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1 Introduction

Fundamentally, air flow, heat and mass transfer phenomena govern the indoor air quality, thermal
comfort and energy usage in buildings. Air change rate, pollutant removal, heat removal, exposure
and air distribution are the key features to assess the performance of a heating, ventilating and
air-conditioning (HVAC) system. Ventilation systems can be classified into various types depend-
ing upon the concentration distribution, location of the air supply/exhaust device and the use of
natural and mechanical forces ([4]). For several decades, a substantial scientific research focus has
prevailed achieving design of energy efficient, effective airflow distribution and thermal comfort
in buildings.

Displacement ventilation (DV) is potentially a very good ventilation strategy among the other types
of air distribution such as natural ventilation or mixed ventilation. Natural ventilation is a princi-
ple which mainly don’t use mechanical equipment, and mixing occurs when air is supplied high in
the room, see section 1.1. DV-system, which is the main focus, the principles is where the contam-
inant air is removed from the ceiling level of a room. The exhaust temperature is higher than the
occupied zone and a fresh air being supplied at the floor level ([20], [9], [21]). A well designed DV
system can be energy efficient to regulate room temperature and air velocity for thermal comfort
and good air quality utilising natural convection currents ([7]). Several key parameters for such
systems are ventilation rate, location of the air terminal device, type of the diffuser and the supply
air temperature ([31], [22]). Nevertheless, a DV configuration involves complex flow physics like
gravity current, radiation effect and thermal stratification. Challenging issues related to thermal
characterisation including radiation effects, draft discomfort, etc. are investigated by several re-
searchers ([14], [5], [15], [11]). The recent studies with DV systems addresses interesting aspects
considering e.g., severe odor problems in hospital environments ([8]), adaptive climate building
with heat source/smart windows ([12]) and highly polluted indoor environment with dense oil
mist in a machining plant ([30]). Optimal design and modeling aspects of DV systems in diverse
contexts are therefore important active research areas for HVAC scientists and engineers.

Apart from the advanced experimental measurements, see figure 1, which can be time consum-
ing and costly, CFD is widely used as a reliable numerical tool to predict a wide range of ventilation
problems with detailed spatio-temporal distributions of flow-field variables. In CFD, the govern-
ing non-linear coupled partial differential equations are solved with a suitable discretization and
solution procedure. However, high-fidelity CFD-simulations for design and optimization is indeed
costly both in terms of necessary computer resource and CPU time. In this regard, proper orthogo-
nal decomposition (POD) based interpolation can be used, exploiting the CFD results with varying
one or many parameters (e.g. relevant non-dimensional numbers involved in the governing phe-
nomena) of interest to produce desired predictions in an efficient and cost effective manner. For
example, considering a set of steady-state CFD solutions as “snapshots” the dominant POD coef-
ficients/modal amplitudes and POD modes have to be estimated first. These intern can be used
with a suitable interpolation of the coefficients to generate desired solution(s) for particular values
of the parameter(s) of interest without performing costly CFD simulations. Some of the previous
studies used steady state CFD solutions as snapshots for POD e.g., in indoor airflow application
(Elhadidi and Khalifa [10] and for coupling between CFD and lumped parameter flow network
zonal (FNZ) models [13]).
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Figure 1: Experimental setup for DV-system example.[24]

This work aims to predict complex flow physics for a DV configuration of indoor environments us-
ing CFD snapshots and POD-interpolation method, and the objectives are presented in section 1.3.
CFD results are generated using the commercial computer program StarCCM+. We solved 2D/3D
compressible Navier-Stokes equation (without Boussinesq approximation) together with mass and
energy equations. Additionally, two-equation turbulence models are employed to account turbu-
lent flow cases. The thesis is organized as follows. First some background theory for DV-systems
is introduced. In section Method, we present the governing equations, non-dimensional numbers
and the overall POD methodology. The validation cases are presented thereafter. Subsequently,
the problem setup of the displacement ventilation is given. The flow analysis given in the section
Results and discussion. Finally, the conclusions are drawn at the end.

1.1 Displacement ventilation

There are to main mechanical design of ventilation systems, displacement and mixing. In mixing
ventilation (MV) air is supplied high in the room, and induce the room air and the air gets mixed,
see figure 2. On the other hand, in displacement ventilation (DV) air is supplied low on the floor
level, with low velocity and lower temperature than the room, see figure 3. ([20], [9], [21]) This
thesis is going to focus on the DV-system.
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Figure 2: Illustration of a MV-system: P is pressure, T is temperature and u is velocity.
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Figure 3: Illustration of a DV-system: P is pressure, T is temperature and u is velocity.

The physics behind DV-systems is that the buoyancy forces are used to get air moving upwards
from the ground since hot air has lower density than cold air which is supplied at the floor level.
The air distribution to the room happens through the air diffuser at the floor as mentioned earlier.
The main physics in the diffuser region is divided into three zones, see figure 4.

I I I I I I

Diffuser

Figure 4: Illustration of physics near a DV-system inlet diffuser. [23]

The three phases are:
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I) Establishment zone. Here, the entry velocity is defined and how it induces the room air is
dependent on the design of the diffuser.

II) Acceleration zone. The air accelerates due to temperature difference between the diffuser
air at the inlet and the room air.

III) Gravitational zone. After a while, the air velocity will slow down and be heated by the room
air. When air hits the wall at some point, the air will move backwards and we will get the
typical stratification for DV-systems.

A interesting point about DV-systems is that the maximum air velocity in the DV diffuser region
is not at the inlet, but in the transition between phase II and III, due to temperature differences
between room air and inlet air. [23] Illustrations at the inlet region for a experimental setup for a
DV-system to demonstrate the establishment zone can be seen in figure 5 and 6.

Figure 5: Temperature distribution and velocity vectors for experimental setup for different
Archimedes numbers (Ar = 0.32 (top) and Ar = 0.47 (bottom)). [Picture source: Cehlin [6]]
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Figure 6: Temperature distribution at the diffuser inlet.[Picture source: Cehlin [6]]

The design of the diffuser for DV-systems have a impact on the distibution of the air. Therefore
there is plenty of different designs, see figure 7. The main idea for the diffuser design is that some
ventilation channel with fresh air is supplied in it, and the front of the diffuser is perforated with
holes for distribution of air in the room. If the diffuser have linear or radial distribution depends
on the room.

Figure 7: Diffuser design for DV-system.[19]

The beneficial point about DV-systems as mentioned in the introduction is that it has the possibil-
ity of almost removing all the contamination in the room. However, to achieve this, strict criteria
for engineering has to been followed, and many things can destroy this ventilation principle. Such
as obstacels in front of the diffuser, to high inlet velocity which would ruin the thermal comfort in
the near zone of the diffuser.
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Further in the thesis, results from CFD simulations of a DV-system will be presented, where this
main principles of the system will be shown, such as good stratification and acceleration zone.

1.2 CFD vs experimental setup

In this thesis the data for the POD analysis will be generated by CFD simulations for a DV-system.
The other option could be to perform experiments, which is also possible while using POD based
interpolation method for the data extracted from experimental results. CFD have the possibility to
perform simulations for large scaled models, while experimental setup have scales limited by the
laboratories. Also CFD has the advantages of saving time, and is not costly in form of necessary
equipment. An image by Arghand et al. [2], is representative depicting how complex an experi-
mental setup can be, see figure 8.

Figure 8: Experimental setup for a DV-system showing diffuser, flow distribution at the inlet with
smoke vizualization.[Picture source: Arghand et al. [2]]
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1.3 Objective

The focus for the thesis is to apply POD-interpolation method in predicting complex flow physics
for a displacement ventilation system, and therefore CPU time and requirement of computer re-
sources could be reduced significantly. The objectives of the thesis are:

• Overall implementation of data driven POD-interpolation method in python.

• Validation of the POD-interpolation method, with CFD solution snapshots for a benchmark
test case involving relevant flow physics.

• Analysis of displacement ventilation system after obtaining snapshots from CFD simulations
for different Archimedes numbers.

• POD analysis, comparing CFD snapshots with results obtained by the POD-interpolation
method.
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2 Method

In this section the method for the thesis is presented. This involves presentation of the governing
equations of the fluid flow, introduction of the tool used for simulations, and the description of the
method, POD-interpolation method.

2.1 Governing equations

The physical model that is defined is based on solving governing equations that describes fluid
flow. This involves solving compressible Navier-Stokes equations together with the mass and the
energy conservation equations. Continuity equation is given by:

∂ρ

∂t
+∇· (ρu) = 0 (1)

Where ρ is the density, u the velocity vector and t the time. This equation is three-dimensional and
unsteady for a compressible fluid.

Momentum equation is defined as the momentum of the flow depending on the forces acting on
the fluid. Defined as:

D(ρu)

Dt
=−∂p

∂x
+∇· (µ∇u)+SM (2)

Where p is the pressure, µ is the dynamic viscosity and SM is the source term, for example gravity.
This is important for DV-systems, since gravity is an acting force on the fluid in DV-systems.
Applying the first law of thermodynamics on a control volume, we can write the conservation of
energy as:

D(ρE)

Dt
=−p∇·u+∇· (k∇T )+Se +Φ (3)

Where E is energy, k the thermal conductivity of the fluid, T the temperature, Se is energy source
term andΦ is dissipation term due to deformation work.
The working fluid is air which can be treated as ideal gas, with equation of state.

p = ρRT (4)

Where p is pressure, R is ideals gas constant, ρ is density and T is temperature.

The governing equations above, equation (1), (2) and (3), can be written in a general form called
the transport equation for any conserved property as:

D(ρφu)

Dt
=∇· (Γ∇φ)+Sφ (5)

Whereφ is some scalar property, Γ is diffusion coefficient. The governing equation involves advec-
tion term in left hand side and the terms on the right hand side signify the diffusion term and the
generation term respectively.

To write the governing equations in a more compact form, the material derivative or advective
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derivative, it has many names, is used. It describes the time rate of change for some proprerty, φ,
and can be extended to:

D(ρφu)

Dt
= ∂(ρφ)

∂t
+∇· (ρφu) (6)

This junction involves the transient term of the governing equation and the convective term. Its a
mote compact way to write governing equations.
In general CFD techniques can solve this equations. For turbulent flows, Reynolds averaged Navier-
Stokes can be used. [28]

2.2 Reynolds-Averaged Navier-Stokes (RANS)

Usually, CFD omit solves time-averaged properties for the flow, witch means they solve mean
velocity, mean stresses and mean pressures. Therefore, turbulent flow is mostly simulated with
Reynolds-Averaged Navier-Stokes equations or RANS. This takes the governing equations as de-
scribed in previous section, where flow properties is replaced with the sum of the mean and a
fluctuating component such as:

u = U+u′ (7)

u =U +u′ (8)

v =V + v ′ (9)

w =W +w ′ (10)

p = P +p ′ (11)

(12)

Then the continuity equation becomes:

∂ρ

∂t
+∇· (ρũ) = 0 (13)

RANS equations as:

∂(ρŨ )

∂t
+∇· (ρŨ ũ) =−∂p

∂x
+∇· (µ∇Ũ )+

[
−∂(ρu′2)

∂x
− ∂(ρu′v ′)

∂y
− ∂(ρu′w ′)

∂z

]
+SM x (14)

∂(ρŨ )

∂t
+∇· (ρṼ ũ) =−∂p

∂y
+∇· (µ∇Ṽ )+

[
−∂(ρu′v ′)

∂x
− ∂(ρv ′2)

∂y
− ∂(ρv ′w ′)

∂z

]
+SM y (15)

∂(ρW̃ )

∂t
+∇· (ρW̃ ũ) =−∂p

∂z
+∇· (µ∇W̃ )+

[
−∂(ρu′w ′)

∂x
− ∂(ρv ′w ′)

∂y
− ∂(ρw ′2)

∂z

]
+SM z (16)

Similar the transport equations is derived with adding fluctuating term and take the time-averaged
of a scalar property, φ:

∂(ρΦ̃)

∂t
+∇· (ρΦ̃ũ) =∇· (ρ∇Φ̃)+

[
−∂(ρu′φ′)

∂x
− ∂(ρv ′φ′)

∂y
− ∂(ρw ′φ′)

∂z

]
+SΦ (17)

In the equations above, the overbar indicates a time-averaged variable and the tilde indicates a
density-weighted or Favre-averaged variable. [28] To calculate RANS equations, turbulence mod-
elling is needed. This is since number of unknowns in the above equation exceeds the number
of equations, and therefore its needed additional equations, which we get from turbulence mod-
elling. This is presented in the next section.
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2.3 Turbulence model

As mentioned in previous section, turbulence modelling is needed to solve RANS equation. There
are many different turbulence models out there but depending on the problem a suitable model
has to be chosen. For good prediction of air flows in a DV-system, we need to choose a model
that can describe the air flows behavior well. To describe if the flow is either turbulent or laminar,
the dimensionless number Reynolds number (Re) is used, see section 2.5.2. When having high
Reynolds numbers the flow can be stated to be turbulent, where the flow is chaotic and the mo-
tions is random. Then we need a turbulence model in CFD software to describe this behavior.[28]

The two main turbulence models used in CFD-simualtions for DV-systems is the SST (Menter)
κ−ω and κ−ε models.
SST (Menter) κ−ω is a two equation model, where the turbulent kinetic flow, κ and the specific dis-
sipation, ω -equations are solved for the flow. Th governing equation for this model is formulated
as:
∂(ρk)

∂t
+∇· (ρkU) =∇·

[(
µ+ µt

σk

)
∇k

]
+Pk −β∗ρkω (18)

∂(ρω)

∂t
+∇· (ρωU) =∇·

[(
µ+ µt

σω,1

)
∇ω

]
+γ2

(
2ρSi j ·Si j − 2

3
ρω

∂Ui

∂x j
δi j

)
−β2ρω

2 +2
ρ

σω,2ω

∂k

∂xk

∂ω

∂xk

(19)

Where σω, σω,1, σω,2, β∗, β2 and γ2 is constants for the turbulence model given in Versteeg and
Malalasekera [28, p.92], µ is dynamic viscosity, and µt is the eddy viscosity given by:

µt = ρk

ω
(20)

The other model thats been widely used for DV-system simulations, is κ− ε. This is also a two
equation model, where the main difference between equations is the last term in equation (19).
This comes from the adjustment between the two models, where SST (Menter) κ−ω substitutes
the ε with kω and gives an extra term, as mentioned above, the cross-diffusion term. Therefore,
for describing difference between κ− ε and SST κ−ω in a CFD problem, the difference lies in the
near wall treatment. This is since the κ−εmodel shows unsatisfactory for the boundary layer with
adverse pressure gradient, and κ−ω is adjusted to predict this better. [28]

There has been done several studies of DV-systems in interest of finding the best turbulence model,
which give the most accurate results for these kinds of problem. Menchaca Brandan [17] used the
κ−ε for his studies of a natural ventilation system, and gave good results for different Archimedes
numbers and for thermal stratification in the room. Later on Gilani et al. [11] has done sensitivity
analysis of DV-systems with use of different turbulence models, such as κ− ε which was used by
Menchaca Brandan [17]. Their study shows that SST (Menter) κ−ω gives better results for DV-
systems then κ−ε compared with experimental data and is therefore used in this thesis.

At the inlet boundary condition there has been pre-calculated values for turbulent kinetic flow
and specific dissipation rate, see section 5.1.

2.4 Near wall treatment

Turbulence near wall plays an important role in CFD. Since the flow is interacting with solid surface
instead of being free turbulent flow, the flow will behave differently, and models to describe this is
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needed. If a Reynolds number is formed with a distance, y , from the wall we get the formulation:

Rey = U y

ν
(21)

Where µ is kinematic viscosity, U is velocity and y is some distance from the wall. This initiates
that closer to the wall the lower the Reynolds number would be, and the viscous effects are more
dominant. [28] A suitable y+ wall treatment was used in this thesis.

2.5 Non-dimensional numbers

This thesis is focusing on Non-dimensional numbers to be used in the later on described POD-
method, which is used for describing the physical phenomena of a problem and has impact on the
governing equations. This is interesting since it can help us understanding a phenomena, such as
the behavior of a DV-system that is of interest in this thesis.

DV-systems affects the indoor airflows, and we therefore has to find non-dimensional numbers
of interest to this kind of problem. Therefore, below there is presented some non-dimensional
numbers of interest, where our main focus is the Archimedes numbers.

2.5.1 Grashof number

Grashof number is a dimensionless number which gives the ratio between the buoyancy and vis-
cous forces acting on a fluid. It is defined as follow in eq. (22).

Gr = gβ∆T L3

ν2 (22)

Where g is the acceleration due to gravity, β is the thermal expansion coefficient, ∆T is the tem-
perature difference between inlet and outlet, L is the characteristic height of the inlet and µ is the
kinematic viscosity of the fluid.

2.5.2 Reynolds number

We divide flow into two category’s, turbulent or laminar flow. Between these you have a transition
region, see figure 9.

Figure 9: Image for laminar and turbulent flow.
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To define if the flow is turbulent or laminar we define a dimensionless number called the Reynold
number (Re), which is the ratio between inertia forces and viscous forces. The definition of this is:

ReL = uL

ν
(23)

Where u is the velocity of the fluid, L is the characteristic length and ν the kinematic viscosity. For
large Reynolds number above 2900 you will have turbulent flow for pipe flow, and for low numbers
below 2300 you will have laminar flow for pipe flow.

2.5.3 Archimedes number

Archimedes number is a ratio between buoyancy and momentum forces acting on a fluid. This can
be used to determine the thermal stratification in a room, therefore important for a DV-system.
Here in the next sub sections some different formulas for Archimedes is presented. It’s mainly a
ratio between Grashof number, and Reynolds number squared. This is given by:

Ar = Gr

Re2 = gβ∆T L

u2 (24)

Archimedes number can help predicting the thermal stratification in a room as mentioned, this
has been shown in earlier litterature. [17, 20] This is a useful number for displacement ventilation,
and rewriting the equation can give a more useful equation since the temperature difference in the
room (∆T ) is dependent on the flow rate (V̇ = Asu) through the room and the heat gain (qt ) in the
room, where total heat gain is defined as:

qt = ρcpV̇∆T (25)

∆T = qt

ρcpV̇
(26)

Where ρ is fluid density cp is specific heat capacity, As is area of inlet diffuser and u is inlet velocity.
This makes us available to rewrite eqn. (24):

Ar = gβ∆T L

u2 (27)

= gβ

ρcp

qt L

u2V̇
(28)

= gβ

ρcp

qt L

u3 As
(29)

This equation takes into account the heat gain in the room, instead of temperature difference in
the room. This can be easier, when we dont know the outlet temperature which is the usual case.
Equation (29) was presented by Menchaca Brandan [17] and is used in this thesis for calculation of
the velocity at the inlet for chossen Archimedes number.

2.5.4 Nordtest method ”Dimensionless” Archimedes number

In the CFD-simulation subsequent in this thesis, we are using the setup following the prescription
of the Nordtest method. For the analysis of a DV-system, they have proposed a set of equation
for dimensioning displacement ventilation for different type of diffusers, radial and linear. [22]
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Nordtest method came up with an semi-empirical formula for max velocity along floor with two
correlation coefficients, k1,max and k2,max .

vmax ≈ k1,max · Ar k2,max ·B (30)

This is an equation for curvefitting, after obtaining data from CFD or experimental setups. The
coefficient can then be found for a setup, when obtaining all data needed in the formula, and then
describe the flow with the function.[22]
Archimedes number (Ar) proposed in the Nordtest method and B is the buoyancy flux, eq. 31 and
32.

Ar =
{ g ′L5

V̇ 2 for radial ATDs
g ′L2

V̇ 2 for linear ATDs
(31)

B =
(

V̇ g ′

L

)1/3

(32)

Where g ′ is the reduced gravity [m/s2], L is horizontal parameter of outlet area [m] and V̇ is total
air volume flow rate [m3/s]. Where reduced gravity is given as:

g ′ = 9.81
∆θt

θr
(33)

Where ∆θt is total air temperature difference in room (θi -θt ) and θr is reference temperature in
room in Kelvin.
The main idea here is that Nordtest method has proposed a set of equations, defined from experi-
mental setup for a DV-system. Later on we will look into this formula, comparing the Archimedes
number from this section and the one obtained in the previous section, equation (29) by Men-
chaca Brandan [17].

2.6 Computational fluid dynamics

Computational fluid dyamics or CFD, is the analysis of a system involving heat transfer, fluid flow
and similar phenomena using computer based simulation. [28, p.1]. This is widely used in the in-
dustry with different areas of application such as aerodymanics for windmills, aircrafts etc, hydro-
dynamics for ships and inside many other areas. For our purpose we are interested in DV-system,
which involves both fluid flow and heat transfer problems, and CFD is therefore a good tool for this
purpose.

In this thesis we are using the program, Star CCM+. The main steps in a process of solving a prob-
lem with CFD are the three phases: Pre-processor, solver and Post-processor. [28]

First, in Pre-processor the computational domain is defined. This involves making the geome-
try of the problem setup with sufficient mesh. Mesh is the control volumes we divide a problem
setup into, where governing equations are solved for properties of interest. A good prediction of a
problem, demands a good quality mesh, where its representative to real physics. This involves hav-
ing finer mesh in regions where there is larger variations in the properties from point to point.[28]
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The next part is the solver. Most of the CFD tools uses the finite volume method (FVM) based
solver. This involves integration of the governing equations inside a control volume, taking the
resulting equations into a system of equations, and solves this usually with a iterative method. Dif-
ferent type of solvers can be used, depending on the problem, such as different turbulence models,
models for near wall treatment etc.

The last process is the Post-processor. When results is obtained, the results has to be analysed
and/or visualized. This can be in form of XY-plots, vector/scalar plots, streamlines etc. Many ways
to analyse a problem, dependent on the intention of a study. In this thesis, there is of interest in
using POD interpolation method in the post processor phase. More about this is presented later in
the thesis.

In our solver, when running steady state simulations in Star-CCM+ we used second order im-
plicit segregated or coupled flow solvers equipped with Roe schemes for convection, hybrid Gauss
least-squared gradient method based 2nd order schemes for diffusion and Venkatakrisnan lim-
iter function are chosen. Algebraic Multi-Grid (AMG) techniques are also invoked with the setup
mentioned above.
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3 Data analysis and machine learning

The world has seen a large increase in data in different scientific areas, for example in fluid me-
chanics. Interest in extracting information from the data, have made people interested in the field
of machine learning, and there have been great progress in this field over the past years. From
definition, machine learning is algorithms that process and extract information from a set of data.
It can for example be from some data giving information about peoples shopping habits, which
grocery is the most popular ones among people. [Brunton et al. [3]]

These algorithms used in machine learning are divided into three categories: Supervised-, semi-
supervised and unsupervised-learning. Which one to use depends on the information available
in the data. This thesis is going to use an algorithm which essentially falls in the unsupervised
category. [3]

3.1 Unsupervised learning

Unsupervised learning is a method that finds unknown patterns that wasn’t know from before.
This is different from supervised learning, where supervised learning is given some data with cor-
rect knowledge and learns from that. Adding new data to a supervised model, the machine will
recognise patters from the correct knowledge it has been fed, and therefore learn it self to recog-
nise patterns. To the unsupervised algorithm you are feeding some data, the algorithm process
and you get some extracted output, without the need for supervision. [3]

A well known method of unsupervised learning is PCA or Principal component analysis. This is a
statistical operation, where it uses a orthogonal transformation to convert data of correlated vari-
ables into a set of linearly uncorrelated variables. Orthogonal transformation is in linear algebra
an operation to preserve a vectors length and angles between them.
One method, closely related to PCA, is POD method. In this thesis POD snapshot method is used,
and was presented by Sirovich [26]. A brief account of the method is presented in the next section.

3.2 POD snapshot method

Due to high computational costs running numerical simulations, proper orthogonal decomposi-
tion (POD) method has been used to produce reduced-order models (ROMs). The method takes
a set of POD basis from given data from a numerical simulation or experiments, and uses this to
construct state variable approximations. The method mainly extracts basis functions containing
characteristics of the system of interest. [29]

3.2.1 Computing POD modes

Proper orthogonal decomposition (POD) method can be realized in several forms such as Karhunen-
Loève decomposition (KLD), principal component analysis (PCA), and singular value decompo-
sition (SVD) having wide spectrum of applications in scientific and engineering field. The key
dominant characteristics/features in a data set can be recognized by a POD technique via low-
dimensional descriptions for multidimensional systems. Originally, POD was introduced in the
framework of fluid mechanics applications in late sixties. This was followed by the “snapshot POD”
methodology by Sirovich and Kirby [27] and the procedure is essentially a simple data-driven pro-
cedure closely related to principal component analysis (PCA), one of the fundamental algorithm of
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applied statistics and machine learning ([3]). In this work, the steady-state CFD solutions “snap-
shots” are used to decompose a non-dimensional flow variable φ∗(Π,~x), where Π is a governing
non-dimensional number of the flow physics under consideration. The decomposition essentially
leads to the determination of a finite number of POD coefficients, ak (Π) and space dependent POD
modes, ψk (~x) as,

φ∗(Π,~x) ≈
m∑

k=1
ak (Π)ψk (~x). (34)

where, m is the number of snapshots for set of values of Πi ∈ [Πmi n ,Πmax ], ∀ i = 1, . . . ,m. Once,
the desired POD coefficients and POD modes are available, a suitable interpolation can be used to
construct the flow field variables for any intermediate Πi nt . The POD-interpolated prediction can
be given by

φ∗(Πi nt ,~x) ≈
N∑

k=1
ak (Πi nt )ψk (~x). (35)

where N ≤ m. More about the interpolation is given in section 3.2.2.

A brief methodology to determine the POD coefficients and the POD modes is given below (see
Meyer et al. [18], Selimefendigil [25] for detail). First, the m number of CFD solution of φ∗ on n
mesh points can be arranged in a data set matrixΦ∗ = [φ∗1φ∗2 . . .φ∗m] as,

Φ∗ =


φ∗1

1 φ∗2
1 φ∗3

1 . . . φ∗m
1

φ∗1
2 φ∗2

2 φ∗3
2 . . . φ∗m

2
...

...
...

...
...

φ∗1
n φ∗2

n φ∗3
n . . . φ∗m

n

 . (36)

Then the auto covariance matrix is created. This matrix represents the covariance of the value with
it self at some point. Where covariance is a measure of the linear dependency of two values. This
can be defined as:

C = 1

m
Φ∗ᵀ

Φ∗. (37)

The following eigenvalue problem then has to be solved:

CXi =λi Xi , i = 1,2, ...,m. (38)

Where X is the eigenvector, and λ is the eigenvalues. This eigenvalue problem was solved using
singular value decomposition (SVD). The solutions are ordered according to the size of the eigen-
values from highest to lowest, where higher values indicates higher containment of energy. The
eigenvectors, Xi , in equation (38) forms a basis for making the POD modes,ψi :

ψi =

m∑
j=1

X i
jφ

∗ j

∥∥∥∥∥ m∑
j=1

X i
jφ

∗ j

∥∥∥∥∥
, i = 1,2, ...,m. (39)
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Where X i
j is the j’th component of the eigenvector corresponding to the eigenvalue λi , and ‖·‖ is

the second norm of any vector ξ, given as:

‖ξ‖ =
√

(ξ1)2 + (ξ2)2 + ...+ (ξn)2 (40)

The POD coefficient can be determined by projectingφ∗m onto the POD modes:

am =Ψφ∗m (41)

WhereΨ= [ψ1ψ2 . . .ψm] The snapshotφ∗m can then be reconstructed by:

φ∗m =Ψᵀam (42)

Due to conservation of energy, the first modes will contain most of the energy. Therefore results
can be reproduced with use of fewer modes, where energy conserved is above 99 %, will probably
give good approximation. This is defined such as if the sum of number of eigenvalues, λ, divided
by the sum of all eigenvalues is above 99%:

Er = λi∑m
i=1λ

i
> 0.99 (43)

This can reduce computational time, and still give good predictions of the problem.
The above methodology has been implemented via Python programming scripts.

3.2.2 Interpolation of POD coefficients

As described in section 3.2.1, we have to use interpolation methods to estimate ak (Πi nt ) from
ak (Πi )’s. In this thesis we used cubic spline interpolation to find the POD coefficients. The main
idea behind the cubic spline interpolation method, is that it is a piece wise continuous curve, pass-
ing through each of the values of a dataset [16].

Let us assume that Πi < Πi nt < Πi+1, for i = 1,2, ...m − 1. Then the cubic spline interpolation
method to estimate ak (Πi nt ) can be given by:

ak (Πi nt ) = c1k (Πi nt −Πi )3 + c2k (Πi nt −Πi )2 + c3k (Πi nt −Πi )+ c4k , k = 1,2, ...,m (44)

Where the m is number of points to interpolate between. The derivatives of ak (Π) are needed to
estimate the values of the coefficients, c1k , c2k , c3k and c4k , using discrete values of ak (Πi ) [16].
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Figure 10: Visualization of methodology for interpolation of POD coefficients.

The idea of the interpolation between modal coefficient in the POD snapshot interpolation method
is to find values for coefficients that are not in the dataset, by cubic spline interpolation as describe
above. Say that the set for dimensionless number Π is Π= [2,4,6,8,10]. We run POD algorithm as
described in section 3.2.1, and get a set of POD coefficient. How large the set is depends on num-
ber of snapshots, but here we have 5 snapshots for each of the values Π, and therefore 5x5 POD
coefficients. Say we want to find the modal coefficient for Πi nt = 5, that is not in our original set,
Π. Then we need to interpolate between all the given values in the set, and the depending modal
coefficients for the Π in the domain. Then we get the modal coefficient, ak (Πi nt ), for the value
that’s not in the set, see illustration figure 10.

The interpolation between modal coefficients was programmed in Python 3.6, and a snipped of
the source code for interpolation can be seen in figure 11 for one iteration. This need to be done
five times according to number of snapshots given.

Figure 11: Python code for implementation of interpolation method.

From description above, x-value in function f (x) will be 5 in case above, the list x-points would
be Π and y-points would be modal coefficients ak (Π), which was calculated by method in section
3.2.1. Then we can calculate new modal coefficient for Πi nt . For this method implemented in
Python, Cubic spline interpolation is default method when using interpolate.splev function.
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3.2.3 Visualization of results from POD method

When it comes to presenting of visualization for the results from the POD-interpolation method,
we used MATLAB for this purpose. After the steps of running the POD algorithm, doing interpo-
lation of POD coefficients and then use equation (42) for creating POD dataset of unknown values
for flow variable, we can finally visualize the results. This was done by doing Delaunay triangula-
tion function in MATLAB, see figure 12. This method does triangulation of points in dataset, which
means that it takes lines, joining a set of points together, so each points gets together to its nearest
neighbour point.

Figure 12: Matlab code for implementation of Delaunay triangulation

This method is used for all the visualization of POD and DV results in this thesis, and can be seen
in all sections involving visualization, such as section 6.1.

3.2.4 Procedure scheme for use of POD snapshot interpolation method

This section summarizes the methodology of the POD-interpolation method. The steps shows how
to use the POD snapshot interpolation method, based on all the previous descriptions, figure (13).
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CFD-simulation:
Run simulation for all cases
inside chosen domain. (Section 5)

Extract necessary data from CFD:
All variables of interest
(Temperature, velocity etc. at x,y,z coordinates)
is extracted and obtained.

Run algorithm:
POD modes and coefficients
are calculated from the extracted
data from CFD. (Section 3.2.1)

Interpolation:
Interpolate between modal coefficients
for wanted parameter of interest
in the simulation domain. (Section 3.2.2)

Extract data:
Extract data from
POD snapshot interpolation algorithm.

Visualization of result:
Visualize the extracted data from POD algorithm
to see the results and
compare with excat solution. (Section 3.2.3)

Optional! CFD simulation:
Run a CFD simulaton of
exact solution and extract data
for comparison.

Figure 13: Description of steps from CFD through POD to visualization of results.

The idea of figure 13 is to give the reader an overview of how to perform the method presented in
this thesis. Following the steps in the figure, and implement the necessary code should be suffi-
cient to use POD snapshot interpolation method.
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4 Validation case for POD snapshot algorithm

In order to have a validation case for this thesis, we have chosen a test problem involving similar
kind of physics expected in a DV-system. This involve solving a problem with heat transfer and
fluid flow with active gravity source term. The test case is similar to that presented by Aminossadati
and Ghasemi [1] and Selimefendigil [25].

4.1 Validation case setup

This 2D benchmark test case consists of a steady laminar compressible flow through a horizontal
channel with an open rectangular cavity in which a discrete hot surface is placed at the bottom
wall of the cavity, see figure 14. The height of the heat source is set to H/20. At the inlet the velocity
inlet boundary conditions is used with specified temperature (Tc ) and velocity (ui n). The outlet
are set as flow outlet with same mass flow value at the inlet with appropriate sign to ensure the
global mass conservation. All walls are treated as insulated, except the heat source witch is set to a
temperature (Th).

Heat sour ce

Inlet (Tc ,ui ) Outlet

H/2

2H

H

H

H L
Figure 14: Modelsetup (L = 2H) for validation case by Aminossadati and Ghasemi [1].

A suitable 2D computational domain consisting of 5175 computational cells is used to simulate a
case with Richardson number Ri = 100 where its defined as:

Ri = gβ(Th −Tc )H

u2
i n

(45)

Here, g is the acceleration due to gravity, β is thermal expansion coefficient, Th is the tempera-
ture of the hot surface, Tc is the temperature at the inlet, H is the characteristic length (depth of
the cavity) and ui n is the inlet velocity. Richardson number represents the importance of natu-
ral convection effects to forced convection. Laminar compressible segregated flow solver setup as
mentioned before is used for CFD predictions. Converged solution is extracted once the residuals
for all equations drops below 10−7.
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4.2 Results validation case

Figure 15 displays the temperature contour lines, and shows a very good agreement of the present
solution with the previous studies reported by Aminossadati and Ghasemi [1] as well as Selime-
fendigil [25] using Boussinesq approximation. This indicates that the mesh is sufficient enough to
be used for validation case for POD algorithm.

Figure 15: Comparison of numerical solutions, temperature contours for Ri = 100. top: present
study, middle: Selimefendigil [25], bottom: Aminossadati and Ghasemi [1].

To verify the implementation of the overall POD methodology, steady state CFD solutions are per-
formed with varying Ri , for a fixed value of Grashof number Gr = 104. The eight CFD solutions
obtained via the same aforementioned convergence criteria for Ri = 40,50,60,70,80,90,100 and
110 are used as snapshots input data for the POD technique. The contours of the non-dimensional
temperature was visualized by following formula:

θ(Ri ,~x) = (T −Tc )

(Th −Tc )
(46)

As we can see in figure 16 with the increase of Ri the natural convection effects becomes dominant.
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Ri = 40 Ri = 50

Ri = 60 Ri = 70

Ri = 80 Ri = 90

Ri = 100 Ri = 110

Figure 16: Contours for θ for all CFD-simulation cases for different Richardson numbers.

The POD-interpolated solution for Ri = 75 is constructed and compared with the actual CFD so-
lution for verification and validation. Figure 17 clearly shows the reliability of the implementation.
The error estimate is also low, and we can therefore clearly state that the implementation of al-
gorithm is correct, and reproduction with POD interpolation gives good agreement with solution
obtained from CFD simulation.
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CFD

POD

|θC F D −θPOD |

Figure 17: Comparison of CFD and POD predictions, contours of θ and error estimates for Ri=75.

The spatial structures of the POD modes are shown in Figure 18. The relative energy of the POD
modes can be estimated from the eigenvalues by:

Er = λi∑m
i=1λ

i
(47)

Where λi ’s are the eigenvalues, (see equation (38)) when running the POD algorithm. The energy
associated with the first POD mode is found to be 99.99999% and the rest of the modes assume
values of the order of 10−7% or less. This reveals that the most of the energy contained within the
first POD mode, and therefore reconstruction with just on mode, will give a good approximation.
We can also see from the spatial structures for Θ in figure 18, that main structure for all cases is
quite similar to the first mode, which agrees with that most of energy is conserved in first mode.
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Mode 7 Mode 8

Figure 18: Spatial structures of the POD modes for θ.
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5 CFD simulation of indoor air flow with DV-system

Here, we present the simulation of a DV-system in a room, and usage of POD based interpolation
method for faster prediction of indoor air flows. The numerical setup is described and the model
set up is been based on Nordtest [22] description of a DV setup. This is presented in the next
section, followed by results and discussion for CFD simulation and POD interpolation method.

5.1 Setup for simulation

The box model of the room is 5.6 m x 2.8 m x 7.5 m (Length x height x width). The diffusers have a
total area of 0.24 m2 with height 0.3 m and the width 0.8 m. The heating wire along the wall, 0.7 m
above the floor is supplying the heat into the room. See figure 19 for 3D visualization. [22]

Adiabatic walls

Inlet

Heat flux (roof)

Outlet

Heat source

5.6 m

7.5 m

2.8 m

0.7 m

XY Z

Figure 19: Computational setup of the indoor airflow study, domain sepsifications.

Mesh generation

Automated mesh in Star-CCM+ is used to generate the mesh. Trimmed mesher and prism layer
mesher is used. Surface and volume control is used to make refined mesh in the main interaction
zones the walls, inlet and the outlet. This is since the main physics of interaction would happen
in these regions, and therefore a relatively coarser mesh was kept in the the center of the room.
The volume control regions is called the refinement regions. 5 prism layers with a thickness of
0.05 is made near wall boundaries. A total of ≈ 1.06 million computational cells is used for the
computations. Representation of the mesh can be seen in figure 20.
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Figure 20: Computational setup of the indoor airflow study, mesh on some sample planes.

The near wall mesh resolution ensured that 0.02 < y+ < 17.06 for all cases. Note that the resolution
near ceiling is 0.3 < y+ < 6.4 and near floor is 0.08 < y+ < 6.2 for all cases. Figure 21 shows wall y+

for a simulation with Ar = 2.

Figure 21: Presenting y+wall values for Ar = 2.

Turbulence model

As described earlier on in the method section, the SST (Menter) κ−ω turbulence is used for the
simulations of the DV-system.
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The inlet boundary condition has been given values according to the k-ω turbulence model for
specific dissipation rate (SDR),ω, and turbulent kinetic energy (TKE), k0. These values changes for
different mass flow at the inlet according following equations:

l0 = h/10 (48)

k0 = 1.5(0.04 ·u0)2 (49)

ω= ε

k0
= k1.5

0

k0l0
= k0.5

0

l0
(50)

Where l0 is some length scale, h is the height of the inlet and u0 is velocity at the inlet calculated
from the mass flow at the inlet [28, p. 77 and p. 90]. The values usd for the different cases can be
seen in table 1:

Table 1: Overview of turbulent kinetic energy and specific dissipation rate for each simulation.
TKE, k0 [m2/s2] SPR, ω [1/s]

Ar1 = 2 4.33E-4 6.94E-1
Ar2 = 6 2.08E-4 4.81E-1
Ar3 = 10 1.48E-4 4.06E-1
Ar4 = 14 1.18E-4 3.63E-1
Ar5 = 18 1.00E-4 3.34E-1
Ar6 = 22 8.76E-5 3.12E-1
Ar7 = 26 7.83E-5 2.95E-1
Ar8 = 30 7.12E-5 2.81E-1
Ar = 7 1.88E-4 4.57E-1
Ar = 15 1.13E-4 3.54E-1

At the outlet boundary, condition is set to have zero gradient for both turbulent kinetic energy and
specific dissipation rate.

Physical model

Steady 3D simulations are performed. Ideal gas for air is used as the fluid, with the coupled flow
solver. Gravity is used and the all y+ treatment. Second order scheme is used for the coupled
flow solver. Converged solutions for all cases are extracted once the residual for mass conservation
stabilise at ≈ 4×10−3, energy conservation stabilises ≈ 8×10−4, Z-momentum stabilise at ≈ 1×10−4

and residuals for all remaining equations drops below 4×10−5. Figure 22 shows the behavior of the
residuals for a sample case.
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Figure 22: Typical residual for all simulation cases. Image is residuals for simulation of Ar = 2.

Gravity

Boussinesq approximation has not been used, which is a method that gives no variation of density
in the flow field, but the full gravity term. Therefore there is no simplifications in the governing
equations, and the simulations is therefore more realistic to the physical world.

Boundary conditions

The boundary conditions are summed up in figure 19 and in a list below:

• Inlet: Mass flow inlet condition is used. Since the flow is simulated as compressible, mass
flow is preferred instead of velocity inlet. One of the reasons is when having velocity inlet
the mass flow will change due to different density at the inlet. For cases as ventilation, where
constant mass flow in is expected, mass flow inlet is preferred. A standard inlet temperature
for DV-systems, Ti n = 17◦C was used, and a density of ρi n = 1.216 kg /m3.

• Outlet: The exhaust conditions are set as flow outlet with same mass flow value at the inlet
with appropriate sign to ensure the global mass conservation. Zero gradient for temperature,
specific kinetic energy and turbulent kinetic energy was applied.

• Walls: The walls was set to have no-slip condition and was adiabatic.

• Heat source: The wires had a thermal specification as heat source. Their was set to give
constant supply of total heat according to the table 2, where a total of 120 W was supplied,
acting as the heat supplied from one human.

• Roof: The roof was set to have a heat loss of 1 W /m2 as described in Nordtest [22].

5.2 Test cases for CFD simulations and domain for POD snapshot method

Table 2 summarises the test cases for different Archimedes numbers where POD based interpo-
lation is going to be used. The values are chosen on the background of having equally distance
between the values, and all values are above Ar > 1 to hopefully achieve thermal stratification.
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Table 2: Parameters of interest and their test domain.
Ar1 Ar2 Ar3 Ar4 Ar5 Ar6 Ar7 Ar8

qt ,1 = 120 W 2 6 10 14 18 22 26 30

Equation (29) is used to calculate the input parameters depending on Archimedes number in the
CFD model. For POD method, we are interested to run algorithm for values other then in table 2,
which was chosen to be Ar = 7 and Ar = 15. Further analysis is presented in these next sections.
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6 Results and discussion

The flow physics involved in the present ventilation setup is governed by the Archimedes num-
ber (analogous to Richardson number as in validation case). Eight different test cases are simu-
lated, (see table 2), as variable parameter leading to the following functional form for any non-
dimensional flow variable, φ∗(Ar,~x). The following analysis is based on the non-dimensional vari-
ables:

ρ∗ = ρ

ρi n
(51)

U∗ = u

ui n
(52)

T ∗ = (T −Ti n) ρi ncpV̇i n

qt
(53)

where V̇i n is the volumetric flow rate at the inlet, cp is the heat capacity at constant pressure, qt

is the total heat gain in the room, As is the diffuser area of inlet and L is the characteristic length
that can be defined as the difference between the room height and height of the diffuser. We first
present the CFD solutions for different Archimedes numbers. Subsequently, the analysis of POD-
interpolated solutions for Ar = 7 and Ar = 15 are presented in the non-dimensional form for each
parameter T ∗(Ar,~x), U∗(Ar,~x) and ρ∗(Ar,~x) in different planes with an error estimate by:

Er r or = |(φ∗
C F D −φ∗

POD )| (54)

Then we will present spatial structures of POD modes and energy conserved in the modes.

6.1 DV characteristics and CFD snapshots

The Ar is varied essentially setting different inlet air supply velocity with fixed supply Ti n , ρi n and
heat loads. As mentioned earlier, equation (29) is used as formula for Archimedes number. Figure
23 shows the distribution of U∗ on a x − y plane at z=0.1m. The typical air flow pattern for low air
velocity diffuser in DV configuration involving the acceleration region (near field) and the velocity
decay region (far field) can be clearly realised from the U∗ contours. With increasing Ar , the max-
imum value occurs at further upstream (x-coordinate) locations. Evidently, the acceleration zone
is larger for low Ar . For lower Archimedes number (e.g Ar = 2), we can see that higher values of U∗

occur further away from the diffuser compared to the higher Archimedes numbers (e.g Ar = 30),
figure 23. This is due to higher momentum from the inlet diffuser.
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Ar = 2 Ar = 6

Ar = 10 Ar = 14

Ar = 18 Ar = 22

Ar = 26 Ar = 30

Figure 23: Contours of u-component of the velocity on a horizontal plane at 0.1 m above the floor
for different Ar .
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From the earlier statement it can be seen that (figure 24) for higher Archimedes number max ve-
locity occurs on further upstream x-coordinate at z = 0.1 m. For higher Archimedes number, we
can also see that we will achieve a higher max velocity relative to the inlet velocity.

Figure 24: Plot of velocity u-component in the refinement region z = 0.1 m in middle of room.

We made contours of the non-dimensional velocity in the vertical plane, see figure 25. We can
see that the establishment zone and acceleration zone are farther away downstream for lower
Archimedes number. Max velocity occurs at some distance from the diffuser, so as stated in intro-
duction section for DV-systems, (see section 1.1), the max velocity will occur further from diffuser.
We can also clearly see that the flow goes further into the room for lower Archimedes number. The
difference between max velocity and inlet velocity increase with increasing Archimedes number.
At the outlet we can see some higher velocities, this is due to the outlet B.C and there is a under
pressure at the outlet.
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Ar = 2 Ar = 6

Ar = 10 Ar = 14

Ar = 18 Ar = 22

Ar = 26 Ar = 30

Figure 25: Contours of velocity on a vertical plane in the middle of the room at y = 2.8m for differ-
ent Ar .

Figure 26 shows the effective thermal stratification on a x − z plane at the middle of the room
(y = 2.8 m) for all cases which is the key aspect of achieving the good air quality for a DV-system.

34



Ar = 2 Ar = 6

Ar = 10 Ar = 14

Ar = 18 Ar = 22

Ar = 26 Ar = 30

Figure 26: Contours of temperature on a vertical plane in the middle of the room at y = 2.8m for
different Ar .

We can see from figure 27 that for higher Archimedes number, we get lower temperature at the roof.
Where also the plot of thermal stratification, figure 27, indicates the same. Good stratification is
needed for a DV-system to remove the contamination in the room, and for Ar > 1 this is clearly
achieved for this kind of room structure.
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Figure 27: Plot of temperature along line probe at x = 2.0 m in middle of room.
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Ar = 2 Ar = 6

Ar = 10 Ar = 14

Figure 28: Isosurfaces at the inlet diffuser for four first Archimedes numbers.

Figure 28 shows the isosurfaces for velocity u-component with isovalue 0.2 m/s for four differ-
ent Archimedes numbers, colored with temperature contours.These iso-surfaces shows that, lower
Archimedes numbers have further penetration into the room than higher Archimedes numbers.
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6.2 Nordtest method comparison

As introduced in section 2.5.4, Archimedes number has different forms and how DV-systems can
be engineered. In this section we are presenting comparison between Archimedes number used in
this thesis and Nordtest Archimedes number, and presentation of max velocity for all Archimedes
numbers.

Figure 29: Comparison between Archimedes number proposed in Nordtest [22] and the on by
Menchaca Brandan [17] in a scatter plot.

In figure 29, we show a scatter plot of the proposed Archimedes number from Nordtest method and
the Archimedes number from Menchaca Brandan [17]. The Archimedes number from Nordtest
method is calculated according to equation (31) in section 2.5.4. This is done by making a hori-
zontal plane, 1.1 m above the floor with a 2 m distance from the diffuser according to the standard,
and take the average of the temperature in this plane to get the reference temperature, Tr . The
Archimedes numbers from Menchaca Brandan [17] is used in the simulation of the DV cases. We
can clearly see that the Archimedes number from Nordtest method and Menchaca Brandan [17]
is positively correlated, but the Nordtest method gives a higher value for the Archimedes number.
The curve fitting function for scatter plot in figure 29 gotten from polynomial fit from Python is:

f (x) =−0.014x2 +2.107x +0.753 (55)

There could be of interest to take equation (30), and change it to see what the error would be for
max velocity, vmax , changing the Nordtest Archimedes, ArNor d test , with Menchaca Brandan [17]
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Archimedes number, ArBr and an , such as:

vmax ≈ k1,max · (ArBr and an)k2,max ·B (56)

Further on the max velocity in the middle of room at y = 2.8 for all simulations is presented, see
figure 30.

Figure 30: Max velocity for a plane in middle of room at y = 2.8m.

We can clearly see that difference between inlet velocity and max velocity in diffuser regions in-
crease with increasing Archimedes number.

Since this method for analysis of the coefficients in the Nordtest method needs a lot of datapoints,
the POD-interpolation method could be a great way to attack these kind of parametric studies.
In the next section the results from POD-interpolation method is presented, and the accuracy is
discussed.
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6.3 Analysis of POD-interpolated prediction

For POD-interpolation prediction, 8 different snapshots is extracted from steady-state CFD sim-
ulation of DV-system, see table 2. We estimate the flow parameters for Ar = 7 and Ar = 15 via
POD-interpolated methodology on two different planes, as shown in section 6.1, inside the refine-
ment regions, since here the most complex fluid flow structures occur. The predicted contours of
U∗, T ∗ and ρ∗ at x − y plane are compared with the actual CFD, which is presented below.

6.3.1 POD-interpolation prediction for Ar = 7

Below we present visualisation comparison between CFD and POD based prediction for Ar = 7.

Figure 31: Velocity, density, temperature and error distributions on horizontal plane at 0.1 m above
floor for Ar = 7.
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Figure 32: CFD, POD and error estimates on a vertical plane for T ∗ at y = 2.8 for Ar = 7. Top: CFD,
middle: POD, bottom: Error estimate.

Figure 33: CFD, POD and error estimates on a vertical plane for ρ∗ at y = 2.8 for Ar = 7. Top: CFD,
middle: POD, bottom: Error estimate.
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Figure 34: CFD, POD and error estimates on a vertical plane for U∗ at y = 2.8 for Ar = 7. Top: CFD,
middle: POD, bottom: Error estimate.

In figure 31, we first show the distribution of T ∗, U∗ and ρ∗ in the horizontal plane. It can be
clearly seen that the visualization with all modes, is almost identical as the CFD simulation results.
The error estimate backs this up, where it shows a very small error between CFD and POD. One
can see the similar trend in the vertical plane, (figure 32, 33 and 34), as in the horizontal plane,
where the error estimate is low in the interaction region. It is evident that the error estimates for
this plane appears relatively higher above the diffuser height levels having relatively coarser mesh
in this region. Nevertheless, the errors are sufficiently low in the main interaction zone near and
below the diffuser height level. The acceleration and velocity decay regions are predicted very well.

6.3.2 POD-interpolation prediction for Ar = 15

Here we present visualisation comparison between CFD and POD for Ar = 15. As in the last section
for CFD compared with POD for Ar = 7, again one can see similar pattern of the results for Ar = 15.
The error estimate is low between POD and CFD, and acceleration zone and velocity decay region
is predicted really well as expected. See figure (35-38).
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Figure 35: Velocity, density and temperature distributions on horizontal plane at 0.1 m above floor
for Ar = 15.

Figure 36: CFD, POD and error estimates on a vertical plane for T ∗ at y = 2.8 for Ar = 15. Top: CFD,
middle: POD, bottom: Error estimate.
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Figure 37: CFD, POD and error estimates on a vertical plane for ρ∗ at y = 2.8 for Ar = 15. Top: CFD,
middle: POD, bottom: Error estimate.

Figure 38: CFD, POD and error estimates on a vertical plane for U∗ at y = 2.8 for Ar = 15. Top:
CFD, middle: POD, bottom: Error estimate.
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6.4 Spatial structures

The spatial structures are presented in this section for the 8 modes computed from the 8 snapshots
in vertical and horizontal plane. The structures are computed from the U∗-component and we
are interested in looking into how much of the energy that is captured in the modes. Figure 39
represents the modes in the horisontal plane and figure 40 in the vertical plane.

Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Mode 7 Mode 8

Figure 39: Spatial structures of the POD modes for u-component of the velocity field, x-y plane.
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Mode 7 Mode 8

Figure 40: Spatial structures of the POD modes for u-component of the velocity field, x-z plane.

By comparing structures in figure 39 and 40, we clearly see that the first mode for both horizontal
and vertical plane contains the most of the energy. The energy for the different modes are summa-
rized in table 3, using equation (47).

Table 3: Energy catched by the modes in x-y and x-z plane.
Energy x-y plane, [%] Energy x-z plane, [%]

Mode 1 98.01 98.89
Mode 2 1.77 0.65
Mode 3 0.19 0.15
Mode 4 2.24 ·10−4 7.70 ·10−4

Mode 5 10−5 5.86 ·10−4

Mode 6 10−5 5.07 ·10−4

Mode 7 10−5 3.66 ·10−4

Mode 8 10−6 2.85 ·10−4

As we can see from table 3, the first two modes for both vertical and horizontal plane consist of
more than 99.5 % of the energy. In the vertical plane, we notice that mode 4,5,6,7 and 8 are quite
consistent with energy conservation in the value ine the range of 10−4 range. Since most of the
energy is captured in the first two modes, good predictions of the flow in the DV-system can be
acquired only by using the these two, which is shown in the next section.
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6.4.1 POD-interpolation prediction for first two modes for Ar = 7

After looking into the spatial structures of the POD modes in section 6.4, it is interesting to investi-
gate total error between POD prediction using all modes and using just two modes.

Figure 41: Velocity, density and temperature distributions on horizontal plane at 0.1 m above floor
for Ar = 7.

From figure 41 it can be seen that most of the structures are reconstructed with only two modes,
such as the acceleration region for the velocity u-component, decrease in temperature further into
the room, and the non-dimensional density with relatively low error. Its expected higher error
estimate for wall regions and main interaction zone since not all the energy is taken into the re-
construction using the POD based prediction method.

We can see that the error between POD and POD with two modes is sufficient low for all cases,
(figure 42, 43 and 44). Some reduced accuracy is expected, since not all energy conserved by POD
interpolation method is included, but all the essential flow features are captured as before.

6.4.2 POD-interpolation prediction for first two modes for Ar = 15

The results presented here show the similar trend as stated in last section. It shows sufficient lower
error between POD and POD with two modes. POD with two modes capture most of the most
dominant structures as expected. It is to be noted that we have used the cubic spline interpola-
tion of the POD coefficients to construct/predict the flow variables for Ar = 7 and Ar = 15, other
interpolation methods can be tested for error analysis.

47



Figure 42: POD, POD with two modes and error estimates between POD and POD with two modes
on a vertical plane for T ∗ at y = 2.8 for Ar = 7. Top: POD, middle: POD with two modes, bottom:
Error estimate.

Figure 43: POD, POD with two modes and error estimates between POD and POD with two modes
on a vertical plane for ρ∗ at y = 2.8 for Ar = 7. Top: POD, middle: POD with two modes, bottom:
Error estimate.
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Figure 44: POD, POD with two modes and error estimates between POD and POD with two modes
on a vertical plane for U∗ at y = 2.8 for Ar = 7. Top: POD, middle: POD with two modes, bottom:
Error estimate.

Figure 45: Velocity, density and temperature distributions on horizontal plane at 0.1 m above floor
for Ar = 15.
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Figure 46: POD, POD with two modes and error estimates between POD and POD with two modes
on a vertical plane for T ∗ at y = 2.8 for Ar = 15. Top: POD, middle: POD with two modes, bottom:
Error estimate.

Figure 47: POD, POD with two modes and error estimates between POD and POD with two modes
on a vertical plane for ρ∗ at y = 2.8 for Ar = 15. Top: POD, middle: POD with two modes, bottom:
Error estimate.
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Figure 48: POD, POD with two modes and error estimates between POD and POD with two modes
on a vertical plane for U∗ at y = 2.8 for Ar = 15. Top: POD, middle: POD with two modes, bottom:
Error estimate.
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7 Conclusion

In this work, we have presented a POD-interpolation based methodology in resolving complex in-
door airflow patterns and thermal stratification related to a DV system. A 2D thermal convection
benchmark problem on a cavity geometry has been solved to verify and validate the overall im-
plementation, which showed good results. The guideline of the Nordtest method is adopted to
build the case studies associate with a DV-system configuration for a standard room. Steady-state
CFD snapshots with varying Archimedes number are used to estimate the dominant POD coef-
ficients/modal amplitudes and POD modes.The flow field variables are decomposed in terms of
Archimedes number dependent POD coefficient and associated space dependent POD bases. A
cubic spline interpolation of the POD coefficients is used to predict the solution for intermediate
value of Archimedes number.

The CFD-study shows that we capture the most well known characteristics for a DV-system, such
as acceleration zone and thermal stratification. Further on the POD interpolation analysis reveals
that there is good agreement between visualization of ρ∗, T ∗ and U∗ for CFD and POD. The anal-
ysis also revelas that for the u-componenet of the velocity field, the first two POD modes are the
most dominant modes accounting the associated energy ≈ 99.5%, which means that one can esti-
mate solutions for intermediate Archimedes numbers with good accuracy only using two modes.

The present study clearly shows the capability of CFD snapshot based POD-interpolated fast and
reliable predictions of DV configuration involving a wall mounted linear air terminal device. A fu-
ture study with the different types of air terminal devices and obstacles such as humans placed
in the room could be undertaken and this fast prediction approach is potentially advantageous to
carry out further parametric variations without performing large number of physical experiments
and validate existing semi-empirical models of DV systems.
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