gap differences are found in the corners

and are the only place where the 2D analysis of the pier BIM model does not satisfy the

tolerance level of ±30mm. The gap distance in the corner is 48,85mm.

In addition to the largest gap distance in the corner, four more gap distances are displayed

in the 2D comparison figures, one at each side of the pier column. These gap distances do

not reveal any large local deviation, but are deviations caused by the alignment of the

reference and measured data. The deviations on opposite sides almost cancel each other

out. With a slightly different positioning at the assembly of the bridge, the fit would be

almost perfect in these areas.
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Figure 6.22: Position of 2D analysis for Pier 2
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(a) Actual deviation

(b) 10x deviation

Figure 6.23: 2D analysis of Pier 2
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As the Dade Bridge has two different pier column geometries, also the deviation analysis

of the mid-span piers (pier column 3 and 4) is presented. The deviation map of pier

column 4 in Figure 6.24, gives the same deviation result as discovered with the visual

comparison. A large portion of the pier short-side has deviation outside the tolerance

level. Deviation both over and under the tolerance level in such a big scale as seen in the

deviation map, indicate the wavy side discussed in Section 6.1.2.

Despite the short side of pier column 4 showing large deviations, the statistics, Table

6.8 and histogram of Figure 6.25, show that a larger portion of the measured data lies

close to the BIM model. The calculated average is 6,9437mm, and the standard deviation

is 14,3mm, are smaller than for pier column 2, and the histogram shows a much higher

collection of points close to the average deviation. The proportion of pier column 4 within

±1 standard deviation is 87%, i.e. higher than that of Pier 2. However, the amount

of points within the tolerance is slightly lower at 93,4%. This mean there are a higher

number of points close to the average deviation, but that some large deviation is found to

be outside the tolerance level.

Figure 6.24: Deviation map of pier column 4
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Table 6.8: Deviation statistics of pier column 4

Avg. 0,9607mm
+Avg. 7,8885mm
-Avg. -5,9988mm

Std.Dev. 14,3229mm
Within Tol. (%) 93,4015

Figure 6.25: Histogram of the variation in deviation for pier column 4, with standard
deviation indicators

The 2D analysis of pier column 4 shows much of the same results as the 3D analysis did.

The 2D analysis is performed at the cross-section highlighted in Figure 6.26. At this

position, the measured data is laying on the outside of the BIM model. This is clearly

shown in the 2D analysis in Figure 6.27. The two short sides of the pier column are

displaying a deviation of approximately 80mm, over 2,5 times as large as the maximum

accepted deviations of 30mm.

Because of the slight misalignment discussed earlier, the gap difference for the wide side

of pier column 4 have the same problem as for pier column 2. A more accurate assembly
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of the pier would have close to zeroed out the gap distance on the wide side.

The gap distance in the corner indicates less rounded corner for these mid-span piers than

for the end piers. This is the same problem, but a smaller radius on the rounded corner is

resulting in a smaller gap distance between the reverse BIM model and the point cloud.

Figure 6.26: Position of 2D analysis for Pier 4
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(a) Actual deviation

(b) 10x deviation

Figure 6.27: 2D analysis of pier column 4
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6.2.3 Pier Foundation

The pier foundation have a tolerance level at ±100mm. The results from the deviation

map, Figure 6.28, and deviation statics, Table 6.9, indicates that the accuracy level is far

within this requirement with a calculated average gap distance of 9,4574mm. The results

are showing quite similar statistics as for the other bridge parts, with a standard deviation

at 16,2mm and approximately 97% of the points within a gap distance of 30mm. 99,8% of

the measured data is within the tolerance level for foundations at ±100mm. The 0,2% of

measured data outside of the tolerance range is likely a small point cluster of noise which

was not removed in the preprocessing phase.

Figure 6.28: Deviation map of pier foundation

Table 6.9: Deviation statistics of pier foundation

Avg. 0,7124mm
+Avg. 11,1199mm
-Avg. -7,7949mm

Std.Dev. 16,188mm
Within Tol. (%) 99,8



152 6.2 Deviation Analysis

Figure 6.29: Histogram of the variation in deviation for the pier foundation, with
standard deviation indicators

The 2D comparison of the foundation reveals one part where the gap distance is bigger

than for the rest of the foundation. The largest gap distance in this area is 49,5mm. Based

on the knowledge of the feature fitting of this cylindrical foundation, it is safe to say that

the BIM model is a perfectly round circle. The area with the deviation is the same as

discovered and showed in Figure 6.13, and caused by a noisy scan data. The noise cause

some deviation in the analysis, but the reverse modelling method creates a very good

approximation of the real bridge pier foundation.
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(a) Analysis position

(b) Actual deviation

(c) 10x deviation

Figure 6.30: 2D analysis of the pier foundation
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6.3 Summary of Accuracy Analysis

Overall, the accuracy analysis shows quite promising results. Some deviations are larger

than the accepted tolerance level for the specific bridge part. However, the geometry is

identical, and approximately 97% of the reverse BIM model lies within ±30mm deviation.

The largest deviations can be found in the parts of the BIM model where an extension is

performed, and are not representative for the feature fitting and reverse BIM modelling.

A complete 3D scan of a bridge without occlusions or sources of noise would eliminate the

deviations at the extended parts and would result in an even more accurate BIM model.

The average overall deviation of the reverse model of the Dade Bridge is found to be just

11,9mm, i.e. well within the set tolerance levels for concrete bridges in Norway. Moreover,

the deviation analysis is negatively affected by a small number of larger deviations due

to an incomplete point cloud, meaning that the overall accuracy is even better than the

values which is presented in this section.
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7 Conclusion and Prospect

In this master’s thesis, the process of reverse modelling a physical structure and its

immediate terrain to a digital, 3D BIM model based on point clouds gathered from

terrestrial 3D laser scanners has been detailed. State-of-the-art BIM software and data

collection methods were implemented, resulting in an automatic process of generating

an as-built, reverse 3D BIM model of the box girder bridge "Dade Bridge" in Chuxiong,

China.

By automating the reverse modelling method, the cost and time to develop as-built

BIM models are significantly reduced compared to manual reverse modelling, while also

providing a highly accurate reverse BIM model. In the proposed modelling method,

several new technologies within the AEC-industry have been used for the creation of a

reverse bridge model. A digital, 3D reconstruction of a physical bridge was generated

using a combination of 3D laser scanners (Leica Scanstation P50), point cloud processing

software (Geomagic Control X), BIM software (Revit) and algorithms from both numerical

(Matlab) and visual (Dynamo) programming software with parametric capabilities.

The scan data collected with the TLS was initially merged in Matlab using an improved

ICP algorithm based on k-d tree data structure. Subsequently, the merged point cloud

of the superstructure and substructure were segmented into three structural parts;

box girders, pier columns and a pier foundation. Each structural part was further

segmented into smaller point clouds, representing single piers, sections of box girders

and a standalone pier foundation. Advanced algorithm scripting was successfully used to

extract the characteristic parameters of the aforementioned point cloud segments, and

visual programming software was subsequently used to generate the reverse model based

on the extracted data from the feature fitting algorithm. Lastly, the generated reverse

model of the bridge was exported to a BIM software along with a reverse model of its

immediate terrain, also generated from point cloud data from the aforementioned TLS.

An accuracy analysis is used to check the consistency of the BIM model. The accuracy

analysis of the reverse model in comparison to its reference point cloud indicates promising

results regarding the overall accuracy of the generated geometry. Approximately 97% of

the complete reverse BIM model lies within a tolerance of ±30 mm, while the average
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overall deviation is only 11,9 mm. The actual accuracy level is in reality even better than

these numbers indicate, as large deviations occur where the point cloud is missing which in

turn increases the average deviation values. From the accuracy analysis, it is apparent that

the geometrical similarities between the reverse 3D model and the scanned structure are

substantial, only showing deviation outside the set tolerance level at especially vulnerable

positions with quickly changing geometry as well as positions with occluded point cloud

data.

The proposed method of reverse modelling shows promising results with a great possibility

for adaption to different bridge structures and similar structural shapes. Automating the

process of developing as-built BIM models will improve the inspection method and possibly

increase the safety of the huge amount of bridges around the world. It is apparent that

reverse engineering has a promising future within the AEC-industry, not only providing

digital construction information for ageing structures, but also as an integral part of an

improved inspection method.

Although the proposed reverse modelling method in this thesis results in a highly accurate

digital representation of a physical structure, future studies should be done to improve the

method and reduce the margin of error even further. Some key topics to further improve

the proposed reverse modelling method are:

• Enhanced building information by integrating characteristic properties within the

generated solids such as, but not limited to: material properties, inspection history

and expected service life.

• Improving the proposed automated process of cutting occluded scan data.

• Develop a more sophisticated extension algorithm to improve the accuracy of the

extension models.

• Improving how the algorithm copes with geometrical changes.
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file:///C:/Users/Eier/Desktop/Matlab master/happy ICP/html/ICPs.html 1/15

Contents

ICP

ICP function

ICP

clc; 
clear all 
close all 
 
 
A=load('A.txt'); 
B=load('B.txt'); 
A=A(:,1:3); 
B=B(:,1:3); 
 
figure(1) 
scatter3(A(:,1),A(:,2),A(:,3),'.y') 
axis equal 
 
figure(2) 
scatter3(B(:,1),B(:,2),B(:,3),'.b') 
axis equal 
 
figure(3) 
scatter3(A(:,1),A(:,2),A(:,3),'.y') 
hold on 
scatter3(B(:,1),B(:,2),B(:,3),'.b') 
axis equal 
 
D=A'; 
M=B'; 
n=10; 
[Ricp, Ticp, ER, t] = icp(M, D, n, 'Matching', 'kDtree'); 
n=size(D,2); 
Dicp = Ricp * D + repmat(Ticp, 1, n); 
Dicp=Dicp'; 
fid=fopen('C:\Users\Eier\Desktop\Matlab master\happy ICP\K.txt','w'); 
for i=1:size(Dicp,1) 
        fprintf(fid,'%.4f %.4f %.4f\r\n',Dicp(i,1),Dicp(i,2),Dicp(i,3)); 
end
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ICP function

% Jakob Wilm (2020). Iterative Closest Point (https://www.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point),
% MATLAB Central File Exchange. Retrieved June 10, 2020. 
 
function [TR, TT, ER, t] = icp(q,p,varargin) 
% Perform the Iterative Closest Point algorithm on three dimensional point
% clouds.
%
% [TR, TT] = icp(q,p)   returns the rotation matrix TR and translation
% vector TT that minimizes the distances from (TR * p + TT) to q.
% p is a 3xm matrix and q is a 3xn matrix.
%
% [TR, TT] = icp(q,p,k)   forces the algorithm to make k iterations
% exactly. The default is 10 iterations.
%
% [TR, TT, ER] = icp(q,p,k)   also returns the RMS of errors for k
% iterations in a (k+1)x1 vector. ER(0) is the initial error.
%
% [TR, TT, ER, t] = icp(q,p,k)   also returns the calculation times per
% iteration in a (k+1)x1 vector. t(0) is the time consumed for preprocessing.
%
% Additional settings may be provided in a parameter list:
%
% Boundary
%       {[]} | 1x? vector
%       If EdgeRejection is set, a vector can be provided that indexes into
%       q and specifies which points of q are on the boundary.
%
% EdgeRejection
%       {false} | true
%       If EdgeRejection is true, point matches to edge vertices of q are
%       ignored. Requires that boundary points of q are specified using
%       Boundary or that a triangulation matrix for q is provided.
%
% Extrapolation
%       {false} | true
%       If Extrapolation is true, the iteration direction will be evaluated
%       and extrapolated if possible using the method outlined by
%       Besl and McKay 1992.
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%
% Matching
%       {bruteForce} | Delaunay | kDtree
%       Specifies how point matching should be done.
%       bruteForce is usually the slowest and kDtree is the fastest.
%       Note that the kDtree option is depends on the Statistics Toolbox
%       v. 7.3 or higher.
%
% Minimize
%       {point} | plane | lmaPoint
%       Defines whether point to point or point to plane minimization
%       should be performed. point is based on the SVD approach and is
%       usually the fastest. plane will often yield higher accuracy. It
%       uses linearized angles and requires surface normals for all points
%       in q. Calculation of surface normals requires substantial pre
%       proccessing.
%       The option lmaPoint does point to point minimization using the non
%       linear least squares Levenberg Marquardt algorithm. Results are
%       generally the same as in points, but computation time may differ.
%
% Normals
%       {[]} | n x 3 matrix
%       A matrix of normals for the n points in q might be provided.
%       Normals of q are used for point to plane minimization.
%       Else normals will be found through a PCA of the 4 nearest
%       neighbors.
%
% ReturnAll
%       {false} | true
%       Determines whether R and T should be returned for all iterations
%       or only for the last one. If this option is set to true, R will be
%       a 3x3x(k+1) matrix and T will be a 3x1x(k+1) matrix.
%
% Triangulation
%       {[]} | ? x 3 matrix
%       A triangulation matrix for the points in q can be provided,
%       enabling EdgeRejection. The elements should index into q, defining
%       point triples that act together as triangles.
%
% Verbose
%       {false} | true
%       Enables extrapolation output in the Command Window.
%
% Weight
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%       {@(match)ones(1,m)} | Function handle
%       For point or plane minimization, a function handle to a weighting
%       function can be provided. The weighting function will be called
%       with one argument, a 1xm vector that specifies point pairs by
%       indexing into q. The weighting function should return a 1xm vector
%       of weights for every point pair.
%
% WorstRejection
%       {0} | scalar in ]0; 1[
%       Reject a given percentage of the worst point pairs, based on their
%       Euclidean distance.
%
% Martin Kjer and Jakob Wilm, Technical University of Denmark, 2012 
 
% Use the inputParser class to validate input arguments. 
inp = inputParser; 
 
inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3); 
inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3); 
 
inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5); 
 
inp.addParamValue('Boundary', [], @(x)size(x,1) == 1); 
 
inp.addParamValue('EdgeRejection', false, @(x)islogical(x)); 
 
inp.addParamValue('Extrapolation', false, @(x)islogical(x)); 
 
validMatching = {'bruteForce','Delaunay','kDtree'}; 
inp.addParamValue('Matching', 'bruteForce', @(x)any(strcmpi(x,validMatching))); 
 
validMinimize = {'point','plane','lmapoint'}; 
inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize))); 
 
inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3); 
 
inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3); 
 
inp.addParamValue('ReturnAll', false, @(x)islogical(x)); 
 
inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3); 
 
inp.addParamValue('Verbose', false, @(x)islogical(x)); 
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inp.addParamValue('Weight', @(x)ones(1,length(x)), @(x)isa(x,'function_handle')); 
 
inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1); 
 
inp.parse(q,p,varargin{:}); 
arg = inp.Results; 
clear('inp'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Actual implementation 
 
% Allocate vector for RMS of errors in every iteration. 
t = zeros(arg.iter+1,1); 
 
% Start timer 
tic; 
 
Np = size(p,2); 
 
% Transformed data point cloud 
pt = p; 
 
% Allocate vector for RMS of errors in every iteration. 
ER = zeros(arg.iter+1,1); 
 
% Initialize temporary transform vector and matrix. 
T = zeros(3,1); 
R = eye(3,3); 
 
% Initialize total transform vector(s) and rotation matric(es). 
TT = zeros(3,1, arg.iter+1); 
TR = repmat(eye(3,3), [1,1, arg.iter+1]); 
 
% If Minimize == 'plane', normals are needed
if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals)) 
    arg.Normals = lsqnormest(q,4); 
end 
 
% If Matching == 'Delaunay', a triangulation is needed
if strcmp(arg.Matching, 'Delaunay') 
    DT = DelaunayTri(transpose(q)); 
end 
 
% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3)
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if strcmp(arg.Matching, 'kDtree') 
    kdOBJ = KDTreeSearcher(transpose(q)); 
end 
 
% If edge vertices should be rejected, find edge vertices
if arg.EdgeRejection 
    if isempty(arg.Boundary) 
        bdr = find_bound(q, arg.Triangulation); 
    else 
        bdr = arg.Boundary; 
    end
end 
 
if arg.Extrapolation 
    % Initialize total transform vector (quaternion ; translation vec.) 
    qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)]; 
    % Allocate vector for direction change and change angle. 
    dq = zeros(7,arg.iter+1); 
    theta = zeros(1,arg.iter+1); 
end 
 
t(1) = toc; 
 
% Go into main iteration loop
for k=1:arg.iter 
 
    % Do matching 
    switch arg.Matching 
        case 'bruteForce' 
            [match mindist] = match_bruteForce(q,pt); 
        case 'Delaunay' 
            [match mindist] = match_Delaunay(q,pt,DT); 
        case 'kDtree' 
            [match mindist] = match_kDtree(q,pt,kdOBJ); 
    end 
 
    % If matches to edge vertices should be rejected 
    if arg.EdgeRejection 
        p_idx = not(ismember(match, bdr)); 
        q_idx = match(p_idx); 
        mindist = mindist(p_idx); 
    else 
        p_idx = true(1, Np); 
        q_idx = match; 
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    end 
 
    % If worst matches should be rejected 
    if arg.WorstRejection 
        edge = round((1-arg.WorstRejection)*sum(p_idx)); 
        pairs = find(p_idx); 
        [~, idx] = sort(mindist); 
        p_idx(pairs(idx(edge:end))) = false; 
        q_idx = match(p_idx); 
        mindist = mindist(p_idx); 
    end 
 
    if k == 1 
        ER(k) = sqrt(sum(mindist.^2)/length(mindist)); 
    end 
 
    switch arg.Minimize 
        case 'point' 
            % Determine weight vector 
            weights = arg.Weight(match); 
            [R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx)); 
        case 'plane' 
            weights = arg.Weight(match); 
            [R,T] = eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx)); 
        case 'lmaPoint' 
            [R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx)); 
    end 
 
    % Add to the total transformation 
    TR(:,:,k+1) = R*TR(:,:,k); 
    TT(:,:,k+1) = R*TT(:,:,k)+T; 
 
    % Apply last transformation 
    pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); 
 
    % Root mean of objective function 
    ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx)); 
 
    % If Extrapolation, we might be able to move quicker 
    if arg.Extrapolation 
        qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)]; 
        dq(:,k+1) = qq(:,k+1) - qq(:,k); 
        theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1)))); 
        if arg.Verbose 
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            disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]); 
        end 
        if k>2 && theta(k+1) < 10 && theta(k) < 10 
            d = [ER(k+1), ER(k), ER(k-1)]; 
            v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))]; 
            vmax = 25 * norm(dq(:,k+1)); 
            dv = extrapolate(v,d,vmax); 
            if dv ~= 0 
                q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1)); 
                q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4)); 
                qq(:,k+1) = q_mark; 
                TR(:,:,k+1) = quat2rmat(qq(1:4,k+1)); 
                TT(:,:,k+1) = qq(5:7,k+1); 
                % Reapply total transformation 
                pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); 
                % Recalculate root mean of objective function 
                % Note this is costly and only for fun! 
                switch arg.Matching 
                    case 'bruteForce' 
                        [~, mindist] = match_bruteForce(q,pt); 
                    case 'Delaunay' 
                        [~, mindist] = match_Delaunay(q,pt,DT); 
                    case 'kDtree' 
                        [~, mindist] = match_kDtree(q,pt,kdOBJ); 
                end 
                ER(k+1) = sqrt(sum(mindist.^2)/length(mindist)); 
            end 
        end 
    end 
    t(k+1) = toc; 
end 
 
if not(arg.ReturnAll) 
    TR = TR(:,:,end); 
    TT = TT(:,:,end); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [match mindist] = match_bruteForce(q, p) 
    m = size(p,2); 
    n = size(q,2); 
    match = zeros(1,m); 
    mindist = zeros(1,m); 
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    for ki=1:m 
        d=zeros(1,n); 
        for ti=1:3 
            d=d+(q(ti,:)-p(ti,ki)).^2; 
        end 
        [mindist(ki),match(ki)]=min(d); 
    end 
 
    mindist = sqrt(mindist); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [match mindist] = match_Delaunay(q, p, DT) 
 match = transpose(nearestNeighbor(DT, transpose(p))); 
 mindist = sqrt(sum((p-q(:,match)).^2,1)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [match mindist] = match_kDtree(~, p, kdOBJ) 
 [match mindist] = knnsearch(kdOBJ,transpose(p)); 
    match = transpose(match); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [R,T] = eq_point(q,p,weights) 
 
m = size(p,2); 
n = size(q,2); 
 
% normalize weights 
weights = weights ./ sum(weights); 
 
% find data centroid and deviations from centroid 
q_bar = q * transpose(weights); 
q_mark = q - repmat(q_bar, 1, n); 
% Apply weights 
q_mark = q_mark .* repmat(weights, 3, 1); 
 
% find data centroid and deviations from centroid 
p_bar = p * transpose(weights); 
p_mark = p - repmat(p_bar, 1, m); 
% Apply weights
%p_mark = p_mark .* repmat(weights, 3, 1); 
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N = p_mark*transpose(q_mark); % taking points of q in matched order 
 
[U,~,V] = svd(N); % singular value decomposition 
 
R = V*diag([1 1 det(U*V')])*transpose(U); 
 
T = q_bar - R*p_bar; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [R,T] = eq_plane(q,p,n,weights) 
 
n = n .* repmat(weights,3,1); 
 
c = cross(p,n); 
 
cn = vertcat(c,n); 
 
C = cn*transpose(cn); 
 
b = - [sum(sum((p-q).*repmat(cn(1,:),3,1).*n)); 
       sum(sum((p-q).*repmat(cn(2,:),3,1).*n)); 
       sum(sum((p-q).*repmat(cn(3,:),3,1).*n)); 
       sum(sum((p-q).*repmat(cn(4,:),3,1).*n)); 
       sum(sum((p-q).*repmat(cn(5,:),3,1).*n)); 
       sum(sum((p-q).*repmat(cn(6,:),3,1).*n))]; 
 
X = C\b; 
 
cx = cos(X(1)); cy = cos(X(2)); cz = cos(X(3)); 
sx = sin(X(1)); sy = sin(X(2)); sz = sin(X(3)); 
 
R = [cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz; 
     cy*sz cx*cz+sx*sy*sz cx*sy*sz-cz*sx; 
     -sy cy*sx cx*cy]; 
 
T = X(4:6); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [R,T] = eq_lmaPoint(q,p) 
 
Rx = @(a)[1     0       0; 
          0     cos(a)  -sin(a); 
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          0     sin(a)  cos(a)]; 
 
Ry = @(b)[cos(b)    0   sin(b); 
          0         1   0; 
          -sin(b)   0   cos(b)]; 
 
Rz = @(g)[cos(g)    -sin(g) 0; 
          sin(g)    cos(g)  0; 
          0         0       1]; 
 
Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3)); 
 
myfun = @(x,xdata)Rot(x(1:3))*xdata+repmat(x(4:6),1,length(xdata)); 
 
 
options = optimset('Algorithm', 'levenberg-marquardt'); 
x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options); 
 
 
R = Rot(x(1:3)); 
T = x(4:6); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Extrapolation in quaternion space. Details are found in:
%
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.
% IEEE Transactions on pattern analysis and machine intelligence, 239?256. 
 
function [dv] = extrapolate(v,d,vmax) 
 
p1 = polyfit(v,d,1); % linear fit 
p2 = polyfit(v,d,2); % parabolic fit 
v1 = -p1(2)/p1(1); % linear zero crossing 
v2 = -p2(2)/(2*p2(1)); % polynomial top point 
 
if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1]) 
    disp('Parabolic update!'); 
    dv = v2; 
elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])... 
        || (v2 < 0 && issorted([0 v1 vmax])) 
    disp('Line based update!'); 
    dv = v1; 
elseif v1 > vmax && v2 > vmax 
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    disp('Maximum update!'); 
    dv = vmax; 
else 
    disp('No extrapolation!'); 
    dv = 0; 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Determine the RMS error between two point equally sized point clouds with
% point correspondance.
% ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices. 
 
function ER = rms_error(p1,p2) 
dsq = sum(power(p1 - p2, 2),1); 
ER = sqrt(mean(dsq)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Converts (orthogonal) rotation matrices R to (unit) quaternion
% representations
%
% Input: A 3x3xn matrix of rotation matrices
% Output: A 4xn matrix of n corresponding quaternions
%
% http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion 
 
function quaternion = rmat2quat(R) 
 
Qxx = R(1,1,:); 
Qxy = R(1,2,:); 
Qxz = R(1,3,:); 
Qyx = R(2,1,:); 
Qyy = R(2,2,:); 
Qyz = R(2,3,:); 
Qzx = R(3,1,:); 
Qzy = R(3,2,:); 
Qzz = R(3,3,:); 
 
w = 0.5 * sqrt(1+Qxx+Qyy+Qzz); 
x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz); 
y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz); 
z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz); 
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quaternion = reshape([w;x;y;z],4,[]); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Converts (unit) quaternion representations to (orthogonal) rotation matrices R
%
% Input: A 4xn matrix of n quaternions
% Output: A 3x3xn matrix of corresponding rotation matrices
%
% http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaternion_to_an_orthogonal_matrix 
 
function R = quat2rmat(quaternion) 
q0(1,1,:) = quaternion(1,:); 
qx(1,1,:) = quaternion(2,:); 
qy(1,1,:) = quaternion(3,:); 
qz(1,1,:) = quaternion(4,:); 
 
R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy; 
     2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx; 
     2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Least squares normal estimation from point clouds using PCA
%
% H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
% Surface reconstruction from unorganized points.
% In Proceedings of ACM Siggraph, pages 71:78, 1992.
%
% p should be a matrix containing the horizontally concatenated column
% vectors with points. k is a scalar indicating how many neighbors the
% normal estimation is based upon.
%
% Note that for large point sets, the function performs significantly
% faster if Statistics Toolbox >= v. 7.3 is installed.
%
% Jakob Wilm 2010 
 
function n = lsqnormest(p, k) 
m = size(p,2); 
n = zeros(3,m); 
 
v = ver('stats'); 
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if str2double(v.Version) >= 7.5 
    neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1)); 
else 
    neighbors = k_nearest_neighbors(p, p, k+1); 
end 
 
for i = 1:m 
    x = p(:,neighbors(2:end, i)); 
    p_bar = 1/k * sum(x,2); 
 
    P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P 
    %P = 2*cov(x); 
 
    [V,D] = eig(P); 
 
    [~, idx] = min(diag(D)); % choses the smallest eigenvalue 
 
    n(:,i) = V(:,idx);   % returns the corresponding eigenvector
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Program to find the k - nearest neighbors (kNN) within a set of points.
% Distance metric used: Euclidean distance
%
% Note that this function makes repetitive use of min(), which seems to be
% more efficient than sort() for k < 30. 
 
function [neighborIds neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k) 
 
numDataPoints = size(dataMatrix,2); 
numQueryPoints = size(queryMatrix,2); 
 
neighborIds = zeros(k,numQueryPoints); 
neighborDistances = zeros(k,numQueryPoints); 
 
D = size(dataMatrix, 1); %dimensionality of points 
 
for i=1:numQueryPoints 
    d=zeros(1,numDataPoints); 
    for t=1:D % this is to avoid slow repmat() 
        d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2; 
    end 
    for j=1:k 
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        [s,t] = min(d); 
        neighborIds(j,i)=t; 
        neighborDistances(j,i)=sqrt(s); 
        d(t) = NaN; % remove found number from d 
    end
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Boundary point determination. Given a set of 3D points and a
% corresponding triangle representation, returns those point indices that
% define the border/edge of the surface. 
 
function bound = find_bound(pts, poly) 
 
%Correcting polygon indices and converting datatype 
poly = double(poly); 
pts = double(pts); 
 
%Calculating freeboundary points: 
TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)'); 
FF = freeBoundary(TR); 
 
%Output 
bound = FF(:,1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Published with MATLAB® R2019b
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Box girder 1

clear all 
close all 
clc 
 
 
A=dlmread('Box_1.txt');       %%Reading the txt-file of the point cloud 
a=A(:,[1,2,3]);                     %%Matrix of the geometrical data 
x=a(:,1); 
y=a(:,2); 
z=a(:,3); 
 
figure(1) 
scatter3(x,y,z,'.b') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Rotate

Find angle to rotate

[maxX, indexOfMaxX] = max(x); 
yAtMaxX = y(indexOfMaxX); 
[minY, indexOfMinY] = min(y); 
xAtMiny = x(indexOfMinY); 
 
u=[maxX-xAtMiny, yAtMaxX- minY]; 
v=[1,0]; 
 
slope=u(:,2)/u(:,1); 
theta=atan(slope);                  %%Angle 
 
Rz=[cos(theta)   -sin(theta)   0;    %%Rotation matrix 
   sin(theta)  cos(theta)  0; 
    0   0   1]; 
 
%%Rotate the whole pier 
rotM=a*Rz; 
 
%%Rotated matrix 
x1=rotM(:,1); 
y1=rotM(:,2); 
z1=rotM(:,3); 
 
figure(2) 
scatter3(x1,y1,z1,'.b') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Deleting bad part

rowsToDelete = rotM(:,1) < min(rotM(:,1))+2; 
rotM(rowsToDelete,:) = []; 

Slice

%%Dividing the rotated Box girder into main segments 
xRngs=[min(rotM(:,1)):0.5: max(rotM(:,1))]; 
for ind = 1:numel(xRngs)-1 
 
 
    rows = rotM(:,1)>=xRngs(ind) & rotM(:,1)<xRngs(ind+1); %check to see which rows of b are between 
        %xRng(ind) and xRng(ind+1) 
    segM(ind).SmallerM = rotM(rows,:);                                     %%segM is the segmented matrix of the rotated pier 
 
    figure(3) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.')    %%Scatter the rotated pier 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end
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Vertical cut to find outer parts

%%Splitting the box Vertically, finding the two outer sides
for ind = 1:numel(xRngs)-1 
MaxY_Box(ind)=max(segM(ind).SmallerM(:,2)); 
MinY_Box(ind)=min(segM(ind).SmallerM(:,2)); 
 
e=0.01; 
kVer(ind) = floor((MaxY_Box(ind)-MinY_Box(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Box(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= segM(ind).SmallerM((segM(ind).SmallerM(:,2)>=mVer(ind).SmallermVer(i,1) & segM(ind).SmallerM(:,2)<=mVer(ind).SmallermVer(i,1)+e),:); 
 ggVer_Box(ind).SmallerggVer_Box{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Box(ind).SmallerggVer_Box=cell2mat(ggVer_Box(ind).SmallerggVer_Box); 
ggVer_mid3_side1(ind).SmallerggVer_mid3_side1=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)<=MinY_Box(ind)+0.2),:); 
ggVer_mid3_side2(ind).SmallerggVer_mid3_side2=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)>=MaxY_Box(ind)-0.2),:); 
end 
 
%%Removing unregular part
for ind = 1:numel(xRngs)-1 
    %side 1 
MaxZ_Box_side1(ind)= max(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
MinZ_Box_side1(ind)= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)<=MaxZ_Box_side1(ind)-0.1),:); 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)>=MinZ_Box_side1(ind)+0.2),:); 
 
    %side 2 
MaxZ_Box_side2(ind)= max(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)); 
MinZ_Box_side2(ind)= min(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)); 
 
mid3_side2(ind).smallermid3_side2= ggVer_mid3_side2(ind).SmallerggVer_mid3_side2((ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)<=MaxZ_Box_side2(ind)-0.1),:); 
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mid3_side2(ind).smallermid3_side2= ggVer_mid3_side2(ind).SmallerggVer_mid3_side2((ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)>=MinZ_Box_side2(ind)+0.2),:); 
 
end 
 
 
%%Exluding the outer part from the point cloud
for ind = 1:numel(xRngs)-1 
[ia, ~] = ismember(segM(ind).SmallerM, ggVer_mid3_side1(ind).SmallerggVer_mid3_side1, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
[ia, ib] = ismember(segM(ind).SmallerM, ggVer_mid3_side2(ind).SmallerggVer_mid3_side2, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) >= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,2)), :); 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) <= max(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,2)), :); 
end 
 
%%Figure of Boxgirder without the outer part
for ind = 1:numel(xRngs)-1 
figure(4) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.b') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.r') 
hold on 
scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.g') 
axis equal
end 
 
%%Find mean, max and min values
for ind = 1:numel(xRngs)-1 
maximumZ(ind)= max(segM(ind).SmallerM(:,3)); 
minimumZ(ind)=min(segM(ind).SmallerM(:,3)); 
 
maximumY(ind)= max(segM(ind).SmallerM(:,2)); 
minimumY(ind)=min(segM(ind).SmallerM(:,2)); 
 
columnMean(ind).SmallercolumnMean = mean(segM(ind).SmallerM,1); 
 
meanx(ind).Smallermeanx=columnMean(ind).SmallercolumnMean(1,1); 
meanY(ind).SmallermeanY=columnMean(ind).SmallercolumnMean(1,2); 
meanZ(ind).SmallermeanZ=columnMean(ind).SmallercolumnMean(1,3); 
end
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Horisontal cut

%%Dividing the segments into microsegments in the horisontal direction,
%%finding changes in amount of points
for ind = 1:numel(xRngs)-1 
 
e1=0.05; 
 kHor(ind) = floor((maximumZ(ind)-minimumZ(ind))/e1);                     %How many times its divided
for i = 1:kHor(ind) 
 mHor(ind).SmallermHor(i,1) = minimumZ(ind)+e1*(i-1);                     %For which values its divided for each segment 
 A2Hor(ind).SmallerA2Hor= segM(ind).SmallerM((segM(ind).SmallerM(:,3)>=mHor(ind).SmallermHor(i,1) & segM(ind).SmallerM(:,3)<=mHor(ind).SmallermHor(i,1)+e1),:);     %logical indexing 
 ggHor(ind).SmallerggHor{i,1}=A2Hor(ind).SmallerA2Hor;          %%Counting the points in each microsegment 
 if isempty(A2Hor(ind).SmallerA2Hor)==1 
 continue 
 end
end
for i=1:kHor(ind)-1 
ChangeHor(ind).smallerChangeHor{i,:}=size(ggHor(ind).SmallerggHor{i,1})/size(ggHor(ind).SmallerggHor{i+1,1}); 
 
ChangeHor(ind).smallerChangeHor{i,:}=ChangeHor(ind).smallerChangeHor{i,1}(:,1); 
ChangeHor1(ind).smallerChangeHor1=cell2mat(ChangeHor(ind).smallerChangeHor); 
end
end 
 
%%Finding the positions to cut
for ind = 1:numel(xRngs)-1 
 
[m_1(ind).smallerm_1,idx_1(ind).smalleridx_1] = max(ChangeHor1(ind).smallerChangeHor1(1:floor(kHor(ind)/2),:)); 
ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1) = NaN ; 
idx_2(ind).smalleridx_2= find(diff(ChangeHor1(ind).smallerChangeHor1,2)==0,1);   %%The removed outer part always makes this position to be several repeting 1                %%prøve å endre 
 
if idx_1(ind).smalleridx_1 > idx_2(ind).smalleridx_2 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:idx_1(ind).smalleridx_1)) ; 
else 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1:idx_2(ind).smalleridx_2)) ; 
end 
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m_4(ind).smallerm_4 = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:end)) ; 
idx_4(ind).smalleridx_4 = find(ChangeHor1(ind).smallerChangeHor1==m_4(ind).smallerm_4); 
 
 
CutPosition(ind).smallerCutPosition=sort([idx_1(ind).smalleridx_1;idx_2(ind).smalleridx_2;idx_3(ind).smalleridx_3;idx_4(ind).smalleridx_4]); 
 
end 
 
%%Removing the ends from both sides of the mid 1,cos horisontal cut
for ind = 1:numel(xRngs)-1 
 
up(ind).smallerup=ggHor(ind).SmallerggHor(1:CutPosition(ind).smallerCutPosition(1,:),:); 
up1(ind).smallerup1=cell2mat(up(ind).smallerup); 
 
mid1(ind).smallermid1=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(1,:)+1:CutPosition(ind).smallerCutPosition(2,:),:); 
mid1(ind).smallermid1=mid1(ind).smallermid1(5:end-4); 
mid11(ind).smallermid11=cell2mat(mid1(ind).smallermid1); 
 
mid2(ind).smallermid2=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(2,:)+1:CutPosition(ind).smallerCutPosition(3,:),:); 
mid22(ind).smallermid22=cell2mat(mid2(ind).smallermid2); 
 
%%mid3 is already splitted as the outer parts 
 
down(ind).smallerdown=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(4,:)+1:end,:); 
down1(ind).smallerdown1=cell2mat(down(ind).smallerdown); 
 
figure(5) 
scatter3(up1(ind).smallerup1(:,1),up1(ind).smallerup1(:,2),up1(ind).smallerup1(:,3),'.c') 
hold on 
scatter3(mid11(ind).smallermid11(:,1),mid11(ind).smallermid11(:,2),mid11(ind).smallermid11(:,3),'.b') 
hold on 
scatter3(mid22(ind).smallermid22(:,1),mid22(ind).smallermid22(:,2),mid22(ind).smallermid22(:,3),'.y') 
hold on 
scatter3(down1(ind).smallerdown1(:,1),down1(ind).smallerdown1(:,2),down1(ind).smallerdown1(:,3),'.m') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.r') 
hold on 
scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.g') 
axis equal
end
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Vertical cut

%%splitting the sides 
 for ind = 1:numel(xRngs)-1 
%%Up is has only one side 
 
Mid1_side1(ind).smallerMid1_side1=find(mid11(ind).smallermid11(:,2)< (meanY(ind).SmallermeanY)); 
Mid1_side2(ind).smallerMid1_side2=find(mid11(ind).smallermid11(:,2)> (meanY(ind).SmallermeanY)); 
Mid1_side1(ind).smallerMid1_side1=mid11(ind).smallermid11(Mid1_side1(ind).smallerMid1_side1,:); 
Mid1_side2(ind).smallerMid1_side2=mid11(ind).smallermid11(Mid1_side2(ind).smallerMid1_side2,:); 
 
Mid2_side1(ind).smallerMid2_side1=find(mid22(ind).smallermid22(:,2)< (meanY(ind).SmallermeanY)); 
Mid2_side2(ind).smallerMid2_side2=find(mid22(ind).smallermid22(:,2)> (meanY(ind).SmallermeanY)); 
Mid2_side1(ind).smallerMid2_side1=mid22(ind).smallermid22(Mid2_side1(ind).smallerMid2_side1,:); 
Mid2_side2(ind).smallerMid2_side2=mid22(ind).smallermid22(Mid2_side2(ind).smallerMid2_side2,:); 
 
Down_side1(ind).smallerDown_side1=find(down1(ind).smallerdown1(:,2)< (meanY(ind).SmallermeanY)); 
Down_side2(ind).smallerDown_side2=find(down1(ind).smallerdown1(:,2)> (meanY(ind).SmallermeanY)); 
Down_side1(ind).smallerDown_side1=down1(ind).smallerdown1(Down_side1(ind).smallerDown_side1,:); 
Down_side2(ind).smallerDown_side2=down1(ind).smallerdown1(Down_side2(ind).smallerDown_side2,:); 
end 
 
%%splitting Mid2_side1 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side1(ind)=max(Mid2_side1(ind).smallerMid2_side1(:,2)); 
MinY_Mid2_side1(ind)=min(Mid2_side1(ind).smallerMid2_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side1(ind)-MinY_Mid2_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side1(ind).smallerMid2_side1((Mid2_side1(ind).smallerMid2_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side1(ind).smallerMid2_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side1(ind).SmallerggVer_mid2_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
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ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(2:end-2); 
ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=cell2mat(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1); 
end
%%splitting Mid2_side2 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side2(ind)=max(Mid2_side2(ind).smallerMid2_side2(:,2)); 
MinY_Mid2_side2(ind)=min(Mid2_side2(ind).smallerMid2_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side2(ind)-MinY_Mid2_side2(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side2(ind).smallerMid2_side2((Mid2_side2(ind).smallerMid2_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side2(ind).smallerMid2_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side2(ind).SmallerggVer_mid2_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(2:end-2); 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=cell2mat(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2); 
end 
 
%%splitting Up vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Up(ind)=max(up1(ind).smallerup1(:,2)); 
MinY_Up(ind)=min(up1(ind).smallerup1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Up(ind)-MinY_Up(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Up(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= up1(ind).smallerup1((up1(ind).smallerup1(:,2)>=mVer(ind).SmallermVer(i,1) & up1(ind).smallerup1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing 
 ggVer_Up(ind).SmallerggVer_Up{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Up(ind).SmallerggVer_Up=ggVer_Up(ind).SmallerggVer_Up(10:end-10); 
ggVer_Up(ind).SmallerggVer_Up=cell2mat(ggVer_Up(ind).SmallerggVer_Up); 
end 
 
%%splitting Down_side1 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side1(ind)=max(Down_side1(ind).smallerDown_side1(:,2)); 
MinY_Down_side1(ind)=min(Down_side1(ind).smallerDown_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side1(ind)-MinY_Down_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Down_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side1(ind).smallerDown_side1((Down_side1(ind).smallerDown_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side1(ind).smallerDown_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side1(ind).SmallerggVer_Down_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=ggVer_Down_side1(ind).SmallerggVer_Down_side1(20:end-20); 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=cell2mat(ggVer_Down_side1(ind).SmallerggVer_Down_side1); 
end 
 
%%splitting Down_side2 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side2(ind)=max(Down_side2(ind).smallerDown_side2(:,2)); 
MinY_Down_side2(ind)=min(Down_side2(ind).smallerDown_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side2(ind)-MinY_Down_side2(ind))/e); 
for i = 1:kVer(ind) 
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 mVer(ind).SmallermVer(i,1) = MinY_Down_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side2(ind).smallerDown_side2((Down_side2(ind).smallerDown_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side2(ind).smallerDown_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side2(ind).SmallerggVer_Down_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=ggVer_Down_side2(ind).SmallerggVer_Down_side2(20:end-20); 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=cell2mat(ggVer_Down_side2(ind).SmallerggVer_Down_side2); 
end 
 
%%Figure of the divided box girder
for ind = 1:numel(xRngs)-1 
figure(6) 
scatter3(ggVer_Up(ind).SmallerggVer_Up(:,1),ggVer_Up(ind).SmallerggVer_Up(:,2),ggVer_Up(ind).SmallerggVer_Up(:,3),'.c') 
hold on 
scatter3(Mid1_side1(ind).smallerMid1_side1(:,1),Mid1_side1(ind).smallerMid1_side1(:,2),Mid1_side1(ind).smallerMid1_side1(:,3),'.b') 
hold on 
scatter3(Mid1_side2(ind).smallerMid1_side2(:,1),Mid1_side2(ind).smallerMid1_side2(:,2),Mid1_side2(ind).smallerMid1_side2(:,3),'.m') 
hold on 
scatter3(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,1),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,2),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,3),'.y') 
hold on 
scatter3(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,1),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,2),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,3),'.r') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.r') 
hold on 
scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.y') 
hold on 
scatter3( ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,1), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,2), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,3),'.m') 
hold on 
scatter3(ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,1),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,2),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,3),'.b') 
axis equal
end

Intersection points
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    %%Asigning one X-value to all the rows
for ind = 1:numel(xRngs)-1 
 
    %%Flatten Up 
flatup1(ind).smallerflatup1=up1(ind).smallerup1; 
if isempty(up1(ind).smallerup1)==1 
 continue
end 
flatup1(ind).smallerflatup1(:,1)=repelem(flatup1(ind).smallerflatup1(1),size(flatup1(ind).smallerflatup1,1),1); 
pup1(ind).smallerpup1 = polyfit(flatup1(ind).smallerflatup1(:,2),flatup1(ind).smallerflatup1(:,3),1); 
fup1(ind).smallerfup1 = polyval(pup1(ind).smallerpup1,flatup1(ind).smallerflatup1(:,2)); 
 
 
%%Flatten Mid1_side1 
flatMid1_side1(ind).smallerflatMid1_side1=Mid1_side1(ind).smallerMid1_side1; 
if isempty(Mid1_side1(ind).smallerMid1_side1)==1 
 continue
end 
flatMid1_side1(ind).smallerflatMid1_side1(:,1)=repelem(flatMid1_side1(ind).smallerflatMid1_side1(1),size(flatMid1_side1(ind).smallerflatMid1_side1,1),1); 
pMid1_side1(ind).smallerpMid1_side1 = polyfit(flatMid1_side1(ind).smallerflatMid1_side1(:,2),flatMid1_side1(ind).smallerflatMid1_side1(:,3),1); 
fMid1_side1(ind).smallerfMid1_side1 = polyval(pMid1_side1(ind).smallerpMid1_side1,flatMid1_side1(ind).smallerflatMid1_side1(:,2)); 
 
 
%%Flatten Mid1_side2 
flatMid1_side2(ind).smallerflatMid1_side2=Mid1_side2(ind).smallerMid1_side2; 
if isempty(Mid1_side2(ind).smallerMid1_side2)==1 
 continue
end 
flatMid1_side2(ind).smallerflatMid1_side2(:,1)=repelem(flatMid1_side2(ind).smallerflatMid1_side2(1),size(flatMid1_side2(ind).smallerflatMid1_side2,1),1); 
pMid1_side2(ind).smallerpMid1_side2 = polyfit(flatMid1_side2(ind).smallerflatMid1_side2(:,2),flatMid1_side2(ind).smallerflatMid1_side2(:,3),1); 
fMid1_side2(ind).smallerfMid1_side2 = polyval(pMid1_side2(ind).smallerpMid1_side2,flatMid1_side2(ind).smallerflatMid1_side2(:,2)); 
 
 
%%Flatten Mid2_side1 
flatMid2_side1(ind).smallerflatMid2_side1=Mid2_side1(ind).smallerMid2_side1; 
if isempty(Mid2_side1(ind).smallerMid2_side1)==1 
 continue
end 
flatMid2_side1(ind).smallerflatMid2_side1(:,1)=repelem(flatMid2_side1(ind).smallerflatMid2_side1(1),size(flatMid2_side1(ind).smallerflatMid2_side1,1),1); 
pMid2_side1(ind).smallerpMid2_side1 = polyfit(flatMid2_side1(ind).smallerflatMid2_side1(:,2),flatMid2_side1(ind).smallerflatMid2_side1(:,3),1); 
fMid2_side1(ind).smallerfMid2_side1 = polyval(pMid2_side1(ind).smallerpMid2_side1,flatMid2_side1(ind).smallerflatMid2_side1(:,2)); 
 
 
%%Flatten Mid2_side2 
flatMid2_side2(ind).smallerflatMid2_side2=Mid2_side2(ind).smallerMid2_side2; 
if isempty(Mid2_side2(ind).smallerMid2_side2)==1 
 continue
end 
flatMid2_side2(ind).smallerflatMid2_side2(:,1)=repelem(flatMid2_side2(ind).smallerflatMid2_side2(1),size(flatMid2_side2(ind).smallerflatMid2_side2,1),1); 
pMid2_side2(ind).smallerpMid2_side2 = polyfit(flatMid2_side2(ind).smallerflatMid2_side2(:,2),flatMid2_side2(ind).smallerflatMid2_side2(:,3),1); 
fMid2_side2(ind).smallerfMid2_side2 = polyval(pMid2_side2(ind).smallerpMid2_side2,flatMid2_side2(ind).smallerflatMid2_side2(:,2)); 
 
 
%%Flatten Mid3_side1 
flatMid3_side1(ind).smallerflatMid3_side1=mid3_side1(ind).smallermid3_side1; 
if isempty(mid3_side1(ind).smallermid3_side1)==1 
 continue
end 
flatMid3_side1(ind).smallerflatMid3_side1(:,1)=repelem(flatMid3_side1(ind).smallerflatMid3_side1(1),size(flatMid3_side1(ind).smallerflatMid3_side1,1),1); 
pMid3_side1(ind).smallerpMid3_side1 = polyfit(flatMid3_side1(ind).smallerflatMid3_side1(:,2),flatMid3_side1(ind).smallerflatMid3_side1(:,3),1); 
fMid3_side1(ind).smallerfMid3_side1 = polyval(pMid3_side1(ind).smallerpMid3_side1,flatMid3_side1(ind).smallerflatMid3_side1(:,2)); 
 
 
%%Flatten Mid3_side2 
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flatMid3_side2(ind).smallerflatMid3_side2=mid3_side2(ind).smallermid3_side2; 
if isempty(mid3_side2(ind).smallermid3_side2)==1 
 continue
end 
flatMid3_side2(ind).smallerflatMid3_side2(:,1)=repelem(flatMid3_side2(ind).smallerflatMid3_side2(1),size(flatMid3_side2(ind).smallerflatMid3_side2,1),1); 
pMid3_side2(ind).smallerpMid3_side2 = polyfit(flatMid3_side2(ind).smallerflatMid3_side2(:,2),flatMid3_side2(ind).smallerflatMid3_side2(:,3),1); 
fMid3_side2(ind).smallerfMid3_side2 = polyval(pMid3_side2(ind).smallerpMid3_side2,flatMid3_side2(ind).smallerflatMid3_side2(:,2)); 
 
 
%%Flatten Down_side1 
flatDown_side1(ind).smallerflatDown_side1=Down_side1(ind).smallerDown_side1; 
if isempty(Down_side1(ind).smallerDown_side1)==1 
 continue
end 
flatDown_side1(ind).smallerflatDown_side1(:,1)=repelem(flatDown_side1(ind).smallerflatDown_side1(1),size(flatDown_side1(ind).smallerflatDown_side1,1),1); 
pflatDown_side1(ind).smallerpflatDown_side1 = polyfit(flatDown_side1(ind).smallerflatDown_side1(:,2),flatDown_side1(ind).smallerflatDown_side1(:,3),1); 
fflatDown_side1(ind).smallerfflatDown_side1 = polyval(pflatDown_side1(ind).smallerpflatDown_side1,flatDown_side1(ind).smallerflatDown_side1(:,2)); 
 
 
%%Flatten Down_side2 
flatDown_side2(ind).smallerflatDown_side2=Down_side2(ind).smallerDown_side2; 
if isempty(Down_side2(ind).smallerDown_side2)==1 
 continue
end 
flatDown_side2(ind).smallerflatDown_side2(:,1)=repelem(flatDown_side2(ind).smallerflatDown_side2(1),size(flatDown_side2(ind).smallerflatDown_side2,1),1); 
pflatDown_side2(ind).smallerpflatDown_side2 = polyfit(flatDown_side2(ind).smallerflatDown_side2(:,2),flatDown_side2(ind).smallerflatDown_side2(:,3),1); 
fflatDown_side2(ind).smallerfflatDown_side2 = polyval(pflatDown_side2(ind).smallerpflatDown_side2,flatDown_side2(ind).smallerflatDown_side2(:,2)); 
 
end 
 
%%find intersection
for ind = 1:numel(xRngs)-1 
 
Y1_intersect(ind).smallerY1_intersect=fzero(@(x) polyval(pup1(ind).smallerpup1-pMid1_side2(ind).smallerpMid1_side2,x),3); 
Z1_intersect(ind).smallerZ1_intersect=polyval(pup1(ind).smallerpup1,Y1_intersect(ind).smallerY1_intersect); 
 
Y2_intersect(ind).smallerY2_intersect=fzero(@(x) polyval(pMid1_side2(ind).smallerpMid1_side2-pMid2_side2(ind).smallerpMid2_side2,x),3); 
Z2_intersect(ind).smallerZ2_intersect=polyval(pMid1_side2(ind).smallerpMid1_side2,Y2_intersect(ind).smallerY2_intersect); 
 
Y3_intersect(ind).smallerY3_intersect=fzero(@(x) polyval(pMid2_side2(ind).smallerpMid2_side2-pMid3_side2(ind).smallerpMid3_side2,x),3); 
Z3_intersect(ind).smallerZ3_intersect=polyval(pMid2_side2(ind).smallerpMid2_side2,Y3_intersect(ind).smallerY3_intersect); 
 
Y4_intersect(ind).smallerY4_intersect=fzero(@(x) polyval(pMid3_side2(ind).smallerpMid3_side2-pflatDown_side2(ind).smallerpflatDown_side2,x),3); 
Z4_intersect(ind).smallerZ4_intersect=polyval(pMid3_side2(ind).smallerpMid3_side2,Y4_intersect(ind).smallerY4_intersect); 
 
Y5_intersect(ind).smallerY5_intersect=fzero(@(x) polyval(pflatDown_side2(ind).smallerpflatDown_side2-pflatDown_side1(ind).smallerpflatDown_side1,x),3); 
Z5_intersect(ind).smallerZ5_intersect=polyval(pflatDown_side2(ind).smallerpflatDown_side2,Y5_intersect(ind).smallerY5_intersect); 
 
Y6_intersect(ind).smallerY6_intersect=fzero(@(x) polyval(pflatDown_side1(ind).smallerpflatDown_side1-pMid3_side1(ind).smallerpMid3_side1,x),3); 
Z6_intersect(ind).smallerZ6_intersect=polyval(pflatDown_side1(ind).smallerpflatDown_side1,Y6_intersect(ind).smallerY6_intersect); 
 
Y7_intersect(ind).smallerY7_intersect=fzero(@(x) polyval(pMid3_side1(ind).smallerpMid3_side1-pMid2_side1(ind).smallerpMid2_side1,x),3); 
Z7_intersect(ind).smallerZ7_intersect=polyval(pMid3_side1(ind).smallerpMid3_side1,Y7_intersect(ind).smallerY7_intersect); 
 
Y8_intersect(ind).smallerY8_intersect=fzero(@(x) polyval(pMid2_side1(ind).smallerpMid2_side1-pMid1_side1(ind).smallerpMid1_side1,x),3); 
Z8_intersect(ind).smallerZ8_intersect=polyval(pMid2_side1(ind).smallerpMid2_side1,Y8_intersect(ind).smallerY8_intersect); 
 
Y9_intersect(ind).smallerY9_intersect=fzero(@(x) polyval(pMid1_side1(ind).smallerpMid1_side1-pup1(ind).smallerpup1,x),3); 
Z9_intersect(ind).smallerZ9_intersect=polyval(pMid1_side1(ind).smallerpMid1_side1,Y9_intersect(ind).smallerY9_intersect); 
 
 
%%New matrix of points with same flattened x-value from right 
intersect_xyz1(ind).smallerintersect_xyz1=[flatup1(ind).smallerflatup1(1,1),Y1_intersect(ind).smallerY1_intersect,Z1_intersect(ind).smallerZ1_intersect]; 
intersect_xyz2(ind).smallerintersect_xyz2=[flatup1(ind).smallerflatup1(1,1),Y2_intersect(ind).smallerY2_intersect,Z2_intersect(ind).smallerZ2_intersect]; 
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intersect_xyz3(ind).smallerintersect_xyz3=[flatup1(ind).smallerflatup1(1,1),Y3_intersect(ind).smallerY3_intersect,Z3_intersect(ind).smallerZ3_intersect]; 
intersect_xyz4(ind).smallerintersect_xyz4=[flatup1(ind).smallerflatup1(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
intersect_xyz5(ind).smallerintersect_xyz5=[flatup1(ind).smallerflatup1(1,1),Y5_intersect(ind).smallerY5_intersect,Z5_intersect(ind).smallerZ5_intersect]; 
intersect_xyz6(ind).smallerintersect_xyz6=[flatup1(ind).smallerflatup1(1,1),Y6_intersect(ind).smallerY6_intersect,Z6_intersect(ind).smallerZ6_intersect]; 
intersect_xyz7(ind).smallerintersect_xyz7=[flatup1(ind).smallerflatup1(1,1),Y7_intersect(ind).smallerY7_intersect,Z7_intersect(ind).smallerZ7_intersect]; 
intersect_xyz8(ind).smallerintersect_xyz8=[flatup1(ind).smallerflatup1(1,1),Y8_intersect(ind).smallerY8_intersect,Z8_intersect(ind).smallerZ8_intersect]; 
intersect_xyz9(ind).smallerintersect_xyz9=[flatup1(ind).smallerflatup1(1,1),Y9_intersect(ind).smallerY9_intersect,Z9_intersect(ind).smallerZ9_intersect]; 
end
%%Figure of the unrotated intersection
for ind = 1:numel(xRngs)-1 
 
figure(7) 
scatter3(intersect_xyz1(ind).smallerintersect_xyz1(:,1),intersect_xyz1(ind).smallerintersect_xyz1(:,2),intersect_xyz1(ind).smallerintersect_xyz1(:,3),'*c') 
hold on 
scatter3(intersect_xyz2(ind).smallerintersect_xyz2(:,1),intersect_xyz2(ind).smallerintersect_xyz2(:,2),intersect_xyz2(ind).smallerintersect_xyz2(:,3),'*b') 
hold on 
scatter3(intersect_xyz3(ind).smallerintersect_xyz3(:,1),intersect_xyz3(ind).smallerintersect_xyz3(:,2),intersect_xyz3(ind).smallerintersect_xyz3(:,3),'*y') 
hold on 
scatter3(intersect_xyz4(ind).smallerintersect_xyz4(:,1),intersect_xyz4(ind).smallerintersect_xyz4(:,2),intersect_xyz4(ind).smallerintersect_xyz4(:,3),'*r') 
hold on 
scatter3(intersect_xyz5(ind).smallerintersect_xyz5(:,1),intersect_xyz5(ind).smallerintersect_xyz5(:,2),intersect_xyz5(ind).smallerintersect_xyz5(:,3),'*m') 
hold on 
scatter3(intersect_xyz6(ind).smallerintersect_xyz6(:,1),intersect_xyz6(ind).smallerintersect_xyz6(:,2),intersect_xyz6(ind).smallerintersect_xyz6(:,3),'*r') 
hold on 
scatter3(intersect_xyz7(ind).smallerintersect_xyz7(:,1),intersect_xyz7(ind).smallerintersect_xyz7(:,2),intersect_xyz7(ind).smallerintersect_xyz7(:,3),'*y') 
hold on 
scatter3(intersect_xyz8(ind).smallerintersect_xyz8(:,1),intersect_xyz8(ind).smallerintersect_xyz8(:,2),intersect_xyz8(ind).smallerintersect_xyz8(:,3),'*b') 
hold on 
scatter3(intersect_xyz9(ind).smallerintersect_xyz9(:,1),intersect_xyz9(ind).smallerintersect_xyz9(:,2),intersect_xyz9(ind).smallerintersect_xyz9(:,3),'*c') 
axis equal 
 
end

Rotate intersection point
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%%Rotate pier back to original orientation and convert from m to mm
for ind = 1:numel(xRngs)-1 
rotintersect_xyz1(ind).smallerrotintersect_xyz1=intersect_xyz1(ind).smallerintersect_xyz1*inv(Rz)*10^3; 
rotintersect_xyz2(ind).smallerrotintersect_xyz2=intersect_xyz2(ind).smallerintersect_xyz2*inv(Rz)*10^3; 
rotintersect_xyz3(ind).smallerrotintersect_xyz3=intersect_xyz3(ind).smallerintersect_xyz3*inv(Rz)*10^3; 
rotintersect_xyz4(ind).smallerrotintersect_xyz4=intersect_xyz4(ind).smallerintersect_xyz4*inv(Rz)*10^3; 
rotintersect_xyz5(ind).smallerrotintersect_xyz5=intersect_xyz5(ind).smallerintersect_xyz5*inv(Rz)*10^3; 
rotintersect_xyz6(ind).smallerrotintersect_xyz6=intersect_xyz6(ind).smallerintersect_xyz6*inv(Rz)*10^3; 
rotintersect_xyz7(ind).smallerrotintersect_xyz7=intersect_xyz7(ind).smallerintersect_xyz7*inv(Rz)*10^3; 
rotintersect_xyz8(ind).smallerrotintersect_xyz8=intersect_xyz8(ind).smallerintersect_xyz8*inv(Rz)*10^3; 
rotintersect_xyz9(ind).smallerrotintersect_xyz9=intersect_xyz9(ind).smallerintersect_xyz9*inv(Rz)*10^3; 
end 
 
%%Figure of the intersection pionts, rotated back to original positions
for ind = 1:numel(xRngs)-1 
 
figure(8) 
scatter3(rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,1),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,2),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,3),'*c') 
hold on 
scatter3(rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,1),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,2),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,3),'*b') 
hold on 
scatter3(rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,1),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,2),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,1),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,2),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,1),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,2),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,3),'*m') 
hold on 
scatter3(rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,1),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,2),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,1),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,2),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,1),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,2),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,3),'*b') 
hold on 
scatter3(rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,1),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,2),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,3),'*c') 
axis equal 
 
end
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Write Excel file

writetable(struct2table(rotintersect_xyz1),'Intersect_box_2.xlsx','sheet',1); 
writetable(struct2table(rotintersect_xyz2),'Intersect_box_2.xlsx','sheet',2); 
writetable(struct2table(rotintersect_xyz3),'Intersect_box_2.xlsx','sheet',3); 
writetable(struct2table(rotintersect_xyz4),'Intersect_box_2.xlsx','sheet',4); 
writetable(struct2table(rotintersect_xyz5),'Intersect_box_2.xlsx','sheet',5); 
writetable(struct2table(rotintersect_xyz6),'Intersect_box_2.xlsx','sheet',6); 
writetable(struct2table(rotintersect_xyz7),'Intersect_box_2.xlsx','sheet',7); 
writetable(struct2table(rotintersect_xyz8),'Intersect_box_2.xlsx','sheet',8); 
writetable(struct2table(rotintersect_xyz9),'Intersect_box_2.xlsx','sheet',9); 
winopen 'Intersect_box_2.xlsx'

Published with MATLAB® R2019b



A3 Box Girder 2-9 Algorithm

196
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Contents

Box girder 2-9

Rotate

Slice

Vertical cut to find outer parts

Horisontal cut

Vertical cut

Intersection points

Rotate intersection point

Write Excel file

Box girder 2-9

clear all 
close all 
clc 
 
 
A=dlmread('Box_2.txt');       %%Reading the txt-file of the point cloud 
a=A(:,[1,2,3]);                     %%Matrix of the geometrical data 
x=a(:,1); 
y=a(:,2); 
z=a(:,3); 
 
figure(1) 
scatter3(x,y,z,'.b') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Rotate

Find angle to rotate

[maxX, indexOfMaxX] = max(x); 
yAtMaxX = y(indexOfMaxX); 
[minY, indexOfMinY] = min(y); 
xAtMiny = x(indexOfMinY); 
 
u=[maxX-xAtMiny, yAtMaxX- minY]; 
v=[1,0]; 
 
slope=u(:,2)/u(:,1); 
theta=atan(slope);                  %%Angle 
 
Rz=[cos(theta)   -sin(theta)   0;    %%Rotation matrix 
   sin(theta)  cos(theta)  0; 
    0   0   1]; 
 
%%Rotate the whole pier 
rotM=a*Rz; 
 
%%Rotated matrix 
x1=rotM(:,1); 
y1=rotM(:,2); 
z1=rotM(:,3); 
 
figure(2) 
scatter3(x1,y1,z1,'.b') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Slice

%%Dividing the rotated Box girder into main segments 
xRngs=[min(rotM(:,1)):0.5: max(rotM(:,1))]; 
for ind = 1:numel(xRngs)-1 
 
 
    rows = rotM(:,1)>=xRngs(ind) & rotM(:,1)<xRngs(ind+1); %check to see which rows of b are between 
        %xRng(ind) and xRng(ind+1) 
    segM(ind).SmallerM = rotM(rows,:);                                     %%segM is the segmented matrix of the rotated pier 
 
    figure(3) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.')    %%Scatter the rotated pier 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end
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Vertical cut to find outer parts

%%Splitting the box Vertically, finding the two outer sides
for ind = 1:numel(xRngs)-1 
MaxY_Box(ind)=max(segM(ind).SmallerM(:,2)); 
MinY_Box(ind)=min(segM(ind).SmallerM(:,2)); 
 
e=0.01; 
kVer(ind) = floor((MaxY_Box(ind)-MinY_Box(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Box(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= segM(ind).SmallerM((segM(ind).SmallerM(:,2)>=mVer(ind).SmallermVer(i,1) & segM(ind).SmallerM(:,2)<=mVer(ind).SmallermVer(i,1)+e),:); 
 ggVer_Box(ind).SmallerggVer_Box{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Box(ind).SmallerggVer_Box=cell2mat(ggVer_Box(ind).SmallerggVer_Box); 
ggVer_mid3_side1(ind).SmallerggVer_mid3_side1=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)<=MinY_Box(ind)+0.2),:); 
ggVer_mid3_side2(ind).SmallerggVer_mid3_side2=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)>=MaxY_Box(ind)-0.2),:); 
end 
 
%%Removing unregular part
for ind = 1:numel(xRngs)-1 
    %side 1 
MaxZ_Box_side1(ind)= max(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
MinZ_Box_side1(ind)= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)<=MaxZ_Box_side1(ind)-0.1),:); 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)>=MinZ_Box_side1(ind)+0.2),:); 
 
    %side 2 
MaxZ_Box_side2(ind)= max(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)); 
MinZ_Box_side2(ind)= min(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)); 
 
mid3_side2(ind).smallermid3_side2= ggVer_mid3_side2(ind).SmallerggVer_mid3_side2((ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)<=MaxZ_Box_side2(ind)-0.1),:); 
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mid3_side2(ind).smallermid3_side2= ggVer_mid3_side2(ind).SmallerggVer_mid3_side2((ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,3)>=MinZ_Box_side2(ind)+0.2),:); 
 
end 
 
 
%%Exluding the outer part from the point cloud
for ind = 1:numel(xRngs)-1 
[ia, ~] = ismember(segM(ind).SmallerM, ggVer_mid3_side1(ind).SmallerggVer_mid3_side1, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
[ia, ib] = ismember(segM(ind).SmallerM, ggVer_mid3_side2(ind).SmallerggVer_mid3_side2, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) >= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,2)), :); 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) <= max(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,2)), :); 
end 
 
%%Figure of Boxgirder without the outer part
for ind = 1:numel(xRngs)-1 
figure(4) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.b') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.r') 
hold on 
scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.g') 
axis equal
end 
 
%%Find mean, max and min values
for ind = 1:numel(xRngs)-1 
maximumZ(ind)= max(segM(ind).SmallerM(:,3)); 
minimumZ(ind)=min(segM(ind).SmallerM(:,3)); 
 
maximumY(ind)= max(segM(ind).SmallerM(:,2)); 
minimumY(ind)=min(segM(ind).SmallerM(:,2)); 
 
columnMean(ind).SmallercolumnMean = mean(segM(ind).SmallerM,1); 
 
meanx(ind).Smallermeanx=columnMean(ind).SmallercolumnMean(1,1); 
meanY(ind).SmallermeanY=columnMean(ind).SmallercolumnMean(1,2); 
meanZ(ind).SmallermeanZ=columnMean(ind).SmallercolumnMean(1,3); 
end
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Horisontal cut

%%Dividing the segments into microsegments in the horisontal direction,
%%finding changes in amount of points
for ind = 1:numel(xRngs)-1 
 
e1=0.05; 
 kHor(ind) = floor((maximumZ(ind)-minimumZ(ind))/e1);                     %How many times its divided
for i = 1:kHor(ind) 
 mHor(ind).SmallermHor(i,1) = minimumZ(ind)+e1*(i-1);                     %For which values its divided for each segment 
 A2Hor(ind).SmallerA2Hor= segM(ind).SmallerM((segM(ind).SmallerM(:,3)>=mHor(ind).SmallermHor(i,1) & segM(ind).SmallerM(:,3)<=mHor(ind).SmallermHor(i,1)+e1),:);     %logical indexing 
 ggHor(ind).SmallerggHor{i,1}=A2Hor(ind).SmallerA2Hor;          %%Counting the points in each microsegment 
 if isempty(A2Hor(ind).SmallerA2Hor)==1 
 continue 
 end
end
for i=1:kHor(ind)-1 
ChangeHor(ind).smallerChangeHor{i,:}=size(ggHor(ind).SmallerggHor{i,1})/size(ggHor(ind).SmallerggHor{i+1,1}); 
 
ChangeHor(ind).smallerChangeHor{i,:}=ChangeHor(ind).smallerChangeHor{i,1}(:,1); 
ChangeHor1(ind).smallerChangeHor1=cell2mat(ChangeHor(ind).smallerChangeHor); 
end
end 
 
%%Finding the positions to cut
for ind = 1:numel(xRngs)-1 
 
[m_1(ind).smallerm_1,idx_1(ind).smalleridx_1] = max(ChangeHor1(ind).smallerChangeHor1(1:floor(kHor(ind)/2),:)); 
ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1) = NaN ; 
idx_2(ind).smalleridx_2= find(diff(ChangeHor1(ind).smallerChangeHor1,2)==0,1);   %%The removed outer part always makes this position to be several repeting 1                %%prøve å endre 
 
if idx_1(ind).smalleridx_1 > idx_2(ind).smalleridx_2 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:idx_1(ind).smalleridx_1)) ; 
else 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1:idx_2(ind).smalleridx_2)) ; 
end 
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m_4(ind).smallerm_4 = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:end)) ; 
idx_4(ind).smalleridx_4 = find(ChangeHor1(ind).smallerChangeHor1==m_4(ind).smallerm_4); 
 
 
CutPosition(ind).smallerCutPosition=sort([idx_1(ind).smalleridx_1;idx_2(ind).smalleridx_2;idx_3(ind).smalleridx_3;idx_4(ind).smalleridx_4]); 
 
end 
 
%%Removing the ends from both sides of the mid 1,cos horisontal cut
for ind = 1:numel(xRngs)-1 
 
up(ind).smallerup=ggHor(ind).SmallerggHor(1:CutPosition(ind).smallerCutPosition(1,:),:); 
up1(ind).smallerup1=cell2mat(up(ind).smallerup); 
 
mid1(ind).smallermid1=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(1,:)+1:CutPosition(ind).smallerCutPosition(2,:),:); 
mid1(ind).smallermid1=mid1(ind).smallermid1(5:end-4); 
mid11(ind).smallermid11=cell2mat(mid1(ind).smallermid1); 
 
mid2(ind).smallermid2=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(2,:)+1:CutPosition(ind).smallerCutPosition(3,:),:); 
mid22(ind).smallermid22=cell2mat(mid2(ind).smallermid2); 
 
%%mid3 is already splitted as the outer parts 
 
down(ind).smallerdown=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(4,:)+1:end,:); 
down1(ind).smallerdown1=cell2mat(down(ind).smallerdown); 
 
figure(5) 
scatter3(up1(ind).smallerup1(:,1),up1(ind).smallerup1(:,2),up1(ind).smallerup1(:,3),'.c') 
hold on 
scatter3(mid11(ind).smallermid11(:,1),mid11(ind).smallermid11(:,2),mid11(ind).smallermid11(:,3),'.b') 
hold on 
scatter3(mid22(ind).smallermid22(:,1),mid22(ind).smallermid22(:,2),mid22(ind).smallermid22(:,3),'.y') 
hold on 
scatter3(down1(ind).smallerdown1(:,1),down1(ind).smallerdown1(:,2),down1(ind).smallerdown1(:,3),'.m') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.r') 
hold on 
scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.g') 
axis equal
end
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Vertical cut

%%splitting the sides 
 for ind = 1:numel(xRngs)-1 
%%Up is has only one side 
 
Mid1_side1(ind).smallerMid1_side1=find(mid11(ind).smallermid11(:,2)< (meanY(ind).SmallermeanY)); 
Mid1_side2(ind).smallerMid1_side2=find(mid11(ind).smallermid11(:,2)> (meanY(ind).SmallermeanY)); 
Mid1_side1(ind).smallerMid1_side1=mid11(ind).smallermid11(Mid1_side1(ind).smallerMid1_side1,:); 
Mid1_side2(ind).smallerMid1_side2=mid11(ind).smallermid11(Mid1_side2(ind).smallerMid1_side2,:); 
 
Mid2_side1(ind).smallerMid2_side1=find(mid22(ind).smallermid22(:,2)< (meanY(ind).SmallermeanY)); 
Mid2_side2(ind).smallerMid2_side2=find(mid22(ind).smallermid22(:,2)> (meanY(ind).SmallermeanY)); 
Mid2_side1(ind).smallerMid2_side1=mid22(ind).smallermid22(Mid2_side1(ind).smallerMid2_side1,:); 
Mid2_side2(ind).smallerMid2_side2=mid22(ind).smallermid22(Mid2_side2(ind).smallerMid2_side2,:); 
 
Down_side1(ind).smallerDown_side1=find(down1(ind).smallerdown1(:,2)< (meanY(ind).SmallermeanY)); 
Down_side2(ind).smallerDown_side2=find(down1(ind).smallerdown1(:,2)> (meanY(ind).SmallermeanY)); 
Down_side1(ind).smallerDown_side1=down1(ind).smallerdown1(Down_side1(ind).smallerDown_side1,:); 
Down_side2(ind).smallerDown_side2=down1(ind).smallerdown1(Down_side2(ind).smallerDown_side2,:); 
end 
 
%%splitting Mid2_side1 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side1(ind)=max(Mid2_side1(ind).smallerMid2_side1(:,2)); 
MinY_Mid2_side1(ind)=min(Mid2_side1(ind).smallerMid2_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side1(ind)-MinY_Mid2_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side1(ind).smallerMid2_side1((Mid2_side1(ind).smallerMid2_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side1(ind).smallerMid2_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side1(ind).SmallerggVer_mid2_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
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ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(2:end-2); 
ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=cell2mat(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1); 
end
%%splitting Mid2_side2 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side2(ind)=max(Mid2_side2(ind).smallerMid2_side2(:,2)); 
MinY_Mid2_side2(ind)=min(Mid2_side2(ind).smallerMid2_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side2(ind)-MinY_Mid2_side2(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side2(ind).smallerMid2_side2((Mid2_side2(ind).smallerMid2_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side2(ind).smallerMid2_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side2(ind).SmallerggVer_mid2_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(2:end-2); 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=cell2mat(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2); 
end 
 
%%splitting Up vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Up(ind)=max(up1(ind).smallerup1(:,2)); 
MinY_Up(ind)=min(up1(ind).smallerup1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Up(ind)-MinY_Up(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Up(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= up1(ind).smallerup1((up1(ind).smallerup1(:,2)>=mVer(ind).SmallermVer(i,1) & up1(ind).smallerup1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing 
 ggVer_Up(ind).SmallerggVer_Up{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Up(ind).SmallerggVer_Up=ggVer_Up(ind).SmallerggVer_Up(10:end-10); 
ggVer_Up(ind).SmallerggVer_Up=cell2mat(ggVer_Up(ind).SmallerggVer_Up); 
end 
 
%%splitting Down_side1 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side1(ind)=max(Down_side1(ind).smallerDown_side1(:,2)); 
MinY_Down_side1(ind)=min(Down_side1(ind).smallerDown_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side1(ind)-MinY_Down_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Down_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side1(ind).smallerDown_side1((Down_side1(ind).smallerDown_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side1(ind).smallerDown_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side1(ind).SmallerggVer_Down_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=ggVer_Down_side1(ind).SmallerggVer_Down_side1(20:end-20); 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=cell2mat(ggVer_Down_side1(ind).SmallerggVer_Down_side1); 
end 
 
%%splitting Down_side2 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side2(ind)=max(Down_side2(ind).smallerDown_side2(:,2)); 
MinY_Down_side2(ind)=min(Down_side2(ind).smallerDown_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side2(ind)-MinY_Down_side2(ind))/e); 
for i = 1:kVer(ind) 
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 mVer(ind).SmallermVer(i,1) = MinY_Down_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side2(ind).smallerDown_side2((Down_side2(ind).smallerDown_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side2(ind).smallerDown_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side2(ind).SmallerggVer_Down_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=ggVer_Down_side2(ind).SmallerggVer_Down_side2(20:end-20); 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=cell2mat(ggVer_Down_side2(ind).SmallerggVer_Down_side2); 
end 
 
%%Figure of the divided box girder
for ind = 1:numel(xRngs)-1 
figure(6) 
scatter3(ggVer_Up(ind).SmallerggVer_Up(:,1),ggVer_Up(ind).SmallerggVer_Up(:,2),ggVer_Up(ind).SmallerggVer_Up(:,3),'.c') 
hold on 
scatter3(Mid1_side1(ind).smallerMid1_side1(:,1),Mid1_side1(ind).smallerMid1_side1(:,2),Mid1_side1(ind).smallerMid1_side1(:,3),'.b') 
hold on 
scatter3(Mid1_side2(ind).smallerMid1_side2(:,1),Mid1_side2(ind).smallerMid1_side2(:,2),Mid1_side2(ind).smallerMid1_side2(:,3),'.m') 
hold on 
scatter3(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,1),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,2),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,3),'.y') 
hold on 
scatter3(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,1),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,2),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,3),'.r') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.r') 
hold on 
scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.y') 
hold on 
scatter3( ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,1), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,2), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,3),'.m') 
hold on 
scatter3(ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,1),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,2),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,3),'.b') 
axis equal
end

Intersection points
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    %%Asigning one X-value to all the rows
for ind = 1:numel(xRngs)-1 
 
    %%Flatten Up 
flatup1(ind).smallerflatup1=up1(ind).smallerup1; 
if isempty(up1(ind).smallerup1)==1 
 continue
end 
flatup1(ind).smallerflatup1(:,1)=repelem(flatup1(ind).smallerflatup1(1),size(flatup1(ind).smallerflatup1,1),1); 
pup1(ind).smallerpup1 = polyfit(flatup1(ind).smallerflatup1(:,2),flatup1(ind).smallerflatup1(:,3),1); 
fup1(ind).smallerfup1 = polyval(pup1(ind).smallerpup1,flatup1(ind).smallerflatup1(:,2)); 
 
 
%%Flatten Mid1_side1 
flatMid1_side1(ind).smallerflatMid1_side1=Mid1_side1(ind).smallerMid1_side1; 
if isempty(Mid1_side1(ind).smallerMid1_side1)==1 
 continue
end 
flatMid1_side1(ind).smallerflatMid1_side1(:,1)=repelem(flatMid1_side1(ind).smallerflatMid1_side1(1),size(flatMid1_side1(ind).smallerflatMid1_side1,1),1); 
pMid1_side1(ind).smallerpMid1_side1 = polyfit(flatMid1_side1(ind).smallerflatMid1_side1(:,2),flatMid1_side1(ind).smallerflatMid1_side1(:,3),1); 
fMid1_side1(ind).smallerfMid1_side1 = polyval(pMid1_side1(ind).smallerpMid1_side1,flatMid1_side1(ind).smallerflatMid1_side1(:,2)); 
 
 
%%Flatten Mid1_side2 
flatMid1_side2(ind).smallerflatMid1_side2=Mid1_side2(ind).smallerMid1_side2; 
if isempty(Mid1_side2(ind).smallerMid1_side2)==1 
 continue
end 
flatMid1_side2(ind).smallerflatMid1_side2(:,1)=repelem(flatMid1_side2(ind).smallerflatMid1_side2(1),size(flatMid1_side2(ind).smallerflatMid1_side2,1),1); 
pMid1_side2(ind).smallerpMid1_side2 = polyfit(flatMid1_side2(ind).smallerflatMid1_side2(:,2),flatMid1_side2(ind).smallerflatMid1_side2(:,3),1); 
fMid1_side2(ind).smallerfMid1_side2 = polyval(pMid1_side2(ind).smallerpMid1_side2,flatMid1_side2(ind).smallerflatMid1_side2(:,2)); 
 
 
%%Flatten Mid2_side1 
flatMid2_side1(ind).smallerflatMid2_side1=Mid2_side1(ind).smallerMid2_side1; 
if isempty(Mid2_side1(ind).smallerMid2_side1)==1 
 continue
end 
flatMid2_side1(ind).smallerflatMid2_side1(:,1)=repelem(flatMid2_side1(ind).smallerflatMid2_side1(1),size(flatMid2_side1(ind).smallerflatMid2_side1,1),1); 
pMid2_side1(ind).smallerpMid2_side1 = polyfit(flatMid2_side1(ind).smallerflatMid2_side1(:,2),flatMid2_side1(ind).smallerflatMid2_side1(:,3),1); 
fMid2_side1(ind).smallerfMid2_side1 = polyval(pMid2_side1(ind).smallerpMid2_side1,flatMid2_side1(ind).smallerflatMid2_side1(:,2)); 
 
 
%%Flatten Mid2_side2 
flatMid2_side2(ind).smallerflatMid2_side2=Mid2_side2(ind).smallerMid2_side2; 
if isempty(Mid2_side2(ind).smallerMid2_side2)==1 
 continue
end 
flatMid2_side2(ind).smallerflatMid2_side2(:,1)=repelem(flatMid2_side2(ind).smallerflatMid2_side2(1),size(flatMid2_side2(ind).smallerflatMid2_side2,1),1); 
pMid2_side2(ind).smallerpMid2_side2 = polyfit(flatMid2_side2(ind).smallerflatMid2_side2(:,2),flatMid2_side2(ind).smallerflatMid2_side2(:,3),1); 
fMid2_side2(ind).smallerfMid2_side2 = polyval(pMid2_side2(ind).smallerpMid2_side2,flatMid2_side2(ind).smallerflatMid2_side2(:,2)); 
 
 
%%Flatten Mid3_side1 
flatMid3_side1(ind).smallerflatMid3_side1=mid3_side1(ind).smallermid3_side1; 
if isempty(mid3_side1(ind).smallermid3_side1)==1 
 continue
end 
flatMid3_side1(ind).smallerflatMid3_side1(:,1)=repelem(flatMid3_side1(ind).smallerflatMid3_side1(1),size(flatMid3_side1(ind).smallerflatMid3_side1,1),1); 
pMid3_side1(ind).smallerpMid3_side1 = polyfit(flatMid3_side1(ind).smallerflatMid3_side1(:,2),flatMid3_side1(ind).smallerflatMid3_side1(:,3),1); 
fMid3_side1(ind).smallerfMid3_side1 = polyval(pMid3_side1(ind).smallerpMid3_side1,flatMid3_side1(ind).smallerflatMid3_side1(:,2)); 
 
 
%%Flatten Mid3_side2 
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flatMid3_side2(ind).smallerflatMid3_side2=mid3_side2(ind).smallermid3_side2; 
if isempty(mid3_side2(ind).smallermid3_side2)==1 
 continue
end 
flatMid3_side2(ind).smallerflatMid3_side2(:,1)=repelem(flatMid3_side2(ind).smallerflatMid3_side2(1),size(flatMid3_side2(ind).smallerflatMid3_side2,1),1); 
pMid3_side2(ind).smallerpMid3_side2 = polyfit(flatMid3_side2(ind).smallerflatMid3_side2(:,2),flatMid3_side2(ind).smallerflatMid3_side2(:,3),1); 
fMid3_side2(ind).smallerfMid3_side2 = polyval(pMid3_side2(ind).smallerpMid3_side2,flatMid3_side2(ind).smallerflatMid3_side2(:,2)); 
 
 
%%Flatten Down_side1 
flatDown_side1(ind).smallerflatDown_side1=Down_side1(ind).smallerDown_side1; 
if isempty(Down_side1(ind).smallerDown_side1)==1 
 continue
end 
flatDown_side1(ind).smallerflatDown_side1(:,1)=repelem(flatDown_side1(ind).smallerflatDown_side1(1),size(flatDown_side1(ind).smallerflatDown_side1,1),1); 
pflatDown_side1(ind).smallerpflatDown_side1 = polyfit(flatDown_side1(ind).smallerflatDown_side1(:,2),flatDown_side1(ind).smallerflatDown_side1(:,3),1); 
fflatDown_side1(ind).smallerfflatDown_side1 = polyval(pflatDown_side1(ind).smallerpflatDown_side1,flatDown_side1(ind).smallerflatDown_side1(:,2)); 
 
 
%%Flatten Down_side2 
flatDown_side2(ind).smallerflatDown_side2=Down_side2(ind).smallerDown_side2; 
if isempty(Down_side2(ind).smallerDown_side2)==1 
 continue
end 
flatDown_side2(ind).smallerflatDown_side2(:,1)=repelem(flatDown_side2(ind).smallerflatDown_side2(1),size(flatDown_side2(ind).smallerflatDown_side2,1),1); 
pflatDown_side2(ind).smallerpflatDown_side2 = polyfit(flatDown_side2(ind).smallerflatDown_side2(:,2),flatDown_side2(ind).smallerflatDown_side2(:,3),1); 
fflatDown_side2(ind).smallerfflatDown_side2 = polyval(pflatDown_side2(ind).smallerpflatDown_side2,flatDown_side2(ind).smallerflatDown_side2(:,2)); 
 
end 
 
%%find intersection
for ind = 1:numel(xRngs)-1 
 
Y1_intersect(ind).smallerY1_intersect=fzero(@(x) polyval(pup1(ind).smallerpup1-pMid1_side2(ind).smallerpMid1_side2,x),3); 
Z1_intersect(ind).smallerZ1_intersect=polyval(pup1(ind).smallerpup1,Y1_intersect(ind).smallerY1_intersect); 
 
Y2_intersect(ind).smallerY2_intersect=fzero(@(x) polyval(pMid1_side2(ind).smallerpMid1_side2-pMid2_side2(ind).smallerpMid2_side2,x),3); 
Z2_intersect(ind).smallerZ2_intersect=polyval(pMid1_side2(ind).smallerpMid1_side2,Y2_intersect(ind).smallerY2_intersect); 
 
Y3_intersect(ind).smallerY3_intersect=fzero(@(x) polyval(pMid2_side2(ind).smallerpMid2_side2-pMid3_side2(ind).smallerpMid3_side2,x),3); 
Z3_intersect(ind).smallerZ3_intersect=polyval(pMid2_side2(ind).smallerpMid2_side2,Y3_intersect(ind).smallerY3_intersect); 
 
Y4_intersect(ind).smallerY4_intersect=fzero(@(x) polyval(pMid3_side2(ind).smallerpMid3_side2-pflatDown_side2(ind).smallerpflatDown_side2,x),3); 
Z4_intersect(ind).smallerZ4_intersect=polyval(pMid3_side2(ind).smallerpMid3_side2,Y4_intersect(ind).smallerY4_intersect); 
 
Y5_intersect(ind).smallerY5_intersect=fzero(@(x) polyval(pflatDown_side2(ind).smallerpflatDown_side2-pflatDown_side1(ind).smallerpflatDown_side1,x),3); 
Z5_intersect(ind).smallerZ5_intersect=polyval(pflatDown_side2(ind).smallerpflatDown_side2,Y5_intersect(ind).smallerY5_intersect); 
 
Y6_intersect(ind).smallerY6_intersect=fzero(@(x) polyval(pflatDown_side1(ind).smallerpflatDown_side1-pMid3_side1(ind).smallerpMid3_side1,x),3); 
Z6_intersect(ind).smallerZ6_intersect=polyval(pflatDown_side1(ind).smallerpflatDown_side1,Y6_intersect(ind).smallerY6_intersect); 
 
Y7_intersect(ind).smallerY7_intersect=fzero(@(x) polyval(pMid3_side1(ind).smallerpMid3_side1-pMid2_side1(ind).smallerpMid2_side1,x),3); 
Z7_intersect(ind).smallerZ7_intersect=polyval(pMid3_side1(ind).smallerpMid3_side1,Y7_intersect(ind).smallerY7_intersect); 
 
Y8_intersect(ind).smallerY8_intersect=fzero(@(x) polyval(pMid2_side1(ind).smallerpMid2_side1-pMid1_side1(ind).smallerpMid1_side1,x),3); 
Z8_intersect(ind).smallerZ8_intersect=polyval(pMid2_side1(ind).smallerpMid2_side1,Y8_intersect(ind).smallerY8_intersect); 
 
Y9_intersect(ind).smallerY9_intersect=fzero(@(x) polyval(pMid1_side1(ind).smallerpMid1_side1-pup1(ind).smallerpup1,x),3); 
Z9_intersect(ind).smallerZ9_intersect=polyval(pMid1_side1(ind).smallerpMid1_side1,Y9_intersect(ind).smallerY9_intersect); 
 
 
%%New matrix of points with same flattened x-value from right 
intersect_xyz1(ind).smallerintersect_xyz1=[flatup1(ind).smallerflatup1(1,1),Y1_intersect(ind).smallerY1_intersect,Z1_intersect(ind).smallerZ1_intersect]; 
intersect_xyz2(ind).smallerintersect_xyz2=[flatup1(ind).smallerflatup1(1,1),Y2_intersect(ind).smallerY2_intersect,Z2_intersect(ind).smallerZ2_intersect]; 
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intersect_xyz3(ind).smallerintersect_xyz3=[flatup1(ind).smallerflatup1(1,1),Y3_intersect(ind).smallerY3_intersect,Z3_intersect(ind).smallerZ3_intersect]; 
intersect_xyz4(ind).smallerintersect_xyz4=[flatup1(ind).smallerflatup1(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
intersect_xyz5(ind).smallerintersect_xyz5=[flatup1(ind).smallerflatup1(1,1),Y5_intersect(ind).smallerY5_intersect,Z5_intersect(ind).smallerZ5_intersect]; 
intersect_xyz6(ind).smallerintersect_xyz6=[flatup1(ind).smallerflatup1(1,1),Y6_intersect(ind).smallerY6_intersect,Z6_intersect(ind).smallerZ6_intersect]; 
intersect_xyz7(ind).smallerintersect_xyz7=[flatup1(ind).smallerflatup1(1,1),Y7_intersect(ind).smallerY7_intersect,Z7_intersect(ind).smallerZ7_intersect]; 
intersect_xyz8(ind).smallerintersect_xyz8=[flatup1(ind).smallerflatup1(1,1),Y8_intersect(ind).smallerY8_intersect,Z8_intersect(ind).smallerZ8_intersect]; 
intersect_xyz9(ind).smallerintersect_xyz9=[flatup1(ind).smallerflatup1(1,1),Y9_intersect(ind).smallerY9_intersect,Z9_intersect(ind).smallerZ9_intersect]; 
end
%%Figure of the unrotated intersection
for ind = 1:numel(xRngs)-1 
 
figure(7) 
scatter3(intersect_xyz1(ind).smallerintersect_xyz1(:,1),intersect_xyz1(ind).smallerintersect_xyz1(:,2),intersect_xyz1(ind).smallerintersect_xyz1(:,3),'*c') 
hold on 
scatter3(intersect_xyz2(ind).smallerintersect_xyz2(:,1),intersect_xyz2(ind).smallerintersect_xyz2(:,2),intersect_xyz2(ind).smallerintersect_xyz2(:,3),'*b') 
hold on 
scatter3(intersect_xyz3(ind).smallerintersect_xyz3(:,1),intersect_xyz3(ind).smallerintersect_xyz3(:,2),intersect_xyz3(ind).smallerintersect_xyz3(:,3),'*y') 
hold on 
scatter3(intersect_xyz4(ind).smallerintersect_xyz4(:,1),intersect_xyz4(ind).smallerintersect_xyz4(:,2),intersect_xyz4(ind).smallerintersect_xyz4(:,3),'*r') 
hold on 
scatter3(intersect_xyz5(ind).smallerintersect_xyz5(:,1),intersect_xyz5(ind).smallerintersect_xyz5(:,2),intersect_xyz5(ind).smallerintersect_xyz5(:,3),'*m') 
hold on 
scatter3(intersect_xyz6(ind).smallerintersect_xyz6(:,1),intersect_xyz6(ind).smallerintersect_xyz6(:,2),intersect_xyz6(ind).smallerintersect_xyz6(:,3),'*r') 
hold on 
scatter3(intersect_xyz7(ind).smallerintersect_xyz7(:,1),intersect_xyz7(ind).smallerintersect_xyz7(:,2),intersect_xyz7(ind).smallerintersect_xyz7(:,3),'*y') 
hold on 
scatter3(intersect_xyz8(ind).smallerintersect_xyz8(:,1),intersect_xyz8(ind).smallerintersect_xyz8(:,2),intersect_xyz8(ind).smallerintersect_xyz8(:,3),'*b') 
hold on 
scatter3(intersect_xyz9(ind).smallerintersect_xyz9(:,1),intersect_xyz9(ind).smallerintersect_xyz9(:,2),intersect_xyz9(ind).smallerintersect_xyz9(:,3),'*c') 
axis equal 
 
end

Rotate intersection point
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%%Rotate pier back to original orientation and convert from m to mm
for ind = 1:numel(xRngs)-1 
rotintersect_xyz1(ind).smallerrotintersect_xyz1=intersect_xyz1(ind).smallerintersect_xyz1*inv(Rz)*10^3; 
rotintersect_xyz2(ind).smallerrotintersect_xyz2=intersect_xyz2(ind).smallerintersect_xyz2*inv(Rz)*10^3; 
rotintersect_xyz3(ind).smallerrotintersect_xyz3=intersect_xyz3(ind).smallerintersect_xyz3*inv(Rz)*10^3; 
rotintersect_xyz4(ind).smallerrotintersect_xyz4=intersect_xyz4(ind).smallerintersect_xyz4*inv(Rz)*10^3; 
rotintersect_xyz5(ind).smallerrotintersect_xyz5=intersect_xyz5(ind).smallerintersect_xyz5*inv(Rz)*10^3; 
rotintersect_xyz6(ind).smallerrotintersect_xyz6=intersect_xyz6(ind).smallerintersect_xyz6*inv(Rz)*10^3; 
rotintersect_xyz7(ind).smallerrotintersect_xyz7=intersect_xyz7(ind).smallerintersect_xyz7*inv(Rz)*10^3; 
rotintersect_xyz8(ind).smallerrotintersect_xyz8=intersect_xyz8(ind).smallerintersect_xyz8*inv(Rz)*10^3; 
rotintersect_xyz9(ind).smallerrotintersect_xyz9=intersect_xyz9(ind).smallerintersect_xyz9*inv(Rz)*10^3; 
end 
 
%%Figure of the intersection pionts, rotated back to original positions
for ind = 1:numel(xRngs)-1 
 
figure(8) 
scatter3(rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,1),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,2),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,3),'*c') 
hold on 
scatter3(rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,1),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,2),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,3),'*b') 
hold on 
scatter3(rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,1),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,2),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,1),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,2),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,1),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,2),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,3),'*m') 
hold on 
scatter3(rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,1),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,2),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,1),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,2),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,1),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,2),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,3),'*b') 
hold on 
scatter3(rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,1),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,2),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,3),'*c') 
axis equal 
 
end
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Write Excel file

writetable(struct2table(rotintersect_xyz1),'Intersect_box_2.xlsx','sheet',1); 
writetable(struct2table(rotintersect_xyz2),'Intersect_box_2.xlsx','sheet',2); 
writetable(struct2table(rotintersect_xyz3),'Intersect_box_2.xlsx','sheet',3); 
writetable(struct2table(rotintersect_xyz4),'Intersect_box_2.xlsx','sheet',4); 
writetable(struct2table(rotintersect_xyz5),'Intersect_box_2.xlsx','sheet',5); 
writetable(struct2table(rotintersect_xyz6),'Intersect_box_2.xlsx','sheet',6); 
writetable(struct2table(rotintersect_xyz7),'Intersect_box_2.xlsx','sheet',7); 
writetable(struct2table(rotintersect_xyz8),'Intersect_box_2.xlsx','sheet',8); 
writetable(struct2table(rotintersect_xyz9),'Intersect_box_2.xlsx','sheet',9); 
winopen 'Intersect_box_2.xlsx'
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Contents

Box girder 10-17

Rotate

Slice

Vertical cut to find outer parts

Horisontal cut

Vertical cut

Intersection points

Rotate intersection point

write an Excel file

Box girder 10-17

clear all 
close all 
clc 
 
A=dlmread('Box_17.txt');       %%Reading the txt-file of the point cloud 
a=A(:,[1,2,3]);                     %%Matrix of the geometrical data 
x=a(:,1); 
y=a(:,2); 
z=a(:,3); 
 
figure(1) 
scatter3(x,y,z,'*') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Rotate

%find angle to rotate 
 
[maxX, indexOfMaxX] = max(x); 
yAtMaxX = y(indexOfMaxX); 
[minY, indexOfMinY] = min(y); 
xAtMiny = x(indexOfMinY); 
 
u=[maxX-xAtMiny, yAtMaxX- minY]; 
v=[1,0]; 
 
slope=u(:,2)/u(:,1); 
theta=atan(slope);                  %%Angle 
 
R=[cos(theta)   -sin(theta)   0;    %%Rotation matrix 
   sin(theta)  cos(theta)  0; 
    0   0   1]; 
 
%%Rotate the whole pier 
rotM=a*R;                           %%rotated matrix 
 
%%Rotated matrix 
x1=rotM(:,1); 
y1=rotM(:,2); 
z1=rotM(:,3); 
 
figure(2) 
scatter3(x1,y1,z1,'.b') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Slice

%%Dividing the rotated Box girder into main segments 
xRngs=[min(rotM(:,1)):0.5: max(rotM(:,1))]; 
for ind = 1:numel(xRngs)-1 
 
 
    rows = rotM(:,1)>=xRngs(ind) & rotM(:,1)<xRngs(ind+1); %check to see which rows of b are between 
        %xRng(ind) and xRng(ind+1) 
    segM(ind).SmallerM = rotM(rows,:);                                     %%segM is the segmented matrix of the rotated pier 
 
    figure(3) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.')    %%Scatter the rotated pier 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end
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Vertical cut to find outer parts

%%splitting the box Vertically, finding the two outer sides
for ind = 1:numel(xRngs)-1 
MaxY_Box(ind)=max(segM(ind).SmallerM(:,2)); 
MinY_Box(ind)=min(segM(ind).SmallerM(:,2)); 
e=0.01; 
kVer(ind) = floor((MaxY_Box(ind)-MinY_Box(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Box(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= segM(ind).SmallerM((segM(ind).SmallerM(:,2)>=mVer(ind).SmallermVer(i,1) & segM(ind).SmallerM(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing 
 ggVer_Box(ind).SmallerggVer_Box{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Box(ind).SmallerggVer_Box=cell2mat(ggVer_Box(ind).SmallerggVer_Box); 
ggVer_mid3_side1(ind).SmallerggVer_mid3_side1=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)<=MinY_Box(ind)+0.2),:); 
ggVer_mid3_side2(ind).SmallerggVer_mid3_side2=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)>=MaxY_Box(ind)-0.2),:); 
end 
 
%%removing unregular part
for ind = 1:numel(xRngs)-1 
    %side 1 
MaxZ_Box_side1(ind)= max(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
MinZ_Box_side1(ind)= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)<=MaxZ_Box_side1(ind)-0.1),:); 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)>=MinZ_Box_side1(ind)+0.2),:); 
 
%%side 2, missing point cloud
end 
 
 
%%Exluding the outer part from the point cloud
for ind = 1:numel(xRngs)-1 
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[ia, ~] = ismember(segM(ind).SmallerM, ggVer_mid3_side1(ind).SmallerggVer_mid3_side1, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
[ia, ib] = ismember(segM(ind).SmallerM, ggVer_mid3_side2(ind).SmallerggVer_mid3_side2, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) >= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,2)), :); 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) <= max(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,2)), :); 
 
 
end 
 
%%Figure of Boxgirder without the outer part
for ind = 1:numel(xRngs)-1 
figure(4) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.r') 
hold on
% scatter3(ggVer_mid3_side1(9).SmallerggVer_mid3_side1(:,1),ggVer_mid3_side1(9).SmallerggVer_mid3_side1(:,2),ggVer_mid3_side1(9).SmallerggVer_mid3_side1(:,3),'.b')
% hold on
% scatter3(ggVer_mid3_side2(9).SmallerggVer_mid3_side2(:,1),ggVer_mid3_side2(9).SmallerggVer_mid3_side2(:,2),ggVer_mid3_side2(9).SmallerggVer_mid3_side2(:,3),'.g') 
axis equal
end 
 
 
%%Find mean, max and min values
for ind = 1:numel(xRngs)-1 
maximumZ(ind)= max(segM(ind).SmallerM(:,3)); 
minimumZ(ind)=min(segM(ind).SmallerM(:,3)); 
 
maximumY(ind)= max(segM(ind).SmallerM(:,2)); 
minimumY(ind)=min(segM(ind).SmallerM(:,2)); 
 
columnMean(ind).SmallercolumnMean = mean(segM(ind).SmallerM,1);             %%Find the mean x-values of each segment 
 
meanx(ind).Smallermeanx=columnMean(ind).SmallercolumnMean(1,1); 
meanY(ind).SmallermeanY=columnMean(ind).SmallercolumnMean(1,2); 
meanZ(ind).SmallermeanZ=columnMean(ind).SmallercolumnMean(1,3); 
end
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Horisontal cut

%%Dividing the segments into microsegments in the horisontal direction,
%%finding changes in amount of points
for ind = 1:numel(xRngs)-1 
 
e1=0.05; 
 kHor(ind) = floor((maximumZ(ind)-minimumZ(ind))/e1);                     %How many times its divided
for i = 1:kHor(ind) 
 mHor(ind).SmallermHor(i,1) = minimumZ(ind)+e1*(i-1);                     %For which values its divided for each segment 
 A2Hor(ind).SmallerA2Hor= segM(ind).SmallerM((segM(ind).SmallerM(:,3)>=mHor(ind).SmallermHor(i,1) & segM(ind).SmallerM(:,3)<=mHor(ind).SmallermHor(i,1)+e1),:);     %logical indexing 
 ggHor(ind).SmallerggHor{i,1}=A2Hor(ind).SmallerA2Hor;          %%Counting the points in each microsegment 
 if isempty(A2Hor(ind).SmallerA2Hor)==1 
 continue 
 end
end
for i=1:kHor(ind)-1 
ChangeHor(ind).smallerChangeHor{i,:}=size(ggHor(ind).SmallerggHor{i,1})/size(ggHor(ind).SmallerggHor{i+1,1}); 
 
ChangeHor(ind).smallerChangeHor{i,:}=ChangeHor(ind).smallerChangeHor{i,1}(:,1); 
ChangeHor1(ind).smallerChangeHor1=cell2mat(ChangeHor(ind).smallerChangeHor); 
end
end
%%finding the positions to cut
for ind = 1:numel(xRngs)-1 
 
[m_1(ind).smallerm_1,idx_1(ind).smalleridx_1] = max(ChangeHor1(ind).smallerChangeHor1(1:floor(kHor(ind)/2),:)); 
ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1) = NaN ; 
idx_2(ind).smalleridx_2= find(diff(ChangeHor1(ind).smallerChangeHor1,2)==0,1); %%The removed outer part always makes this position to be several repeting 1 
 
if idx_1(ind).smalleridx_1 > idx_2(ind).smalleridx_2 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:idx_1(ind).smalleridx_1)) ; 
else 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1:idx_2(ind).smalleridx_2)) ; 
end 
m_4(ind).smallerm_4 = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:end)) ; 
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idx_4(ind).smalleridx_4 = find(ChangeHor1(ind).smallerChangeHor1==m_4(ind).smallerm_4); 
 
 
CutPosition(ind).smallerCutPosition=sort([idx_1(ind).smalleridx_1;idx_2(ind).smalleridx_2;idx_3(ind).smalleridx_3;idx_4(ind).smalleridx_4]); 
 
end
%%splitting the parts
%%Removing the ends from both sides of the mid 1,cos horisontal cut
for ind = 1:numel(xRngs)-1 
 
up(ind).smallerup=ggHor(ind).SmallerggHor(1:CutPosition(ind).smallerCutPosition(1,:),:); 
up1(ind).smallerup1=cell2mat(up(ind).smallerup); 
 
mid1(ind).smallermid1=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(1,:)+1:CutPosition(ind).smallerCutPosition(2,:),:); 
mid1(ind).smallermid1=mid1(ind).smallermid1(5:end-4); 
mid11(ind).smallermid11=cell2mat(mid1(ind).smallermid1); 
 
mid2(ind).smallermid2=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(2,:)+1:CutPosition(ind).smallerCutPosition(3,:),:); 
mid22(ind).smallermid22=cell2mat(mid2(ind).smallermid2); 
 
%%mid3 is already splitted as the outer parts 
 
down(ind).smallerdown=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(4,:)+1:end,:); 
down1(ind).smallerdown1=cell2mat(down(ind).smallerdown); 
 
figure(5) 
scatter3(up1(ind).smallerup1(:,1),up1(ind).smallerup1(:,2),up1(ind).smallerup1(:,3),'.r') 
hold on 
scatter3(mid11(ind).smallermid11(:,1),mid11(ind).smallermid11(:,2),mid11(ind).smallermid11(:,3),'.b') 
hold on 
scatter3(mid22(ind).smallermid22(:,1),mid22(ind).smallermid22(:,2),mid22(ind).smallermid22(:,3),'.g') 
hold on 
scatter3(down1(ind).smallerdown1(:,1),down1(ind).smallerdown1(:,2),down1(ind).smallerdown1(:,3),'.m') 
axis equal
end
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Vertical cut

%%Splitting the sides 
 for ind = 1:numel(xRngs)-1 
%%Up is has only one side 
 
Mid1_side1(ind).smallerMid1_side1=find(mid11(ind).smallermid11(:,2)< (meanY(ind).SmallermeanY)); 
Mid1_side2(ind).smallerMid1_side2=find(mid11(ind).smallermid11(:,2)> (meanY(ind).SmallermeanY)); 
Mid1_side1(ind).smallerMid1_side1=mid11(ind).smallermid11(Mid1_side1(ind).smallerMid1_side1,:); 
Mid1_side2(ind).smallerMid1_side2=mid11(ind).smallermid11(Mid1_side2(ind).smallerMid1_side2,:); 
 
Mid2_side1(ind).smallerMid2_side1=find(mid22(ind).smallermid22(:,2)< (meanY(ind).SmallermeanY)); 
Mid2_side2(ind).smallerMid2_side2=find(mid22(ind).smallermid22(:,2)> (meanY(ind).SmallermeanY)); 
Mid2_side1(ind).smallerMid2_side1=mid22(ind).smallermid22(Mid2_side1(ind).smallerMid2_side1,:); 
Mid2_side2(ind).smallerMid2_side2=mid22(ind).smallermid22(Mid2_side2(ind).smallerMid2_side2,:); 
 
Down_side1(ind).smallerDown_side1=find(down1(ind).smallerdown1(:,2)< (meanY(ind).SmallermeanY)); 
Down_side2(ind).smallerDown_side2=find(down1(ind).smallerdown1(:,2)> (meanY(ind).SmallermeanY)); 
Down_side1(ind).smallerDown_side1=down1(ind).smallerdown1(Down_side1(ind).smallerDown_side1,:); 
Down_side2(ind).smallerDown_side2=down1(ind).smallerdown1(Down_side2(ind).smallerDown_side2,:); 
 
end 
 
%%splitting Mid2_side1 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side1(ind)=max(Mid2_side1(ind).smallerMid2_side1(:,2)); 
MinY_Mid2_side1(ind)=min(Mid2_side1(ind).smallerMid2_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side1(ind)-MinY_Mid2_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side1(ind).smallerMid2_side1((Mid2_side1(ind).smallerMid2_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side1(ind).smallerMid2_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side1(ind).SmallerggVer_mid2_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(2:end-2); 
ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=cell2mat(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1); 
end
%%splitting Mid2_side2 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side2(ind)=max(Mid2_side2(ind).smallerMid2_side2(:,2)); 
MinY_Mid2_side2(ind)=min(Mid2_side2(ind).smallerMid2_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side2(ind)-MinY_Mid2_side2(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side2(ind).smallerMid2_side2((Mid2_side2(ind).smallerMid2_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side2(ind).smallerMid2_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side2(ind).SmallerggVer_mid2_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(2:end-2); 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=cell2mat(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2); 
end 
 
%%splitting Up vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Up(ind)=max(up1(ind).smallerup1(:,2)); 
MinY_Up(ind)=min(up1(ind).smallerup1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Up(ind)-MinY_Up(ind))/e); 
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for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Up(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= up1(ind).smallerup1((up1(ind).smallerup1(:,2)>=mVer(ind).SmallermVer(i,1) & up1(ind).smallerup1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing 
 ggVer_Up(ind).SmallerggVer_Up{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Up(ind).SmallerggVer_Up=ggVer_Up(ind).SmallerggVer_Up(10:end-10); 
ggVer_Up(ind).SmallerggVer_Up=cell2mat(ggVer_Up(ind).SmallerggVer_Up); 
end 
 
%%splitting Down_side1 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side1(ind)=max(Down_side1(ind).smallerDown_side1(:,2)); 
MinY_Down_side1(ind)=min(Down_side1(ind).smallerDown_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side1(ind)-MinY_Down_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Down_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side1(ind).smallerDown_side1((Down_side1(ind).smallerDown_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side1(ind).smallerDown_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side1(ind).SmallerggVer_Down_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=ggVer_Down_side1(ind).SmallerggVer_Down_side1(20:end-20); 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=cell2mat(ggVer_Down_side1(ind).SmallerggVer_Down_side1); 
end 
 
%%splitting Down_side2 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side2(ind)=max(Down_side2(ind).smallerDown_side2(:,2)); 
MinY_Down_side2(ind)=min(Down_side2(ind).smallerDown_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side2(ind)-MinY_Down_side2(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Down_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side2(ind).smallerDown_side2((Down_side2(ind).smallerDown_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side2(ind).smallerDown_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side2(ind).SmallerggVer_Down_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=ggVer_Down_side2(ind).SmallerggVer_Down_side2(20:end-20); 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=cell2mat(ggVer_Down_side2(ind).SmallerggVer_Down_side2); 
end 
 
%%Figure of the divided box girder
for ind = 1:numel(xRngs)-1 
figure(6) 
scatter3(ggVer_Up(ind).SmallerggVer_Up(:,1),ggVer_Up(ind).SmallerggVer_Up(:,2),ggVer_Up(ind).SmallerggVer_Up(:,3),'.y') 
hold on 
scatter3(Mid1_side1(ind).smallerMid1_side1(:,1),Mid1_side1(ind).smallerMid1_side1(:,2),Mid1_side1(ind).smallerMid1_side1(:,3),'.m') 
hold on 
scatter3(Mid1_side2(ind).smallerMid1_side2(:,1),Mid1_side2(ind).smallerMid1_side2(:,2),Mid1_side2(ind).smallerMid1_side2(:,3),'.c') 
hold on 
scatter3(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,1),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,2),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,3),'.r') 
hold on 
scatter3(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,1),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,2),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,3),'.g') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.b') 
hold on
% scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.k')
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% hold on 
scatter3( ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,1), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,2), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,3),'.g') 
hold on 
scatter3(ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,1),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,2),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,3),'.m') 
axis equal
end

Intersection points

    %%Asigning one X-value to all the rows
for ind = 1:numel(xRngs)-1 
 
    %%Flatten Up 
flatup1(ind).smallerflatup1=up1(ind).smallerup1; 
if isempty(up1(ind).smallerup1)==1 
 continue
end 
flatup1(ind).smallerflatup1(:,1)=repelem(flatup1(ind).smallerflatup1(1),size(flatup1(ind).smallerflatup1,1),1); 
pup1(ind).smallerpup1 = polyfit(flatup1(ind).smallerflatup1(:,2),flatup1(ind).smallerflatup1(:,3),1); 
fup1(ind).smallerfup1 = polyval(pup1(ind).smallerpup1,flatup1(ind).smallerflatup1(:,2)); 
 
 
%%Flatten Mid1_side1 
flatMid1_side1(ind).smallerflatMid1_side1=Mid1_side1(ind).smallerMid1_side1; 
if isempty(Mid1_side1(ind).smallerMid1_side1)==1 
 continue
end 
flatMid1_side1(ind).smallerflatMid1_side1(:,1)=repelem(flatMid1_side1(ind).smallerflatMid1_side1(1),size(flatMid1_side1(ind).smallerflatMid1_side1,1),1); 
pMid1_side1(ind).smallerpMid1_side1 = polyfit(flatMid1_side1(ind).smallerflatMid1_side1(:,2),flatMid1_side1(ind).smallerflatMid1_side1(:,3),1); 
fMid1_side1(ind).smallerfMid1_side1 = polyval(pMid1_side1(ind).smallerpMid1_side1,flatMid1_side1(ind).smallerflatMid1_side1(:,2)); 
 
 
%%Flatten Mid1_side2 
flatMid1_side2(ind).smallerflatMid1_side2=Mid1_side2(ind).smallerMid1_side2; 
if isempty(Mid1_side2(ind).smallerMid1_side2)==1 
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 continue
end 
flatMid1_side2(ind).smallerflatMid1_side2(:,1)=repelem(flatMid1_side2(ind).smallerflatMid1_side2(1),size(flatMid1_side2(ind).smallerflatMid1_side2,1),1); 
pMid1_side2(ind).smallerpMid1_side2 = polyfit(flatMid1_side2(ind).smallerflatMid1_side2(:,2),flatMid1_side2(ind).smallerflatMid1_side2(:,3),1); 
fMid1_side2(ind).smallerfMid1_side2 = polyval(pMid1_side2(ind).smallerpMid1_side2,flatMid1_side2(ind).smallerflatMid1_side2(:,2)); 
 
 
%%Flatten Mid2_side1 
flatMid2_side1(ind).smallerflatMid2_side1=Mid2_side1(ind).smallerMid2_side1; 
if isempty(Mid2_side1(ind).smallerMid2_side1)==1 
 continue
end 
flatMid2_side1(ind).smallerflatMid2_side1(:,1)=repelem(flatMid2_side1(ind).smallerflatMid2_side1(1),size(flatMid2_side1(ind).smallerflatMid2_side1,1),1); 
pMid2_side1(ind).smallerpMid2_side1 = polyfit(flatMid2_side1(ind).smallerflatMid2_side1(:,2),flatMid2_side1(ind).smallerflatMid2_side1(:,3),1); 
fMid2_side1(ind).smallerfMid2_side1 = polyval(pMid2_side1(ind).smallerpMid2_side1,flatMid2_side1(ind).smallerflatMid2_side1(:,2)); 
 
 
%%Flatten Mid2_side2 
flatMid2_side2(ind).smallerflatMid2_side2=Mid2_side2(ind).smallerMid2_side2; 
if isempty(Mid2_side2(ind).smallerMid2_side2)==1 
 continue
end 
flatMid2_side2(ind).smallerflatMid2_side2(:,1)=repelem(flatMid2_side2(ind).smallerflatMid2_side2(1),size(flatMid2_side2(ind).smallerflatMid2_side2,1),1); 
pMid2_side2(ind).smallerpMid2_side2 = polyfit(flatMid2_side2(ind).smallerflatMid2_side2(:,2),flatMid2_side2(ind).smallerflatMid2_side2(:,3),1); 
fMid2_side2(ind).smallerfMid2_side2 = polyval(pMid2_side2(ind).smallerpMid2_side2,flatMid2_side2(ind).smallerflatMid2_side2(:,2)); 
 
 
%%Flatten Mid3_side1 
flatMid3_side1(ind).smallerflatMid3_side1=mid3_side1(ind).smallermid3_side1; 
if isempty(mid3_side1(ind).smallermid3_side1)==1 
 continue
end 
flatMid3_side1(ind).smallerflatMid3_side1(:,1)=repelem(flatMid3_side1(ind).smallerflatMid3_side1(1),size(flatMid3_side1(ind).smallerflatMid3_side1,1),1); 
pMid3_side1(ind).smallerpMid3_side1 = polyfit(flatMid3_side1(ind).smallerflatMid3_side1(:,2),flatMid3_side1(ind).smallerflatMid3_side1(:,3),1); 
fMid3_side1(ind).smallerfMid3_side1 = polyval(pMid3_side1(ind).smallerpMid3_side1,flatMid3_side1(ind).smallerflatMid3_side1(:,2)); 
 
 
%%Flatten Down_side1 
flatDown_side1(ind).smallerflatDown_side1=Down_side1(ind).smallerDown_side1; 
if isempty(Down_side1(ind).smallerDown_side1)==1 
 continue
end 
flatDown_side1(ind).smallerflatDown_side1(:,1)=repelem(flatDown_side1(ind).smallerflatDown_side1(1),size(flatDown_side1(ind).smallerflatDown_side1,1),1); 
pflatDown_side1(ind).smallerpflatDown_side1 = polyfit(flatDown_side1(ind).smallerflatDown_side1(:,2),flatDown_side1(ind).smallerflatDown_side1(:,3),1); 
fflatDown_side1(ind).smallerfflatDown_side1 = polyval(pflatDown_side1(ind).smallerpflatDown_side1,flatDown_side1(ind).smallerflatDown_side1(:,2)); 
 
 
%%Flatten Down_side2 
flatDown_side2(ind).smallerflatDown_side2=Down_side2(ind).smallerDown_side2; 
if isempty(Down_side2(ind).smallerDown_side2)==1 
 continue
end 
flatDown_side2(ind).smallerflatDown_side2(:,1)=repelem(flatDown_side2(ind).smallerflatDown_side2(1),size(flatDown_side2(ind).smallerflatDown_side2,1),1); 
pflatDown_side2(ind).smallerpflatDown_side2 = polyfit(flatDown_side2(ind).smallerflatDown_side2(:,2),flatDown_side2(ind).smallerflatDown_side2(:,3),1); 
fflatDown_side2(ind).smallerfflatDown_side2 = polyval(pflatDown_side2(ind).smallerpflatDown_side2,flatDown_side2(ind).smallerflatDown_side2(:,2)); 
 
end 
 
 
%%find intersection
for ind = 1:numel(xRngs)-1 
 
Y1_intersect(ind).smallerY1_intersect=fzero(@(x) polyval(pup1(ind).smallerpup1-pMid1_side2(ind).smallerpMid1_side2,x),3); 
Z1_intersect(ind).smallerZ1_intersect=polyval(pup1(ind).smallerpup1,Y1_intersect(ind).smallerY1_intersect); 
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Y2_intersect(ind).smallerY2_intersect=fzero(@(x) polyval(pMid1_side2(ind).smallerpMid1_side2-pMid2_side2(ind).smallerpMid2_side2,x),3); 
Z2_intersect(ind).smallerZ2_intersect=polyval(pMid1_side2(ind).smallerpMid1_side2,Y2_intersect(ind).smallerY2_intersect); 
 
%Intersection point 3 becomes the endpoint_3, because of the missing part 
 
%Intersection point 4 is found in the next for-loop 
 
Y5_intersect(ind).smallerY5_intersect=fzero(@(x) polyval(pflatDown_side2(ind).smallerpflatDown_side2-pflatDown_side1(ind).smallerpflatDown_side1,x),3); 
Z5_intersect(ind).smallerZ5_intersect=polyval(pflatDown_side2(ind).smallerpflatDown_side2,Y5_intersect(ind).smallerY5_intersect); 
 
Y6_intersect(ind).smallerY6_intersect=fzero(@(x) polyval(pflatDown_side1(ind).smallerpflatDown_side1-pMid3_side1(ind).smallerpMid3_side1,x),3); 
Z6_intersect(ind).smallerZ6_intersect=polyval(pflatDown_side1(ind).smallerpflatDown_side1,Y6_intersect(ind).smallerY6_intersect); 
 
Y7_intersect(ind).smallerY7_intersect=fzero(@(x) polyval(pMid3_side1(ind).smallerpMid3_side1-pMid2_side1(ind).smallerpMid2_side1,x),3); 
Z7_intersect(ind).smallerZ7_intersect=polyval(pMid3_side1(ind).smallerpMid3_side1,Y7_intersect(ind).smallerY7_intersect); 
 
Y8_intersect(ind).smallerY8_intersect=fzero(@(x) polyval(pMid2_side1(ind).smallerpMid2_side1-pMid1_side1(ind).smallerpMid1_side1,x),3); 
Z8_intersect(ind).smallerZ8_intersect=polyval(pMid2_side1(ind).smallerpMid2_side1,Y8_intersect(ind).smallerY8_intersect); 
 
Y9_intersect(ind).smallerY9_intersect=fzero(@(x) polyval(pMid1_side1(ind).smallerpMid1_side1-pup1(ind).smallerpup1,x),3); 
Z9_intersect(ind).smallerZ9_intersect=polyval(pMid1_side1(ind).smallerpMid1_side1,Y9_intersect(ind).smallerY9_intersect); 
 
 
%%New matrix of points with same flattened x-value from right 
intersect_xyz1(ind).smallerintersect_xyz1=[flatup1(ind).smallerflatup1(1,1),Y1_intersect(ind).smallerY1_intersect,Z1_intersect(ind).smallerZ1_intersect]; 
intersect_xyz2(ind).smallerintersect_xyz2=[flatup1(ind).smallerflatup1(1,1),Y2_intersect(ind).smallerY2_intersect,Z2_intersect(ind).smallerZ2_intersect]; 
% intersect_xyz3(ind).smallerintersect_xyz3=[flatup1(ind).smallerflatup1(1,1),Y3_intersect(ind).smallerY3_intersect,Z3_intersect(ind).smallerZ3_intersect];
% intersect_xyz4(ind).smallerintersect_xyz4=[flatup1(ind).smallerflatup1(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
intersect_xyz5(ind).smallerintersect_xyz5=[flatup1(ind).smallerflatup1(1,1),Y5_intersect(ind).smallerY5_intersect,Z5_intersect(ind).smallerZ5_intersect]; 
intersect_xyz6(ind).smallerintersect_xyz6=[flatup1(ind).smallerflatup1(1,1),Y6_intersect(ind).smallerY6_intersect,Z6_intersect(ind).smallerZ6_intersect]; 
intersect_xyz7(ind).smallerintersect_xyz7=[flatup1(ind).smallerflatup1(1,1),Y7_intersect(ind).smallerY7_intersect,Z7_intersect(ind).smallerZ7_intersect]; 
intersect_xyz8(ind).smallerintersect_xyz8=[flatup1(ind).smallerflatup1(1,1),Y8_intersect(ind).smallerY8_intersect,Z8_intersect(ind).smallerZ8_intersect]; 
intersect_xyz9(ind).smallerintersect_xyz9=[flatup1(ind).smallerflatup1(1,1),Y9_intersect(ind).smallerY9_intersect,Z9_intersect(ind).smallerZ9_intersect]; 
end 
 
%%Find endpoint where the missing points are, mid3_side2
for ind = 1:numel(xRngs)-1 
[~,idx]=max(Mid2_side2(ind).smallerMid2_side2(:,2)); 
endpoint_3(ind).smallerendpoint_3=Mid2_side2(ind).smallerMid2_side2(idx,:); 
 
[~,idx]=max(Down_side2(ind).smallerDown_side2(:,2)); 
endpoint_4(ind).smallerendpoint_4=Down_side2(ind).smallerDown_side2(idx,:); 
end 
 
%%Find intersection of missing part, intersection point 4
for ind = 1:numel(xRngs)-1 
[~,idx]=min(Down_side2(ind).smallerDown_side2(:,2)); 
startpoint_4(ind).smallerstartpoint_4=Down_side2(ind).smallerDown_side2(idx,:); 
 
Y4_intersect(ind).smallerY4_intersect=endpoint_3(ind).smallerendpoint_3(:,2); 
coefficients(ind).smallercoefficients= polyfit([startpoint_4(ind).smallerstartpoint_4(:,2), endpoint_4(ind).smallerendpoint_4(:,2)], [startpoint_4(ind).smallerstartpoint_4(:,3), endpoint_4(ind).smallerendpoint_4(:,3)], 1); 
Z4_intersect(ind).smallerZ4_intersect=coefficients(ind).smallercoefficients(:,1)*Y4_intersect(ind).smallerY4_intersect+coefficients(ind).smallercoefficients(:,2); 
 
intersect_xyz3(ind).smallerintersect_xyz3=[flatup1(ind).smallerflatup1(1,1),endpoint_3(ind).smallerendpoint_3(:,2),endpoint_3(ind).smallerendpoint_3(:,3)]; 
intersect_xyz4(ind).smallerintersect_xyz4=[flatup1(ind).smallerflatup1(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
 
end
%%Figure of the unrotated intersection
for ind = 1:numel(xRngs)-1 
 
figure(7) 
scatter3(intersect_xyz1(ind).smallerintersect_xyz1(:,1),intersect_xyz1(ind).smallerintersect_xyz1(:,2),intersect_xyz1(ind).smallerintersect_xyz1(:,3),'*k') 
hold on 
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scatter3(intersect_xyz2(ind).smallerintersect_xyz2(:,1),intersect_xyz2(ind).smallerintersect_xyz2(:,2),intersect_xyz2(ind).smallerintersect_xyz2(:,3),'*r') 
hold on 
scatter3(intersect_xyz3(ind).smallerintersect_xyz3(:,1),intersect_xyz3(ind).smallerintersect_xyz3(:,2),intersect_xyz3(ind).smallerintersect_xyz3(:,3),'*y') 
hold on 
scatter3(intersect_xyz4(ind).smallerintersect_xyz4(:,1),intersect_xyz4(ind).smallerintersect_xyz4(:,2),intersect_xyz4(ind).smallerintersect_xyz4(:,3),'*b') 
hold on 
scatter3(intersect_xyz5(ind).smallerintersect_xyz5(:,1),intersect_xyz5(ind).smallerintersect_xyz5(:,2),intersect_xyz5(ind).smallerintersect_xyz5(:,3),'*m') 
hold on 
scatter3(intersect_xyz6(ind).smallerintersect_xyz6(:,1),intersect_xyz6(ind).smallerintersect_xyz6(:,2),intersect_xyz6(ind).smallerintersect_xyz6(:,3),'*g') 
hold on 
scatter3(intersect_xyz7(ind).smallerintersect_xyz7(:,1),intersect_xyz7(ind).smallerintersect_xyz7(:,2),intersect_xyz7(ind).smallerintersect_xyz7(:,3),'*r') 
hold on 
scatter3(intersect_xyz8(ind).smallerintersect_xyz8(:,1),intersect_xyz8(ind).smallerintersect_xyz8(:,2),intersect_xyz8(ind).smallerintersect_xyz8(:,3),'*y') 
hold on 
scatter3(intersect_xyz9(ind).smallerintersect_xyz9(:,1),intersect_xyz9(ind).smallerintersect_xyz9(:,2),intersect_xyz9(ind).smallerintersect_xyz9(:,3),'*b') 
axis equal 
 
end

Rotate intersection point

%%Rotate pier back to original orientation and convert from m to mm
for ind = 1:numel(xRngs)-1 
rotintersect_xyz1(ind).smallerrotintersect_xyz1=intersect_xyz1(ind).smallerintersect_xyz1*inv(R)*10^3; 
rotintersect_xyz2(ind).smallerrotintersect_xyz2=intersect_xyz2(ind).smallerintersect_xyz2*inv(R)*10^3; 
rotintersect_xyz3(ind).smallerrotintersect_xyz3=intersect_xyz3(ind).smallerintersect_xyz3*inv(R)*10^3; 
rotintersect_xyz4(ind).smallerrotintersect_xyz4=intersect_xyz4(ind).smallerintersect_xyz4*inv(R)*10^3; 
rotintersect_xyz5(ind).smallerrotintersect_xyz5=intersect_xyz5(ind).smallerintersect_xyz5*inv(R)*10^3; 
rotintersect_xyz6(ind).smallerrotintersect_xyz6=intersect_xyz6(ind).smallerintersect_xyz6*inv(R)*10^3; 
rotintersect_xyz7(ind).smallerrotintersect_xyz7=intersect_xyz7(ind).smallerintersect_xyz7*inv(R)*10^3; 
rotintersect_xyz8(ind).smallerrotintersect_xyz8=intersect_xyz8(ind).smallerintersect_xyz8*inv(R)*10^3; 
rotintersect_xyz9(ind).smallerrotintersect_xyz9=intersect_xyz9(ind).smallerintersect_xyz9*inv(R)*10^3; 
end 
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%%Figure of the intersection pionts, rotated back to original positions
for ind = 1:numel(xRngs)-1 
 
figure(8) 
scatter3(rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,1),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,2),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,3),'*k') 
hold on 
scatter3(rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,1),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,2),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,1),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,2),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,1),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,2),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,3),'*b') 
hold on 
scatter3(rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,1),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,2),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,3),'*m') 
hold on 
scatter3(rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,1),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,2),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,3),'*g') 
hold on 
scatter3(rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,1),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,2),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,1),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,2),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,1),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,2),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,3),'*b') 
axis equal 
 
end

write an Excel file

writetable(struct2table(rotintersect_xyz1),'Intersect_box_17.xlsx','sheet',1); 
writetable(struct2table(rotintersect_xyz2),'Intersect_box_17.xlsx','sheet',2); 
writetable(struct2table(rotintersect_xyz3),'Intersect_box_17.xlsx','sheet',3); 
writetable(struct2table(rotintersect_xyz4),'Intersect_box_17.xlsx','sheet',4); 
writetable(struct2table(rotintersect_xyz5),'Intersect_box_17.xlsx','sheet',5); 
writetable(struct2table(rotintersect_xyz6),'Intersect_box_17.xlsx','sheet',6); 
writetable(struct2table(rotintersect_xyz7),'Intersect_box_17.xlsx','sheet',7); 
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writetable(struct2table(rotintersect_xyz8),'Intersect_box_17.xlsx','sheet',8); 
writetable(struct2table(rotintersect_xyz9),'Intersect_box_17.xlsx','sheet',9); 
winopen 'Intersect_box_17.xlsx'

Warning: Added specified worksheet.  
Warning: Added specified worksheet.  
Warning: Added specified worksheet.  
Warning: Added specified worksheet.  
Warning: Added specified worksheet.  
Warning: Added specified worksheet.  
Warning: Added specified worksheet.  
Warning: Added specified worksheet.  

Published with MATLAB® R2019b
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Box girder 18

clear all 
close all 
clc 
 
A=dlmread('Box_18.txt');       %%Reading the txt-file of the point cloud 
a=A(:,[1,2,3]);                     %%Matrix of the geometrical data 
x=a(:,1); 
y=a(:,2); 
z=a(:,3); 
 
figure(1) 
scatter3(x,y,z,'*') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Rotate

%find angle to rotate 
 
[maxX, indexOfMaxX] = max(x); 
yAtMaxX = y(indexOfMaxX); 
[minY, indexOfMinY] = min(y); 
xAtMiny = x(indexOfMinY); 
 
u=[maxX-xAtMiny, yAtMaxX- minY]; 
v=[1,0]; 
 
slope=u(:,2)/u(:,1); 
theta=atan(slope);                  %%Angle 
 
R=[cos(theta)   -sin(theta)   0;    %%Rotation matrix 
   sin(theta)  cos(theta)  0; 
    0   0   1]; 
 
%%Rotate the whole pier 
rotM=a*R;                           %%rotated matrix 
 
%%Rotated matrix 
x1=rotM(:,1); 
y1=rotM(:,2); 
z1=rotM(:,3); 
 
figure(2) 
scatter3(x1,y1,z1,'.b') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Deleting bad part

rowsToDelete = rotM(:,1)> max(rotM(:,1))-2; 
rotM(rowsToDelete,:) = []; 

Slice

%%Dividing the rotated Box girder into main segments 
xRngs=[min(rotM(:,1)):0.5: max(rotM(:,1))]; 
for ind = 1:numel(xRngs)-1 
 
 
    rows = rotM(:,1)>=xRngs(ind) & rotM(:,1)<xRngs(ind+1); %check to see which rows of b are between 
        %xRng(ind) and xRng(ind+1) 
    segM(ind).SmallerM = rotM(rows,:);                                     %%segM is the segmented matrix of the rotated pier 
 
    figure(3) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.')    %%Scatter the rotated pier 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end
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Vertical cut to find outer parts

%%splitting the box Vertically, finding the two outer sides
for ind = 1:numel(xRngs)-1 
MaxY_Box(ind)=max(segM(ind).SmallerM(:,2)); 
MinY_Box(ind)=min(segM(ind).SmallerM(:,2)); 
e=0.01; 
kVer(ind) = floor((MaxY_Box(ind)-MinY_Box(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Box(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= segM(ind).SmallerM((segM(ind).SmallerM(:,2)>=mVer(ind).SmallermVer(i,1) & segM(ind).SmallerM(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing 
 ggVer_Box(ind).SmallerggVer_Box{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Box(ind).SmallerggVer_Box=cell2mat(ggVer_Box(ind).SmallerggVer_Box); 
ggVer_mid3_side1(ind).SmallerggVer_mid3_side1=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)<=MinY_Box(ind)+0.2),:); 
ggVer_mid3_side2(ind).SmallerggVer_mid3_side2=ggVer_Box(ind).SmallerggVer_Box((ggVer_Box(ind).SmallerggVer_Box(:,2)>=MaxY_Box(ind)-0.2),:); 
end 
 
%%removing unregular part
for ind = 1:numel(xRngs)-1 
    %side 1 
MaxZ_Box_side1(ind)= max(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
MinZ_Box_side1(ind)= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)); 
 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)<=MaxZ_Box_side1(ind)-0.1),:); 
mid3_side1(ind).smallermid3_side1= ggVer_mid3_side1(ind).SmallerggVer_mid3_side1((ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,3)>=MinZ_Box_side1(ind)+0.2),:); 
 
%%side 2, missing point cloud
end 
 
 
%%Exluding the outer part from the point cloud
for ind = 1:numel(xRngs)-1 
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[ia, ~] = ismember(segM(ind).SmallerM, ggVer_mid3_side1(ind).SmallerggVer_mid3_side1, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
[ia, ib] = ismember(segM(ind).SmallerM, ggVer_mid3_side2(ind).SmallerggVer_mid3_side2, 'rows'); 
segM(ind).SmallerM(ia, :) = []; 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) >= min(ggVer_mid3_side1(ind).SmallerggVer_mid3_side1(:,2)), :); 
segM(ind).SmallerM = segM(ind).SmallerM(segM(ind).SmallerM(:,2) <= max(ggVer_mid3_side2(ind).SmallerggVer_mid3_side2(:,2)), :); 
 
 
end 
 
%%Figure of Boxgirder without the outer part
for ind = 1:numel(xRngs)-1 
figure(4) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.r') 
hold on
% scatter3(ggVer_mid3_side1(9).SmallerggVer_mid3_side1(:,1),ggVer_mid3_side1(9).SmallerggVer_mid3_side1(:,2),ggVer_mid3_side1(9).SmallerggVer_mid3_side1(:,3),'.b')
% hold on
% scatter3(ggVer_mid3_side2(9).SmallerggVer_mid3_side2(:,1),ggVer_mid3_side2(9).SmallerggVer_mid3_side2(:,2),ggVer_mid3_side2(9).SmallerggVer_mid3_side2(:,3),'.g') 
axis equal
end 
 
 
%%Find mean, max and min values
for ind = 1:numel(xRngs)-1 
maximumZ(ind)= max(segM(ind).SmallerM(:,3)); 
minimumZ(ind)=min(segM(ind).SmallerM(:,3)); 
 
maximumY(ind)= max(segM(ind).SmallerM(:,2)); 
minimumY(ind)=min(segM(ind).SmallerM(:,2)); 
 
columnMean(ind).SmallercolumnMean = mean(segM(ind).SmallerM,1);             %%Find the mean x-values of each segment 
 
meanx(ind).Smallermeanx=columnMean(ind).SmallercolumnMean(1,1); 
meanY(ind).SmallermeanY=columnMean(ind).SmallercolumnMean(1,2); 
meanZ(ind).SmallermeanZ=columnMean(ind).SmallercolumnMean(1,3); 
end
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Horisontal cut

%%Dividing the segments into microsegments in the horisontal direction,
%%finding changes in amount of points
for ind = 1:numel(xRngs)-1 
 
e1=0.05; 
 kHor(ind) = floor((maximumZ(ind)-minimumZ(ind))/e1);                     %How many times its divided
for i = 1:kHor(ind) 
 mHor(ind).SmallermHor(i,1) = minimumZ(ind)+e1*(i-1);                     %For which values its divided for each segment 
 A2Hor(ind).SmallerA2Hor= segM(ind).SmallerM((segM(ind).SmallerM(:,3)>=mHor(ind).SmallermHor(i,1) & segM(ind).SmallerM(:,3)<=mHor(ind).SmallermHor(i,1)+e1),:);     %logical indexing 
 ggHor(ind).SmallerggHor{i,1}=A2Hor(ind).SmallerA2Hor;          %%Counting the points in each microsegment 
 if isempty(A2Hor(ind).SmallerA2Hor)==1 
 continue 
 end
end
for i=1:kHor(ind)-1 
ChangeHor(ind).smallerChangeHor{i,:}=size(ggHor(ind).SmallerggHor{i,1})/size(ggHor(ind).SmallerggHor{i+1,1}); 
 
ChangeHor(ind).smallerChangeHor{i,:}=ChangeHor(ind).smallerChangeHor{i,1}(:,1); 
ChangeHor1(ind).smallerChangeHor1=cell2mat(ChangeHor(ind).smallerChangeHor); 
end
end
%%finding the positions to cut
for ind = 1:numel(xRngs)-1 
 
[m_1(ind).smallerm_1,idx_1(ind).smalleridx_1] = max(ChangeHor1(ind).smallerChangeHor1(1:floor(kHor(ind)/2),:)); 
ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1) = NaN ; 
idx_2(ind).smalleridx_2= find(diff(ChangeHor1(ind).smallerChangeHor1,2)==0,1); %%The removed outer part always makes this position to be several repeting 1 
 
if idx_1(ind).smalleridx_1 > idx_2(ind).smalleridx_2 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:idx_1(ind).smalleridx_1)) ; 
else 
    [m_3(ind).smallerm_3,idx_3(ind).smalleridx_3] = min(ChangeHor1(ind).smallerChangeHor1(idx_1(ind).smalleridx_1:idx_2(ind).smalleridx_2)) ; 
end 
m_4(ind).smallerm_4 = min(ChangeHor1(ind).smallerChangeHor1(idx_2(ind).smalleridx_2:end)) ; 
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idx_4(ind).smalleridx_4 = find(ChangeHor1(ind).smallerChangeHor1==m_4(ind).smallerm_4); 
 
 
CutPosition(ind).smallerCutPosition=sort([idx_1(ind).smalleridx_1;idx_2(ind).smalleridx_2;idx_3(ind).smalleridx_3;idx_4(ind).smalleridx_4]); 
 
end
%%splitting the parts
%%Removing the ends from both sides of the mid 1,cos horisontal cut
for ind = 1:numel(xRngs)-1 
 
up(ind).smallerup=ggHor(ind).SmallerggHor(1:CutPosition(ind).smallerCutPosition(1,:),:); 
up1(ind).smallerup1=cell2mat(up(ind).smallerup); 
 
mid1(ind).smallermid1=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(1,:)+1:CutPosition(ind).smallerCutPosition(2,:),:); 
mid1(ind).smallermid1=mid1(ind).smallermid1(5:end-4); 
mid11(ind).smallermid11=cell2mat(mid1(ind).smallermid1); 
 
mid2(ind).smallermid2=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(2,:)+1:CutPosition(ind).smallerCutPosition(3,:),:); 
mid22(ind).smallermid22=cell2mat(mid2(ind).smallermid2); 
 
%%mid3 is already splitted as the outer parts 
 
down(ind).smallerdown=ggHor(ind).SmallerggHor(CutPosition(ind).smallerCutPosition(4,:)+1:end,:); 
down1(ind).smallerdown1=cell2mat(down(ind).smallerdown); 
 
figure(5) 
scatter3(up1(ind).smallerup1(:,1),up1(ind).smallerup1(:,2),up1(ind).smallerup1(:,3),'.r') 
hold on 
scatter3(mid11(ind).smallermid11(:,1),mid11(ind).smallermid11(:,2),mid11(ind).smallermid11(:,3),'.b') 
hold on 
scatter3(mid22(ind).smallermid22(:,1),mid22(ind).smallermid22(:,2),mid22(ind).smallermid22(:,3),'.g') 
hold on 
scatter3(down1(ind).smallerdown1(:,1),down1(ind).smallerdown1(:,2),down1(ind).smallerdown1(:,3),'.m') 
axis equal
end
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Vertical cut

%%Splitting the sides 
 for ind = 1:numel(xRngs)-1 
%%Up is has only one side 
 
Mid1_side1(ind).smallerMid1_side1=find(mid11(ind).smallermid11(:,2)< (meanY(ind).SmallermeanY)); 
Mid1_side2(ind).smallerMid1_side2=find(mid11(ind).smallermid11(:,2)> (meanY(ind).SmallermeanY)); 
Mid1_side1(ind).smallerMid1_side1=mid11(ind).smallermid11(Mid1_side1(ind).smallerMid1_side1,:); 
Mid1_side2(ind).smallerMid1_side2=mid11(ind).smallermid11(Mid1_side2(ind).smallerMid1_side2,:); 
 
Mid2_side1(ind).smallerMid2_side1=find(mid22(ind).smallermid22(:,2)< (meanY(ind).SmallermeanY)); 
Mid2_side2(ind).smallerMid2_side2=find(mid22(ind).smallermid22(:,2)> (meanY(ind).SmallermeanY)); 
Mid2_side1(ind).smallerMid2_side1=mid22(ind).smallermid22(Mid2_side1(ind).smallerMid2_side1,:); 
Mid2_side2(ind).smallerMid2_side2=mid22(ind).smallermid22(Mid2_side2(ind).smallerMid2_side2,:); 
 
Down_side1(ind).smallerDown_side1=find(down1(ind).smallerdown1(:,2)< (meanY(ind).SmallermeanY)); 
Down_side2(ind).smallerDown_side2=find(down1(ind).smallerdown1(:,2)> (meanY(ind).SmallermeanY)); 
Down_side1(ind).smallerDown_side1=down1(ind).smallerdown1(Down_side1(ind).smallerDown_side1,:); 
Down_side2(ind).smallerDown_side2=down1(ind).smallerdown1(Down_side2(ind).smallerDown_side2,:); 
 
end 
 
%%splitting Mid2_side1 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side1(ind)=max(Mid2_side1(ind).smallerMid2_side1(:,2)); 
MinY_Mid2_side1(ind)=min(Mid2_side1(ind).smallerMid2_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side1(ind)-MinY_Mid2_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side1(ind).smallerMid2_side1((Mid2_side1(ind).smallerMid2_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side1(ind).smallerMid2_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side1(ind).SmallerggVer_mid2_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(2:end-2); 
ggVer_mid2_side1(ind).SmallerggVer_mid2_side1=cell2mat(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1); 
end
%%splitting Mid2_side2 Vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Mid2_side2(ind)=max(Mid2_side2(ind).smallerMid2_side2(:,2)); 
MinY_Mid2_side2(ind)=min(Mid2_side2(ind).smallerMid2_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Mid2_side2(ind)-MinY_Mid2_side2(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Mid2_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Mid2_side2(ind).smallerMid2_side2((Mid2_side2(ind).smallerMid2_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Mid2_side2(ind).smallerMid2_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_mid2_side2(ind).SmallerggVer_mid2_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(2:end-2); 
ggVer_mid2_side2(ind).SmallerggVer_mid2_side2=cell2mat(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2); 
end 
 
%%splitting Up vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Up(ind)=max(up1(ind).smallerup1(:,2)); 
MinY_Up(ind)=min(up1(ind).smallerup1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Up(ind)-MinY_Up(ind))/e); 
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for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Up(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= up1(ind).smallerup1((up1(ind).smallerup1(:,2)>=mVer(ind).SmallermVer(i,1) & up1(ind).smallerup1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing 
 ggVer_Up(ind).SmallerggVer_Up{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Up(ind).SmallerggVer_Up=ggVer_Up(ind).SmallerggVer_Up(10:end-10); 
ggVer_Up(ind).SmallerggVer_Up=cell2mat(ggVer_Up(ind).SmallerggVer_Up); 
end 
 
%%splitting Down_side1 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side1(ind)=max(Down_side1(ind).smallerDown_side1(:,2)); 
MinY_Down_side1(ind)=min(Down_side1(ind).smallerDown_side1(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side1(ind)-MinY_Down_side1(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Down_side1(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side1(ind).smallerDown_side1((Down_side1(ind).smallerDown_side1(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side1(ind).smallerDown_side1(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side1(ind).SmallerggVer_Down_side1{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=ggVer_Down_side1(ind).SmallerggVer_Down_side1(20:end-20); 
ggVer_Down_side1(ind).SmallerggVer_Down_side1=cell2mat(ggVer_Down_side1(ind).SmallerggVer_Down_side1); 
end 
 
%%splitting Down_side2 vertically, removing the ends from both sides
for ind = 1:numel(xRngs)-1 
MaxY_Down_side2(ind)=max(Down_side2(ind).smallerDown_side2(:,2)); 
MinY_Down_side2(ind)=min(Down_side2(ind).smallerDown_side2(:,2)); 
e=0.1; 
kVer(ind) = floor((MaxY_Down_side2(ind)-MinY_Down_side2(ind))/e); 
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = MinY_Down_side2(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= Down_side2(ind).smallerDown_side2((Down_side2(ind).smallerDown_side2(:,2)>=mVer(ind).SmallermVer(i,1) & Down_side2(ind).smallerDown_side2(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer_Down_side2(ind).SmallerggVer_Down_side2{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=ggVer_Down_side2(ind).SmallerggVer_Down_side2(20:end-20); 
ggVer_Down_side2(ind).SmallerggVer_Down_side2=cell2mat(ggVer_Down_side2(ind).SmallerggVer_Down_side2); 
end 
 
%%Figure of the divided box girder
for ind = 1:numel(xRngs)-1 
figure(6) 
scatter3(ggVer_Up(ind).SmallerggVer_Up(:,1),ggVer_Up(ind).SmallerggVer_Up(:,2),ggVer_Up(ind).SmallerggVer_Up(:,3),'.y') 
hold on 
scatter3(Mid1_side1(ind).smallerMid1_side1(:,1),Mid1_side1(ind).smallerMid1_side1(:,2),Mid1_side1(ind).smallerMid1_side1(:,3),'.m') 
hold on 
scatter3(Mid1_side2(ind).smallerMid1_side2(:,1),Mid1_side2(ind).smallerMid1_side2(:,2),Mid1_side2(ind).smallerMid1_side2(:,3),'.c') 
hold on 
scatter3(ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,1),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,2),ggVer_mid2_side1(ind).SmallerggVer_mid2_side1(:,3),'.r') 
hold on 
scatter3(ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,1),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,2),ggVer_mid2_side2(ind).SmallerggVer_mid2_side2(:,3),'.g') 
hold on 
scatter3(mid3_side1(ind).smallermid3_side1(:,1),mid3_side1(ind).smallermid3_side1(:,2),mid3_side1(ind).smallermid3_side1(:,3),'.b') 
hold on
% scatter3(mid3_side2(ind).smallermid3_side2(:,1),mid3_side2(ind).smallermid3_side2(:,2),mid3_side2(ind).smallermid3_side2(:,3),'.k')
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% hold on 
scatter3( ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,1), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,2), ggVer_Down_side1(ind).SmallerggVer_Down_side1(:,3),'.g') 
hold on 
scatter3(ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,1),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,2),ggVer_Down_side2(ind).SmallerggVer_Down_side2(:,3),'.m') 
axis equal
end

Intersection points

    %%Asigning one X-value to all the rows
for ind = 1:numel(xRngs)-1 
 
    %%Flatten Up 
flatup1(ind).smallerflatup1=up1(ind).smallerup1; 
if isempty(up1(ind).smallerup1)==1 
 continue
end 
flatup1(ind).smallerflatup1(:,1)=repelem(flatup1(ind).smallerflatup1(1),size(flatup1(ind).smallerflatup1,1),1); 
pup1(ind).smallerpup1 = polyfit(flatup1(ind).smallerflatup1(:,2),flatup1(ind).smallerflatup1(:,3),1); 
fup1(ind).smallerfup1 = polyval(pup1(ind).smallerpup1,flatup1(ind).smallerflatup1(:,2)); 
 
 
%%Flatten Mid1_side1 
flatMid1_side1(ind).smallerflatMid1_side1=Mid1_side1(ind).smallerMid1_side1; 
if isempty(Mid1_side1(ind).smallerMid1_side1)==1 
 continue
end 
flatMid1_side1(ind).smallerflatMid1_side1(:,1)=repelem(flatMid1_side1(ind).smallerflatMid1_side1(1),size(flatMid1_side1(ind).smallerflatMid1_side1,1),1); 
pMid1_side1(ind).smallerpMid1_side1 = polyfit(flatMid1_side1(ind).smallerflatMid1_side1(:,2),flatMid1_side1(ind).smallerflatMid1_side1(:,3),1); 
fMid1_side1(ind).smallerfMid1_side1 = polyval(pMid1_side1(ind).smallerpMid1_side1,flatMid1_side1(ind).smallerflatMid1_side1(:,2)); 
 
 
%%Flatten Mid1_side2 
flatMid1_side2(ind).smallerflatMid1_side2=Mid1_side2(ind).smallerMid1_side2; 
if isempty(Mid1_side2(ind).smallerMid1_side2)==1 
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 continue
end 
flatMid1_side2(ind).smallerflatMid1_side2(:,1)=repelem(flatMid1_side2(ind).smallerflatMid1_side2(1),size(flatMid1_side2(ind).smallerflatMid1_side2,1),1); 
pMid1_side2(ind).smallerpMid1_side2 = polyfit(flatMid1_side2(ind).smallerflatMid1_side2(:,2),flatMid1_side2(ind).smallerflatMid1_side2(:,3),1); 
fMid1_side2(ind).smallerfMid1_side2 = polyval(pMid1_side2(ind).smallerpMid1_side2,flatMid1_side2(ind).smallerflatMid1_side2(:,2)); 
 
 
%%Flatten Mid2_side1 
flatMid2_side1(ind).smallerflatMid2_side1=Mid2_side1(ind).smallerMid2_side1; 
if isempty(Mid2_side1(ind).smallerMid2_side1)==1 
 continue
end 
flatMid2_side1(ind).smallerflatMid2_side1(:,1)=repelem(flatMid2_side1(ind).smallerflatMid2_side1(1),size(flatMid2_side1(ind).smallerflatMid2_side1,1),1); 
pMid2_side1(ind).smallerpMid2_side1 = polyfit(flatMid2_side1(ind).smallerflatMid2_side1(:,2),flatMid2_side1(ind).smallerflatMid2_side1(:,3),1); 
fMid2_side1(ind).smallerfMid2_side1 = polyval(pMid2_side1(ind).smallerpMid2_side1,flatMid2_side1(ind).smallerflatMid2_side1(:,2)); 
 
 
%%Flatten Mid2_side2 
flatMid2_side2(ind).smallerflatMid2_side2=Mid2_side2(ind).smallerMid2_side2; 
if isempty(Mid2_side2(ind).smallerMid2_side2)==1 
 continue
end 
flatMid2_side2(ind).smallerflatMid2_side2(:,1)=repelem(flatMid2_side2(ind).smallerflatMid2_side2(1),size(flatMid2_side2(ind).smallerflatMid2_side2,1),1); 
pMid2_side2(ind).smallerpMid2_side2 = polyfit(flatMid2_side2(ind).smallerflatMid2_side2(:,2),flatMid2_side2(ind).smallerflatMid2_side2(:,3),1); 
fMid2_side2(ind).smallerfMid2_side2 = polyval(pMid2_side2(ind).smallerpMid2_side2,flatMid2_side2(ind).smallerflatMid2_side2(:,2)); 
 
 
%%Flatten Mid3_side1 
flatMid3_side1(ind).smallerflatMid3_side1=mid3_side1(ind).smallermid3_side1; 
if isempty(mid3_side1(ind).smallermid3_side1)==1 
 continue
end 
flatMid3_side1(ind).smallerflatMid3_side1(:,1)=repelem(flatMid3_side1(ind).smallerflatMid3_side1(1),size(flatMid3_side1(ind).smallerflatMid3_side1,1),1); 
pMid3_side1(ind).smallerpMid3_side1 = polyfit(flatMid3_side1(ind).smallerflatMid3_side1(:,2),flatMid3_side1(ind).smallerflatMid3_side1(:,3),1); 
fMid3_side1(ind).smallerfMid3_side1 = polyval(pMid3_side1(ind).smallerpMid3_side1,flatMid3_side1(ind).smallerflatMid3_side1(:,2)); 
 
 
%%Flatten Down_side1 
flatDown_side1(ind).smallerflatDown_side1=Down_side1(ind).smallerDown_side1; 
if isempty(Down_side1(ind).smallerDown_side1)==1 
 continue
end 
flatDown_side1(ind).smallerflatDown_side1(:,1)=repelem(flatDown_side1(ind).smallerflatDown_side1(1),size(flatDown_side1(ind).smallerflatDown_side1,1),1); 
pflatDown_side1(ind).smallerpflatDown_side1 = polyfit(flatDown_side1(ind).smallerflatDown_side1(:,2),flatDown_side1(ind).smallerflatDown_side1(:,3),1); 
fflatDown_side1(ind).smallerfflatDown_side1 = polyval(pflatDown_side1(ind).smallerpflatDown_side1,flatDown_side1(ind).smallerflatDown_side1(:,2)); 
 
 
%%Flatten Down_side2 
flatDown_side2(ind).smallerflatDown_side2=Down_side2(ind).smallerDown_side2; 
if isempty(Down_side2(ind).smallerDown_side2)==1 
 continue
end 
flatDown_side2(ind).smallerflatDown_side2(:,1)=repelem(flatDown_side2(ind).smallerflatDown_side2(1),size(flatDown_side2(ind).smallerflatDown_side2,1),1); 
pflatDown_side2(ind).smallerpflatDown_side2 = polyfit(flatDown_side2(ind).smallerflatDown_side2(:,2),flatDown_side2(ind).smallerflatDown_side2(:,3),1); 
fflatDown_side2(ind).smallerfflatDown_side2 = polyval(pflatDown_side2(ind).smallerpflatDown_side2,flatDown_side2(ind).smallerflatDown_side2(:,2)); 
 
end 
 
 
%%find intersection
for ind = 1:numel(xRngs)-1 
 
Y1_intersect(ind).smallerY1_intersect=fzero(@(x) polyval(pup1(ind).smallerpup1-pMid1_side2(ind).smallerpMid1_side2,x),3); 
Z1_intersect(ind).smallerZ1_intersect=polyval(pup1(ind).smallerpup1,Y1_intersect(ind).smallerY1_intersect); 
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Y2_intersect(ind).smallerY2_intersect=fzero(@(x) polyval(pMid1_side2(ind).smallerpMid1_side2-pMid2_side2(ind).smallerpMid2_side2,x),3); 
Z2_intersect(ind).smallerZ2_intersect=polyval(pMid1_side2(ind).smallerpMid1_side2,Y2_intersect(ind).smallerY2_intersect); 
 
%Intersection point 3 becomes the endpoint_3, because of the missing part 
 
%Intersection point 4 is found in the next for-loop 
 
Y5_intersect(ind).smallerY5_intersect=fzero(@(x) polyval(pflatDown_side2(ind).smallerpflatDown_side2-pflatDown_side1(ind).smallerpflatDown_side1,x),3); 
Z5_intersect(ind).smallerZ5_intersect=polyval(pflatDown_side2(ind).smallerpflatDown_side2,Y5_intersect(ind).smallerY5_intersect); 
 
Y6_intersect(ind).smallerY6_intersect=fzero(@(x) polyval(pflatDown_side1(ind).smallerpflatDown_side1-pMid3_side1(ind).smallerpMid3_side1,x),3); 
Z6_intersect(ind).smallerZ6_intersect=polyval(pflatDown_side1(ind).smallerpflatDown_side1,Y6_intersect(ind).smallerY6_intersect); 
 
Y7_intersect(ind).smallerY7_intersect=fzero(@(x) polyval(pMid3_side1(ind).smallerpMid3_side1-pMid2_side1(ind).smallerpMid2_side1,x),3); 
Z7_intersect(ind).smallerZ7_intersect=polyval(pMid3_side1(ind).smallerpMid3_side1,Y7_intersect(ind).smallerY7_intersect); 
 
Y8_intersect(ind).smallerY8_intersect=fzero(@(x) polyval(pMid2_side1(ind).smallerpMid2_side1-pMid1_side1(ind).smallerpMid1_side1,x),3); 
Z8_intersect(ind).smallerZ8_intersect=polyval(pMid2_side1(ind).smallerpMid2_side1,Y8_intersect(ind).smallerY8_intersect); 
 
Y9_intersect(ind).smallerY9_intersect=fzero(@(x) polyval(pMid1_side1(ind).smallerpMid1_side1-pup1(ind).smallerpup1,x),3); 
Z9_intersect(ind).smallerZ9_intersect=polyval(pMid1_side1(ind).smallerpMid1_side1,Y9_intersect(ind).smallerY9_intersect); 
 
 
%%New matrix of points with same flattened x-value from right 
intersect_xyz1(ind).smallerintersect_xyz1=[flatup1(ind).smallerflatup1(1,1),Y1_intersect(ind).smallerY1_intersect,Z1_intersect(ind).smallerZ1_intersect]; 
intersect_xyz2(ind).smallerintersect_xyz2=[flatup1(ind).smallerflatup1(1,1),Y2_intersect(ind).smallerY2_intersect,Z2_intersect(ind).smallerZ2_intersect]; 
% intersect_xyz3(ind).smallerintersect_xyz3=[flatup1(ind).smallerflatup1(1,1),Y3_intersect(ind).smallerY3_intersect,Z3_intersect(ind).smallerZ3_intersect];
% intersect_xyz4(ind).smallerintersect_xyz4=[flatup1(ind).smallerflatup1(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
intersect_xyz5(ind).smallerintersect_xyz5=[flatup1(ind).smallerflatup1(1,1),Y5_intersect(ind).smallerY5_intersect,Z5_intersect(ind).smallerZ5_intersect]; 
intersect_xyz6(ind).smallerintersect_xyz6=[flatup1(ind).smallerflatup1(1,1),Y6_intersect(ind).smallerY6_intersect,Z6_intersect(ind).smallerZ6_intersect]; 
intersect_xyz7(ind).smallerintersect_xyz7=[flatup1(ind).smallerflatup1(1,1),Y7_intersect(ind).smallerY7_intersect,Z7_intersect(ind).smallerZ7_intersect]; 
intersect_xyz8(ind).smallerintersect_xyz8=[flatup1(ind).smallerflatup1(1,1),Y8_intersect(ind).smallerY8_intersect,Z8_intersect(ind).smallerZ8_intersect]; 
intersect_xyz9(ind).smallerintersect_xyz9=[flatup1(ind).smallerflatup1(1,1),Y9_intersect(ind).smallerY9_intersect,Z9_intersect(ind).smallerZ9_intersect]; 
end 
 
%%Find endpoint where the missing points are, mid3_side2
for ind = 1:numel(xRngs)-1 
[~,idx]=max(Mid2_side2(ind).smallerMid2_side2(:,2)); 
endpoint_3(ind).smallerendpoint_3=Mid2_side2(ind).smallerMid2_side2(idx,:); 
 
[~,idx]=max(Down_side2(ind).smallerDown_side2(:,2)); 
endpoint_4(ind).smallerendpoint_4=Down_side2(ind).smallerDown_side2(idx,:); 
end 
 
%%Find intersection of missing part, intersection point 4
for ind = 1:numel(xRngs)-1 
[~,idx]=min(Down_side2(ind).smallerDown_side2(:,2)); 
startpoint_4(ind).smallerstartpoint_4=Down_side2(ind).smallerDown_side2(idx,:); 
 
Y4_intersect(ind).smallerY4_intersect=endpoint_3(ind).smallerendpoint_3(:,2); 
coefficients(ind).smallercoefficients= polyfit([startpoint_4(ind).smallerstartpoint_4(:,2), endpoint_4(ind).smallerendpoint_4(:,2)], [startpoint_4(ind).smallerstartpoint_4(:,3), endpoint_4(ind).smallerendpoint_4(:,3)], 1); 
Z4_intersect(ind).smallerZ4_intersect=coefficients(ind).smallercoefficients(:,1)*Y4_intersect(ind).smallerY4_intersect+coefficients(ind).smallercoefficients(:,2); 
 
intersect_xyz3(ind).smallerintersect_xyz3=[flatup1(ind).smallerflatup1(1,1),endpoint_3(ind).smallerendpoint_3(:,2),endpoint_3(ind).smallerendpoint_3(:,3)]; 
intersect_xyz4(ind).smallerintersect_xyz4=[flatup1(ind).smallerflatup1(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
 
end
%%Figure of the unrotated intersection
for ind = 1:numel(xRngs)-1 
 
figure(7) 
scatter3(intersect_xyz1(ind).smallerintersect_xyz1(:,1),intersect_xyz1(ind).smallerintersect_xyz1(:,2),intersect_xyz1(ind).smallerintersect_xyz1(:,3),'*k') 
hold on 
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scatter3(intersect_xyz2(ind).smallerintersect_xyz2(:,1),intersect_xyz2(ind).smallerintersect_xyz2(:,2),intersect_xyz2(ind).smallerintersect_xyz2(:,3),'*r') 
hold on 
scatter3(intersect_xyz3(ind).smallerintersect_xyz3(:,1),intersect_xyz3(ind).smallerintersect_xyz3(:,2),intersect_xyz3(ind).smallerintersect_xyz3(:,3),'*y') 
hold on 
scatter3(intersect_xyz4(ind).smallerintersect_xyz4(:,1),intersect_xyz4(ind).smallerintersect_xyz4(:,2),intersect_xyz4(ind).smallerintersect_xyz4(:,3),'*b') 
hold on 
scatter3(intersect_xyz5(ind).smallerintersect_xyz5(:,1),intersect_xyz5(ind).smallerintersect_xyz5(:,2),intersect_xyz5(ind).smallerintersect_xyz5(:,3),'*m') 
hold on 
scatter3(intersect_xyz6(ind).smallerintersect_xyz6(:,1),intersect_xyz6(ind).smallerintersect_xyz6(:,2),intersect_xyz6(ind).smallerintersect_xyz6(:,3),'*g') 
hold on 
scatter3(intersect_xyz7(ind).smallerintersect_xyz7(:,1),intersect_xyz7(ind).smallerintersect_xyz7(:,2),intersect_xyz7(ind).smallerintersect_xyz7(:,3),'*r') 
hold on 
scatter3(intersect_xyz8(ind).smallerintersect_xyz8(:,1),intersect_xyz8(ind).smallerintersect_xyz8(:,2),intersect_xyz8(ind).smallerintersect_xyz8(:,3),'*y') 
hold on 
scatter3(intersect_xyz9(ind).smallerintersect_xyz9(:,1),intersect_xyz9(ind).smallerintersect_xyz9(:,2),intersect_xyz9(ind).smallerintersect_xyz9(:,3),'*b') 
axis equal 
 
end

Rotate intersection point

%%Rotate pier back to original orientation and convert from m to mm
for ind = 1:numel(xRngs)-1 
rotintersect_xyz1(ind).smallerrotintersect_xyz1=intersect_xyz1(ind).smallerintersect_xyz1*inv(R)*10^3; 
rotintersect_xyz2(ind).smallerrotintersect_xyz2=intersect_xyz2(ind).smallerintersect_xyz2*inv(R)*10^3; 
rotintersect_xyz3(ind).smallerrotintersect_xyz3=intersect_xyz3(ind).smallerintersect_xyz3*inv(R)*10^3; 
rotintersect_xyz4(ind).smallerrotintersect_xyz4=intersect_xyz4(ind).smallerintersect_xyz4*inv(R)*10^3; 
rotintersect_xyz5(ind).smallerrotintersect_xyz5=intersect_xyz5(ind).smallerintersect_xyz5*inv(R)*10^3; 
rotintersect_xyz6(ind).smallerrotintersect_xyz6=intersect_xyz6(ind).smallerintersect_xyz6*inv(R)*10^3; 
rotintersect_xyz7(ind).smallerrotintersect_xyz7=intersect_xyz7(ind).smallerintersect_xyz7*inv(R)*10^3; 
rotintersect_xyz8(ind).smallerrotintersect_xyz8=intersect_xyz8(ind).smallerintersect_xyz8*inv(R)*10^3; 
rotintersect_xyz9(ind).smallerrotintersect_xyz9=intersect_xyz9(ind).smallerintersect_xyz9*inv(R)*10^3; 
end 
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%%Figure of the intersection pionts, rotated back to original positions
for ind = 1:numel(xRngs)-1 
 
figure(8) 
scatter3(rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,1),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,2),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,3),'*k') 
hold on 
scatter3(rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,1),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,2),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,1),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,2),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,1),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,2),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,3),'*b') 
hold on 
scatter3(rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,1),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,2),rotintersect_xyz5(ind).smallerrotintersect_xyz5(:,3),'*m') 
hold on 
scatter3(rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,1),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,2),rotintersect_xyz6(ind).smallerrotintersect_xyz6(:,3),'*g') 
hold on 
scatter3(rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,1),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,2),rotintersect_xyz7(ind).smallerrotintersect_xyz7(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,1),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,2),rotintersect_xyz8(ind).smallerrotintersect_xyz8(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,1),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,2),rotintersect_xyz9(ind).smallerrotintersect_xyz9(:,3),'*b') 
axis equal 
 
end

write an Excel file

writetable(struct2table(rotintersect_xyz1),'Intersect_box_17.xlsx','sheet',1); 
writetable(struct2table(rotintersect_xyz2),'Intersect_box_17.xlsx','sheet',2); 
writetable(struct2table(rotintersect_xyz3),'Intersect_box_17.xlsx','sheet',3); 
writetable(struct2table(rotintersect_xyz4),'Intersect_box_17.xlsx','sheet',4); 
writetable(struct2table(rotintersect_xyz5),'Intersect_box_17.xlsx','sheet',5); 
writetable(struct2table(rotintersect_xyz6),'Intersect_box_17.xlsx','sheet',6); 
writetable(struct2table(rotintersect_xyz7),'Intersect_box_17.xlsx','sheet',7); 
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writetable(struct2table(rotintersect_xyz8),'Intersect_box_17.xlsx','sheet',8); 
writetable(struct2table(rotintersect_xyz9),'Intersect_box_17.xlsx','sheet',9); 
winopen 'Intersect_box_17.xlsx'

Published with MATLAB® R2019b
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Flip

Cut

Rotate

Slice

Parts

Sides

Intersection points

Rotate and Flip back

Write Excel file

Pier1,2,5,6

clear all 
close all 
clc 
 
A=dlmread('Pier_2_ny.txt');                %%Reading the txt-file of the point cloud 
a=A(:,[1,2,3]);                     %%Matrix of the geometrical data 
figure(1) 
scatter3(a(:,1),a(:,2),a(:,3),'.b') 
axis equal

Flip
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b=fliplr(a);                        %%flipping the pier 
x=b(:,1); 
y=b(:,2); 
z=b(:,3); 
figure(2) 
scatter3(b(:,1),b(:,2),b(:,3),'.b') 
axis equal 
 
%    %%Dividing the pier into smaller segments to find the angle 
 
%The ranges of the matrices are designated by being between n and n+1 
xRngs1=[min(b(:,1)):0.25: max(b(:,1))];                                         %%Find range from min to max, divided by ...       %Can change
for ind = 1:numel(xRngs1)-1 
    rowsOriginal = b(:,1)>=xRngs1(ind) & b(:,1)<xRngs1(ind+1);                %%Check to see which rows of b are between xRng(ind) and xRng(ind+1) 
    M(ind).SmallerM = b(rowsOriginal,:);                                    %%Segmented matrix
end

Cut

rowsToDelete = b(:,1) < min(b(:,1))+2 | b (:,1)> max(b(:,1))-0.2; 
b(rowsToDelete,:) = []; 
 
figure(4) 
scatter3(b(:,1),b(:,2),b(:,3),'.b') 
axis equal
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Rotate

%%find angle to rotate pier 
 
c=M(20).SmallerM;        %%matrix for the first segment 
xM=c(:,1); 
yM=c(:,2); 
zM=c(:,3); 
 
[maxY, indexOfMaxY] = max(yM); 
zAtMaxY = zM(indexOfMaxY); 
[minZ, indexOfMinZ] = min(zM); 
yAtMinZ = yM(indexOfMinZ); 
 
u=[maxY-yAtMinZ, zAtMaxY- minZ]; 
v=[1,0]; 
 
slope=u(:,2)/u(:,1); 
theta=atan(slope);                  %%Angle 
 
R=[1 0 0;                           %%Rotation matrix 
    0 cos(theta) -sin(theta); 
    0 sin(theta) cos(theta)]; 
 
%%Rotate the whole pier 
rotM=b*R;                           %%rotated matrix 
 
x1=rotM(:,1); 
y1=rotM(:,2); 
z1=rotM(:,3); 
figure(3) 
scatter3(rotM(:,1),rotM(:,2),rotM(:,3),'.b') 
axis equal
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Slice

%%Dividing the rotated pier into main segments 
xRngs=[min(b(:,1)):0.25: max(b(:,1))]; 
for ind = 1:numel(xRngs)-1 
 
    rows = rotM(:,1)>=xRngs(ind) & b(:,1)<xRngs(ind+1); %check to see which rows of b are between 
        %xRng(ind) and xRng(ind+1) 
    segM(ind).SmallerM = rotM(rows,:);                                     %%segM is the segmented matrix of the rotated pier 
 
    figure(5) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'*')    %%Scatter the rotated pier 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end
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Parts

%%Find center of the pier
for ind = 1:numel(xRngs)-1 
 
maximumZ(ind)= max(segM(ind).SmallerM(:,3)); 
minimumZ(ind)=min(segM(ind).SmallerM(:,3)); 
 
maximumY(ind)= max(segM(ind).SmallerM(:,2)); 
minimumY(ind)=min(segM(ind).SmallerM(:,2)); 
 
columnMean(ind).SmallercolumnMean = mean(segM(ind).SmallerM,1);             %%Find the mean x-values of each segment 
 
meanY(ind).SmallermeanY=columnMean(ind).SmallercolumnMean(1,2); 
meanZ(ind).SmallermeanZ=columnMean(ind).SmallercolumnMean(1,3); 
 
%%Find the apropriate lenght from center and out, before the curve starts 
LZ(ind)=maximumZ(ind)-minimumZ(ind); 
LY(ind)=maximumY(ind)-minimumY(ind); 
lz(ind)=(LZ(ind)/2)-1;                                                      %Can change 
ly(ind)=(LY(ind)/2)-0.5;                                                      %Can change 
 
%%Find all the points that lies in the wanted range from center 
YY(ind).SmallerYY=  find(segM(ind).SmallerM(:,2) < (meanY(ind).SmallermeanY+ly(ind)) &  segM(ind).SmallerM (:,2) > (meanY(ind).SmallermeanY-ly(ind))); 
ZZ(ind).SmallerZZ=  find(segM(ind).SmallerM(:,3) < (meanZ(ind).SmallermeanZ+lz(ind)) &  segM(ind).SmallerM (:,3) > (meanZ(ind).SmallermeanZ-lz(ind))); 
 
YYmatrix(ind).SmallerYYmatrix=segM(ind).SmallerM(YY(ind).SmallerYY,:); 
ZZmatrix(ind).SmallerZZmatrix=segM(ind).SmallerM(ZZ(ind).SmallerZZ,:); 
 
%%Find the center of the pier 
centerX(ind).SmallercenterX=mean(YYmatrix(ind).SmallerYYmatrix(:,1)); 
centerY(ind).SmallercenterY=mean(YYmatrix(ind).SmallerYYmatrix(:,2)); 
centerZ(ind).SmallercenterZ=mean(ZZmatrix(ind).SmallerZZmatrix(:,3)); 
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CENTER(ind).SmallerCENTER=[centerX(ind).SmallercenterX,centerY(ind).SmallercenterY,centerZ(ind).SmallercenterZ]; 
 
CENTER_mat = cell2mat(struct2cell(CENTER)); 
 
figure(6)  %%Shows the center of the pier and the range in the Y and Z direction 
plot3(YYmatrix(ind).SmallerYYmatrix(:,1),YYmatrix(ind).SmallerYYmatrix(:,2),YYmatrix(ind).SmallerYYmatrix(:,3),'*r') 
hold on 
plot3(ZZmatrix(ind).SmallerZZmatrix(:,1),ZZmatrix(ind).SmallerZZmatrix(:,2),ZZmatrix(ind).SmallerZZmatrix(:,3),'*b') 
hold on 
plot3(CENTER(ind).SmallerCENTER(:,1),CENTER(ind).SmallerCENTER(:,2),CENTER(ind).SmallerCENTER(:,3),'*g') 
axis equal
end

Sides

for ind = 1:numel(xRngs)-1 
%%Dividing the segments into microsegments in the horisontal direction 
 
maximumZ(ind)= max(YYmatrix(ind).SmallerYYmatrix(:,3)); 
minimumZ(ind)=min(YYmatrix(ind).SmallerYYmatrix(:,3)); 
e=0.005; 
 kHor(ind) = floor((maximumZ(ind)-minimumZ(ind))/e);                     %How many times its divided
for i = 1:kHor(ind) 
 mHor(ind).SmallermHor(i,1) = minimumZ(ind)+e*(i-1);                     %For which values its divided for each segment 
 A2Hor(ind).SmallerA2Hor= YYmatrix(ind).SmallerYYmatrix((YYmatrix(ind).SmallerYYmatrix(:,3)>=mHor(ind).SmallermHor(i,1) & YYmatrix(ind).SmallerYYmatrix(:,3)<=mHor(ind).SmallermHor(i,1)+e),:);     %logical indexing
 ggHor(ind).SmallerggHor{i,1}=A2Hor(ind).SmallerA2Hor;          %%Counting the points in each microsegment 
 if isempty(A2Hor(ind).SmallerA2Hor)==1 
 continue 
 end
end 
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%%Dividing the segments into microsegments in the vertical direction 
 
maximumY(ind)= max(ZZmatrix(ind).SmallerZZmatrix(:,2)); 
minimumY(ind)=min(ZZmatrix(ind).SmallerZZmatrix(:,2)); 
 
 kVer(ind) = floor((maximumY(ind)-minimumY(ind))/e);                         %can change %%OBSOBS SJEKK OM A2Hor og A2Ver har verdier, hvis ikke gjør om på denne forløkken, og evt øverst i xRnges
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = minimumY(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= ZZmatrix(ind).SmallerZZmatrix((ZZmatrix(ind).SmallerZZmatrix(:,2)>=mVer(ind).SmallermVer(i,1) & ZZmatrix(ind).SmallerZZmatrix(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer(ind).SmallerggVer{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end
end 
 
for ind = 1:numel(xRngs)-1 
    %%splitting the two sides 
 
 
Right1(ind).smallerRight1=ggVer(ind).SmallerggVer(1:find(cellfun(@isempty,ggVer(ind).SmallerggVer),1),:); 
Right(ind).smallerRight=cell2mat(Right1(ind).smallerRight1); 
 
 
Left1(ind).smallerLeft1=ggVer(ind).SmallerggVer(find(cellfun(@isempty,ggVer(ind).SmallerggVer),1,'last'):end,:); 
Left(ind).smallerLeft=cell2mat(Left1(ind).smallerLeft1); 
 
 
Lower1(ind).smallerLower1=ggHor(ind).SmallerggHor(1:find(cellfun(@isempty,ggHor(ind).SmallerggHor),1),:); 
Lower(ind).smallerLower=cell2mat(Lower1(ind).smallerLower1); 
 
Upper1(ind).smallerUpper1=ggHor(ind).SmallerggHor(find(cellfun(@isempty,ggHor(ind).SmallerggHor),1,'last'):end,:); 
Upper(ind).smallerUpper=cell2mat(Upper1(ind).smallerUpper1); 
figure(7) 
scatter3(Lower(ind).smallerLower(:,1),Lower(ind).smallerLower(:,2),Lower(ind).smallerLower(:,3),'*r') 
hold on 
scatter3(Upper(ind).smallerUpper(:,1),Upper(ind).smallerUpper(:,2),Upper(ind).smallerUpper(:,3),'*b') 
hold on 
scatter3(Left(ind).smallerLeft(:,1),Left(ind).smallerLeft(:,2),Left(ind).smallerLeft(:,3),'*g') 
hold on 
scatter3(Right(ind).smallerRight(:,1),Right(ind).smallerRight(:,2),Right(ind).smallerRight(:,3),'*y') 
axis equal
end
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Intersection points

for ind = 1:numel(xRngs)-1 
    %%Asigning one X-value to all the rows
%%Flatten the right side 
flatRight(ind).smallerflatRight=Right(ind).smallerRight; 
flatRight(ind).smallerflatRight(:,1)=repelem(flatRight(ind).smallerflatRight(1),size(flatRight(ind).smallerflatRight,1),1); 
pRight(ind).smallerpRight = polyfit(flatRight(ind).smallerflatRight(:,2),flatRight(ind).smallerflatRight(:,3),1); 
fRight(ind).smallerfRight = polyval(pRight(ind).smallerpRight,flatRight(ind).smallerflatRight(:,2)); 
 
%%flatten the left side 
flatLeft(ind).smallerflatLeft=Left(ind).smallerLeft; 
flatLeft(ind).smallerflatLeft(:,1)=repelem(flatLeft(ind).smallerflatLeft(1),size(flatLeft(ind).smallerflatLeft,1),1); 
pLeft(ind).smallerpLeft = polyfit(flatLeft(ind).smallerflatLeft(:,2),flatLeft(ind).smallerflatLeft(:,3),1); 
fLeft(ind).smallerfLeft = polyval(pLeft(ind).smallerpLeft,flatLeft(ind).smallerflatLeft(:,2)); 
 
%%Flatten the lower 
flatLower(ind).smallerflatLower=Lower(ind).smallerLower; 
flatLower(ind).smallerflatLower(:,1)=repelem(flatLower(ind).smallerflatLower(1),size(flatLower(ind).smallerflatLower,1),1); 
pLower(ind).smallerpLower = polyfit(flatLower(ind).smallerflatLower(:,2),flatLower(ind).smallerflatLower(:,3),1); 
fLower(ind).smallerfLower = polyval(pLower(ind).smallerpLower,flatLower(ind).smallerflatLower(:,2)); 
 
%%Flatten the Upper 
flatUpper(ind).smallerflatUpper=Upper(ind).smallerUpper; 
%  if isempty(Upper(ind).smallerUpper)==1
%  continue
%  end 
flatUpper(ind).smallerflatUpper(:,1)=repelem(flatUpper(ind).smallerflatUpper(1),size(flatUpper(ind).smallerflatUpper,1),1); 
pUpper(ind).smallerpUpper = polyfit(flatUpper(ind).smallerflatUpper(:,2),flatUpper(ind).smallerflatUpper(:,3),1); 
fUpper(ind).smallerfUpper = polyval(pUpper(ind).smallerpUpper,flatUpper(ind).smallerflatUpper(:,2)); 
end 
 
for ind = 1:numel(xRngs)-1 



10.6.2020 Pier_2

file:///C:/Users/Eier/Desktop/Matlab master/html/Pier_2.html 9/12

%%find intersection 
Y1_intersect(ind).smallerY1_intersect=fzero(@(x) polyval(pLeft(ind).smallerpLeft-pLower(ind).smallerpLower,x),3); 
Z1_intersect(ind).smallerZ1_intersect=polyval(pLeft(ind).smallerpLeft,Y1_intersect(ind).smallerY1_intersect); 
 
Y2_intersect(ind).smallerY2_intersect=fzero(@(x) polyval(pLeft(ind).smallerpLeft-pUpper(ind).smallerpUpper,x),3); 
Z2_intersect(ind).smallerZ2_intersect=polyval(pLeft(ind).smallerpLeft,Y2_intersect(ind).smallerY2_intersect); 
 
Y3_intersect(ind).smallerY3_intersect=fzero(@(x) polyval(pRight(ind).smallerpRight-pUpper(ind).smallerpUpper,x),3); 
Z3_intersect(ind).smallerZ3_intersect=polyval(pRight(ind).smallerpRight,Y3_intersect(ind).smallerY3_intersect); 
 
Y4_intersect(ind).smallerY4_intersect=fzero(@(x) polyval(pRight(ind).smallerpRight-pLower(ind).smallerpLower,x),3); 
Z4_intersect(ind).smallerZ4_intersect=polyval(pRight(ind).smallerpRight,Y4_intersect(ind).smallerY4_intersect); 
 
end 
 
for ind = 1:numel(xRngs)-1 
%%New matrix of points with same flattened x-value from right 
intersect_xyz1(ind).smallerintersect_xyz1=[flatRight(ind).smallerflatRight(1,1),Y1_intersect(ind).smallerY1_intersect,Z1_intersect(ind).smallerZ1_intersect]; 
intersect_xyz2(ind).smallerintersect_xyz2=[flatRight(ind).smallerflatRight(1,1),Y2_intersect(ind).smallerY2_intersect,Z2_intersect(ind).smallerZ2_intersect]; 
intersect_xyz3(ind).smallerintersect_xyz3=[flatRight(ind).smallerflatRight(1,1),Y3_intersect(ind).smallerY3_intersect,Z3_intersect(ind).smallerZ3_intersect]; 
intersect_xyz4(ind).smallerintersect_xyz4=[flatRight(ind).smallerflatRight(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
end
for ind = 1:numel(xRngs)-1 
    figure(8) 
scatter3(intersect_xyz1(ind).smallerintersect_xyz1(:,1),intersect_xyz1(ind).smallerintersect_xyz1(:,2),intersect_xyz1(ind).smallerintersect_xyz1(:,3),'*y') 
hold on 
scatter3(intersect_xyz2(ind).smallerintersect_xyz2(:,1),intersect_xyz2(ind).smallerintersect_xyz2(:,2),intersect_xyz2(ind).smallerintersect_xyz2(:,3),'*g') 
hold on 
scatter3(intersect_xyz3(ind).smallerintersect_xyz3(:,1),intersect_xyz3(ind).smallerintersect_xyz3(:,2),intersect_xyz3(ind).smallerintersect_xyz3(:,3),'*r') 
hold on 
scatter3(intersect_xyz4(ind).smallerintersect_xyz4(:,1),intersect_xyz4(ind).smallerintersect_xyz4(:,2),intersect_xyz4(ind).smallerintersect_xyz4(:,3),'*b') 
axis equal
end
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Rotate and Flip back

for ind = 1:numel(xRngs)-1 
%Rotate pier back to original orientation and convert from m to mm 
rotintersect_xyz1(ind).smallerrotintersect_xyz1=intersect_xyz1(ind).smallerintersect_xyz1*inv(R)*10^3; 
rotintersect_xyz2(ind).smallerrotintersect_xyz2=intersect_xyz2(ind).smallerintersect_xyz2*inv(R)*10^3; 
rotintersect_xyz3(ind).smallerrotintersect_xyz3=intersect_xyz3(ind).smallerintersect_xyz3*inv(R)*10^3; 
rotintersect_xyz4(ind).smallerrotintersect_xyz4=intersect_xyz4(ind).smallerintersect_xyz4*inv(R)*10^3; 
%flip pier back to original angle (upwards) 
rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip=fliplr(rotintersect_xyz1(ind).smallerrotintersect_xyz1); 
rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip=fliplr(rotintersect_xyz2(ind).smallerrotintersect_xyz2); 
rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip=fliplr(rotintersect_xyz3(ind).smallerrotintersect_xyz3); 
rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip=fliplr(rotintersect_xyz4(ind).smallerrotintersect_xyz4); 
end 
 
 %%Shows the intersection points of the rotated pier at with and without original orientation
for ind = 1:numel(xRngs)-1 
    figure(9) 
scatter3(rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,1),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,2),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,1),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,2),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,3),'*g') 
hold on 
scatter3(rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,1),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,2),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,1),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,2),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,3),'*b') 
axis equal 
 
 
figure(10) 
scatter3(rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip(:,1),rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip(:,2),rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip(:,1),rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip(:,2),rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip(:,3),'*g') 
hold on 
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scatter3(rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip(:,1),rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip(:,2),rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip(:,1),rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip(:,2),rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip(:,3),'*b') 
hold on
%scatter3(A(:,1),A(:,2),A(:,3),'*m') 
axis equal
end

 
Write Excel file

%write a Excel file of a struct 
 
writetable(struct2table(rotintersect_xyz1flip),'Intersect_pier2.xlsx','sheet',1); 
writetable(struct2table(rotintersect_xyz2flip),'Intersect_pier2.xlsx','sheet',2); 
writetable(struct2table(rotintersect_xyz3flip),'Intersect_pier2.xlsx','sheet',3); 
writetable(struct2table(rotintersect_xyz4flip),'Intersect_pier2.xlsx','sheet',4); 
winopen 'Intersect_pier2.xlsx' 
 
%write an excel file of the original z-values 
writematrix(max(a(:,3))*10^3,'Original_z_values_pier2.xlsx','sheet',1,'Range','A1'); 
writematrix(min(a(:,3))*10^3,'Original_z_values_pier2.xlsx','sheet',1,'Range','A2'); 

Warning: Added specified worksheet.  
Warning: Added specified worksheet.  
Warning: Added specified worksheet.  

Published with MATLAB® R2019b
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Contents

Pier 3,4

Flip

Cut

Rotate

Slice

Parts

Sides

Intersection points

Rotate and Flip

Pier 3,4

clear all 
close all 
clc 
 
A=dlmread('Pier4.txt');                %%Reading the txt-file of the point cloud 
a=A(:,[1,2,3]);                     %%Matrix of the geometrical data 
figure(1) 
scatter3(a(:,1),a(:,2),a(:,3),'.b') 
axis equal

Flip
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b=fliplr(a);                        %%flipping the pier 
x=b(:,1); 
y=b(:,2); 
z=b(:,3); 
figure(2) 
scatter3(b(:,1),b(:,2),b(:,3),'.b') 
axis equal 
 
%    %%Dividing the pier into smaller segments to find the angle 
 
%The ranges of the matrices are designated by being between n and n+1 
xRngs1=[min(b(:,1)):0.25: max(b(:,1))];                                         %%Find range from min to max, divided by ...       %Can change
for ind = 1:numel(xRngs1)-1 
    rowsOriginal = b(:,1)>=xRngs1(ind) & b(:,1)<xRngs1(ind+1);                %%Check to see which rows of b are between xRng(ind) and xRng(ind+1) 
    M(ind).SmallerM = b(rowsOriginal,:);                                    %%Segmented matrix
end

Cut

% No cut for pier 4

Rotate

%%find angle to rotate pier 
 
c=M(20).SmallerM;        %%matrix for the first segment 
xM=c(:,1); 
yM=c(:,2); 
zM=c(:,3); 
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[maxY, indexOfMaxY] = max(yM); 
zAtMaxY = zM(indexOfMaxY); 
[minZ, indexOfMinZ] = min(zM); 
yAtMinZ = yM(indexOfMinZ); 
 
u=[maxY-yAtMinZ, zAtMaxY- minZ]; 
v=[1,0]; 
 
slope=u(:,2)/u(:,1); 
theta=atan(slope);                  %%Angle 
 
R=[1 0 0;                           %%Rotation matrix 
    0 cos(theta) -sin(theta); 
    0 sin(theta) cos(theta)]; 
 
%%Rotate the whole pier 
rotM=b*R;                           %%rotated matrix 
 
x1=rotM(:,1); 
y1=rotM(:,2); 
z1=rotM(:,3); 
figure(3) 
scatter3(rotM(:,1),rotM(:,2),rotM(:,3),'.b') 
axis equal

Slice

%%Dividing the rotated pier into main segments 
xRngs=[min(b(:,1)):0.25: max(b(:,1))]; 
for ind = 1:numel(xRngs)-1 
 
    rows = rotM(:,1)>=xRngs(ind) & b(:,1)<xRngs(ind+1); %check to see which rows of b are between 
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        %xRng(ind) and xRng(ind+1) 
    segM(ind).SmallerM = rotM(rows,:);                                     %%segM is the segmented matrix of the rotated pier 
 
    figure(5) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'*')    %%Scatter the rotated pier 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end

Parts

%%Find center of the pier
for ind = 1:numel(xRngs)-1 
 
maximumZ(ind)= max(segM(ind).SmallerM(:,3)); 
minimumZ(ind)=min(segM(ind).SmallerM(:,3)); 
 
maximumY(ind)= max(segM(ind).SmallerM(:,2)); 
minimumY(ind)=min(segM(ind).SmallerM(:,2)); 
 
columnMean(ind).SmallercolumnMean = mean(segM(ind).SmallerM,1);             %%Find the mean x-values of each segment 
 
meanY(ind).SmallermeanY=columnMean(ind).SmallercolumnMean(1,2); 
meanZ(ind).SmallermeanZ=columnMean(ind).SmallercolumnMean(1,3); 
 
%%Find the apropriate lenght from center and out, before the curve starts 
LZ(ind)=maximumZ(ind)-minimumZ(ind); 
LY(ind)=maximumY(ind)-minimumY(ind); 
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lz(ind)=(LZ(ind)/2)-1;                                                      %Can change 
ly(ind)=(LY(ind)/2)-0.5;                                                      %Can change 
 
%%Find all the points that lies in the wanted range from center 
YY(ind).SmallerYY=  find(segM(ind).SmallerM(:,2) < (meanY(ind).SmallermeanY+ly(ind)) &  segM(ind).SmallerM (:,2) > (meanY(ind).SmallermeanY-ly(ind))); 
ZZ(ind).SmallerZZ=  find(segM(ind).SmallerM(:,3) < (meanZ(ind).SmallermeanZ+lz(ind)) &  segM(ind).SmallerM (:,3) > (meanZ(ind).SmallermeanZ-lz(ind))); 
 
YYmatrix(ind).SmallerYYmatrix=segM(ind).SmallerM(YY(ind).SmallerYY,:); 
ZZmatrix(ind).SmallerZZmatrix=segM(ind).SmallerM(ZZ(ind).SmallerZZ,:); 
 
%%Find the center of the pier 
centerX(ind).SmallercenterX=mean(YYmatrix(ind).SmallerYYmatrix(:,1)); 
centerY(ind).SmallercenterY=mean(YYmatrix(ind).SmallerYYmatrix(:,2)); 
centerZ(ind).SmallercenterZ=mean(ZZmatrix(ind).SmallerZZmatrix(:,3)); 
 
CENTER(ind).SmallerCENTER=[centerX(ind).SmallercenterX,centerY(ind).SmallercenterY,centerZ(ind).SmallercenterZ]; 
 
CENTER_mat = cell2mat(struct2cell(CENTER)); 
 
figure(6)  %%Shows the center of the pier and the range in the Y and Z direction 
plot3(YYmatrix(ind).SmallerYYmatrix(:,1),YYmatrix(ind).SmallerYYmatrix(:,2),YYmatrix(ind).SmallerYYmatrix(:,3),'*r') 
hold on 
plot3(ZZmatrix(ind).SmallerZZmatrix(:,1),ZZmatrix(ind).SmallerZZmatrix(:,2),ZZmatrix(ind).SmallerZZmatrix(:,3),'*b') 
hold on 
plot3(CENTER(ind).SmallerCENTER(:,1),CENTER(ind).SmallerCENTER(:,2),CENTER(ind).SmallerCENTER(:,3),'*g') 
axis equal
end

Sides

for ind = 1:numel(xRngs)-1 
%%Dividing the segments into microsegments in the horisontal direction 
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maximumZ(ind)= max(YYmatrix(ind).SmallerYYmatrix(:,3)); 
minimumZ(ind)=min(YYmatrix(ind).SmallerYYmatrix(:,3)); 
e=0.005; 
 kHor(ind) = floor((maximumZ(ind)-minimumZ(ind))/e);                     %How many times its divided
for i = 1:kHor(ind) 
 mHor(ind).SmallermHor(i,1) = minimumZ(ind)+e*(i-1);                     %For which values its divided for each segment 
 A2Hor(ind).SmallerA2Hor= YYmatrix(ind).SmallerYYmatrix((YYmatrix(ind).SmallerYYmatrix(:,3)>=mHor(ind).SmallermHor(i,1) & YYmatrix(ind).SmallerYYmatrix(:,3)<=mHor(ind).SmallermHor(i,1)+e),:);     %logical indexing
 ggHor(ind).SmallerggHor{i,1}=A2Hor(ind).SmallerA2Hor;          %%Counting the points in each microsegment 
 if isempty(A2Hor(ind).SmallerA2Hor)==1 
 continue 
 end
end 
 
 
%%Dividing the segments into microsegments in the vertical direction 
 
maximumY(ind)= max(ZZmatrix(ind).SmallerZZmatrix(:,2)); 
minimumY(ind)=min(ZZmatrix(ind).SmallerZZmatrix(:,2)); 
 
 kVer(ind) = floor((maximumY(ind)-minimumY(ind))/e);                         %can change %%OBSOBS SJEKK OM A2Hor og A2Ver har verdier, hvis ikke gjør om på denne forløkken, og evt øverst i xRnges
for i = 1:kVer(ind) 
 mVer(ind).SmallermVer(i,1) = minimumY(ind)+e*(i-1); 
 A2Ver(ind).SmallerA2Ver= ZZmatrix(ind).SmallerZZmatrix((ZZmatrix(ind).SmallerZZmatrix(:,2)>=mVer(ind).SmallermVer(i,1) & ZZmatrix(ind).SmallerZZmatrix(:,2)<=mVer(ind).SmallermVer(i,1)+e),:);     %logical indexing
 ggVer(ind).SmallerggVer{i,1}=A2Ver(ind).SmallerA2Ver;          %%Counting the points in each microsegment 
 if isempty(A2Ver(ind).SmallerA2Ver)==1 
 continue 
 end
end
end 
 
for ind = 1:numel(xRngs)-1 
    %%splitting the two sides 
 
 
Right1(ind).smallerRight1=ggVer(ind).SmallerggVer(1:find(cellfun(@isempty,ggVer(ind).SmallerggVer),1),:); 
Right(ind).smallerRight=cell2mat(Right1(ind).smallerRight1); 
 
 
Left1(ind).smallerLeft1=ggVer(ind).SmallerggVer(find(cellfun(@isempty,ggVer(ind).SmallerggVer),1,'last'):end,:); 
Left(ind).smallerLeft=cell2mat(Left1(ind).smallerLeft1); 
 
 
Lower1(ind).smallerLower1=ggHor(ind).SmallerggHor(1:find(cellfun(@isempty,ggHor(ind).SmallerggHor),1),:); 
Lower(ind).smallerLower=cell2mat(Lower1(ind).smallerLower1); 
 
Upper1(ind).smallerUpper1=ggHor(ind).SmallerggHor(find(cellfun(@isempty,ggHor(ind).SmallerggHor),1,'last'):end,:); 
Upper(ind).smallerUpper=cell2mat(Upper1(ind).smallerUpper1); 
 
figure(7) 
scatter3(Lower(ind).smallerLower(:,1),Lower(ind).smallerLower(:,2),Lower(ind).smallerLower(:,3),'*r') 
hold on 
scatter3(Upper(ind).smallerUpper(:,1),Upper(ind).smallerUpper(:,2),Upper(ind).smallerUpper(:,3),'*b') 
hold on 
scatter3(Left(ind).smallerLeft(:,1),Left(ind).smallerLeft(:,2),Left(ind).smallerLeft(:,3),'*g') 
hold on 
scatter3(Right(ind).smallerRight(:,1),Right(ind).smallerRight(:,2),Right(ind).smallerRight(:,3),'*y') 
axis equal
end
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Intersection points

for ind = 1:numel(xRngs)-1 
    %%Asigning one X-value to all the rows
%%Flatten the right side 
flatRight(ind).smallerflatRight=Right(ind).smallerRight; 
flatRight(ind).smallerflatRight(:,1)=repelem(flatRight(ind).smallerflatRight(1),size(flatRight(ind).smallerflatRight,1),1); 
pRight(ind).smallerpRight = polyfit(flatRight(ind).smallerflatRight(:,2),flatRight(ind).smallerflatRight(:,3),1); 
fRight(ind).smallerfRight = polyval(pRight(ind).smallerpRight,flatRight(ind).smallerflatRight(:,2)); 
 
%%flatten the left side 
flatLeft(ind).smallerflatLeft=Left(ind).smallerLeft; 
flatLeft(ind).smallerflatLeft(:,1)=repelem(flatLeft(ind).smallerflatLeft(1),size(flatLeft(ind).smallerflatLeft,1),1); 
pLeft(ind).smallerpLeft = polyfit(flatLeft(ind).smallerflatLeft(:,2),flatLeft(ind).smallerflatLeft(:,3),1); 
fLeft(ind).smallerfLeft = polyval(pLeft(ind).smallerpLeft,flatLeft(ind).smallerflatLeft(:,2)); 
 
%%Flatten the lower 
flatLower(ind).smallerflatLower=Lower(ind).smallerLower; 
flatLower(ind).smallerflatLower(:,1)=repelem(flatLower(ind).smallerflatLower(1),size(flatLower(ind).smallerflatLower,1),1); 
pLower(ind).smallerpLower = polyfit(flatLower(ind).smallerflatLower(:,2),flatLower(ind).smallerflatLower(:,3),1); 
fLower(ind).smallerfLower = polyval(pLower(ind).smallerpLower,flatLower(ind).smallerflatLower(:,2)); 
 
%%Flatten the Upper 
flatUpper(ind).smallerflatUpper=Upper(ind).smallerUpper; 
%  if isempty(Upper(ind).smallerUpper)==1
%  continue
%  end 
flatUpper(ind).smallerflatUpper(:,1)=repelem(flatUpper(ind).smallerflatUpper(1),size(flatUpper(ind).smallerflatUpper,1),1); 
pUpper(ind).smallerpUpper = polyfit(flatUpper(ind).smallerflatUpper(:,2),flatUpper(ind).smallerflatUpper(:,3),1); 
fUpper(ind).smallerfUpper = polyval(pUpper(ind).smallerpUpper,flatUpper(ind).smallerflatUpper(:,2)); 
end 
 
for ind = 1:numel(xRngs)-1 
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%%find intersection 
Y1_intersect(ind).smallerY1_intersect=fzero(@(x) polyval(pLeft(ind).smallerpLeft-pLower(ind).smallerpLower,x),3); 
Z1_intersect(ind).smallerZ1_intersect=polyval(pLeft(ind).smallerpLeft,Y1_intersect(ind).smallerY1_intersect); 
 
Y2_intersect(ind).smallerY2_intersect=fzero(@(x) polyval(pLeft(ind).smallerpLeft-pUpper(ind).smallerpUpper,x),3); 
Z2_intersect(ind).smallerZ2_intersect=polyval(pLeft(ind).smallerpLeft,Y2_intersect(ind).smallerY2_intersect); 
 
Y3_intersect(ind).smallerY3_intersect=fzero(@(x) polyval(pRight(ind).smallerpRight-pUpper(ind).smallerpUpper,x),3); 
Z3_intersect(ind).smallerZ3_intersect=polyval(pRight(ind).smallerpRight,Y3_intersect(ind).smallerY3_intersect); 
 
Y4_intersect(ind).smallerY4_intersect=fzero(@(x) polyval(pRight(ind).smallerpRight-pLower(ind).smallerpLower,x),3); 
Z4_intersect(ind).smallerZ4_intersect=polyval(pRight(ind).smallerpRight,Y4_intersect(ind).smallerY4_intersect); 
 
end 
 
for ind = 1:numel(xRngs)-1 
%%New matrix of points with same flattened x-value from right 
intersect_xyz1(ind).smallerintersect_xyz1=[flatRight(ind).smallerflatRight(1,1),Y1_intersect(ind).smallerY1_intersect,Z1_intersect(ind).smallerZ1_intersect]; 
intersect_xyz2(ind).smallerintersect_xyz2=[flatRight(ind).smallerflatRight(1,1),Y2_intersect(ind).smallerY2_intersect,Z2_intersect(ind).smallerZ2_intersect]; 
intersect_xyz3(ind).smallerintersect_xyz3=[flatRight(ind).smallerflatRight(1,1),Y3_intersect(ind).smallerY3_intersect,Z3_intersect(ind).smallerZ3_intersect]; 
intersect_xyz4(ind).smallerintersect_xyz4=[flatRight(ind).smallerflatRight(1,1),Y4_intersect(ind).smallerY4_intersect,Z4_intersect(ind).smallerZ4_intersect]; 
end
for ind = 1:numel(xRngs)-1 
    figure(8) 
scatter3(intersect_xyz1(ind).smallerintersect_xyz1(:,1),intersect_xyz1(ind).smallerintersect_xyz1(:,2),intersect_xyz1(ind).smallerintersect_xyz1(:,3),'*y') 
hold on 
scatter3(intersect_xyz2(ind).smallerintersect_xyz2(:,1),intersect_xyz2(ind).smallerintersect_xyz2(:,2),intersect_xyz2(ind).smallerintersect_xyz2(:,3),'*g') 
hold on 
scatter3(intersect_xyz3(ind).smallerintersect_xyz3(:,1),intersect_xyz3(ind).smallerintersect_xyz3(:,2),intersect_xyz3(ind).smallerintersect_xyz3(:,3),'*r') 
hold on 
scatter3(intersect_xyz4(ind).smallerintersect_xyz4(:,1),intersect_xyz4(ind).smallerintersect_xyz4(:,2),intersect_xyz4(ind).smallerintersect_xyz4(:,3),'*b') 
axis equal
end

Warning: Polynomial is not unique; degree >= 
number of data points.  
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Rotate and Flip

for ind = 1:numel(xRngs)-1 
%Rotate pier back to original orientation 
rotintersect_xyz1(ind).smallerrotintersect_xyz1=intersect_xyz1(ind).smallerintersect_xyz1*inv(R); 
rotintersect_xyz2(ind).smallerrotintersect_xyz2=intersect_xyz2(ind).smallerintersect_xyz2*inv(R); 
rotintersect_xyz3(ind).smallerrotintersect_xyz3=intersect_xyz3(ind).smallerintersect_xyz3*inv(R); 
rotintersect_xyz4(ind).smallerrotintersect_xyz4=intersect_xyz4(ind).smallerintersect_xyz4*inv(R); 
%flip pier back to original angle (upwards) 
rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip=fliplr(rotintersect_xyz1(ind).smallerrotintersect_xyz1); 
rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip=fliplr(rotintersect_xyz2(ind).smallerrotintersect_xyz2); 
rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip=fliplr(rotintersect_xyz3(ind).smallerrotintersect_xyz3); 
rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip=fliplr(rotintersect_xyz4(ind).smallerrotintersect_xyz4); 
end 
 
for ind = 1:numel(xRngs)-1 
    figure(9) 
scatter3(rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,1),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,2),rotintersect_xyz1(ind).smallerrotintersect_xyz1(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,1),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,2),rotintersect_xyz2(ind).smallerrotintersect_xyz2(:,3),'*g') 
hold on 
scatter3(rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,1),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,2),rotintersect_xyz3(ind).smallerrotintersect_xyz3(:,3),'*r') 
hold on 
scatter3(rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,1),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,2),rotintersect_xyz4(ind).smallerrotintersect_xyz4(:,3),'*b') 
axis equal 
 
 
figure(10) 
scatter3(rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip(:,1),rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip(:,2),rotintersect_xyz1flip(ind).smallerrotintersect_xyz1flip(:,3),'*y') 
hold on 
scatter3(rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip(:,1),rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip(:,2),rotintersect_xyz2flip(ind).smallerrotintersect_xyz2flip(:,3),'*g') 
hold on 
scatter3(rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip(:,1),rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip(:,2),rotintersect_xyz3flip(ind).smallerrotintersect_xyz3flip(:,3),'*r') 
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hold on 
scatter3(rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip(:,1),rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip(:,2),rotintersect_xyz4flip(ind).smallerrotintersect_xyz4flip(:,3),'*b') 
hold on 
axis equal
end 
 
 
 
%write a Excel file of a struct 
 
writetable(struct2table(rotintersect_xyz1flip),'Intersect_pier4.xlsx','sheet',1); 
writetable(struct2table(rotintersect_xyz2flip),'Intersect_pier4.xlsx','sheet',2); 
writetable(struct2table(rotintersect_xyz3flip),'Intersect_pier4.xlsx','sheet',3); 
writetable(struct2table(rotintersect_xyz4flip),'Intersect_pier4.xlsx','sheet',4); 
winopen 'Intersect_pier4.xlsx' 
 
%write an excel file of the original z-values 
writematrix(a(:,3),'Original_z_values_pier4.xlsx','sheet',1); 

 

Published with MATLAB® R2019b
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Contents

Pier foundation

Slice

Circlefit

Write Excel file

Circlefit Function

Pier foundation

%https://se.mathworks.com/matlabcentral/fileexchange/5557-circle-fit 
 
clear all 
close all 
clc 
 
A=dlmread('Foundation.txt');       %%Reading the txt-file of the point cloud 
a=A(:,[1,2,3]);                     %%Matrix of the geometrical data 
x=a(:,1); 
y=a(:,2); 
z=a(:,3); 
 
figure(1) 
scatter3(x,y,z,'*') 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
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Slice

%%Dividing the foundation into main segments 
xRngs=[min(a(:,3)):0.5: max(a(:,3))]; 
for ind = 1:numel(xRngs)-1 
 
 
    rows = a(:,3)>=xRngs(ind) & a(:,3)<xRngs(ind+1); %check to see which rows of b are between 
        %xRng(ind) and xRng(ind+1) 
    segM(ind).SmallerM = a(rows,:); 
end
for ind = 1:numel(xRngs)-1 
figure(2) 
scatter3(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2),segM(ind).SmallerM(:,3),'.')    %%Scatter the foundation 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end
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Circlefit

for ind = 1:numel(xRngs)-1 
[xc(ind),yc(ind),R(ind),a]=circlefit(segM(ind).SmallerM(:,1),segM(ind).SmallerM(:,2)); 
 
Center(ind).smallerCenter=[xc(ind); yc(ind);mean(segM(ind).SmallerM(:,3))]; 
 
end
for ind = 1:numel(xRngs)-1 
figure(3) 
scatter3(Center(ind).smallerCenter(1),Center(ind).smallerCenter(2),Center(ind).smallerCenter(3),'*b')    %%Scatter the rotated pier 
hold on 
plotCircle3D([Center(ind).smallerCenter(1),Center(ind).smallerCenter(2),Center(ind).smallerCenter(3)],[0, 0, 1],R(ind)) 
hold on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid on 
axis('equal') 
end 
Max_z=max(z); 
Min_z=min(z); 
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Write Excel file

%transpose matrices for excel organization 
xct=transpose(xc); 
yct=transpose(yc); 
Rt=transpose(R); 
 
% %write an excel file of the characteristic values for the foundation 
writematrix(xct(:,:)*10^3,'Foundation_Characteristic_Values.xlsx','sheet',1); 
writematrix(yct(:,:)*10^3,'Foundation_Characteristic_Values.xlsx','sheet',2); 
writematrix(Max_z(:,:)*10^3,'Foundation_Characteristic_Values.xlsx','sheet',3);          %Instead of using the Z-values from segM, the dynamo-script will use Min_z and Max_z 
writematrix(Min_z(:,:)*10^3,'Foundation_Characteristic_Values.xlsx','sheet',4);          %values divided into # amount of points as the z-values of segM are mean values and not
writematrix(Rt(:,:)*10^3,'Foundation_Characteristic_Values.xlsx','sheet',5);             %the max and min values.

Circlefit Function

function [xc,yc,R,a]=circlefit(x,y) 
% CIRCLEFIT fits a circle in x,y plane
% (x-a)^2 + (y-b)^2 = R^2
% x^2+y^2+a(1)*x+a(2)*y+a(3)=0 
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n=length(x); 
xx=x.*x; 
yy=y.*y; 
xy=x.*y; 
 
A=[sum(x) sum(y) n;sum(xy) sum(yy) sum(y);sum(xx) sum(xy) sum(x)]; 
B=[-sum(xx+yy);-sum(xx.*y+yy.*y);-sum(xx.*x+xy.*y)]; 
a=A\B; 
xc = -0.5*a(1); 
yc = -0.5*a(2); 
R = sqrt(-(a(3)-xc^2-yc^2)); 
end

Published with MATLAB® R2019b



2 B: Dynamo Workspaces

B1 Reverse Modelling of Box
Girders (#1 to #18)
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B2 Reverse Modelling of Pier
Columns (#1 to #6)
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B3 Reverse Modelling of Pier
Foundation

279



IMPORT
CHARACTERISTIC
VALUES

EXTRACT X-VALUES

EXTRACT Y-VALUES

EXTRACT RADIUSES

GENERATE 
CENTERPOINTS

PLACE CIRCLES
AND LOFT SOLID

EXPORT
SOLID
TO REVIT

EXTRACT AND PLACE
Z-VALUES AT INTERVALS



3 C: Geomagic Control X
Report

C1 Geomagic Control X
Deviation Analysis Report
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Product Name Dade Bridge Accuracy analysis

Part Name -

Part Number -

Department -

Inspector -

Date Jun 09, 2020 

Unit mm

Disclaimer
The results of this analysis and forecastings are believed to be reliable but are not to be construed as providing a warranty,
including any warranty of merchantability or fitness for purpose, or representation for which 3D Systems, Inc. assumes legal responsibility. 
Users should undertake sufficient verification and iterative testing to determine the suitability of any information presented. 
Nothing herein is to be taken as permission, inducement or recommendation by 3D Systems, Inc. to practice any patented invention 
without a license or to in any way infringe upon the intellectual property rights of any other party.



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Measured Data -



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Alignment

Min. -29,7358

Max. 29,7356

Avg. -0,0287

RMS 11,1079

Std. Dev. 11,1078

Var. 123,3836

+Avg. 8,5235

-Avg. -8,6459



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

3D Compare-Complete bridge

Min. -6177,3472

Max. 687,6968

Avg. 0,554

RMS 20,3843

Std. Dev. 20,3768

Var. 415,2142

+Avg. 12,3378

-Avg. -11,4101

In Tol.(%) 2,5849

Out Tol.(%) 97,4151

Over Tol.(%) 48,332

Under Tol.(%) 49,0831



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

3D Compare-Box grider

Min. -6189,0498

Max. 682,0093

Avg. 1,3907

RMS 20,0155

Std. Dev. 19,9672

Var. 398,6871

+Avg. 11,5484

-Avg. -9,3009

In Tol.(%) 3,3138

Out Tol.(%) 96,6862

Over Tol.(%) 47,0657

Under Tol.(%) 49,6205



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

3D Compare-Box5

Min. -260,3105

Max. 144,9484

Avg. 0,6727

RMS 12,2891

Std. Dev. 12,2706

Var. 150,5686

+Avg. 6,9769

-Avg. -5,3051

In Tol.(%) 4,7721

Out Tol.(%) 95,2279

Over Tol.(%) 48,9375

Under Tol.(%) 46,2904



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

2D Compare-Box5

 

 



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Min. -46,2809

Max. 123,6717

Avg. 0,5651

RMS 13,103

Std. Dev. 13,0908

Var. 171,3697

+Avg. 7,9529

-Avg. -5,7335

In Tol.(%) 5,8052

Out Tol.(%) 94,1948

Over Tol.(%) 43,3989

Under Tol.(%) 50,7959
 

Name
Reference Pos. Measured Pos.

Gap Dist. Tolerance
X Y X Y

2D Compare1: 1 745,2543 -9999,9994 814,0192 -9997,8018 68,7999 ±30

2D Compare1: 2 -332,5494 -3493,6664 -443,5502 -3405,8855 141,5155 ±30

2D Compare1: 3 617,4514 -6000 580,2511 -6001,1885 -37,2193 ±30

Min. -332,5494 -9999,9994 -443,5502 -9997,8018 -37,2193

Max. 745,2543 -3493,6664 814,0192 -3405,8855 141,5155



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

3D Compare-Pier columns

Min. -186,2981

Max. 865,0736

Avg. -1,0483

RMS 18,6112

Std. Dev. 18,5816

Var. 345,2774

+Avg. 6,5787

-Avg. -8,6276

In Tol.(%) 7,5779

Out Tol.(%) 92,4221

Over Tol.(%) 46,3234

Under Tol.(%) 46,0987



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

3D Compare-Pier2

Min. -170,5959

Max. 325,6458

Avg. -0,6589

RMS 15,5623

Std. Dev. 15,5483

Var. 241,7512

+Avg. 8,4657

-Avg. -10,5767

In Tol.(%) 3,1366

Out Tol.(%) 96,8634

Over Tol.(%) 46,3501

Under Tol.(%) 50,5133



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

2D Compare-Pier 2

 

 



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Min. -32,0471

Max. 23,5459

Avg. 1,5875

RMS 11,605

Std. Dev. 11,4959

Var. 132,1551

+Avg. 10,6179

-Avg. -9,5724

In Tol.(%) 0,1953

Out Tol.(%) 99,8047

Over Tol.(%) 55,0781

Under Tol.(%) 44,7266
 

Name
Reference Pos. Measured Pos.

Gap Dist. Tolerance
X Y X Y

2D Compare-Pier 2: 1 -9593,1214 5827,6311 -9577,4922 5873,916 -48,8526 ±30

2D Compare-Pier 2: 2 -11998,2906 7908,0103 -11988,8936 7918,875 -14,3651 ±30

2D Compare-Pier 2: 3 -13392,1823 10398,6553 -13394,0107 10400,334 2,482 ±30

2D Compare-Pier 2: 4 -10398,838 9432,4886 -10392,6377 9439,6816 9,4967 ±30

2D Compare-Pier 2: 5 -8860,4252 6600,0005 -8862,8369 6602,2075 -3,2694 ±30

Min. -13392,1823 5827,6311 -13394,0107 5873,9160 -48,8526

Max. -8860,4252 10398,6553 -8862,8369 10400,3340 9,4967



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

3D Compare-Pier4

Min. -124,9442

Max. 138,2508

Avg. 0,9607

RMS 14,3551

Std. Dev. 14,3229

Var. 205,1451

+Avg. 7,8885

-Avg. -5,9988

In Tol.(%) 6,5985

Out Tol.(%) 93,4015

Over Tol.(%) 46,5356

Under Tol.(%) 46,8659



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

2D Compare-Pier 4

 

 



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Min. -26,9352

Max. 91,4519

Avg. 8,8759

RMS 25,6748

Std. Dev. 24,0917

Var. 580,4116

+Avg. 15,0298

-Avg. -2,4222

In Tol.(%) 6,6116

Out Tol.(%) 93,3884

Over Tol.(%) 61,9835

Under Tol.(%) 31,405
 

Name
Reference Pos. Measured Pos.

Gap Dist. Tolerance
X Y X Y

2D Compare-Pier 4: 1 -49000,003 -45980,567 -48996,1133 -45976,2187 5,8343 ±30

2D Compare-Pier 4: 2 -50000,0031 -47115,4806 -49998,293 -47113,5703 -2,5644 ±30

2D Compare-Pier 4: 3 -44930,8001 -50500,0031 -44874,2305 -50552,7187 77,3243 ±30

2D Compare-Pier 4: 4 -53432,2122 -43000,0026 -53495,707 -42944,4961 84,3378 ±30

2D Compare-Pier 4: 5 -45520 -51129,3861 -45525,2227 -51099,9922 -29,8549 ±30

Min. -53432,2122 -51129,3861 -53495,7070 -51099,9922 -29,8549

Max. -44930,8001 -43000,0026 -44874,2305 -42944,4961 84,3378



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

3D Compare-Foundation

Min. -60,0436

Max. 370,3655

Avg. 0,7124

RMS 16,188

Std. Dev. 16,1724

Var. 261,5452

+Avg. 11,1199

-Avg. -7,7949

In Tol.(%) 2,5506

Out Tol.(%) 97,4494

Over Tol.(%) 53,7427

Under Tol.(%) 43,7067



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

2D Compare- Foundation

 

 



Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Date Jun 09, 2020 

Unit mm

Department -

Inspector -

Product Name Dade Bridge Accuracy 
analysis

Part Name -

Min. -21,3331

Max. 49,5665

Avg. 0,2457

RMS 13,5948

Std. Dev. 13,5926

Var. 184,7592

+Avg. 12,198

-Avg. -8,0598

In Tol.(%) 2,3563

Out Tol.(%) 97,6437

Over Tol.(%) 40,1508

Under Tol.(%) 57,4929
 

Name
Reference Pos. Measured Pos.

Gap Dist. Tolerance
X Y X Y

2D Compare- 
Foundation: 1 -52317,1469 -42000 -52355,2734 -41968,3437 49,5544 ±100

Min. -52317,1469 -42000,0000 -52355,2734 -41968,3437 49,5544

Max. -52317,1469 -42000,0000 -52355,2734 -41968,3437 49,5544



Date Jun 10, 2020 

Unit mm

Department [Department]

Inspector [Inspector]

Product Name [Product Name]

Part Name [Part Name]

Date Jun 10, 2020 

Unit mm

Department [Department]

Inspector [Inspector]

Product Name [Product Name]

Part Name [Part Name]

3D Compare-pier5

Min. -81,4232

Max. 116,4729

Avg. 1,767

RMS 11,413

Std. Dev. 11,2753

Var. 127,1334

+Avg. 8,3505

-Avg. -6,7622

In Tol.(%) 3,1748

Out Tol.(%) 96,8252

Over Tol.(%) 41,9569

Under Tol.(%) 54,8683


