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A B S T R A C T

The unsteady aspect of turbulent flow structures generated by a shock-wave diffraction over double cylindrical
wedges, with initial diffracting angle of ∘75 , are numerically investigated by means of two-dimensional high-
fidelity numerical simulation. Different incident-shock-Mach numbers, ranging from transonic to supersonic
regimes, are considered. Unlike previous studies where only the total vorticity production is evaluated, the
current paper offers more insights into the spatio-temporal behavior of the circulation by evaluating the evo-
lution of the instantaneous vorticity equation balance. The results show, for the first time, that the diffusion of
the vorticity due to the viscous effects is quite important compared to the baroclinic term for low Mach numbers
regimes, while this trend is inverted for higher Mach numbers regimes. It is also found that the stretching of the
vorticity due to the compressibility effects plays an important role in the vorticity production. In terms of
pressure impulses, the effect of the first concave surface on the shock strength has been quantified at both earlier
and final stages of the shock diffraction process. Unlike the overpressure, the static and the dynamic pressure
impulses are shown to be significantly reduced at the end of the first concave surface.

1. Introduction

The unsteady evolution of vortex rings produced by a shock dif-
fraction undergoing a sudden expansion area is one of the most fasci-
nating phenomenon in high-speed flows. This process was observed
many decades ago [1–3], with different levels of qualitative description
[4] and numerical modelling [5–7]. For instance, Skews [1] have dis-
cussed the behavior of disturbances produced in the perturbed region
caused by the passage of a shock wave, whose Mach number varies
from 1.0 to 5.0, through a convex corner. The experimental results of
this study have shown that the velocities of the contact surface and the
secondary shock become independent of the corner angles greater than
75°. Sun and Takayama [5] have evaluated numerically the vorticity
production in a shock-wave diffraction problem over convex corners,
with angles varied from 5° to 180°. The authors proposed an analytical
model to evaluate the total vorticity production generated by the slip-
stream. They found that the rate of vorticity production is always in-
creasing with the corner angle and the shock strength. They also re-
ported that the slipstream is at the origin of the total vorticity
generation and it can be the more dominating factor in producing
vorticity in compressible flows in comparison to baroclinic effects. In
another study, Sun and Takayama [8] have investigated the formation

of secondary shock waves behind the incident shock wave. Accordingly,
the threshold shock-wave Mach number was found to be =M 1.346s for
a gas with =γ 1.4, when neglecting viscous effects on the formation of
this secondary shock waves.

Quinn and Kontis [9] have investigated a shock-wave diffraction
around a 172° corner at =M 1.46s using both numerical simulations and
experimental visualizations. Their numerical study showed that al-
though the evolution of the shear layer was obtained for very fine mesh,
some very fine flow structures were under predicted. Cai et al. [10]
have investigated the effect of back-pressure on the shock train location
and its structure in a straight isolator. It is shown that the structure of
the shock train largely depends on the relative Mach number and is very
sensitive to it. Concerning the average back-pressure, it has a great
influence on the location of the shock train in the oscillating region,
while its amplitude has a noticeable effect on the size of this oscillating
region. Reeves and Skews [11] have investigated both numerically and
experimentally the unsteady aspects of three-dimensional shock-wave
diffraction phenomena. They found that the trends of circulation pro-
duction correlated quite well with those obtained from the two-di-
mensional diffraction case. Furthermore, they showed that the rate of
vorticity production tends to be constant once the incident shock wave
had fully diffracted over the surface edge. Finally, the shape of the
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diffracting edge appeared to have no significant impact on the results.
Abate and Shyy [12] studied the dynamics of shock-wave diffraction

using the vorticity transport equation. They discussed the link between
high-strain rates resulting from the expansion corner to the solenoidal
dissipation rates and the stress rates to the dilatational dissipation rates
of turbulent kinetic energies. The baroclinic torque enhances the vor-
ticity generation in such interaction. Their study indicates that both
viscous effects and small-scale turbulent dissipation are important for
the evolution of the primary vortex as well as the small vortices gen-
erated by the Kelvin-Helmholtz instability. Zhao et al. [13] have in-
vestigated the shock wave focusing process with shock-turbulence in-
teraction in a parabolic cavity with various intensity of shock and
vortex strength. Their numerical results show that the net dilatational
vorticity is the most dominant part in vorticity transport, followed by
the baroclinic vorticity and the viscous vorticity generation.

Gnani et al. [4] have used experimental schlieren photography to
qualitatively evaluate the development of a shock-wave diffraction
around sharp and curved splitters. Recently, Chaudhuri and Jacobs [7]
performed numerical analysis of shock-wave diffraction over a sharp
splitter plate. The objective was to address a detailed analysis of the
flow evolution using the probability density functions of various en-
strophy equation parameters as well as the invariants of the velocity
gradient tensor. Their study reveals the mechanism of unwinding of
vortices and its link with the divergence of the Lamb vector.

Additionally, Tseng and Yang [6] investigated numerically shock-
wave diffraction around a convex corner by solving both Euler and
Navier-Stokes equations. The vorticity production formed during the
shock-wave diffraction and the subsequent interaction between the
reflected shock and the main vortex core have been analyzed. Different
circulation production rates are observed between Euler and Navier-
Stokes solutions as a result of the vorticity contribution from the
boundary layer and the secondary vortex. It was also found that the
reflection influences the rate of vorticity production, which is found to
be dependent on the strength of the incident shock wave and the dif-
fracting angle.

Chaudhuri et al. [14] used an immersed boundary (IB) method to
study the interaction of the moving shock through an array of cylinder
matrix. Their analysis confirmed earlier findings of Sun and Takayama
[5], where the baroclinic production of the vorticity is found to be
feeble. Recently, Soni et al. [15] have conducted numerical

investigations of shock-wave reflection over double-concave cylindrical
reflectors, where new shock reflection topologies were found.

The aim of the present study is to further analyze the evolution of
the instantaneous vorticity production and the flow structure in shock
diffraction problem.

2. Governing equations and numerics

The compressible Navier-Stokes equations for an ideal gas are given
by:

∂ + =ρ div ρ v( ) 0t (1)

∂ + ⊗ + ∇ = ∇ρ div ρ p τv v v( ) ( )t (2)

∂ + + = ∇ + ∇ρ E div ρ E div ρ τ λ Tv v v( ) ( ) ( ) ( )t (3)

= − = +p γ ρ e E ev( 1) , 1
2

2

(4)

= ⎡
⎣

∇ ⊗ + ∇ ⊗ − ∇⋅ ⎤
⎦

τ μ v v v I( ) 2
3

( )T
(5)

where t stands for the time, ρ, v , p, E, T, λ, μ, e are the density, velocity
vector, pressure, total energy per unit mass, temperature, thermal
conductivity, dynamic viscosity and internal energy, respectively. The
working gas is air with =γ 1.4 and Prandtl number =Pr 0.72. The fluid
viscosity follows Sutherland's law.

To simulate the flow field, we used an in-house compressible parallel
solver equipped with adaptive multi-resolution method [16,17] for
mesh refinement. The code uses an immersed-boundary method (IBM)

Nomenclature

E total energy per unit mass
e internal energy per unit mass
Ip static-pressure impulse
Ipd dynamic-pressure impulse
Ms incident-shock-Mach number
P normalized overpressure
Pr Prandtl number
p static pressure
R universal gas constant
R concave radius
T temperature
t time
v velocity vector

Greeks

Γ vorticity circulation
γ heat capacity ratio
λ thermal conductivity
μ dynamic viscosity
ρ density

ω local vorticity
ω1 angle of the first wedge
ω2 angle of the second wedge
ωc convection vorticity term
ωt unsteady vorticity term

Abbreviations

BAR baroclinic torque
DFV diffusion of vorticity due to viscosity
IBM immersed-boundary method
I incident shock wave
LS lambda shock
PV primary vortex
r reflected shock wave
SLI shear-layer instabilities
SS secondary shocks
SV secondary vortex
VSC stretching of vorticity due to compressibility
VSG stretching/tilting of vorticity due to velocity gradients
VTE vorticity transport equation
WENO weighted essentially non-oscillatory

Table 1
Different grid resolutions used for a given incident shock-wave Mach number of

=M 1.6s (MP: million points).

Grid x μmΔ ( )min y μmΔ ( )min number of points (MP)

0G 95 88 1.83
1G 60 50 5.04
2G 40 40 8.84
3G 30 29 17.3

4G 20 21 33.55
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to handle fluid-solid interaction problems [14,18]. The solid body is
embedded into a Cartesian grid and tracked using a ray-tracing tech-
nique. Inviscid and viscous fluxes are computed using a fifth-order
weighted essentially non-oscillatory (WENO 5) scheme and a fourth-
order central difference formula, respectively, while the time is ad-
vanced using a third-order Runge-Kutta method [19].

3. Problem set-up

As in Brahmi et al. [20], a two-dimensional problem of shock dif-
fraction over double concave geometry, with constant radius of =R 50
mm and wedge angles = = ∘ω ω 751 2 , is considered. As for the compu-
tational specifications, the boundary conditions were set to inlet and
outlet at the left and the right sides of the computational domain, re-
spectively, while the top and the bottom-right boundaries are con-
sidered as symmetry planes. On the solid surface, no-slip boundary
conditions are applied. The incident-shock-Mach number was varied
from 1.6 to 4.5. For all those Mach numbers, the shock is initially lo-
cated 5 mm ahead of the first concave surface corner. Rankine-Hugo-
niot relations are used to fix the initial conditions for both left (shocked
gas) and right (stagnant flow) states at a given Ms. Air is considered as a
working fluid and the initial stagnant flow is assigned with temperature

=T 3000 K and pressure =p 101.30 kPa. Given the sensitivity of the
phenomena to the grid resolution, a grid dependency study is con-
ducted in order to determine the grid resolution effect on the results.
Five different meshes were used for =M 1.6s , as summarized in Table 1.

4. Results and discussion

Fig. 1(a) and (b) show the flow structures behind the diffracting
shock wave for the first and the second concave surfaces, respectively.
Shortly after the penetration of the shock into the cavity, the expanding
flow evolves into a complicated system of distorted and secondary
shocks with separated regions and vortices formation. As shown in
Fig. 1, an end-wall corner vortex (PV) is formed at =M 1.6s with a
rolling-up of eddies that are convected away from the concave entrance
as the diffraction process evolves. In addition to this important primary
vortex, a secondary instability (SV) appears along the surface wall. The
Reynolds number, based on the shocked flow properties (density, speed
of sound, viscosity in the upstream of the shock and the radius of cur-
vature R), is of the order of 106.

4.1. Vorticity production

In order to investigate the dynamics of the shear-layer formation,
the vorticity production is first analyzed in term of total circulation Γ
as:

∫ ∫= =ω ds u dlΓ
s L (6)

where the integral contour (path L) is taken along the boundary so that
to enclose the perturbed region behind the shock wave. The integral
contour is depicted in Fig. 2 by a dashed red line. For better char-
acterization of the vorticity production in shock-wave diffraction, the
ratio of circulation to time, tΓ/ , is used. The rate of circulation pro-
duction is related to the incident shock-Mach number Ms, the diffrac-
tion angle and the gas properties. For a given gas and diffraction angle,
the ratio tΓ/ can be uniquely determined as a function of Ms [5] as:

=
t

f MΓ ( )s (7)

In this paper, the calculation of the circulation is directly obtained
from the summation of the vorticity over each individual surface area.
In general, the calculation of the circulation is performed only in the
perturbed region behind the shock. However, in this study the total
amount of circulation is calculated over the entire computational

Fig. 1. Numerical schlieren pictures for =M 1.6s (a): first concave at =t 184 μs (b): second concave at =t μs292 . PV: Primary vortex, SV: Secondary vortex, LS:
Lambda shock, SLI: Shear layer instabilities, SS: secondary shock (shocklets).

Fig. 2. Schematic representation of double concave surfaces, − −− integral
path L, I: incident shock wave, r: reflected shock wave.
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domain since the unperturbed flow regions (uniform flow) provides
almost no contribution to the circulation.

As it can be seen in Fig. 3, the flow topology of the primary vortex
changes with the mesh resolution, the global variation of the vorticity
production (Γ) and its rate ( tΓ/ ) are insensitive to the grid resolution
(see Fig. 4(a) and (b)). Indeed, the circulation Γ increases linearly in

time regardless of the grid resolution. The results for the rate of vorti-
city production ( tΓ/ ) are scaled by the product × T0R , where R is the
universal gas constant divided by the molecular weight of air taken as,

= 287R − −J Kg K. .1 1 and T0 is the temperature in front of the incident
shock ( =T 3000 K). Since the rate has the dimension of the square of the
velocity ( −m s2 2), one may obtain dimensional results by multiplying the

Fig. 3. Numerical schlieren pictures for different grid resolutions at =t μs150 with =M 1.6s .
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dimensionless values by × T0R ,

′
′

= ×
t

T
t

Γ Γ
0R (8)

Note that all the results of the rate of vorticity production, tΓ/ ,
presented in this paper are dimensionless values.

The effect of shock strength on the vorticity production is in-
vestigated by changing Ms using the grid 4G . The results are shown in
Fig. 5(a) and (b). Basically both quantities increase with Ms. In other
words, the strength of the main vortex increases at higher values of
Mach number, and increases much faster for stronger shock waves as
reported by Sun and Takayama [5]. The vorticity production occurs
before the diffraction of the incident shock wave (at =t 12 μs for

=M 2.0s ) as a result of the boundary-layer formation on the solid wall.
This demonstrates the role played by viscous effects in forming the
shock-wave diffraction structure as mentioned by Tseng and Yang [6].

Fig. 5(b) shows the rate of the circulation production. The five curves
reach different constant values of 1.78, 3.79, 5.72, 11.42 and 18.73 for

=M 1.6, 2.0, 2.5, 3.5s and 4.5, respectively. Similar trends were ob-
served by Sun and Takayama [5] with constant values known as in-
variants of Euler equations in shock-wave diffraction.

Fig. 6 represents vorticity maps at different instants ( =t μs48 , μs78
and μs108 ) for =M 2.0s . As it can be seen, the main vortex and the
highly disturbed shear layer split when interacting with the secondary
shock waves. This results in a generation of fine scale turbulent eddies.
Note that the production of vorticity is mainly concentrated in this
turbulent region compared to the compression zone.

4.2. Vorticity transport equation

The vorticity transport equation provides further details on the
mechanism of the vortex dynamics, it can be written as follows:

Fig. 4. Time history of (a): circulation (b): rate of circulation production for =M 1.6s and different mesh resolutions (− 0G , − 1G , − 2G , − 3G , − 4G ).

Fig. 5. Time history of (a): circulation (b): rate of circulation production for different incident-shock-Mach numbers (− =M 1.6s , − =M 2.0s , − =M 2.5s ,
− =M 3.5s , − =M 4.5s ).

Fig. 6. Vorticity maps for =M 2.0s . Column-wise (left-to-right): =t μs48 , μs78 and μs108 .
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⎜ ⎟= ⋅∇ − ∇⋅ + ∇ × ∇ + ∇ × ⎛
⎝

∇⋅ ⎞
⎠

Dω
Dt

ω u ω u
ρ

ρ p τ
ρ

( ) ( ) 1 ( )
VSG VSC

2

BAR DFV

 
     

   
(9)

where the left-hand side represents the material derivative expressed as
the sum of unsteady, ωt , and convection, ωc, terms. Here, = ∂ ∂ω ω t/t
and = ∂ ∂ + ∂ ∂ω U ω x V ω y( / ) ( / )c .

The first term in the right-hand side of Eq. (9) represents the
stretching or tilting of vorticity due to the flow velocity gradients, a
term that is null in two-dimensional cases. The second term expresses
the stretching of vorticity due to flow compressibility. The third con-
tribution represents the baroclinic term, which accounts for the changes
in the vorticity due to the intersection of density and pressure surfaces.
The last term represents the diffusion of vorticity due to the viscous
effects.

The different expressions appearing in the right-hand side of Eq. (9)
are shown in Fig. 7 (in Row-wise) at different time intervals for

=M 2.0s . As one can see, the stretching of the vorticity due to flow
compressibility (VSC) has the most dominant contribution. Based on
the VSC contour, it is clear that there exist locally stretched structures
in the core region of the vortex due to compressibility effect arising
from local regions of compression/expansion. Additionally the results
show the existence of evolving large scale vortices which interact with
the different shock patterns present in the flow and finally split into

small-scale vortices.
Fig. 8 shows the temporal evolution of the vorticity transport

equation (VTE) terms. The stretching of vorticity due to flow com-
pressibility (VSC) is almost constant over time independently of Ms,
while its magnitude increases with Mach number. This contribution
represents the effects of expansion on the vorticity field and plays a
major role in the vorticity dynamics. The baroclinic term (BAR) is re-
sponsible of the generation of vorticity from unequal acceleration as a
result of nonaligned density and pressure gradients. The lighter density
fluid is faster accelerated than the high density one, which result in a
shear-layer formation, that contributes to the generation of vorticity.
The diffusion of vorticity due to the viscous effects (DFV) is essentially
enhancing the viscous diffusion process on the vorticity distribution. As
a result of viscosity, the vorticity tends to spread out spatially. Note that
the diffusion of vorticity due to viscous effects (DFV) is quite important
compared to the baroclinic term (BAR) for ≤M 2.5s , while this trends is
inverted for ≥Ms 3.5. As for the VSC term, the unsteady term, ωt, which
describes the rate of change in vorticity due to flow unsteadiness, is
found to be constant in time regardless of Ms. For the convection term,
ωc, we also notice that it is almost constant in time for all shock-wave
Mach numbers, and its magnitude increases at higher values of Ms. This
term represents the change of vorticity of the moving fluid particles due
to the motion of the fluid particle as it moves from one point to another.

Fig. 9 represents contours plots of ωc for =M 2.0s at different

Fig. 7. Color maps of vorticity terms for =M 2.0s . Row-wise (top-to-bottom): stretching of the vorticity due to flow compressibility (VSC), baroclinic (BAR) and
diffusion of vorticity due to the viscous effects (DFV) terms. Column-wise (left-to-right): =t μs μs48 , 78 and μs108 .
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Fig. 8. Time history of normalized vorticity transport equation terms for (a): =M 1.6s ; (b): =M 2.0s ; (c): =M 2.5s ; (d): =M 3.5s and (e): =M 4.5s (−: stretching of the
vorticity due to flow compressibility (VSC) term, −: baroclinic (BAR) term, −: diffusion of vorticity due to the viscous effects (DFV) term, −: convection term (ωc), −:
unsteady term (ωt)).

Fig. 9. Color maps showing the convection term of vorticity (ωc) for =M 2.0s . Column-wise (left-to-right): =t μs μs48 , 78 and μs108 .
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Fig. 10. Numerical schlieren pictures for =M 4.5s at =t 69 μs: (a) beginning of the first concave surface; (b) beginning of the second concave surface; I: incident
shock wave; r: reflected shock wave, P1 and P2 are two probes locations.

Fig. 11. Time history of (a): static pressure impulse, IP (b): dynamic pressure impulse, IPd and (c): normalized overpressure P , for different Ms at P1 (− =M 1.6s ,
− =M 2.0s , − =M 2.5s , − =M 3.5s , − =M 4.5s ).
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instants. As we can see, this term is mainly concentrated in the turbu-
lent region as well as in the shear layer and in the near wall-region.

4.3. Static and dynamic pressure impulses and normalized overpressure

The effect of Ms on shock strength was investigated by computing
the static and the dynamic pressure impulses along with the normalized
overpressure, all defined as:

∫=I p dtp t

tf

0 (10)

∫=I ρ dtv1
2pd t

t 2f

0 (11)

= −p p p( )/0 0P (12)

where p0 is the static pressure of gas at rest, p, ρ and v are the local
static pressure, density and velocity vector in the shocked region (t0 and
tf being the initial and the final times). These quantities are calculated
at two different space locations as shown in Fig. 10, with P x y( , )1 1

*
1
*

corresponding to the beginning of the first concave surface,
= =x x R/ 0.261

*
1 and = =y y R/ 1.61

*
1 and P x y( , )2 2

*
2
* corresponding to

the beginning of the second concave surface, = =x x R/ 1.222
*

2 and
= =y y R/ 0.862

*
2 . The results are presented in Figs. 11 and 12, for P1 and

P2, respectively.
At the upstream location, P1, both static and dynamic pressure

impulses are linearly increasing with time for all Ms. The passage of the
incident wave is characterized by a sudden jump in these last two
quantities (more visible for =M 4.5s as seen in Fig. 11(a) and (b)). This
linear increase is due to the fact that P1 is located at the inlet where no
perturbation exists behind the shock wave. Concerning the normalized
overpressure, one can see in Fig. 11(c) a sudden jump caused by the
passage of the incident shock. Afterwards, it remains constant, except
for =M 1.6s , where it starts to decrease gradually as the shock propa-
gates over the double concave surfaces.

At the downstream location, P2, the flow behavior is completely
different. The static pressure impulse is suddenly increased due to the
passage of the shock. At this early stage of the diffraction process, the
increasing rate is important. However, after the shock wave leads off
the end of the geometry, it decreases giving almost constant value (see
Fig. 12(a)). For the dynamic pressure impulse, we observe a sudden
increase induced by the passage of the shock, after this it remains
constant for a certain elapsed time until the arrival of the reflected
shock and formation of the shocklets which generate a second increase
due to the gas acceleration. Note that this behavior is more visible for

=M 4.5s and =M 3.5s (see Fig. 12(b)). The arrival of the incident shock
wave causes a sudden increase of the normalized overpressure
(Fig. 12(c)). Afterwards, it remains almost constant until the reflected
wave (r in Fig. 10(b)) arrives and causes a second increase. Once the
reflected shock passed, the expanded gas gets driven away and causes a

Fig. 12. Time history of (a): static pressure impulse, IP (b): dynamic pressure impulse, IPd and (c): normalized overpressure P , for different Ms at P2 (− =M 1.6s ,
− =M 2.0s , − =M 2.5s , − =M 3.5s , − =M 4.5s ).
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strong decrease. At the last stage of the diffraction, we can see a suc-
cession of peaks due to the passage of the shocklets and the emergence
of flow instabilities in this zone. These peaks are visible only for high
Mach numbers ( =M 4.5s , =M 3.5s ), for which the turbulent region is
highly perturbed. It is worth noticing that for high Ms the flow relaxes
until it reaches negative overpressure values, because of the strong
vortex suction acting on this highly perturbed turbulent zone.

In order to investigate the effect of the first concave surface on the
shock strength, the deficit of various parameters mentioned above is
calculated. This deficit is defined as the ratio of the impulses and
overpressure calculated at the two points: I P I P( )/ ( )p p2 1 , I P I P( )/ ( )pd pd2 1 ,

P P( )/ ( )2 1P P . For static pressure impulse, we can see that the deficit is
more important for the high Mach numbers because of the highly tur-
bulent region generated behind the strong shock wave and the intense

vortex suction exerted on the flow (see Fig. 13(a)). By comparing the
static and dynamic pressure impulses deficit (Fig. 13(a) and (b), re-
spectively) we can see that the deficit in dynamic pressure impulse is
more important because of the decrease of density and the square of
velocity together. For the overpressure deficit (Fig. 13(c)), the peaks are
exceeding unit, which means that the overpressure in P2 is greater than
in P1 and this is mainly caused by the passage of the reflected shock
which induces the formation of shocklets (small shocks embedded into
turbulent region).

5. Accumulation of numerical errors

Estimating accuracy and errors accumulation is necessary in CFD,
especially when dealing with high-fidelity numerical simulations.

Fig. 13. Time history of (a): static pressure impulse deficit (b): dynamic pressure impulse deficit and (c): overpressure deficit, for different Ms at P2 (− =M 1.6s ,
− =M 2.0s , − =M 2.5s , − =M 3.5s , − =M 4.5s ).

Table 2
Error estimates.

Allowable error (%) Grid resolution Physical time simulated (μs) Number of time steps Accumulated error Allowable number of time steps Reliability =R η η/s max

5 1793 × 1025 294 4311 9.48 × −10 16 2.78 × 1027 6.45 × 1023

5 2817 × 1793 294 7854 5.84 × −10 17 7.33 × 1029 9.33 × 1025

5 3841 × 2305 294 10307 1.8 × −10 17 7.71 × 1030 7.48 × 1026

5 5633 × 3073 294 14061 6.94 × −10 18 5.19 × 1031 3.69 × 1027

5 7681 × 3585 294 18728 7.14 × −10 19 4.87 × 1033 2.61 × 1029
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Depending on the spatial resolution and on the numerical scheme, a
definite error occurs due to numerical integration at each time step
[21]. According to Smirnov et al. [21], the relative integration error for
one-dimensional problem is:

⎜ ⎟= ⎛
⎝

⎞
⎠

+

S h
L

k

1
1

1

(13)

where h is the cell size, L1 is the domain length and k the order of
accuracy of the numerical scheme. For multi-dimensional problem, the
integration errors can be summed up as:

∑=
=

S Serr
i

i
1

3

(14)

The maximal allowable number of time steps for solving a given
problem could be determined by the following formula:

=η S S( / )max
max

err
2 (15)

where Smax is the allowable value of the total error, which is presumed
to be between 1% and 5%. Smirnov et al. [21] have introduced another
important measurement of numerical errors suitable for high-perfor-
mance computing, which is the ratio of the maximal allowable number
of time steps ηmax to the actual number of time steps used to obtain the
results η:

=R η η/s max (16)

According to Smirnov et al. [21], the parameter Rs can characterize
the reliability of the numerical results, i.e. how far below the limit, the
simulations were finalized. Indirectly, this parameter characterizes the
accumulated error. The higher is the value of Rs, the lower is the error.
On tending Rs to unity, the error tends to a maximal allowable value.

Table 2 summarizes the results of different grid resolutions and
physical time in our simulations. As it can be seen, a quite high level of
reliability is achieved in our case.

6. Conclusions

In this paper, shock-wave diffraction over double cylindrical wedges
have been numerically investigated by means of two-dimensional high-
fidelity numerical simulation. The objective was to study the flow
structure and the vorticity formation with regards to the incident-
shock-wave Mach number. Different grid resolutions were used in order
to investigate the mesh sensitivity of the results. It was found that al-
though the upstream flow topology (shape of the eddies) changes with
the grid resolution, the vorticity production and the shock diffraction
process are quite independent from the grid resolution. In terms of rate
of vorticity production and circulation, it is shown that the shock
strength enhances the vorticity production and the rate of vorticity
production increases as the incident shock strength increases and re-
mains virtually constant after an elapsed time. For the vorticity trans-
port equation, it was found that the stretching of vorticity due to flow
compressibility plays an important role in the vorticity dynamics, for
low-Mach numbers regimes ( ≤Ms 2.5). The diffusion of the vorticity
due to the viscous effects is seen to be quite important compared to the
baroclinic term, while this trends is inverted for higher Mach numbers
regimes ( ≥Ms 3.5). In terms of shock strength, it was found that the

effect of the first concave surface is effective in decreasing sufficiently
the dynamic pressure impulse (up to 90% for =M 2.5s ) as well as the
static pressure impulse (up to 75% for =M 4.5s ). However for the
overpressure deficit, the peaks are accentuated by the passage of the
reflected shock and the formation of shocklets that tend to reduce the
overall overpressure deficit.
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