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An alternative and powerful Schrödinger-like equation for describing beyond dipole laser-matter interactions
is derived. It is shown that this particular formulation is numerically very efficient with respect to computational
effort and convergence rate of the solutions. Furthermore, and more importantly, its nonrelativistic form turns
out to be more compatible with relativity than what seems to be the case with the more common formulations of
the nonrelativistic light-matter interaction. Moreover, an extension of this interaction form into the relativistic
region preserves, to a large extent, the numerical efficiency.

I. INTRODUCTION

The question of how the magnetic component of some laser
field actually alters the strong-field ionization of atoms and
molecules is becoming increasingly important and goes hand
in hand with the ongoing development of new extreme light
sources. Recent experimental activity in the field has already
provided valuable new insight into this emerging area of re-
search [1–9]. The theoretical modeling of the laser-matter in-
teraction in the intense field regime is particularly challenging,
primarily due to the fact that the celebrated dipole approxima-
tion is generally no longer applicable [10–15]. Furthermore,
in the limit of very strong fields the validity of the usual non-
relativistic approximation ultimately breaks down and a rela-
tivistic treatment of the laser-matter interaction becomes nec-
essary [16–23].

In the present work we outline a coherent and transpar-
ent theoretical model for handling beyond dipole (nondipole)
and relativistic corrections effects on an equal footing. This
derivation is based on the time-dependent Schrödinger equa-
tion and the energy-momentum relation. The resulting inter-
action Hamiltonian turns out to be very favorable, not only
from a computational point of view, but also from the point of
view of better understanding the transition between the rela-
tivistic and nonrelativistic regimes. The work can be summa-
rized by the formulas (21) and (25) derived in Sec. II, for the
nonrelativistic and relativistic interactions, respectively. The
usefulness of the new formulation is explicitly demonstrated
by studying the ionization dynamics of atomic hydrogen by
some short and intense x-ray laser pulse in a regime where
the ordinary dipole approximation is inaccurate [24]. It is
shown that the here proposed scheme completely outmatches
the more standard formulations of the light-matter interaction
when it comes to comparing the rate of convergence of the
calculations with respect to the number of angular momenta
included in the calculations.

Atomic units (a.u.) are used where stated explicitly.

∗Electronic address: morten.forre@uib.no

II. THEORY

In the standard nonrelativistic approach, the wave function
ψ(rrr, t) of a particle of mass m and charge q, evolving in some
laser field AAA and (Coulomb) potential V , is governed by the
time-dependent Schrödinger equation (TDSE),

ih̄
∂

∂ t
ψ = Hψ , (1)

with the minimal coupling formulation of the light-matter in-
teraction Hamiltonian

H =
p2

2m
+V −

q

m
AAA · ppp+

q2

2m
A2. (2)

Here the Coulomb gauge restriction ∇ ·AAA = 0 on the field has
been imposed. The vector potential AAA(rrr, t) generally depends
on both space and time coordinates and satisfies separately the
wave equation. From a purely computational point of view,
keeping the spatial dependence in the vector potential most of-
ten result in an intractable numerical problem. Therefore, and
in order to simplify the calculations significantly, the so-called
dipole approximation is most often imposed. In this approx-
imation the spatial dependence of the field is not considered,
the magnetic field component is neglected, and the vector po-
tential AAA is assumed to depend on time only. One consequence
of the approximation is that the last (diamagnetic) term in the
Hamiltonian (2) becomes an unimportant time-dependent fac-
tor that can be left out. The dipole approximation is usually
valid in the limit where the extention of the quantum system
in question is much smaller than the wavelength of the incom-
ing light and provided the laser intensity is not so high that the
magnetic field component of the field must be included.

In an alternative and less known route, the system Hamilto-
nian can instead be written as [19, 23, 25, 26]

H =
p2

2m
+V −

q

m
AAA · ppp+

q2

4m2c

{

A2, k̂kk · ppp
}

, (3)

where the unit vector k̂kk indicates the laser propagation direc-
tion, c is the speed of light, and curly brackets denote the an-
ticommutator defined by {a,b}= ab+ba. The anticommuta-

tor originates from the fact that the two operators A2 and k̂kk · ppp
do not generally commute. The interaction Hamiltonian (3)
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may also be obtained as the nonrelativistic limit of the Dirac
equation – with the addition of the interaction between the
particle’s spin and the external magnetic field [27].

If we disregard terms beyond second order in 1/c, the two
formulations (2) and (3) are equivalent and can be used inter-
changeably, i.e., they would yield the same results in any exact
treatment, provided the laser-matter interaction does not intro-
duce relativistic effects. Nonetheless, the formulation (3), also
called the propagation gauge formulation [25], has proven to
be numerically advantageous in handling laser-matter interac-
tions in the intense field limit where the dipole approximation
breaks down [25, 27]. The wave function ψ ′ in the propaga-
tion gauge is related to the original wave function ψ in Eq. (1)
by the gauge transformation [25]

ψ ′ = eiX ψ , (4)

with

X(η) = X(ωt − kkk · rrr) =
q2

2mh̄ω

∫ η

−∞
A2(η ′)dη ′, (5)

where ω is the central angular frequency of the laser field and

kkk = ω/c k̂kk is the wave vector.

In order to introduce the magnetic field in the standard for-
mulation (2) of the light-matter interaction, it is common to
write out the vector potential in terms of a Maclaurin series
expansion, i.e., writing

AAA(rrr, t) = AAA0(t)+
1

c
k̂kk · rrrEEE0(t)+ . . . , (6)

where AAA0(t) now refers to the dipole field and EEE0 = − ∂
∂ t

AAA0

represents the corresponding homogeneous electric field. In
this approximation the magnetic field component is given by

BBB(rrr, t) = ∇×AAA =
1

c
k̂kk×EEE0 + . . . (7)

Applying the expanded potential (6), the minimal coupling
Hamiltonian (2) is now cast into

H =
p2

2m
+V −

q

m
AAA0 · ppp+

q2

2m
A2

0

−
q

mc
EEE0 · (ppp− qAAA0) k̂kk · rrr+ . . . (8)

The performance of the Hamiltonian (8) in actual numerical
calculations will be demonstrated later. We will no go back
and elaborate on the corresponding propagation gauge formu-
lation (3). More specifically, we shall demonstrate that includ-
ing spatial dependence in the AAA · ppp term in Eqs. (2) or (3) may
be problematic, both from a conceptual and a computational
point of view.

For pedagogical reasons, we begin with showing how
Eq. (3) can be derived. To this end, we take as starting point
the relativistic minimal coupling Hamiltonian for a spinless
particle of charge q and mass m confined in a (Coulomb) po-

tential qϕ =V and interacting with some laser field AAA,

H =
√

m2c4 +(ppp− qAAA)2 c2 −mc2 +V

=
(ppp− qAAA)2

2m
−

(ppp− qAAA)4

8m3c2
+ · · ·+V. (9)

Next, we impose the gauge transformation

AAA → AAA′ = AAA+∇ξ (10)

ϕ → ϕ ′ = ϕ − ∂tξ (11)

on the potentials, with

ξ (η) = ξ (ωt − kkk · rrr) =
q

2mω

∫ η

−∞
A2(η ′)dη ′. (12)

Note at this point that this gauge transformation on the poten-
tials is fully equivalent to the unitary transformation imposed
on the system wave function in Eq. (4). The Hamiltonian (9)
is then cast into its propagation gauge form,

H =

(

ppp− qAAA+ q2

2mc A2k̂kk
)2

2m
−

(

ppp− qAAA+ q2

2mc A2k̂kk
)4

8m3c2
+ . . .

+V −
q2

2m
A2

=
p2

2m
+V −

q

m
AAA · ppp+

q2

4m2c

{

A2, k̂kk · ppp
}

−
p4

8m3c2
+

q

4m3c2

{

AAA · ppp, p2
}

−
q2

8m3c2

{

A2, p2
}

+
q3

2m3c2
A2AAA · ppp−

q2

2m3c2
(AAA · ppp)2 + . . . , (13)

where in the last step only terms of order (1/c)2 and lower
have been written out explicitly. The Hamiltonian (13) in the
present form also accounts for relativistic kinematic effects
and was recently derived in [19, 23]. Going to the nonrela-
tivistic limit, i.e., omitting terms of order (1/c)2 and higher,
the nonrelativistic propagation gauge Hamiltonian (3) is fi-
nally retrieved.

Now, neglecting the spatial dependence of the vector poten-
tial, i.e., letting AAA(rrr, t)→ AAA0(t) in Eq. (3), the Hamiltonian is
converted into

H =
p2

2m
+V −

q

m
AAA0(t) · ppp+

q2

2m2c
A2

0(t)k̂kk · ppp, (14)

a form which is reminiscent of the interaction used in [28–
31]. Already at this point one may notice one clear advantage
of the propagation gauge formulation of the light-matter in-
teraction in that the Hamiltonian (14) actually accounts for
magnetic field effects through the last term in the interac-
tion [25], albeit no spatial dependence of the field has been
retained. This stands in stark contrast to the standard mini-
mal coupling formulation (2) for which the vector potential
must be explicitly space-dependent in order to account for the
magnetic field, cf., Eqs. (6-8). The Hamiltonian (14) has yet
another advantage in that in the limit of vanishing potential
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V , the momentum ppp becomes a constant of the motion, i.e., a
conserved quantity. This is the main reason why the propaga-
tion gauge formulation in general tends to be more favorable
from a purely numerical point of view, in particular in the limit
of very strong perturbations.

As mentioned previously, including spatial dependence in
the vector potential in the AAA · ppp operator term in the interac-
tion Hamiltonian (2) or (3) may cause some additional trou-
ble. Therefore, we are now about to introduce an additional
unitary transformation to the light-matter formulation that will
prove to be extremely useful in investigating intense field ef-
fects beyond the dipole approximation. To this end, we start
out by writing out the Hamiltonian (3) on the following triv-
ially extended form:

H =
p2

2m
+V(rrr)−

q

m
AAA0 · ppp−

q

m
(AAA−AAA0) · ppp+

q2

4m2c

{

A2, k̂kk · ppp
}

,

(15)

where AAA0 = AAA0(t) and AAA = AAA(rrr, t) as defined by Eq. (6). Next,
the goal is to get rid of the (AAA− AAA0) · ppp term from the for-
mulation. This may be achieved by introducing the unitary
transformation

ψ ′′ =Uψ ′ (16)

to the propagation gauge wave function ψ ′ in Eq. (4), with

U = exp

[

i

h̄
ααα(rrr, t) · ppp

]

(17)

ααα =−
q

m

∫ t

−∞
(AAA−AAA0)dt ′. (18)

The transformation will give rise to some new interaction
terms which can be calculated using the Baker-Campbell-
Hausdorff formula:

eiabe−ia = b+
i

1!
[a,b]+

i2

2!
[a, [a,b]]+

i3

3!
[a, [a, [a,b]]]+ . . .

(19)

The Hamiltonian from this new point of view becomes

H ′ =UHU† + ih̄U̇U†

=
p2

2m
+V(rrr+ααα)−

q

m
AAA0 · ppp+

q2

4m2c

{

A2, k̂kk · ppp
}

(20)

−
q

2m2c

{

k̂kk · ppp,AAA · ppp
}

−
q3

2m3c2
A2AAA · ppp+

q2

2m3c2
(AAA · ppp)2 .

The transformed Hamiltonian (20) contains in total three new
terms that originate from the (AAA−AAA0) · ppp operator in Eq. (15).
In addition, the potential has been shifted, i.e., V (rrr)→V (rrr+
ααα).

At this point, the attentive reader may already have made
the important observation that the last two terms in Eq. (20)
are also present in the general relativistic Hamiltonian (13)
– but with opposite signs. This means that when introduc-
ing the unitary transformation (16-18) to the relativistically
extended formulation (13), all such terms happen to cancel

exactly against each other, and therefore none of them should
appear separately in any consistent model of the light-matter
interaction, neither in the relativistic nor in the nonrelativis-
tic limit. To this end, the formally correct (nonrelativistic)
Hamiltonian takes the simpler form

H =
p2

2m
+V(rrr+ααα)−

q

m
AAA0 · ppp+

q2

4m2c

{

A2, k̂kk · ppp
}

−
q

2m2c

{

k̂kk · ppp,AAA · ppp
}

. (21)

We have here finally arrived at a relatively compact expression
for the light-matter interaction. In this formulation the pure
dipole interaction is represented by a separate term. In addi-
tion, the Hamiltonian contains three terms that are attributed
to radiation of the electromagnetic field beyond the dipole ap-
proximation, i.e., the usual propagation gauge term propor-
tional A2, a new term proportional to AAA arising from the origi-
nal AAA · ppp operator in Eq. (3), and finally, as a side effect of the
transformation, the shifted potential V (rrr+ααα). This modified
potential may be expanded in ascending powers of 1/c, i.e.,

V (rrr+ααα) =V (rrr)+
q

mc
k̂kk · rrr ∇V (rrr) ·AAA0 + . . . (22)

We are here primarily occupied with 1/c corrections to the
light-matter interaction, and as such we keep only the leading
order correction to the Coulomb potential as well as substi-
tute AAA with AAA0 in the remaining two beyond dipole interaction
terms. Then, the Hamiltonians (20) and (21) are cast into

H =
p2

2m
+V −

q

m

[

1+
k̂kk · ppp

mc

]

AAA0(t) · ppp+
q2

2m2c
A2

0(t)k̂kk · ppp

+
q

mc
k̂kk · rrr ∇V ·AAA0(t)−

q3

2m3c2
A2

0AAA · ppp+
q2

2m3c2
(AAA0 · ppp)2 ,

(23)

and

H =
p2

2m
+V −

q

m

[

1+
k̂kk · ppp

mc

]

AAA0(t) · ppp+
q2

2m2c
A2

0(t)k̂kk · ppp

+
q

mc
k̂kk · rrr ∇V ·AAA0(t), (24)

respectively, and where V = V (rrr) now refers to the unshifted
potential. Note that the anticommutation rules in Eqs. (20)
and (21) become unnecessary as AAA → AAA0 since the operators
now commute, and they are therefore omitted in Eqs. (23)
and (24).

The Hamiltonian (24), which contains all beyond dipole
interaction terms up to and including order 1/c corrections,
constitutes the main result of the present work. The alterna-
tive formulation (23) is reminiscent of the light-matter inter-
action derived recently by Brennecke and Lein [32] and used
in explaining experimental data on magnetic field effects in
the strong-field ionization of atoms [6]. In the nonrelativis-
tic limit, and provided relativistic corrections of order (1/c)2

and higher are unimportant to the dynamics, the two formu-
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lations (23) and (24) would yield similar but not identical re-
sults. Any discrepancies could then be attributed to the two
extra terms appearing in Eq. (23) – both of which are of rel-
ativistic order and happen to cancel exactly when the fully
relativistic interaction (13) is considered.

Although relativistic effects are not the main concern of the
present work, for completeness we also present the relativis-
tically extended light-matter interaction correct to order 1/c2,
as obtained by imposing the unitary transformation (16-18) to
the general Hamiltonian (13). Comparing Eqs. (13) and (20)
this is simply achieved by including all the surviving 1/c2 cor-
rections. The final result becomes

H =
p2

2m
−

p4

8m3c2
+V(rrr+ααα)−

q

m
AAA0 · ppp+

q2

4m2c

{

A2, k̂kk · ppp
}

−
q

2m2c

{

k̂kk · ppp,AAA · ppp
}

+
q

4m3c2

{

AAA · ppp, p2
}

−
q2

8m3c2

{

A2, p2
}

,

(25)

which is valid up to but not including order (1/c)3 correc-
tions. Notice at this point that the two extra terms appearing
in Eqs. (20) and (23) are not part of this equation, merely con-
firming that the alternative formulations (21) and (24) comply
better with the theory of relativity. Note further that only rel-
ativistic corrections to the kinetic energy have been taken into
account in Eq. (25) and that the usual spin-orbit and Darwin
interaction terms have not been considered. It is, however, rel-
atively straightforward to add these into the theory if needed.
The result (25) is equivalent but not identical to the results de-
rived recently in [19, 23], the most important distinction being
that the transformation (16-18) was not imposed in the previ-
ous works.

III. RESULTS AND DISCUSSION

We have now come to the point where we explicitly want
to demonstrate the capability of the alternative formulation of
the light-matter interaction, i.e., the power of the nonrelativis-
tic Hamiltonian (24) in comparison with the standard formula-
tion (8). However, in order to compare their respective results
on an equal footing, the two terms which were of relativistic
order and correctly left out from the formulation in the tran-
sition from Eq. (20) to (21) had to be reintroduced, i.e., the
Hamiltonian (23) is used for this particular analysis.

For simplicity, we here consider the x-ray regime and a hy-
drogen 1s electron exposed to a 1.36 keV laser pulse which
was powered on and off over a period of 15 cycles. The laser
pulse is modeled in terms of the vector potential

AAA0(t) =
E0

ω
f (t)sin ωt ûuup, (26)

where E0 is the electric-field strength at peak intensity, and
ûuup is a unit vector pointing in the laser polarization direction.
Furthermore, the function f (t) determines the temporal shape
of the pulse and is here taken to be a sine-squared function,

i.e.,

f (t) =

{

sin2
(

πt
T

)

, 0 < t < T
0, otherwise,

(27)

where T indicates the total duration of the pulse.

The TDSE in Eq. (1) is then solved numerically using
spherical coordinates and the spectral method, with the wave
function ψ expanded in a sufficiently large set of both quasi-
continuum (scattering) and bound eigenstates of the field-free
hydrogen atom as obtained by diagonalizing its system Hamil-
tonian in a B-spline basis [33]. More details on the numer-
ical implementation are given in [34]. Accurate numerical
results were obtained with a finite radial grid extending to
r = |rrr| = 66 a.u., and with the maximum attainable kinetic
energy of the electron in the restricted basis set truncated at
610 a.u. Moreover, the number of angular momentum pairs
(l,m) included in the expansion of the wave function was var-
ied until convergence was achieved. Note that when going be-
yond the dipole approximation, the azimuthal symmetry of the
problem is broken, which means that values of the magnetic
quantum number m running from −l to +l must be taken into
consideration. In our study we aimed at comparing the rate of
convergence of the calculations with respect to the number of
angular momenta included.

The atom is assumed exposed a laser pulse of peak in-
tensity 1.26× 1022 W/cm2, which corresponds to the value
E0 = 600 a.u. in Eq. (26). Furthermore, the value of ω = 50 in
atomic units. At this high laser intensity and short wavelength
of the light, the dipole approximation is no longer valid and
magnetic effects become important [23, 24]. Nonetheless, the
intensity is not so high that relativistic effects are prominent.

We are here primarily interested in the energy distribution
of the emitted photoelectron, which is calculated by means of
the equation

dP

dE
=

1

k

dP

dk
=

1

k ∑
lm

∣

∣

〈

ΦC
klm(rrr)

∣

∣ψ(rrr, t = T )
〉
∣

∣

2
, (28)

where atomic units have been used, ψ(rrr, t = T ) is the wave
function at the end of the laser pulse, ΦC

klm(rrr) is the Coulomb

wave function (normalized on the k scale), and k =
√

2E is the
wave number. The results are shown in Fig. 1.

The top panel of Fig. 1 shows the energy distribution of
the emitted photoelectron as obtained by solving the TDSE
with the Hamiltonian (23), and for three different choices for
the truncation of the angular momentum quantum number l
in the expansion of the wave function. Specifically, we have
set lmax = 3, 5 and 10, respectively. In total eight multipho-
ton peaks are depicted in the spectrum and only very small
differences between the three calculated results are expressed.
This finding merely reflects the fact that numerical calcula-
tions with the light-matter formulation (23) converge very fast
with respect to the total number of angular momenta included
in the simulations.

The middle panel of Fig. 1 provides the corresponding re-
sult as obtained solving the TDSE with the Hamiltonian (8),
but now for relatively high values of the l truncation. In this
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FIG. 1: Kinetic energy spectrum of the emitted photoelectron, as
obtained by Eq. (28), for a 15 cycle laser pulse with ω = 50 a.u. and
E0 = 600 a.u. Top panel: the beyond dipole result calculated using
the Hamiltonian (23) and with lmax = 3 (red line), 5 (blue line) and 10
(black line), respectively. Middle panel: the same result obtained
with the Hamiltonian (8) and with lmax = 10 (green line), 20 (blue
line), 30 (black line) and 40 (red line), respectively. Bottom panel:
a comparison of the results of Eqs. (8) and (23) with lmax = 40 (red
line) and 10 (black line), respectively.

case lmax = 10, 20, 30 and 40, respectively. As it turns out,
and in clear contrast to the upper panel result, the calculation
now converges very slowly with respect to increasing number
of angular momenta included in the basis expansion, and full
convergence is difficult to achieve in practice. This is clearly
manifested in the bottom panel of Fig. 1 showing a compari-
son of the result obtained by Eq. (23) and with lmax = 10, and
Eq. (8) with lmax = 40, merely demonstrating that not even
the lmax = 40 calculation seems to be fully converged for the
higher electron energies.

Having settled the numerical superiority of the light-matter
interaction formulation (23), which also apply to the formu-
lation (24), next we present a comparison of the results ob-
tained with the two Hamiltonians (23) and (24). The intent
is to demonstrate the inaccuracy of the former. To this end,
we consider the 6-photon resonance peak in Fig. 1, and the
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FIG. 2: A zoom of the 6-photon peak of the kinetic energy spec-
trum of the emitted photoelectron for a 15 cycle laser pulse with
ω = 50 a.u. and E0 = 600 a.u. The value of lmax was set to 10
in the calculations. Red line: the result obtained with Eq. (23) [or
Eq. (8)]. Black line: the result obtained with Eq. (24). Blue line: the
corresponding dipole approximation result.

result of the two respective calculations are shown in Fig. 2
together with the corresponding dipole approximation result.
As it turns out, both the interactions (23) and (24) predict a
shift of the resonance position to lower electron energies with
respect to the dipole result, effectively giving rise to a redshift
of the multiphoton ionization spectrum. Furthermore, the for-
mer predicts a larger redshift than the latter.

As a matter of fact, the observed discrepancy between the
results in Fig. 2 and between the data of Eqs. (23) and (24) in
particular, provides some evidence that relativistic effects may
play a certain role in the excitation dynamics. Recently it was
shown that such effects generally tend to produce a blueshift
of the corresponding spectrum [23]. Figure 3 depicts the rel-
ativistic result obtained with Eq. (25), and where the substi-
tution AAA → AAA0 as well as the expansion (22) have been made
in the system Hamiltonian. The corresponding nonrelativistic
results given by Eqs. (23) and (24) are also shown for com-
parison. As it turns out, relativistic effects are responsible for
a tiny shift of the position of the resonance to higher energies,
i.e., a blueshift. Furthermore, the net ionization yield is some-
what reduced as compared to its nonrelativistic counterparts.
Noticing that Eq. (23) predicts an even greater redshift than
Eq. (24), cf., red and black curve in Fig. 3, it is clear that the
formulation (24) is more in line with the relativistic treatment.
This merely suggests that the extra terms present in Eqs. (20)
and (23) are indeed superfluous, at best, and should be omitted
in the general context.

IV. CONCLUSION

In this work, we have demonstrated that introducing spatial
dependence in the vector potential in the AAA · ppp term in the stan-
dard nonrelativistic minimal-coupling formulation (2) can be
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FIG. 3: Same as Fig. 2, but a comparison of the relativistic and non-
relativsitic results. Red line: the nonrelativistic result obtained with
Eq. (23) [or Eq. (8)]. Black line: the nonrelativistic result obtained
with Eq. (24). Green line: the corresponding relativistic result ob-
tained with Eq. (25) in the limit AAA → AAA0 and where the shifted po-
tential (22) is expanded to first order in 1/c.

problematic, in particular in the limit of intense laser fields,
as this may lead to predictions that are in disagreement with
relativity – even in field regimes where a nonrelativistic treat-
ment is expected to be valid. With the intent to resolve this
issue, we have here derived an alternative and relatively com-
pact expression for the light-matter interaction Hamiltonian
which in combination with the time dependent Schrödinger
equation effectively takes into account both beyond dipole
and relativistic effects. The corresponding nondipole nonrel-
ativistic and relativistic formulations are given by Eqs. (21)
and (25), respectively, in the present work. The formula-
tion (21) is, although not relativistic in itself, formulated in
concordance with relativity – with the consequence that su-
perfluous interactions terms which otherwise would have ap-
peared are consistently omitted. We have further demon-
strated that these new interaction forms are computationally
much more efficient than the more standard formulations in
describing atomic excitation and ionization dynamics in su-
perintense laser fields.
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