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Abstract 

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the 

world, and is the hepatic manifestation of the metabolic syndrome. Obesity is closely 

associated with NAFLD. The concept of fetal programming, known through Barker’s 

hypothesis and the Developmental Origins of Health and Disease (DOHaD) approach, 

suggests that early life environment has consequences for adult health. The contribution of 

maternal and early life influences on development of NAFLD is less understood, and would 

be of importance to be able to point to intervention measures to improve public health. The 

main objective of this master thesis was to assess which NAFLD-related signaling pathways 

are affected after exposure to a HFD during five different life stages in liver of adult mice. 

The animal material used in this thesis originated from a mouse obesity study conducted at 

the Norwegian Institute of Public Health in 2014. The mice were divided in five HFD exposed 

groups fed a 45% fat diet (45% kcal from fat); in utero (IU), during lactation (LA), in utero and 

lactation (IU+LA), during whole life from in utero to adulthood (WL) and only as adult (AD). 

The results were compared with control group on normal 10% fat diet (CTL). In mice livers, 

four lipid classes to assess lipid accumulation were measured by high pressure liquid 

chromatography, and a Luminex assay was applied to measure insulin-like growth factor 1 

(IGF-1) protein expression in serum samples. Further; liver samples were used to analyze the 

relative expression of 69 genes involved in NAFLD signaling pathways through RT-qPCR. Mild 

liver steatosis (TAG above 5%) was observed in 38% of the animals in the IU+LA and WL 

groups compared to none in the CTL and IU groups and 8% in LA and AD groups. An increase 

of serum IGF-1 protein expression was suggested in the IU and WL groups; indicating 

implication of organ growth for these groups. The gene expression analysis gave three genes 

with significantly higher (p<0.05), Il10, Pparδ and Slc2a2, and four genes with borderline 

significantly higher (p<0.1), Hnf4a, Insr, Tnfrsf1a and Nfe2l2 expression compared to the CTL 

group. These genes act in several signaling pathways related to NAFLD, and are involved in 

lipid metabolism, oxidative stress, insulin and glucose regulation, inflammation and organ 

developments. Thus, this study suggests a modification of several of the major NAFLD 

signaling pathways in one or more of the HFD exposed groups. The results also propose that 

the early life period is a phase of increased susceptibility for the risk of development of liver 

steatosis and NAFLD, in line with the DOHaD hypothesis.  
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Sammendrag 

Non-alkoholisk fettlever (NAFLD) er den mest utbredte kroniske leversykdom i verden, og er 

den hepatiske manifestasjonen av det metabolske syndromet. Fedme er nært knyttet til 

NAFLD. Konseptet om føtal programmering, kjent under Barker-hypotesen og senere 

Developmental Origins of Health and Disease (DOHaD) foreslår at miljøet under fosterlivet 

og tidlig post-natal fase har konsekvens for helsen som voksen. Hvilken påvirkning miljøet 

har for foster og tidlig i livet med tanke på utvikling av NAFLD er uklart, og det vil være viktig 

å kunne gjøre tiltak for å forbedre befolkningens helse. Hovedmålet i denne 

masteroppgaven var å evaluere hvilke NAFLD-relaterte signalveier i leveren som påvirkes 

etter eksponering av fettholdig diett i fem ulike livsstadier i mus. Dyrematerialet som ble 

brukt i denne oppgaven stammer fra et musefedme-studie utført ved Folkehelseinsituttet i 

2014. Musene ble delt opp i fem grupper som så ble eksponert for 45% fettholdig diett (45% 

kalorier fra fett); i uterus (IU), under amming (LA), i uterus og amming (IU+LA), gjennom hele 

livet (WL) og kun som voksen (AD). Resultatene ble sammenlignet med en kontrollgruppe 

som fikk normal diet med 10% kalorier fra fett (CTL). I muselever ble fire lipid grupper 

analysert for evaluering av fettinhold i lever ved hjelp av væskekromatografi, og Luminex-

analyse ble benyttet til å måle insulin-like growth factor 1 (IGF-1) protein ekspresjon i 

serumprøver. Videre ble den relative gen ekspresjonen for 69 gener involvert i NAFLD 

signalveier analysert i leverprøver ved RT-qPCR. Mild leversteatose (TG over 5%) ble 

observert i 38% av musene i IU+LA og WL gruppene sammenlignet med ingen i CTL og IU 

gruppene og 8% i LA og AD gruppene. En økning av serum IGF-1 protein ekspresjon ble 

foreslått i IU og WL gruppene. Funnet indikerer implikasjoner av organvekst for disse 

gruppene. Gen ekspresjon analysene ga tre gener (Il10, Pparδ og Slc2a2) med signifikant 

høyere (p<0.05) og fire gener (Hnf4α, Insr, Tnfrsf1a og Nfe2l2) med grensesignifikant høyere 

(p<0.1) ekspresjon sammenlignet med CTL. Disse genene bidrar i flere signalveier relatert til 

NAFLD, og er involvert i lipid metabolisme, oksidativt stress, insulin og glukose regulering, 

betennelse og utvikling av organer. Derav foreslår dette studiet en modifisering av flere 

viktige NAFLD signalveier i en eller flere av gruppene eksponert for fetthold diett. 

Resultatene antyder også at eksponering i tidlige livsfaser øker disposisjonen for risiko for 

utvikling av leversteatose eller NAFLD; som også er i tråd med konseptet om føtal 

programmering og DOHaD.  
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See primer list in Appendix A4 Table A.1 for full gene names 
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1. Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. The 

incidence of NAFLD is increasing worldwide and is considered the hepatic manifestation of 

obesity and metabolic syndrome (1, 2). This master project is an extended study of high fat 

diet (HFD) effects on mice performed at the Norwegian Institute of Public Health (NIPH) in 

2014 (3). The study examines the effect of HFD exposure during different life stages in mice 

to see if and what repercussions this might have on metabolic programming of signaling 

pathways involved in NAFLD later in life.  

1.1 Overweight and obesity 

1.1.1 Prevalence and definitions of obesity 

NAFLD is closely associated with obesity and was first described in 1980 by the Mayo Clinc 

(4, 5). The current prevalence of overweight and obesity are increasing all over the world 

and harms the life quality and health of people (6). The rate of obesity has more than 

doubled over the past 20 years in most OECD countries (countries member of the 

Organization for Economic Co-operation and Development forum) (7). NIPH communicates 

through their website that today about 25% of young people in Norway are overweight or 

obese, and about 25% of men and 20% of women between 40-45 years are obese (8). 

Studies have suggested obesity to be defined as an excess accumulation of adipose tissue, 

and obesity have been connected to increased morbidity and mortality due to increased risk 

of diabetes mellitus type 2, cardiovascular disease, chronic kidney disease, musculoskeletal 

disorders and cancers (9, 10). Obesity is an important element in development of the 

metabolic syndrome, which can be defined as coexistence of several factors in the same 

individual, such as hyperglycemia, dyslipidemia, and hypertension (11, 12). Obesity is most 

commonly defined by body mass index (BMI) which equals the ratio of weight in kilograms 

divided by height in meters squared (kg/m2). The classes of BMI advised by World Health 

Organization (WHO) are: 18.5-24.9 kg/m2 for normal, 25.0-29.9 kg/m2 for overweight and 

>30 kg/m2 for obesity (13).  
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1.1.2 Obesity risk factors  

A review of publications from 1976 to 2016 from the Nurses’ Health Study in USA with focus 

on obesity, proposed that determinants of obesity included dietary factors (especially energy 

dense diets due to e.g. high intake of, sugar-sweetened beverages/fruit juices, saturated fat 

and trans fat), low physical activity (<30 minutes per day) and short sleep duration (<7-8 

hours per night) (14). Several studies in humans have shown that during early development 

the response to maternal obesity established an early-life programming in the offspring, that 

increased the risk of metabolic disorders such as obesity later in life (15, 16). Eleven years of 

genome-wide association studies have provided data to investigate the connections 

between genetic variants to prediction of diseases such as obesity. These studies are still 

ongoing (17, 18). The challenge lies in understanding if the cause is due to nature or nurture. 

Some human studies suggested that heritable factors might predetermine body fat 

distribution and that differences in BMI in adult life were to a high degree inherited (19, 20). 

Obesity stands out as the dominant disorder in children all over the world, and predisposes 

children to diabetes, hypertension, hyperlipidemia, cardiovascular disease and liver 

disorders (21). Development of obesity among children can be caused by many factors in 

their life, such as heritage, genetic factors, lifestyle and availability to a healthy environment 

(21). Figure 1.1 shows an overview of suggestions of possible elements that might have 

effect on development of obesity 



Page | 3 
 

Figure 1.1: Risk factors for development of obesity in children. Figure used with permission from Levy et al. 
2017(21). 

There is a clear focus from WHO to reduce obesity in children because obese children are at 

higher risk of being obese as adults with increased risk diseases in adulthood (22). A review 

proposed that several studies have linked high childhood BMI with diabetes, coronary heart 

disease and some types of cancers as adults. When assessing the risk of adult morbidity 

there were only moderate risks, and it seemed like most of the adult obesity-related 

morbidity appeared also in patients that were of healthy weight in early life (23). In this 

master thesis, the effects of HFD during early life stages as a risk factor for NAFLD, as a 

metabolic dysregulation, have been studied 

1.2 Non-alcoholic fatty liver disease (NAFLD) 

1.2.1 The pathogenesis of NAFLD 

NAFLD is the most common type of chronic liver disease, and is found in 17-30% of the 

Western population and 2-4% of the worldwide population (24). For children from a general 

population, a review suggested that the pooled mean prevalence was approximately 8-34% 

(25). A study found that even non-obese humans also had developed NAFLD, and that the 

paradigm of NAFLD regarded as the hepatic manifestation of metabolic syndrome can prove 

to be outdated (26).  
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NAFLD is a spectrum of disorders from simple steatosis to non-alcoholic steatohepatitis 

(NASH) to cirrhosis. Liver steatosis can be defined as the accumulation of triacylglycerides 

(TAG) within hepatocytes that exceeds 5% of liver weight in the absence of excessive 

significant alcohol consumption, other liver diseases or the consumption of steatogenic 

drugs (24, 27-29). A study found that in some cases the patients with simple steatosis 

progressed into NASH, which is characterized by hepatocyte necrosis and inflammation. 

Further they found that the liver disease may further progress to liver cirrhosis (27). In 2015 

Ahmed outlined in an article the following classification and grading of NAFLD showed in 

Table 1.1 (30).  

Table 1.1: NAFLD as a spectrum of disorders. NAFLD can be classified by severity according to amount of fat 
deposition and hepatocyte expression in liver biopsy. Table modified from Ahmed 2015 (30).  

NAFLD classification type 

Type 1 Simple steatosis 

Type 2 Steatosis + inflammation (lobular and portal) 

Type 3 Steatosis + ballooned hepatocytes – NASH 

Type 4 Steatosis + fibrosis – NASH 

Grades of hepatic steatosis 

Normal Less than 5% of hepatocytes are affected 

Grade 1 (mild) 5 to 33% of hepatocytes are affected 

Grade 2 (moderate) 34% to 66% of hepatocytes are affected 

Grade 3 (severe)3 More than 66% of hepatocytes are affected 

 

There have been many discussions in the field about what developmental model of NAFLD to 

agree upon. The two-hit hypothesis has been the traditionally agreed model launched by 

Day and James in 1998 (31, 32). The first hit was viewed as the accumulation of TAG in 

hepatocytes which made the liver vulnerable to further disturbances, and the second hit 

lead to steatohepatitis by factors such as oxidative stress, lipid peroxidation, decreased 

mitochondrial function, gut-derived endotoxins and inflammation (31, 33, 34).The multi-hit 

hypothesis was a newer model suggested in 2010 (34). This model proposed that many 

factors could hit at the same time and create a harmful road that led to NASH. The factors 

could be insulin resistance (IR), lipotoxicity from free fatty acids (FFA) and cholesterol, gut-

derived signals, adipose tissue derived signals, genetic background of the patient and HFD 

(33-35). A review looked at numerous studies from both animal models and humans about 
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connections of IR, adipocytokines and adipose tissue inflammation, and proposes that 

multiple factors hit at the same time from adipose tissue and the gut promotes liver 

inflammation (35). Figure 1.2 shows NAFLD viewed as a pathogenic disease depending on a 

number of factors or causes (35).  

Figure 1.2: Multi-hit hypothesis for development of NAFLD. Overview of possible interactions between factors 
in the development of non-alcoholic fatty liver disease (NAFLD). Figure modified from Alam et al. 2016 (35). 

1.2.2 Fetal programming of NAFLD 

A study pointed out the concern of the prevalence of NAFLD increasing among children and 

adults, and that the patients were being diagnosed at younger ages (36). The contributions 

of gestational and early life influences on development of NAFLD are less understood (37). In 

a human study the results indicated that the fetus experienced a critical period of plasticity 

during pregnancy and the fetus might have been significantly influenced by environmental 

factors such as maternal nutrients (38). The concept of fetal programming is well founded in 

the literature through the famine during the Dutch Hunger Winter, known as the Barker 

hypothesis (39). The offspring of mothers who were exposed to famine gave birth to babies 

with lower birth weight. As also confirmed by another study they were subsequently at 

increased risk of cardiovascular diseases and other health issues such as increased BMI and 

prevalence of type 2 diabetes mellitus in adulthood (39, 40). While the Barker study 

disclosed fetal programming by undernutrition, later studies have shown that maternal HFD 

also give similar long-term programming of offspring disease risk (41). The Barker hypothesis 

laid the foundation of the Developmental Origins of Health and Disease (DOHaD) hypothesis. 

Newer studies have also identified other diseases that can originate from fetal under- or 

overnutrition such as mental health, immunological and reproductive illnesses (42). 

Epigenetics has been found to be a part of fetal programming (43). There is evidence that 

epigenetics might, through different responses to diet, cause development of chronic 
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diseases later in life (44). The fetus may be vulnerable to liver steatosis because the 

immature fetal adipose depots are not able to buffer excess transplacental lipid delivery in 

maternal obesity (45). Studies in mice demonstrated that offspring from dams fed 

obesogenic diet during pregnancy and lactation were prone to develop hepatic steatosis 

(46). Furthermore, another study showed that offspring of diet-induced obese dams had 

disrupted liver metabolism and developed NAFLD prior to any differences in body weight or 

body composition (47). It is thus important to investigate the molecular alterations in the 

liver of adult offspring to elucidate the effects of developmental overnutrition on metabolic 

programming of liver metabolism (46). 

1.3 The role of HFD and diet-induced obesity models 

Diet-induced obesity (DIO) has become one of the most used models in rodents for 

understanding what effects obesity could have for metabolic diseases (48). The mouse 

model of DIO was used in this study. The DIO model provides crucial information regarding 

causalities between HFD/obesity and risk of disease. Uses of mice in medical science have 

proven useful because like humans, mice are mammals, with important similarities in 

immune responses and hormone (endocrine) systems as humans. They are also one of the 

first species – along with humans, to have their complete genome sequenced. From this we 

have learned that they share approximately 80% of their genes with us (49). The mouse 

provides a rich resource of genetic diversity combined with possibilities for genome 

manipulation, and is therefore a powerful application for modeling human diseases and 

processes (50). Mice have short pregnancies and large litter sizes that facilitate the 

opportunity to create own modified mice. C57BL/6J is the most widely used inbred strain of 

mice and the first to have its genome sequenced. It is a permissive background for maximal 

expression of most mutations. The C57BL/6J mice are susceptible to DIO and a commonly 

used DIO model (51).  

The phenomenon known as “early-life programming” acknowledges that in utero milieu has 

long term repercussions on risks of disease later in life (52). Obese pregnant mothers may 

transmit their metabolic phenotype to their offspring, leading to obesity and diabetes over 

generations. Dams fed a HFD have shown significantly changed hepatic lipid levels and 

messenger ribonucleic acid (mRNA) levels of genes involved in lipid metabolism (53). A study 

indicated that early overnutrition program offspring to more harmful response to HFD later 
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in life (54). A study showed greater weight gain, higher adiposity and higher food intake in 

mice offspring from obese dams compared to control dams fed standard chow. The mice 

also showed impairment on insulin signaling in central and peripheral tissues (55). Another 

study showed that unbalanced maternal diet, such as HFD during fetal development, is likely 

to induce metabolic abnormalities in offspring (56). HFD in utero and early life has been 

suggested to impact the development of NAFLD in offspring; and a study have shown that 

obesogenic diets during pregnancy and lactation were associated with the development of 

fatty liver in offspring (57). A human study showed that cells from umbilical cord had 

alterations in gene expression that may promote inflammation and development of 

metabolic disease in offspring (58). Convincing evidence supported by a large number of 

animal studies shows that HFD during pregnancy builds a pro-inflammatory intrauterine 

environment (59). Figure 1.3 visualizes how the transfer of energy, hormones, central 

molecules as cytokines and altered blood supply can lead to disturbed fetal development 

and growth (59). 

 

Figure 1.3: In utero exposure to high-fat diet (HFD) programs the increased susceptibility to chronic diseases 
during development and growth. Figure reprinted from Journal of Nutritional Biochemistry, 26 /2015, Zhou D, 
Pan YX, Pathophysiological basis for compromised health beyond generations. Role of maternal high-fat diet 
and low-grade chronic inflammation / Transgenerational epigenetic experiences, 1-8, Copyright (2015), with 
permission from Elsevier (59). 
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A recent study in mice suggested that HFD during lactation altered the milk composition and 

was related to development of metabolic disturbance in the offspring. The pups also 

weighed significantly more than the pups from the control group fed normal diet (60). 

Another study observed that dams fed HFD during lactation had a decreased prolactin level 

in milk and increased body weight and adiposity, development of fatty liver and 

hyperinsulinemia, and their offspring showed IR during weaning. Prolactin treatment, either 

by the HFD-fed mothers or directly in the pups, reduced visceral adiposity, improved the 

fatty liver and ameliorated insulin sensitivity in the offspring (61). The uses of animal models 

in studies are viewed as necessary tools to get new insight in research areas. In later years, 

laws to prevent overuse of animals and to protect animals from painful and unnecessary 

trials have been strengthened (European Convention for the Protection of Vertebrate 

Animals used for Experimental and other Scientific Purposes, ETS No. 123). The researchers 

are constantly mindful of the three R`s (replace, reduce and refine) when planning new 

studies that require results from animals. In this master thesis, it was avoided to use new 

animals because liver tissue and serum from adult male C57BL/6J-Apc+/+ (adenomatous 

polyposis coli) mice provided from an existing mouse obesity study at NIPH were utilized for 

further experiments (3).  

1.4 Contribution of dyslipidemia to NAFLD 

White adipose tissue (WAT) is the main energy storage depot of lipids in form of TAG, and is 

widely distributed through the whole body in subcutaneous regions and around internal 

organs (visceral adipose tissue, VAT). TAG is mobilized via lipolysis when energy is needed. 

Brown adipose tissue (BAT) is responsible for energy dissipation during cold-exposure. Beige 

adipose tissue is WAT adapting to a phenotype similar to BAT when the body is exposed to 

cold in a process called browning (62). Adipose tissue is crucial for maintaining metabolic 

homeostasis (63). Imbalance in energy homeostasis leads to excessive fat buildup in the 

adipose tissue and is disturbing the normal function of adipocytes. Lipid overload may lead 

to accumulation of TAG within the skeletal muscle and liver as ectopic fat. Ectopic lipid, 

together with the increasing amount of circulating FFA, may cause IR in various tissues, and 

thereby disrupt glucose homeostasis. IR can be defined as a condition where higher than 

normal insulin concentrations are needed to achieve normal metabolic responses, or normal 

insulin concentrations fail to achieve a normal metabolic response (64). The regulatory 
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systems that control body weight homeostasis can promote positive energy balance, which 

might contribute to weight gain and fat accumulation in obese individuals. A review 

proposed that while a robust biological response was activated to restore homeostasis when 

body fat stores were at risk (for example under starvation), excess of adiposity was 

associated with absence of significant response due to a dysfunctional regulatory pathway 

controlling energy balance (65). Two important components of the metabolic syndrome, 

glucose and TAG, are overproduced by the fatty liver. The liver is therefore a key 

determinant for metabolic abnormalities (66). The liver has a key function in lipid 

metabolism. It imports FFA, rearrange, store and export lipids by cooperation with 

lipoproteins such as chylomicrons, low density lipoproteins (LDL), very low density 

lipoproteins (VLDL) and high density lipoproteins (HDL). Changes in any of these processes 

can lead to development of NAFLD (67). Figure 1.4 shows an overview of suggested 

dysfunctional mechanisms in hepatic steatosis. 

 

Figure 1.4: Hepatic steatosis. The first hit of NAFLD is triacylglyceride (TAG) accumulation in the cytoplasm of 
hepatocytes due to imbalance between lipid input and output: 1) an increase in free fatty acids (FFA) uptake 
derived from the bloodstream due to increased lipolysis from insulin resistant adipose tissue and/or from the 
diet transported as chylomicrons; 2) an increase in glucose and insulin levels in response to carbohydrate 
intake that enhances de novo lipogenesis; 3) a decrease in FFA mitochondrial oxidation; 4) a decrease in TAG 
hepatic secretion by reduced packaging with ApoB into VLDLs. Figure used with permission from Berlanga et al. 
2014 (67). 

FFAs are involved in many important cellular events, and chronically raised FFA can disturb 

different metabolic pathways, and induce IR in many organs. Hence, hepatic fat 
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accumulation has been strongly linked to IR (68). TAG accumulation in the cytoplasm of the 

hepatocytes, as the hallmark of NAFLD, emerges from a disturbance between FFAs uptake, 

de novo lipogenesis and removal of lipids (67). Regardless of the source of FFA that 

hepatocytes uses in production of TAG it is usually packaged into lipoproteins in the 

hepatocyte endoplasmatic reticulum and then exported to adipose tissue for storage. 

Therefore, accumulation of fat in the liver is caused by an excessive delivery of FFAs from 

VAT into the liver, increased de novo lipogenesis by high glucose level, disturbed oxidation of 

FFA in the mitochondrial system or decreased output of TAG due to inadequate production 

of VLDLs (69). Despite TAG being the main lipids stored in the liver of NAFLD patients, 

studies have suggested that they might exert protective functions (34, 70, 71). TAG synthesis 

seems to be an adaptive beneficial response in situations where hepatocytes are exposed to 

potentially toxic TAG metabolites. FFA and cholesterol, especially when accumulated in 

mitochondria, are considered the “aggressive” lipids leading to tumor necrosis factor (TNF-

α)-mediated liver damage and reactive oxygen species (ROS) (34). Cholesterol is transported 

into the liver via mainly the lipoprotein chylomicron. Increased de novo lipogenesis in the 

liver linked to excess adiposity results in increase in harmful lipid intermediates including 

diacylglycerol (DAG), ceramide and free cholesterol (FC). Their lipotoxic effect promotes 

inflammation through several pathways (72). A review proposed that dietary cholesterol 

intake served as a factor related to higher risk and severity of NAFLD (71). To be able to 

monitor the progression of NAFLD it would be of great importance to understand the 

underlying mechanisms of lipid accumulation in the liver and the developmentally 

programmed changes associated with early life overnutrition (67). 

1.5 Insulin-like growth factor-1 (IGF-1) system and NAFLD 

Liver is the main site of synthesis of endocrine factors involved in whole-body metabolism, 

such as the insulin-like growth factor 1 (IGF-1) (73). IGF-1 and insulin-like growth factor 2 

(IGF-2) proteins are released by the liver in response to growth hormone (GH) stimulation 

(74). Function of IGF-1 is to promote growth and development during fetal and postnatal 

life. There is increasing evidence supporting that GH and IGF-1 is likely to have roles in the 

development and progression of NAFLD in humans and mice (74, 75). A human study 

suggested that IGF-1 had anti-inflammatory effect on hepatocytes. Patients with progressed 

NAFLD had a low level of IGF-1 caused by inflammatory cytokines (76). A mice study 



Page | 11 
 

proposed the protective effect IGF-1 can have on liver function (77). IGF-1 is also important 

for maintaining normal insulin sensitivity, and disturbance in IGF-1 secretion increases IR 

(78).  

1.6 NAFLD signaling pathways 

Recent studies have focused their attention on molecular mediators that may be implicated 

in NAFLD (68). In this master project, expressions of NAFLD-associated genes were analyzed 

in livers from HFD exposed mice in different life stages in order to identify potential changes 

in signaling pathways. Adverse outcome pathway (AOP) is a conceptual model that 

structures existing knowledge regarding biologically credible and empirically supported links 

between molecular-level disturbance of a biological system and an adverse outcome at a 

level of biological organization of regulatory relevance. AOP frameworks have potential to 

impact regulatory decision-making through an effective and accurate use of mechanistic 

data (79). On the other hand, use of biological pathway databases gives easy access to the 

myriad of interactions underlying biological processes for researchers and scientists. 

Pathway databases are used to analyze experimental data by research groups in many fields 

(80). There are many databases worldwide, and their popularity depends on researchers 

loading their findings in the databases and using the database for their research, and 

thereby updating the database with the newest results and information. Some popular 

databases are Reactome, Wikipaths and Kyoto Encyclopedia of Genes and Genomes (KEGG). 

KEGG is among many scientists seen as the standard of databases (80, 81). Both AOP 

concerning hepatic steatosis and KEGG pathway for NAFLD for mice were used for choosing 

feasible biomarkers for this thesis. 

1.7 Gene expression measurements 

1.7.1 Choices of technology for gene expression measurements 

The flow of genetic information from deoxyribonucleic acid (DNA) to mRNA to protein/gene 

product is the fundamental principle of molecular biology. The genetic information 

contained by DNA is transcribed into mRNA. mRNA molecules are translated into proteins 

within individual cells. Proteins in turn are directly responsible for cell organization and 

function and for the regulation and synthesis of other types of molecules. Gene expression is 

a highly regulated mechanism that controls the function and adaptability of all living cells, 
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and different factors contribute to the expression of genes (82). Different technologies exist 

for investigation and quantification of gene expression. Some techniques are well 

established and others are newer and complex procedures, and they can also be divided into 

low, medium and high throughput methods. The choice for appropriate technology and 

instrumentation involves reflections on for example type and volume of sample materials 

available, accessibility of instrumentation, the in house competence for the assay technology 

and bioinformatics, time spent for performing analysis (manual versus automated work-

flows) and cost-benefit evaluations. Two gene expression profiling methods have proven 

useful as complementary techniques besides reverse-transcription quantitative polymerase 

chain reaction (RT-qPCR) assays. These are gene expression microarrays and Next 

Generation Sequencing (NGS) for ribonucleic acid (RNA) sequencing (83). Microarrays utilize 

target-oriented nucleic acid probes covalently bound to a solid phase such as glass 

microscope slides (84). The target sequences are labeled with fluorescent dye(s) and are 

applied to the slide where the target RNA hybridizes with its probe. The fluorescence 

intensity is measured by image analysis, and enables the quantification of gene expression. 

The advantages of microarrays are the large scale analyzing all targets of interest (often 

whole genome) (83). Often, a whole-genome discovery is not needed. Due to logistics, 

sensitivity, costs of whole-genome microarrays and because a known gene or pathway exists 

the gene expression analyses can be executed by quantitative polymerase chain reaction 

(qPCR) (85). In gene expression studies, sequence-based methods have come forward as 

more common methods to use due to development of more easy-to-use protocols. 

Sequencing technologies involve template preparation, sequencing and imaging, and are 

completed with data analysis that requires bioinformatics tools (86). NGS is able to recognize 

and quantify infrequent transcripts without any knowledge of the gene in question, and can 

also provide information about alternative splicing and sequence variation in identified 

genes (86). NGS can achieve higher resolution of differentially expressed genes and has a 

much lower limit of detection (LOD) than a standard whole genome microarray. The NGS is a 

new and evolving field, and cost, data collection tools and available bioinformatics 

personnel, are conditions to consider when making choices for study designs.  

Both microarrays and RNA sequencing are methods that give broad insights in genes 

expressed in one sample. However, it is a common procedure to verify the findings by 
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another technology. Validation of differentially expressed genes is often achieved by qPCR, 

and especially for verification of microarrays the RT-qPCR remains the gold standard (83, 85). 

By using RT-qPCR, small sample sizes can be used in the quantification of mRNA, and RT-

qPCR is in theory capable of identifying a single mRNA molecule. The results give information 

on mRNA present in the cell at the time of analyzing and RT-qPCR is considered as the gold 

standard for accurate, sensitive and fast measurement of gene expression (87).  

1.7.2 Gene expression analysis by RT-qPCR assay 

In this master project the RT-qPCR methodology was chosen for gene expression analysis. 

The main reason was that a targeted gene strategy was considered appropriate in relation to 

the project main aim. Also the procedures and instrumentation were available in the lab, 

and the technology was considered time- and cost effective. To secure accurate, high quality 

and meaningful results when working with molecular assays and RNA in particular, it is 

crucial to follow good and standardized methodological procedures. RNA is susceptible to 

digestion by the ribonuclease enzyme (RNase). These RNases are present naturally both in 

the cells and outside on almost everything that comes into contact with humans and 

extreme care must be in place to avoid sample contamination and degradation. The goal is 

to create a RNase-free environment, and the procedures include freezing of samples quickly 

for storage at -80°C, wearing gloves all the time and frequently change them, dedicate lab 

equipment for separate work to keep control on usage of the devices, decontaminate all 

equipment, instruments, cabinets and benches with RNase inhibitors to inhibit any RNases 

present. The overall objective for the strict instructions is to keep the mRNA of the samples 

intact for downstream applications in order to create meaningful data. A RT-qPCR analysis of 

mRNA starts with converting isolated mRNA to complementary DNA (cDNA) by reverse 

transcription; hence the name reverse transcriptase quantitative PCR. A requirement for the 

relative quantification of cDNA is that the reverse transcriptase reaction generates products 

in a way directly dependent on the amount of input RNA template. The RT-qPCR assay 

amplifies specific DNA molecules by DNA polymerase and specific primer sequences that are 

complementary to a chosen region in the target. The qPCR technique measures the 

amplification of target sequences at every cycle by fluorescence. The point where the 

fluorescence shows an exponential increase is the cycle value to use for quantification of the 

gene of interest.  
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1.7.3 Relative gene expression analysis 

Absolute quantification and relative quantification are two commonly used methods to 

measure the level of gene expression (88). Absolute quantification determines the input 

copy number by comparing the PCR signal to a standard curve. Relative quantification 

indicates the relative difference between two samples; for example a sample from a group 

fed HFD compared to a sample from a control group fed normal diet. qPCR methods 

measuring relative quantification need to be controlled for several variables such as amount 

of starting material, enzymatic efficiencies, and differences between tissues in overall 

transcriptional activity (89). To date this is commonly solved by applying internal control 

genes (reference genes) for normalization of the mRNA fraction (89). In this way the non-

biological variation between samples will be corrected and differences in gene expression 

will be due to true biological levels of expression for the target of interest. Normalization 

uses reference genes by the assumption that their expression is similar between all samples 

in a study, resistant to the experimental treatment and undergoes all steps of the qPCR with 

the same kinetics as the target gene (85). A study suggested the advantage of using several 

reference genes and calculating the geometric mean instead of average of the chosen 

reference genes for calculating the cycle threshold (CT) reference gene value (89). The 

reason given was that the geometric mean better controls for outlying values and 

abundance differences between the different genes. 

In this master project the mouse liver is the tissue of interest. The liver is a gland organ with 

many tasks for enabling the body to function. The different processes involve a complex and 

well organized change in the gene expression profile. It is therefore very important to use 

reference genes for internal control that are uniformly expressed (90). Sometimes it can be 

difficult to find reference genes that are not impacted to a certain degree by the treatment 

the samples undergo during an experiment and in these cases geometric mean of multiple 

reference genes can be applied. This approach minimizes the influence of treatment effects 

on the internal control set and increases the quality of resultant data (85). For decision of 

which reference genes to use in a qPCR study, the stability across treatment of the genes can 

be statistic calculated by mathematical algorithms such as geNorm and NormFinder to find 

the best fit for one specific experiment.  



Page | 15 
 

The Livak-method, also called comparative quantification cycle (Cq) method (91) or 2-∆∆ Cq 

method (88), is the most common method for relative quantification (85). This method takes 

into account two assumptions. The first assumption is that with each cycle of PCR the 

product doubles; giving 100% efficiency. This expectation requires setting of the Cq at the 

earliest cycle possible in the exponential phase of the PCR curve. The second assumption of 

the 2-∆∆ Cq method is for the reference genes to be expressed at a constant level between the 

samples (85). The raw Cq values are first normalized by subtracting the geometric mean of 

four stably expressed reference genes (used in this thesis) from the Cq value of the target 

genes to make the ∆Cq value of the samples. Thereafter the difference in expression 

between treatment group and control group can be calculated by the difference between 

these (∆∆Cq). The difference is in log2-format and is converted to fold difference (FD); the 

relative difference between the treatment group and the control group. If expression of 

mRNA is the same for both groups, the ∆∆Cq will be 0 and FD will be 1 (91, 92).  

The relative expression is presented as how many times the target gene is up- or down-

regulated compared to the control group given in the following formula: 

∆Cq=Cq target mRNA – Cq geometric mean of reference genes 

∆∆Cq=∆Cq sample from treated group - ∆Cq sample from control group 

Fold difference = 2-∆∆ Cq 

1.7.4 Choice of relevant genes 

This master thesis evaluated if the expression of genes involved in NAFLD was changed due 

to HFD in different life stages. Based on the KEGG pathway for NAFLD, as described in 

chapter 1.6, and on NAFLD literature reviews, in total sixty-nine genes involved in hepatic 

lipid metabolism, insulin response, glucose regulation, inflammation and oxidative stress 

were selected for gene expression analysis. Several reviews have suggested that IR occur 

before lipid accumulation in the process of developing NAFLD, and increased adipose tissue 

lipolysis generates increased supply of FFA in the blood (67, 93). FFA uptake into liver and 

muscle is closely connected to development of IR in these tissues. Reviews proposed that IR 

caused increased hepatic glucose output that again leads to increased insulin secretion, 

hence the threesome of IR: hyperglycemia, hyperinsulinemia and increased serum FFA (67, 
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72). Furthermore, if NAFLD progressed from simple steatosis to NASH, the lipid accumulation 

and IR appeared to be followed by a “second hit” were pro-inflammatory mediators gave 

rise to inflammation or oxidative stress that lead to hepatocellular injury (67, 93). A review 

article by Williams and co-workers from 2013 focused on the programming effects of 

maternal HFD in offspring, and indicated that the liver-specific injuries by exposure to 

maternal HFD gave disturbances such as reduced mitochondrial function, increased levels of 

pro-inflammatory cytokines and changed lipogenic gene expression (94). 

A range of genes representative in signaling pathways such as the peroxisome proliferator-

activated receptor (PPAR), tumor necrosis factor (TNFα), insulin and adipokine were 

analyzed. A group of genes related to oxidative stress were also included in the gene 

expression analysis due to earlier studies suggesting oxidative stress response genes being 

up-regulated in livers from mice fed HFD (95, 96). See Appendix A4 Table A.1 for a complete 

overview of analyzed genes. 
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2 Hypothesis and aims of study 

Researchers at Norwegian Institute of Public Health (NIPH) have previously shown that the 

intrauterine and lactation periods are susceptible life stages for the development of HFD-

induced obesity and intestinal tumorigenesis in adult C57BL/6J-Min (multiple intestinal 

neoplasia/+ mice (3). The outcome was increased body weights in young adults and 

increased numbers of tumors in the small intestine in the Min/+ mice. In the same study, 

impaired glucose tolerance was observed for wild-type mice fed obesogenic diet as adults or 

throughout life. A further study (personal communication) at the institute has focused on 

miRNA expression levels in VAT from adult male mice in the study by Ngo and co-workers 

(3). 

This master project extends these two former studies by analyses of potential consequences 

of HFD during various life stages for metabolic programming in the liver of wilt type male 

mice. The study focuses on liver lipid accumulation and on signaling pathways related to liver 

steatosis/NAFLD.  

Main objective: To determine potential changes in signaling pathways involved in 

development of NAFLD after exposure to a HFD during five different life stages in the adult 

offspring. 

This master project states the following hypotheses: 

1) HFD exposure during different life stages predisposes to increase of liver lipid 

accumulation in the adult 

2) HFD exposure during different life stages affects hepatic secretion of IGF-1 

3) HFD exposure during different life stages changes the expression of genes in signaling 

pathways related to NAFLD 

4) Early-life exposure to HFD has more serious consequences than exposure later in life for 

risk of developing NAFLD  
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In order to test these hypotheses, the master project had the following objectives: 

1) To determine the level of lipid accumulation in the livers of mice exposed to HFD in 

different life stages 

2) To determine changes in serum IGF-1 in mice exposed to HFD in different life stages 

3) To determine changes in the expression of genes in signaling pathways associated with 

NAFLD in mice exposed to HFD in different life stages 

4) To determine potential differences in susceptibility for liver lipid accumulation and 

signaling pathways dependent on different life stages of exposure to a HFD 
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3. Materials and Methods 

3.1 Diet induced obesity model (DIO model) 

Liver tissues and serum samples from mice used in this thesis project originated from a 

published mouse obesity study conducted at NIPH in 2014 (3). The harvested liver tissue 

samples were used for gene expression and lipid class analysis, while the serum samples 

were used for determination of protein expression level.  

Ngo and co-workers mated female C57BL/6J-Apc+/+ (wild-type) mice with C57BL/6J-ApcMin/+ 

males. The Min/+ mouse is heterozygous for a germline non-sense mutation in the tumor 

suppressor gene adenomatous polyposis coli (Apc) leading to a truncated nonfunctional APC 

protein. This change in the APC protein leads to development of multiple adenomas in the 

small intestine and to lesser extent in the colon. Proven breeders having had a litter on a 

regular breeding diet (2018 Teklad Global 18% Protein Rodent Diet from Harlan Industries 

Inc., Indianapolis, IN, USA) where used before the experimental litters on special diets with 

10% or 45% fat were obtained (described below). Both females and males were bred at 

NIPH, Oslo, Norway. C57BL/6J-ApcMin/+ males were originally purchased from the Jackson 

Laboratory (Bar Harbour, ME, USA). To minimize the genetic drift from the colony at the 

Jackson Laboratory, both females and males in the breeding stock at NIPH were regularly 

replaced.  

Genotyping of the offspring for the Apc gene was performed with allele-specific PCR using 

DNA extracted from ~ 2 mm2 ear puncture samples obtained during identification of 

individual mice at weaning. In this thesis, only the adult male wild-type C57BL/6J-Apc +/+ 

mice where used. 

The mice were housed in air flow individually ventilated cages (IVC) racks (Innovive Inc., San 

Diego, CA, USA) in 100% PET plastic disposable cages on Nestpak Aspen 4HK bedding 

(Datasand Ltd., Manchester, UK) in a room with 12-h light/dark cycle, and controlled 

humidity (55 ±5%) and temperature (20-24°C). Diet and water were given ad libitium.  

The animal experiment was performed in conformity with the laws and regulations for 

animal experiments in Norway and was approved by the National Experimental Animal 

Board in Norway. 
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3.1.2 Experimental diets and treatments of mice 

The dams were normal weight before mating. The experimental litters were given two types 

of diets from Research Diets Inc. (New Brunswick, NJ, USA): A HFD, D12451 diet, containing 

20%, 35% and 45% kcal from protein, carbohydrates, and fat, respectively, and a matching 

control low fat diet, D12450H diet, containing 20%, 70% and 10% kcal from protein, 

carbohydrates and fat, respectively. The amount of sucrose was 17% of the calories in both 

diets. The HFD had 4.73 kcal/g, whereas the low fat diet had 3.85 kcal/g. The HFD contained 

22.9% more kcal per gram diet. To spread out evenly dietary treatment groups, mice were 

randomly assigned to the experimental groups; the first dam was given 10% fat diet, the 

second dam was given 45% fat diet, the third dam 10% fat diet, and so on. Similarly, the 

litters were given either of the two diets after birth alternately, and after weaning in turns 

until the necessary numbers in all experimental groups were obtained.  

Blood was collected by cardiac puncture under anesthesia with ZRF cocktail (containing 3.3 

mg zolazepam, 3.3 mg tiletamine, 0.5 mg xylazine and 2.6 µg fentanyl per mL 0.9% NaCl) into 

Microvette serum/clot activator tubes (Sarstedt AS, Ski, Norway), and serum was collected 

for protein analysis (in this thesis, mainly IGF-1). Thereafter, the mice were sacrificed by 

cervical dislocation. Mice livers were dissected, weighed, rapidly frozen on dry ice and then 

stored at -80°C until use. In total, six treatment groups were included in this experiment, and 

each group consisted of 12 mice, except the lactation (LA) group with 11 mice due to loss of 

one liver sample during RNA isolation.  

The experiment was designed in order to determine the most susceptible exposure period 

for development, and the design and treatment groups are presented in Figure 3.1. The mice 

were exposed to a 45% HFD in three different periods of their life: i) in utero, via the dams, 

then the offspring mice were given 10% control diet after the birth; ii) from birth to weaning, 

via milk during lactation, then they were given 10% control diet; or iii) from weaning at 3 

weeks to termination at 23 weeks. 
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         Mating      Birth Weaning                                  Termination  

1. Control - CTL 10% 10%  10%  

2. In utero - IU 45%  10%  10%  

3. Lactation – LA 10%  45%  10%  

4. In utero + 

lactation – IU+LA 

45%  45%  10%  

5. Whole life – WL 45%  45%  45%  

6. Adult - AD 10%  10%  45%  

 
Figure 3.1: Experimental design with feed intake for the mice. Group 1: 10% fat throughout life 
(10%+10%+10%)-CTL; Group 2: 45% fat in utero (45%+10%+10%) – IU; Group 3: 45% fat during lactation 
(10%+45%+10%) - LA; Group 4: 45% fat in utero and during lactation (45%+45%+10%) – IU+LA; Group 5: 45% 
fat throughout life (45%+45%+45%) – WL; Group 6: 45% fat as adults (10%+10%+45%) – AD. n=12 for all groups 
except LA group n=11. 
 

3.2 Recording of feed intake, body and liver weights  

The body and liver weight data were recorded the Ngo and co-workers study, but only 

included only the results for the mice used in this thesis. Body weight of the dams was 

registered at mating and weekly during the pregnancy and lactation periods. Body weight of 

the offspring was recorded on day 3-4 after birth and thereafter weekly from weaning until 

termination at 23 weeks. The terminal BMI at 23 weeks was calculated based on the 

measured body weight and nasoanal length, recorded at termination: BMI (g/cm2) = body 

weight (g) /nasoanal length (cm2). The feed intake was monitored weekly by measuring the 

weight of feed in and out of the cages for the dams during pregnancy and lactation periods, 

and for the pups from weaning to termination. The liver was dissected and weighed at 

termination and stored at -80°C until use. 

3.3 Protein expression analysis 

There are numerous technologies to analyze protein expression levels, and the method of 

choice depends on the goal for the experiment. In this study, the protein levels were 

quantified by an immunoassay, where the proteins of interest bind to target specific 

antibodies and fluorescence was measured for quantification of protein levels. For 
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quantification of the protein expression levels a multiplex sandwich enzyme-linked 

immunosorbent assay (ELISA) based assay was used. The use of two different antibodies for 

detection of each protein of interest gives a good specificity. Luminex xMAP™ Technology 

(Luminex Corporation, Austin,Texas, USA) is a fast and advanced way to measure the level of 

several target proteins in the same assay (multiplexing). Each analyte (within the multiplex 

panel) is assessed individually without interference from the other analytes in the panel. This 

technology performs binding on the surface of color coded magnetic microparticles, which 

are then read in a compact analyzer. Figure 3.2 shows a Luminex assay principle using 

magnetic color coated beads. 

Figure 3.2: Protocol used with bead-based assay. Color-coded beads known as microspheres are pre-coated with analyte-
specific capture antibodies. The beads are incubated with the samples, and antigen from the samples recognizes and binds 
to the capture antibodies. Captured analytes are afterwards detected using a mix of biotinylated detection antibodies and a 
streptavidin-phycoerythrin conjugate (Streptavidin-PE). An array reader with a dual laser system illuminates the 
microparticles. One laser excites the PE dye of the assay, and the second laser excites the dyes inside the beads to identify 
their color and which target is in on the specific microsphere. The intensity of the fluorescence- obtained signal is in direct 
proportion to the amount of analyte bound. This way the analyzer is capable of reading multiplex assay results by reporting 
the reactions occurring on each individual microsphere. Figure adapted from ThermoFisher.com. (97). 

Regarding the selection of animals used in the different experiments in this study; there was 

not a complete overlap of animals used for protein analysis, due to lack of serum samples for 

some of the animals. Mice serum samples (n=78) from the five different HFD groups and the 

control group stored at -80°C were thawed overnight at -20°C, and then at 4°C the day of 

analysis. Mouse premixed multi-analyte kit (R&D Systems, Minneapolis, MN, USA) which 

contained seven biomarkers; IGF-1, Fatty acid binding protein 4/A, (FABP4/A), Lipocalin 2, 

Plasminogen activator inhibitor-1/Serpin E1 (PDGF-BB), Chitinase 3-like 1, PAI-1/Serpin E1 

and Osteopontin were used. The procedure was performed according to the manufacturer 

protocol (see Appendix A1 for details). In brief, polypropylene test tubes, 0.6 ml microtubes, 

from Axygen Inc. (Union City, CA, USA) were used for dilutions of samples and standards. 

Serum samples were diluted 1:50 (10 µL sample + 490 µL calibrator diluent). The standards 

provided in the kit were aliquoted in four vials of standard cocktails and standards were 
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reconstituted by calibrator diluent with appropriate volumes according to the kit protocol. 

The reconstituted standards were combined in one single tube with 100 µl of each standard 

and 600 µl calibrator diluent. This added up to 1000 µL standard solution. The standard 

solution was used to produce a 3-fold dilution series were 100 µl was pipetted from one 

standard vial to the next vial. This resulted in seven standards with decreasing 

concentrations. The diluent was used as blank. The pipetting of samples, standards, blanks, 

reagents and microparticles were performed in the same 96-well microplate. The standards 

and blanks in the first two rows were run as duplicates. In the matter of replicates; biological 

replicates (high number of samples) where chosen instead of technical replicates. The 

samples were not analyzed with technical replicates, parallels due to priority of biological. 

After completion of the assay procedure, the 96-well plate was read on Bio-Rad Bio-Plex 200 

dual laser flow based system (Bio-Rad Laboratories Inc., Hercules, CA, USA) detecting 

fluorescence intensity. Plex Manager 6.1 software (Bio-Rad Laboratories Inc., Hercules, CA, 

USA) was used to generate standard curves for analyzing concentrations of unknown 

samples. 

3.4 Lipid class analysis 

To assess the lipid levels in the mice livers, the concentration of four lipid classes; FC, 

Cholesterol esters (CE), TAG and FFA were measured. The mice liver samples were shipped 

to and analyzed at Vitas AS, Oslo, Norway (www.vitas.no). The samples were analyzed by 

normal phase high-performance liquid chromatography (NP-HPLC). The different lipids 

classes were chromatographic separated over time as a function of their polarity. An 

evaporative light scattering detector (ELSD) was used for detection of the different lipid 

classes. 

To secure an adequate statistical power for the detection of potential differences in TAG 

concentrations in liver between treatment groups, a power-calculation to find minimum 

number of samples was performed using the G*power software (98). The coefficient of 

variation in % (CV %) of the analysis was below 5% for the TAG analysis and below 15% for 

the other three lipid classes; FC, CE and FFA, as stated by the performing laboratory. Due to 

limited resources, the analysis was scaled to the measurements of TAG with a (alpha) of 0.05 
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and b (beta) of 0.80. The data output showed a requirement of eight samples per group to 

be able to detect an increase compared to control of 50% or more.  

Mice liver tissue was stored in -80°C at NIPH. The stored (-80°C at NIPH) liver tissue was 

weighed and ~ 100 mg liver tissue were sent for analysis. Tissue weight over 100 mg was 

needed to perform the analysis. The weighed samples were transferred into 2 mL 

Eppendorf® Safe-Lock microcentrifuge tubes with round bottom (Eppendorf, Hamburg, 

Germany) and packed in a Styrofoam box covered with dry ice. The samples were shipped by 

car to Vitas AS in Oslo. All weighing procedure was performed on dry ice. 

At Vitas AS, the samples were homogenized and the lipid classes FC, CE, TAG and FFA were 

extracted by Folch extraction (10 vol of chloroform:methanol 2:1 v/v) (Folch et al., 1957). 

The organic fraction was subsequently analyzed by a 1260 Agilent chromatographic system 

(Agilent Technologies, Santa Clara, CA, USA) comprising an auto-sampler, a binary pump and 

a TCC column heater unit coupled to an ELSD (BÜCHI Labortechnik AG, Flawil, Switzerland). 

The lipid classes were separated using a normal-phase Silica monolithic column (Chromolith-

performance, Merck, Darmstadt, Germany) with dimensions 4.6x100 mm. The lipid class 

separation was achieved by isocratic elution at 1.5 mL/min with a mobile phase consisting of 

Hexane:MTBE:Acetic acid (1000 ml; 50 mL; 250 mL). An injection volume of 5 uL was used. A 

drift tube temperature of 40°C and a gas pressure of 3.5 bar (N2) was used by the ELSD (99). 

3.5 Gene expression analysis 

Gene expression analysis was performed on mice livers to assess which signaling pathways 

involved in development of NAFLD are affected after exposure to a HFD during various life 

stages. The complete overview of analyzed genes is enclosed in Appendix A4 Table A.1 and 

overview of all samples is listed in appendix C2 Table A.2.  

3.5.1 RNA isolation  

Compared with DNA, RNA is susceptible to digestion by a wide variety of endogenous and 

exogenous RNases which are present on human skin and the surroundings. The overall 

objective was to keep the liver sample RNA integrity and purity intact for downstream 

applications. Precautions were taken to limit sample contamination and RNA degradation 

during liver preparation, isolation, purification, storage, and handling. All RNA-work was 
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done in an RNase-free environment in a laminar flow cabinet cleaned with water and 70% 

ethanol. RNase away (Molecular BioProducts, San Diego, CA, USA), an RNase inhibitor was 

used to clean benches, pipettes and other items used in the RNA isolation procedure. UV-

light was applied in the laminar flow cabinet for 30 minutes before use to sterilize the 

workplace to prevent sample contamination. Gloves were changed frequently as a part of 

the RNA work routine.  

Total RNA from mice livers was isolated using Quick-RNATM MiniPrep kit (Zymo Reasearch 

Corp, Irvine, USA) according to the manufacturer protocol (see Appendix A2 for details). The 

kit uses a silica membrane in a column to facilitate binding of RNA (see Figure 3.3) (100). 

RNase-free stainless steel grinding 5 mm beads (Qiagen, Hilden, Germany) and RNA lysis 

buffer from the RNA isolation kit were added into 2 ml 

Eppendorf® Safe-Lock microcentrifuge tubes with round 

bottom (Eppendorf, Hamburg, Germany). Mice livers from 72 

animals were taken out of the freezer at -80°C, and the samples 

were kept on dry ice during the liver slicing procedure into 

smaller pieces. Liver samples were transferred into 2 ml 

Eppendorf® Safe-Lock microcentrifuge tubes and weighed. The 

recommended RNA lysis buffer for tissue below 50 mg was 600 

µL RNA lysis buffer. Four samples had weights above 50 mg, and 

for these samples, the RNA lysis buffer was adjusted to 900 µL. 

Samples were homogenized at 20 Hz for 2 minutes using the 

TissueLyser II instrument (Qiagen, Hilden, Germany). The homogenized samples were 

visually inspected after 2 minutes homogenization. If the samples were not homogenized 

completely, the procedure was repeated once more for complete lysis. The homogenized 

samples were stored at -80°C until RNA isolation. The work process until lysis completion of 

the liver samples was done as quickly as possible to avoid RNA degradation. The frozen 

lysates were thawed at 4°C, and RNA isolation was performed as twelve samples series. 

After completion of RNA isolation, the RNA was eluted in 50 µL DNase/RNase free water. 

Five µL was aliquoted for measuring of RNA yield, purity and integrity. Isolated RNA samples 

were stored at -80°C until use.  

Figure 3.3: Overview of RNA 
isolation using column 
technology. Figure used with 
permission from Zymo 
Research (100). 
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3.5.2 RNA quality control 

RNA quality encompasses both its purity (absence of protein, DNA, carbohydrates, lipids, 

and other compounds) and its integrity. Determining the purity and integrity of RNA are 

critical elements for the overall success of RNA-based analyses, because low quality RNA 

may strongly compromise the results of downstream applications. Following isolation, the 

RNA yield and purity were determined by use of a NanoDrop™ 1000 Spectrophotometer 

(ThermoFisher Scientific, Waltham, USA). NanoDrop™ 1000 is a full-spectrum (220-750 nm) 

spectrophotometer that measures 1 µL samples with accuracy and reproducibility. The 

recommendation by the producer was followed and the protocol in detail is described in 

Appendix A2. NanoDrop measures the absorbance of light to find the quality and quantity of 

nucleic acid in a sample. When assessing nucleic acids purity, there are two ratios of 

importance: 260/280 nm and 260/230 nm. Nucleic acids absorb light at 260 nm, proteins 

and phenols at 280 nm and carbohydrates, aromatic compounds and salts at 230 nm. The 

NanoDrop software calculates the ratios of these different wavelengths; thereby giving an 

estimation of the purity. Pure RNA should have an A260/280 ratio of around 2.0, and RNA ratio 

above 1.8 is usually considered as RNA with good quality (101). The A260/230 ratio is a 

secondary measure of nucleic acid of purity. Ratios are commonly in the rates of 1.8-2.2. 

Lower ratio may indicate the presence of organic contaminants, such as (but not limited to): 

phenol, TRIzol, chaotropic salts and other aromatic compounds. All samples of isolated RNA 

were analyzed using NanoDrop. As blank the elution solution from the isolation kit was used. 

The RNA integrity was measured using the Agilent 2100 Bioanalyzer system (Agilent 

Technologies, Santa Clara, USA) together with RNA 6000 Nano LabChip Assay kit (Agilent 

Technologies, Santa Clara, USA) using the Eukaryote Total RNA Nano protocol in the 

instrument. RNA samples are separated by traditional gel electrophoresis principles 

converted to a chip format. The chip contains samples wells, gel wells and wells for an 

external standard (ladder). Small molecules will pass through fast while larger fragments 

need longer time. The ladder facilitates plotting of a standard curve where migration time 

versus fragments size is plotted. From the migration time measured for each fragment in the 

sample the size is calculated. Dye molecules intercalate into RNA strands, and are detected 

by laser-induced fluorescence (102). Agilent Technologies has created a standardized and 

objective method to check for RNA integrity by introducing the ribonucleic acid integrity 

number (RIN), which is automatically calculated by the Expert 2100 software (Agilent 
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Technologies, Santa Clara, USA). The data output includes graphs, RNA concentrations, 28S 

ribosomal RNA (rRNA) and 18S rRNA ratios and the RIN. An elevated threshold baseline and 

a decreased 28S:18S ratio indicates RNA degradation (103). The score given (RIN) is in the 

range of 1 to 10. Ten is the maximum and indicates highly conserved RNA material. To 

perform qPCR on RNA the RIN number should be at least 5 and preferably 8 (103-105). 

Figure 3.4 shows an example of RNA with high and low RNA integrity analyzed in this study.  

Figure 3.4: Liver samples from mice showing different output from integrity analysis. A) Sample with high 
integrity, RIN=8.5. B) Sample with degraded RNA; RIN=2.5. 

A) 

B) 
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3.5.3 cDNA synthesis 

RNA molecules cannot serve as templates in PCR. To perform a gene expression 

measurement by qPCR, the mRNA in the sample must be copied into cDNA by reverse 

transcription reaction PCR. In order to produce cDNA, deoxynucleotides triphosphates 

(dNTPs), buffer containing magnesium, and primers are also needed in addition to mRNA 

and the RT enzyme. There are three different primer categories available for this purpose. 

Sequence/gene specific primers targeted to a specific sequence. Oligo deoxythymine (dT) 

primers binds to the poly (A) tails of mammalian mRNA and are suitable for transcribing the 

whole RNA template to cDNA. Finally, the random primers contain bases of all possible 

combinations, and bind randomly to multiple complementary sequences of the mRNA 

template. The kit used in this master project, the High-Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems, Foster City, USA) utilizes the random primer scheme for cDNA 

synthesis. The package insert states the random primers facilitate that the first strand 

synthesis occurs efficiently with RNA molecules present. Afterwards, the RT-reaction is 

completed in a thermo cycler. 

The RNA extracted from the mice liver samples was thawed and diluted using RNase-free 

water to contain 100 ng/µL as input for reverse transcription reaction. The 20 µL diluted RNA 

was then reverse transcribed to cDNA with 20 µL master mix containing random primers, 

dNTPs, buffered magnesium and Multiscribe™ Reverse Transcriptase enzyme. Hence, the 

total reaction volume for one sample was 40 µL. The mastermix and RNA template volumes, 

and the thermo cycler program in the Eppendorf Mastercycler (Eppendorf, Hamburg, 

Germany) used are shown in Tables 3.1 and 3.2 respectively. 

Table 3.1: Mastermix and RNA template volumes in the 
reverse transcriptase PCR  

10 X RT buffer 4.0 µL 

dNTP mix 1.6 µL 

Random primers 4.0 µL 

Multiscribe™ Reverse Transcriptase 2.0 µL 

Nuclease-free H20 8.4µL 

100 ng/ µL 20 µL 
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Table 3.2: Thermo cycler program in the RT-PCR reaction 

Step 1 25°C 10 minutes 

Step 2 37°C 120 minutes 

Step 3 85°C 5 minutes 

Step 4 4°C ∞ 

 

After cDNA synthesis was completed on the PCR instrument, the cDNA concentration and 

purity were measured using NanoDrop™ 1000 Spectrophotometer (see Appendix C1 for 

results). 

3.5.4 Quantitative real time polymerase chain reaction (qPCR) 

The real-time qPCR monitors the amplification of targeted DNA molecule during the PCR in 

real time. In order to detect and quantify gene expression from RNA, the same methodology 

is used as in conventional PCR using DNA as a template. The reaction mix used contains the 

fluorescent dye SYBR Green, a thermo-stable DNA polymerase, dNTPs, magnesium salts, 

selected gene-specific primers and sample cDNA (template). It is important to dilute the 

cDNA to prevent inhibition of the PCR reaction caused by leftovers of salts and other 

reagents from the RNA isolation procedure. To find the optimal cDNA concentration to 

ensure efficient qPCR runs a dilution series with pooled cDNA sample were analyzed. A 1:200 

dilution was found to be the most efficient cDNA concentration for each run of the mice liver 

samples in this experiment. When dilutions were analyzed, the PCR efficiency was also 

evaluated to secure adequate PCR efficiency (E) obtained. A perfect PCR would theoretically 

double the amplicon amount from cycle to cycle which could give E=2. This is rarely the case, 

and studies have shown the efficiency to vary between 1.65 and 1.9. Factors like phenol, 

ethanol, hemoglobin, heparin, and even reverse transcription are known to alter the PCR 

efficiency (106). Seven reference genes and three target genes were analyzed in the dilution 

series and a simple regression analysis was performed to confirm acceptable PCR efficiency.  

In the PCR reaction, for each gene of interest, a primer set (forward and reverse primers) 

contains the sequences complementary to the target gene sequence of interest. The 

specificity of the reaction depends on the primers used. The PCR process consists of thermal 

cycles (about 40 cycles are commonly used) and every cycle consists of three basic thermal 

steps. The first is denaturation to separate the DNA strands. The second is annealing that 
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facilitate binding of the primers to their complementary cDNA strands. Finally, the third is 

elongation by DNA polymerase to extend the new DNA fragments. Every cycle will ideally 

double the amount of target DNA. The fluorescence (in this case SYBR Green) intercalates to 

any double stranded DNA (included non-specific reaction products) and fluorescent light is 

emitted, which is measured after each cycle. When the fluorescence reaches a certain 

amplification threshold, which is the same for all samples in the run, it is registered how 

much time it took for each sample to reach this threshold. This time is reported in a value of 

Cq and is read on the X-axis as shown in Figure 3.5. The Y-axis shows relative fluorescence 

units (RFU). The threshold value must be chosen at the reaction’s exponential phase. The Cq 

value found gives an quantification of amount RNA present in the tested sample tissue. 

 
Figure 3.5: qPCR plot showing cycles on the X-axis and RFU (relative fluorescence units) on Y-axis for measuring 
of the Srebf1 gene. The Cq value for the sample marked in green with black line in the graph gives Cq value of 
24.63. This is the time for this sample to reach the threshold, and gives an estimate of the amount Srebf1 gene 
present in this sample  

qPCR reactions setups were prepared using the 4Lab™ Automated liquid handling robot 

(4titude Ltd., Surrey. UK). The associated Framestar 384-well PCR plates (4titude Ltd., Surrey, 

UK) were used. To minimize the number of freeze-thaw cycles, the cDNA were diluted 1:200 

and pipetted in a number of 384-well plates and kept frozen at -20°C. The number of needed 

384-well plates for one day of analysis was thawed at 4°C, centrifuged at 12000 x g at 4°C 

and loaded on the 4Lab™ liquid handling robot. Gene specific primers were purchased from 

Sigma Aldrich (St. Louis, USA). All primers were dissolved in Tris-EDTA (TE)-buffer (Invitrogen, 

ThermoFisher Scientific, Carlsbad, CA, USA) at a 100 µM concentration. The primers were 

then diluted 1:10 in TE buffer and aliquoted to appropriate volumes and stored in 

microtubes at -20°C. All primer sequences are listed in Appendix A4. Each 10 µL qPCR 

reaction was made of 4 µL diluted cDNA, 0.5 µL of each primerset (10 µM) and 5 µL KAPA 
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SYBR Fast qPCR Master mix kit (Kapa Biosystems, Wilmington, Massachusetts, USA).The 

KAPA SYBR Fast qPCR Master mix where mixed with gene-specific primers in a RNase-free 

environment in a laminar flow cabinet (equipped with UV light) and pipetted in a 96-well 

plate (Tear-A-Way non-skirted, 4titude Ltd., Surrey,UK) before loaded in the 4Lab™. Four µL 

1:200 diluted cDNA sample and 6 µL ready-made mastermix where mixed in the appropriate 

wells for qPCR analysis. After pipetting the PCR plate was sealed with adhesive cover, 

centrifuged at 12 000 x g at 4°C for one minute before loaded on the PCR instrument. 

The real time qPCR reactions were performed on Bio-Rad CFX384 Real-Time PCR System 

(Bio-Rad Laboratories Inc., Hercules, CA, USA) with a protocol shown Table 3.3.  

Table 3.3: qPCR profile run on BioRad CFX384 Real-Time PCR System 

Step Temperatur (°C) Duration (min/sec) Cycles  

Enzyme activation 95°C 3:00 Hold 

Denaturation 95°C 0:03 

40 Primer annealing 60°C 0:20 

Elongation 72°C 0:20 + late read 

Melt curve 0°C to 95 °C,  

increment 0.5°C 

0:05 + late read End 

 

Five genes were analyzed on one 384-well plate. A screening strategy was decided for the 

possibility of in-depth experiments as a response to this study. Therefore; biological 

replicates (high number of samples) were chosen instead of technical replicates in the gene 

expression analysis. To verify that the PCR runs where valid; without contaminations, all 

qPCR runs had included No Template Controls (NTC) and No Reverse Transcriptase controls 

(NRT) for each gene analyzed. To confirm the presence of a single target a melting curve 

analysis was included in each run, which is a very important quality control step ensuring the 

detection of the gene of interest. At the end of each cycle the change of fluorescence due to 

gradual change in temperature can be measured by its melting temperature (Tm). At the 

melting point, the two DNA strands dissociate and the fluorescence intensity decreases as 

shown in Figure 3.6. 
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Figure 3.6: A melting curve from a qPCR run for detection of the gene Srebf1. The left curve represents raw 
data, and the right curve represents the derivate. The sudden decrease in fluorescence at around 82.50°C 
constitutes the melting point. The melting curve verifies identification of correct gene based on the knowledge 
that Tm°C for Srebf1 primers is 82.50°C. 

The temperature detected for the dissociation depends on base composition and length of 

the amplicons, and this can be used to identify contamination, mispriming and primer-dimer 

artifacts. This is especially important when using SYBR Green as a reporter dye, because of 

its willingness to bind to all double stranded DNA present in a sample. In few cases, the 

primers displayed a degree of self-complementarities and formed primer-dimers seen as a 

melting curve peak in the NTC control. Furthermore, any sample assay data point must be 

detected with 5 Cq values less than the corresponding NTC assay data point, and if the Cq 

values were lower than 5 Cq values the assay was defined as invalid and removed.  

3.5.5 Gene expression analysis 

Quantitative RT-qPCR was used to analyze the transcriptional response of mouse liver on 

control diet compared to HFD given in different life stages. The data was interpreted using 

CFX Manager Software version 3.1 (Bio-Rad Laboratories, Hercules, USA) and Microsoft Excel 

2013. The level/intensity of fluorescence was read after each cycle in the qPCR run and a Cq 

value was calculated by the CFX Manager Software. Eleven samples that showed non-

acceptable integrity (RIN) and purity were taken out of the study. The raw data Cq-values 

were pre-processed and outliers were excluded. Target genes with Cq-values above cycle 37 

were considered beyond the LOD and replaced by Cq (LOD) (i.e. 37+1=38). Other missing 

values were imputed by k-nearest neighbors (knn) where k=10 (the nearest 10 non-missing 

values) algorithm.  

The comparative 2-∆∆Cq method described by Livak and Schmittgen (88) was used to analyze 

all gene expression data by relative quantification. Relative quantification indicates the 

relative difference between two samples from two different treatment groups. In this study 

the aim was to find differences between mice fed normal diet versus mice fed HFD. Prior to 



Page | 33 
 

normalization, the best fit of reference genes expressed at a constant level in the liver 

needed to be established for accurate and reliable gene expression results. Six known 

reference genes were included in the study. These were, Hptr1, Ywahz, Tubβ5, Rpl13a, Actβ 

and Gusβ. The reference genes Hptr1, Tubβ5, Rpl13a and Actβ were chosen as the most 

stably expressed reference genes. They were chosen based on stability and lowest CV% and 

the software NormFinder was used to calculate the stability of the reference genes (107). 

Figure 3.7 shows an overview of the results of the best combination of reference genes 

when the software NormFinder was used. 

 

Figure 3.7: Overview of stability and CV data for normalization genes. Actβ and Hprt1 were found to be the best 
combination of two genes. Rpl13a and Tubβ5 were also included to cover a broad specter of the normalization genes; i.e., 
high and low abundant transcripts. Gusβ and Ywhaz were not chosen due to their high Cq-values 

The raw Cq-values were imported to Microsoft Excel and normalized by subtracting the 

geometric mean of four reference genes from the Cq values of the target genes generating 

the ∆Cq-value for the samples (88, 91, 95). The Cq-values were transformed to linear scale 

relative quantities (NRQ) as shown in the equation below. 

NRQ= 2-∆Cq (sample) 

Where ∆Cq(sample)=Cq(target gene)-Cq(geometric mean of four reference genes) 

Hprt1 Ywhaz Tubb5 Rpl13a Gusb Actb1

Stability value 0,03521027 0,036619697 0,048413364 0,055093591 0,056071832 0,039432859

CV 0,03 0,03 0,03 0,03 0,03 0,06

Score 0,05 0,05 0,05 0,06 0,07 0,07
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The fold difference (FD) between high fat diet samples (HFD) and control diet samples(CD) 

were then calculated by dividing the normalized NRQ of the HFD samples by the normalized 

NRQ of the CD samples as shown below: 

FD=NRQ(HFD)/NRQ(CD) 

All gene expression results were reported as FD between the HFD and CD samples. 

3.6 Statistical analysis of the results 

Data were expressed as mean ± standard error (SE). Statistical analysis was performed using 

SPSS version 24 software (SPSS Inc, Chicago, IL, USA), and results with p < 0.05 were 

accepted as statistically significant. Normal distribution and equality of variances were 

evaluated using the Shapiro-Wilk normality test and the Levene's test of homogeneity of 

variance, respectively, before the data was analyzed further. The data that were not 

normally distributed were log2 transformed in an attempt to achieve normal distribution. If 

the data were still not normally distributed and/or showed lack of equal variance, non-

parametric tests were applied. For assays with data with normal distribution the one-way 

analysis of variance (ANOVA) test followed by the post hoc tests Tukey’s Honest Significant 

Difference test, Least Significant Difference test and Dunnett’s two-sided test were applied. 

For the not normally distributed data, the Kruska-Wallis test was used. When significant 

results appeared from the Kruska-Wallis test, the Mann Whitney U test was used for 

comparing the significance level between groups.  

In addition, for analyzing of mean between two groups for normal distributed data, the 

independent t-test was applied. 

Body weight, BMI, absolute and relative liver weight 

Relative liver weight (RLW) was analyzed by ANOVA and post hoc tests. Terminal body 

weight (TBW), absolute liver weight (ALW) and BMI were analyzed by Kruska-Wallis test. The 

data were presented as mean ± SE. For correlation of BMI and other results non-parametric 

Spearman Rank Order correlation was used.  

Protein expression analysis 

IGF-1, FABP4/A, Lipocalin 2, Chitinase 3-like 1, PAI-1/Serpin E1 and Osteopontin were 

analyzed by ANOVA. Platelet derived growth factor-BB (PDGF-BB) was analyzed by Kruska-
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Wallis test. The two groups WL and AD were analyzed also separately to compare the mean 

only between these two groups. All proteins except PDGF-BB were analyzed by Independent 

t-test, and for PDGF-BB Mann Whitney U test was applied. The data were presented as mean 

± SE. 

Lipid level analysis 

CE was analyzed by ANOVA and post hoc tests. FC, TAG and FFA were analyzed by Kruska 

Wallis test. The two groups WL and AD were analyzed also separately to compare the mean 

only between these two groups. CE, FC and TAG were analyzed using Independent t-test, 

and for FFA Mann Whitney U test was applied. Statistical analyses were also performed by 

rearranging the grouping in three groups with control group versus early phase exposure to 

HFD diet and later phases. ANOVA was applied for CE and FC, and for FFA and TAG the 

Kruska-Wallis test was used. The data were presented as mean ± SE. The TAG boxplot in 

Figure 4.3 was visualized in JMP Pr Statistical Database Software (Cary, NC, USA) due to 

possibility of viewing each individual TAG value in a boxplot.  

Gene expression 

In the RNA liver integrity chapter the data were expressed as mean ± SE. The statistical 

analyses of the qPCR data were carried out by ANOVA with post hoc tests. ∆Cq-values were 

compared for each gene. For samples not normally distributed or that showed lack of equal 

variance, the non-parametric option Kruska-Wallis test followed by Mann Whitney U test 

was used. The data were presented as mean ± SE. For overview of the statistical results for 

gene expression analyzed in SPSS, the p-values are listed in Appendix C3 Table A.3. 

Analyzing of litters: 

The results from the mice from the same litter were calculated as the mean of these results 

to give one result as the result from the one litter.  
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4 Results 

4.1 Body weight, BMI, absolute and relative liver weight 

The published study by Ngo, et al. (2015) provided body and organ weight data for the 

selection of adult male C57BL/6J-Apc +/+mice included in this master thesis. The data were 

analyzed to determine potential effect between the treatments (Table 4.1).  

Table 4.1: Effects of high fat diet. Effects of exposure to a HFD during different life stages on terminal 
bodyweight (TBW), absolute liver weight (ALW), relative liver weight (RLW) and BMI in male wild-type mice 
terminated at 23 weeks of age (mean of the group ±SE). RLW (%) =ALW/TBW x 100. n = number of offspring. 
There were no significant differences in TBW, ALW and BMI. * RLW of the IU group was significantly higher 
compared to the control group with a significance level p<0.05. 

Groups n TBW (g) ALW (g) RLW (%) BMI (g/ cm2) 

Control group – CTL 9 34.88 ±1.60 1.37 ±0.22 3.87 ±0.22 0.34 ±0.01 
In utero – IU 10 36.96 ±1.03 1.70 ±0.08 4.60 ±0.12* 0.35 ±0.01 

Lactation – LA 10 37.10 ±1.47 1.42 ±0.07 3.83 ±0.13 0.35 ±0.01 
In utero+Lactation – 
IU+LA 

10 35.77 ±1.19 1.43 ±0.07 4.07 ±0.12 0.34 ±0.01 

Whole life – WL 10 40.98 ±2.65 1.58 ±0.18 3.78 ±0.26 0.38 ±0.02 
Adult - AD 9 40.11 ±2.20 1.55 ±0.23 3.75 ±0.32 0.38 ±0.02 
Average of all 
groups 

58 37.63 ±0.75 1.51 ±0.05 3.99 ±0.09 0.36 ±0.05 

 

Using the offspring as the statistical unit, all HFD treated groups showed a tendency of a 

higher terminal body weight (TBW) and a higher absolute liver weight (ALW) compared to 

the control group. However the findings were not statistically significant in any groups. The 

relative liver weight (RLW) was significantly higher for the IU group compared to the control 

and also compared with the other HFD treated groups except the IU+LA group (p<0.05). The 

body mass index (BMI) displayed a moderate increase for the groups WL and AD, but the 

data did not reach significance. 

Using litters as the statistical units gave similar results with a significant difference in RLW 

for the IU group. Number of litters: n=38. CTL=6; IU=6; LA=7; IU+LA=6; WL=7; AD=6. 
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4.2 Protein expression analysis using Luminex assay 

Protein analysis was run in mice serum by the use of Luminex xMAP™ Technology and 

Magnetic Luminex® Assay in a multiplex sandwich ELISA-based assay. Seven mouse 

biomarkers in serum were screened; IGF-1, FABP4/A, Lipocalin 2, PDGF-BB, Chitinase 3-like 

1, PAI-1/Serpin E1 and Osteopontin. The main interest for this study was IGF-1.The total 

number of serum samples included in the study series was 78 samples. Due to a pipetting 

mistake by pipetting seven samples in duplicates in the microtiterplate, the available wells 

were reduced by seven. In addition a wrongly selected serum sample from another study 

was pipetted in one well in the microtiterplate. These eight wells with erroneous pipetted 

samples were removed from the study, hence the total number was 70 samples.  

The protein expression levels are shown as FD between the HFD groups and the control 

group in Figure 4.1. IGF-1 showed an overall borderline difference between the groups 

(p=0.054). The IU group had borderline significant (p=0.073) and WL group had significant 

higher serum concentration of IGF-1 compared to the control (p=0.039). 

Only slight and non-significant differences were observed for PDGF-BB, Lipocalin 2 and 

Chitinase 3-like 1. Several of the values for FABP4/A were above the range of the standard 

curve and should thus be interpreted with care. 

In addition, the difference in expression of the serum biomarkers between the WL and AD 

groups for the biomarkers were analyzed by pair-wise testing. The data showed significant 

differences between the two groups for Lipocalin 2 and PAI-1/Serpin E1 (p<0.05). The 

difference in IGF-1 was not significant. 

In addition, the difference in level only between the WL and AD groups for the biomarkers 

were analyzed statistically. The data showed significant differences between the two groups 

for Lipocalin 2 and PAI-1/Serpin E1 (p<0.05). The statistical result for IGF-1 gave no 

significant result (p<0.05). 
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Figure 4.1: Fold difference as protein expression levels for seven serum biomarkers. The concentration of IGF-
1, FABP4/A, PDGF-BB, Lipocalin 2, Chitinase 3-like 1, PAI-1/Serpin E1 and Ostepontin in serum in the different 
HFD groups were compared with the control group. Total number of samples from offspring=70. Control group 
(CTL), n=14; In utero (IU), n=10; Lactation (LA), n=12; In utero+Lactation (IU+LA), n=12; Whole life (WL), n=11; 
Adult (AD), n=11. Each value of the groups represents mean of the group ±SE. * Significantly different from 
control group (p≤0.05). # Borderline significantly different from control group (p =0.073). Significance level 
p<0.05 

Using litters as the statistical unit, significant differences in IGF-1 expression between groups 

were observed. The IU group showed significantly higher IGF-1 concentration compared to 

the control. The IU group had also a significant higher IGF-1 level than the groups IU+LA and 

AD. Differences in the levels of the other protein biomarkers compared to the controls did 

not reach significance. Number of litters: n=48. CTL=9; IU=6; LA=7; IU+LA=10; WL=8; AD=8. 

4.3 Lipid analysis using normal-phase high-performance liquid 

chromatography  

Liver lipid levels (TAG, FFA, FC and CE) were analyzed by Vitas AS, Oslo, Norway. The total 

number of samples included in the lipid assays was 48 samples for the assays divided in 8 

samples per group. The differences in levels of TAG, FFA, FC or CE in HFD groups compared 

to the control group did not reach statistical significance (p<0.05) (Figure 4.2). In Figure 4.2, 

differences between the WL group and the AD group are suggested. To explore the data 

further, statistical analysis was performed where the WL group was compared to the AD 

group by pair-wise testing. This analysis showed that the level of FC (p=0.036) was 

significantly higher and TAG was not significantly higher (p=0.385). Statistical analyses were 

also performed by rearranging the grouping in three groups with control group versus early 
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phase exposure to HFD (IU, LA and IU+LA) and later phases (WL and AD). These differences 

did not reach statistical significance.  

Using litters as the statistical unit, there were no significant differences in any HFD groups 

compared to the control (p<0.05). Number of litters: n=38. CTL=7; IU=5; LA=7; IU+LA=7; 

WL=5; AD=7. 

 
Figure 4.2: Lipid levels in mouse livers. The levels of triacylglyceride (TAG) (A), free fatty acids (FFA) (B), free 
cholesterol (FC) (C) and cholesterol esters (CE) (D) were measured in all HFD groups and control group. Total 
number of samples=48 (offspring). n=8 for all 6 groups. The results are expressed as mean ± SE. Analysis 
performed by Vitas AS, Norway. There were no significant differences in lipid levels present in the HFD groups 
compared to control group (p<0.05). 

As mentioned in the introduction one definition of NAFLD is accumulation of TAG within 

hepatocytes that exceeds 5% of liver weight. This limit is shown as a red line in Figure 4.2 A. 

When looking at the mean result, the TAG concentration in the WL group was the only group 

to suggest liver steatosis. Figure 4.3 shows a TAG boxplot with individual results given within 

each group. This figure shows the occurrence of mice with liver steatosis in the groups LA, 

IU+LA, WL and AD. Percentages of animals with steatosis defined as >5% TAG were 8.3%  

A) 

D) C) 

B) 
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(1 of 8 animals), 37.5% (3 of 8 animals), 37.5% (3 of 8 animals) and 8.3% (1 of 8 animals) 

respectively. 

Figure 4.3: Boxplot for triacylglyceride (TAG) levels in different treatment groups. TAG concentrations (g 
TAG/100g liver) in liver for each individual mouse in each group are shown. Total number of samples=48 
(offspring) for the TAG assay. n=8 for all 6 groups. Eight mice had TAG levels above 5%. Analysis performed  
by Vitas AS, Norway. 
 

4.4 Gene expression RT-qPCR 

In this master thesis, the transcriptional responses of a panel of 69 genes were studied. The 

genes were selected and examined based on their role in liver NAFLD. The KEGG pathway 

database was used to select genes involved in different signaling pathways (PPAR, insulin, 

Tnfα, Adipocytokine, NF-κB, oxidative stress) associated with liver steatosis/NAFLD. In 

downstream analysis, only those genes that passed the quality assurance criteria described 

in the Materials and Methods section were used. After data preprocessing and filtering, we 

ended up with a matrix of 48 genes × 59 samples, and this matrix was used for downstream 

analysis. The overview of the 48 genes is presented in Table 4.2.  

.
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Table 4.2: Overview of 48 genes included in Results and Discussion. Genes were grouped according to their function. *Significantly differentially expressed genes (p ≤ 0.05); # Genes with 
borderline significant differences in expression 

Gene symbol Full gene name Function 
 

Genes related to liver steatosis 

Cd36 cd36 antigen PPAR signaling pathway; fatty acid transport 
Cyp2e1 cytochrome P450, family 2, subfamily e, polypeptide 1 Fatty acid metabolism; xenobiotics metabolism; high level in liver 
Fasn fatty acid synthase Fatty acid biosynthesis 
Nr1h2 nuclear receptor subfamily 1, group H, member 2 PPAR signaling pathway 
Nr1h3 nuclear receptor subfamily 1, group H, member 3 PPAR signaling pathway; cholesterol metabolism 
Pparα peroxisome proliferator activated receptor alpha PPAR signaling pathway; response to lipid 
Pparδ* peroxisome proliferator activated receptor delta PPAR signaling pathway; response to lipid 
Pparγ peroxisome proliferator activated receptor gamma PPAR signaling pathway; response to lipid 
Pparγc1β peroxisome proliferator activated receptor gamma, coactivator 1 beta PPAR signaling pathway; response to lipid 
Rxrα retinoid  X receptor alpha PPAR signaling pathway; fatty acid oxidation 
Scd1 stearoyl –Coenzyme  A desaturase 1 PPAR signaling pathway; lipogenese 
Srebf1 sterol regulatory element binding transcription factor 1 Transcriptonal activator; lipidhomeostasis 

Genes related to oxidative stress response 

Cat catalase Enzyme; protects the cell from oxidative damage 
Gpx1 glutathione peroxidase 1 Glutathione peroxidase family; protects cell from oxidative damage 
Neil 1 nei endonuclease VIII-like 1 (E. coli) DNA glycosylases; DNA repair 
Neil3 nei endonuclease VIII-like 3 (E. coli) DNA glycosylases; DNA repair 
Nfe2l2 # nuclear factor, erythroid derived 2, like 2 Transcription activator; response to oxidative stress 
Sod1 superoxide dismutase 1, soluble Antioxidant activity; cellular response to stress 
Sod2 superoxide dismutase 2, mitochondrial Antioxidant activity; cellular response to stress 
Sod3 superoxide dismutase 3, extracellular Antioxidant activity; cellular response to stress 

Genes related to general development/function 

Hnf4α # hepatic nuclear factor 4, alpha Transcription factor; development of liver, pancreas and intestines, maintain glucose homeostasis 
Lepr leptin receptor Cytokine receptor; involved in energy metabolism and body weight through hypothalamus effect 
Lipe lipase, hormone sensitive Insulin signaling pathway; regulation of lipolysis in adipocytes 
Lpin1 lipin1 Key lipid metabolism regulator 
Ulk1 unc-51 like kinase 1 Involved in metabolic stress signals to the autophagy machinery 
Ulk2 unc-51 like kinase 2 Involved in metabolic stress signals to the autophagy machinery 
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Table 4.2 continued: Overview of 48 genes included in Results and Discussion. Genes were grouped according to their function. *Significantly differentially expressed genes (p ≤ 0.05); 
 # Genes with borderline significant differences in expression 

Gene symbol Full gene name Function 
 

Genes related to insulin response 

Cebpα CCAAT/enhancer binding protein (C/EBP), alpha Transcription factor; adipogenesis, lipogenesis and insulin sensitivity 
Cebpβ CCAAT/enhancer binding protein (C/EBP), beta Transcription factor; adipogenesis, lipogenesis and insulin sensitivity 
Grb2 growth factor receptor bound protein 2 Insulin signaling pathway; part of MAPK signaling pathway 
Gsk3β glycogen synthase kinase 3 beta Insulin signaling pathway; glucose homeostase, insulin resistance 
IGF-1 insulin-like growth factor 1 Promote growth and development during fetal and postnatal life; mainly expressed in the liver 
Igf2 insulin-like growth factor 2 Promote growth and development during fetal and postnatal life; paternal imprinted gene 
Insr # insulin receptor Insulin signaling pathway; receptor tyrosine kinase family 
Irs1 insulin receptor substrate 1 insulin signaling pathway; roles in metabolic and mitogenic pathways 

Genes related to glucose regulation 

Akt2 thymoma viral proto-oncogene 2 AKT kinase; regulation of glucose 
Fgf21 fibroblast growth factor 21 Stimulates glucose uptake in adipocytes 
G6pc glucose-6-phosphatase, catalytic Insulin signaling pathway 
Mlxip MLX interacting protein Insulin resistance; response to cellular glucose levels 
Slc2a2 * solute carrier family 2, member 2 Insulin signaling pathway; transfer glucose between liver and blood  
Slc2a4 solute carrier family 2, member 4 Insulin signaling pathway; insulin-regulated glucose transport in adipose tissue 

Genes related to inflammation 

Il4 interleukin 4 Cytokine; cell signaling; humoral and adaptive immunity 
Il6rα interleukin 6 receptor, alpha Part of Il6 receptor complex; role  in immunological response 
Il10 * interleukin 10 Anti-inflammatory cytokine; both innate and adaptive immune system 
Il33 interleukin 33 Cytokine; cell signaling; humoral immune reponse 
Nfκb1 nuclear factor kappa b subunit 1 Tnf signaling pathway; immunological response to infections  
Socs3 suppressor of cytokine signaling 3 Tnf signaling pathway; regulates cytokine signal transduction 
Tnfα tumor necrosis factor alpha Tnf signaling pathway; cytokine –cytokine receptor interaction. Also known as Tnf-alpha 
Tnfrsf1a # tumor necrosis factor receptor superfamily, member 1a Tnf signaling pathway; cytokine –cytokine receptor interaction 
 

   



Page | 43 
 

4.4.1 RNA quality assessments 

RNA with high quality is essential for downstream gene expression analysis. To ensure 

acceptable RNA quality of the samples, we analyzed the RNA samples with NanoDrop and 

Agilent 2100 Bioanalyzer to estimate their concentration and evaluate their purity and 

integrity.  

RNA with high quality is essential for downstream gene expression analysis. To ensure 

acceptable RNA quality of the samples, we analyzed the RNA samples with NanoDrop and 

Agilent 2100 Bioanalyzer to estimate their concentration and evaluate their purity and 

integrity.  

The liver samples varied in size due to technical performance of cutting the liver, and this 

resulted in total RNA concentrations from 285 ng/µL to 1885 ng/µL measured at NanoDrop. 

The RNA yield (µg/mg) ranged from 0.36 µg/mg to 2.90 µg/mg liver weight in all 71 samples. 

The 59 samples that passed quality assurance, all of them ha A260/280-ratio greater than 1.8 

indicating RNA with acceptable purity for downstream applications. However, the A260/230 

ratios were more varying. Sixteen samples had A260/230 ratios below 1.8. The RNA integrity 

for the mice liver samples was checked by assessing the RIN numbers, where 10 is the top 

score and suggests the least degraded RNA, and 5 is viewed as the lowest acceptable RIN 

number. Twelve RNA samples had RIN numbers lower than 5, and these samples were 

removed from downstream analysis. This made the number of accepted mice liver samples 

in the study to be 59 samples in total. The grouped mean and SE for the results are provided 

in Table 4.3. 

A chapter of RNA quality assessments and what to reflect on is found in chapter 5.6.2. 

Appendix C2 Table A.2 gives an overview of all samples and results from isolation and 

measurements by NanoDrop and Agilent 2100 Bioanalyzer.  
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Table 4.3: Liver total RNA yield, purity and integrity for all mice groups. The results are expressed as mean ± 
SE. Some groups showed lower RIN values than the total sample numbers due to not available (NA) RIN 
numbers. 

Group Treatment RNA yield  
µg/mg 
liverweight 

OD  
260/280 ratio 

OD  
260/230 ratio 

RIN value 

CTL 10% fat throughout life - 
control group 

0.93 ±0.15 2.09 ±0.03 1.82 ±0.09 5.83 ±0.54 

  n=12/11 (RIN value)         

IU 45% fat in utero  1.32 ±0.18 2.08 ±0.01 1.87 ±0.05 6.04 ±0.46 

  n=12         

LA 45% fat during lactation  0.93 ± 0.11 2.10 ±0.02 1.89 ±0.05 6.73 ±0.11 

  n=11/10 (RIN value)         

IU+LA 45% fat in utero and 
during lactation 

1.16 ±0.22 2.06 ±0.02 1.81 ±0.08 6.60 ±0.35 

  n=12/10 (RIN value)         

WL 45% fat throughout life  1.52 ±0.20 2.12 ±0.01 2.00 ±0.07 6.14 ±0.52 

  n=12         

AD 45% fat as adults 1.41 ±0.21 2.09 ±0.03 2.04 ±0.0 6.54 ±0.43 

  n=12         

Average of all 
groups 

All  
n=71/67(RIN value) 

1.21 ±0.08 2.09 ±0.0) 1.91 ±0.03 6.30 ±0.18 

 

4.4.2 Relative gene expression  

The transcript level of some of the genes studied displayed alteration by the HFD exposure. 

Out of 48 target genes analyzed, three genes had a significant change in gene expression 

compared to the control group, and four genes showed borderline significant differences in 

expression compared to the control group. Due to high within-treatment group variability, 

few genes were found to have significantly different expression when compared to the 

control group. Then, the genes of interest were grouped based on their involvement in the 

various signaling pathways. The results are presented in Figures 4.4-4.9.  
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Genes related to liver steatosis 

Twelve genes were analyzed to explore the potential impact on HFD for gene expression 

connected to liver steatosis. Figure 4.4 shows a statistically significantly up-regulated 

peroxisome proliferator activated receptor δ (Pparδ) gene in the LA group compared to 

control group (p=0.046). Further, regarding the Pparδ gene, the groups IU and IU+LA also 

showed up-regulated expression compared to the control group, although these differences 

were not statistically significant. None of the other genes in the group related to hepatic 

lipid metabolism were significant up- or down-regulated compared to the control group. For 

other similar genes analyzed belonging to the PPAR signaling pathway; such as Pparγ and 

Pparγc1β, there were suggested similar patterns in expression, although the difference were 

not significant. In Figure 4.4, the results indicated up-regulations of the Cd36 gene in the 

following groups compared to the control: IU, LA and WL. The results indicated down-

regulations of the Scd1 gene in the following groups compared to control: LA, IU+LA and AD. 

 
Figure 4.4: High fat diet (HFD) exposure effect on transcriptional levels of a selection of 12 genes related to 
liver steatosis in mice livers during different life stages covering in utero to adult life. Each value represents 
mean of the group ±SE. Total number of samples = 59 (offspring). CTL, n = 9; IU, n = 10; LA, n =10; IU+LA, n =9; 
WL, n =10; AD, n =11. * Significantly different from control group with a significance level p <0.05. 

  

* 
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Genes related to inflammation 

Eight genes were analyzed to explore the potential impact on HFD for gene expression 

connected to inflammation (Figure 4.5). Figure 4.5 shows a statistically significantly up-

regulated interleukin Il10 (Il10) gene in the IU group compared to control group (p=0.035). 

This significant result was reported only in the Dunnett 2-sided test. In addition, the tumor 

necrosis factor receptor superfamily, member 1a (Tnfrsf1a) gene, showed borderline 

significant differences in expression in the IU+LA group compared to the control group 

(p=0.063). None of the other genes in the HFD groups were statistically significantly up- or 

down-regulated compared to the control group. The bars in Figure 4.5 showed up-

regulations in especially the early developmental phases for the different genes involved in 

inflammation processes, even though the findings were not significant. 

 
 
Figure 4.5: High fat diet (HFD) exposure effect on transcriptional levels of a selection of 8 genes related to 
inflammation in mice livers during different life stages covering in utero to adult life. Each value represents 
mean of the group ±SE. Total number of samples = 59 (offspring). CTL, n = 9; IU, n = 10; LA, n =10; IU+LA, n =9; 
WL, n =10; AD, n =11. # Borderline significantly different from control group with a significance level p=<0.05. 
The significantly difference in the Il10 gene was reported only in the Dunnett 2 sided test. 
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Genes related to oxidative stress response 

Eight genes were analyzed to explore the potential impact on HFD for gene expression 

connected to oxidative stress response (Figure 4.6). The nuclear factor erythroid derived 2 

like 2 (Nfe2l2) gene in the LA group showed borderline significant differences in expression 

compared to control group (p=0.053). None of the other genes were statistically significant 

up- or down-regulated in the HFD groups compared to the control group. In figure 4.6 the 

results indicates down-regulations of the Cat gene in the following groups compared to 

control: IU+LA, WL and AD, but the differences were not statistically significant. 

 
 
Figure 4.6: High fat diet (HFD) exposure effect on transcriptional levels of a selection of eight genes related to 
oxidative stress response in mice livers during different life stages covering in utero to adult life. Each value 
represents mean of the group ±SE. Total number of samples = 59 (offspring). CTL, n = 9; IU, n = 10; LA, n =10; 
IU+LA, n =9; WL, n =10; AD, n =11. # Significantly different from control group with a significance level p <0.05. 

 

 

  

 # 
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Genes related to general development/function 

Six genes were analyzed to explore the potential impact on HFD for gene expression 

connected to general development/function (Figure 4.7). The hepatic nuclear factor 4 alpha 

(Hnf4α) gene in the LA group showed borderline significant increased expression compared 

to the control group (p=0.073). None of the other genes were statistically significant up- or 

down-regulated in the HFD groups compared to the control group.  

 

Figure 4.7: High fat diet (HFD) exposure effect on transcriptional levels of a selection of six genes related to 
general development/function in mice livers during different life stages covering in utero to adult life. Each 
value represents mean of the group ±SE. Total number of samples = 59 (offspring). CTL, n = 9; IU, n = 10; LA, n 
=10; IU+LA, n =9; WL, n =10; AD, n =11. # Borderline significantly different from control group with a 
significance level p <0.05 

  

  # 
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Genes related to insulin response 

Eight genes were analyzed to explore the potential impact on HFD for gene expression 

connected to insulin response (Figure 4.8). The insulin receptor (Insr) gene in the IU and 

IU+LA group showed borderline significant differences in expression compared to the control 

group (p=0.097 and p=0.103 respectively). The results in the groups IU, LA and AD also 

suggested a major up-regulated expression of Insr compared to the control group, although 

these differences were not significant. None of the other genes in the groups were 

statistically significant up- or down-regulated compared to the control group. In Figure 4.8 

the Irs1 gene showed the same patterns of non-significant up-regulations as for the Insr 

gene in the following groups compared to the control: IU, LA, IU+LA and AD. The results also 

indicated a non-significant up-regulation of the Igf1 gene in the LA group. 

 
 
Figure 4.8: High fat diet (HFD) exposure effect on transcriptional levels of a selection of eight genes related to 
insulin response in mice livers during different life stages covering in utero to adult life. Each value represents 
mean of the group ±SE. Total number of samples = 59 (offspring). CTL, n = 9; IU, n = 10; LA, n =10; IU+LA, n =9; 
WL, n =10; AD, n =11. # Borderline significantly different from control group with a significance level p <0.05 

  

 # 
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Genes related to glucose regulation 

Six genes were analyzed to explore the potential impact on HFD for gene expression 

connected to glucose regulation (Figure 4.9). Figure 4.9 shows a statistically significantly up-

regulated solute carrier family 2 member 2 (Slc2a2) gene in the IU+LA group compared to 

control group (p=0.040). The results in the groups IU and LA also suggested a up-regulated 

expression of Slc2a2 compared to the control group, although these differences were not 

significant. The Slc2a2 gene which is also involved in the insulin-pathway, suggested similar 

patterns for up-regulations as for the Insr and Irs1 genes (Figure 4.8). 

 
 
Figure 4.9: High fat diet (HFD) exposure effect on transcriptional levels of a selection of six genes related to 
glucose regulation in mice livers during different life stages covering in utero to adult life. Each value represents 
mean of the group ±SE. Total number of samples = 59 (offspring). CTL, n = 9; IU, n = 10; LA, n = 10; IU+LA, n = 9; 
WL, n = 10; AD, n = 11.  

Statistics were also run based on litters as the statistical unit. In the IU+LA group, the Insr 

gene showed borderline significant differences in expression compared to the control group 

(p=0.054). The Nfe2l2 gene came up as a weak borderline result (p=0.080). The other genes 

gave no significant results of the HFD groups compared to the control (p≤0.05). Compared to 

the results using the mean of the offspring in each group with two significant and three 

borderline statistically significant results on gene expression, the data evaluated with litter 

as the statistical unit had one significant and one borderline result. Number of litters: n=42. 

CTL=7; IU=6; LA=7; IU+LA=7; WL=7; AD=8. 

* 
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4.5 Correlation data 

Statistical analysis was performed to investigate potential correlations between BMI and 

liver lipids or mRNA expression (Table 4.4). Table 4.4 show a relatively high correlation 

between BMI and liver TAG, and moderate correlations between BMI and mRNA expression 

levels of Igf1, Socs3 and Tnfα. 

Table 4.4: Spearman’s Rank order correlation for BMI data compared to liver TAG and mRNA  
expression levels. Only statistical significant correlations are shown.  

Variable 1 Variable 2 Spearman’s correlation 
coefficient (rho) 

Significance level (p) 

BMI Igf1  0.36 0.0070 
BMI TAG (lipid) 0.54 0.0002 
BMI Socs3 0.35 0.0096 
BMI Tnfα 0.29 0.0303 
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5 Discussion 

Accumulating evidence points to overeating as one of the major reasons for the high 

prevalence of liver steatosis worldwide appearing at increasingly younger age. The spectrum 

of NAFLD ranges from isolated steatosis to NASH with accompanying complications (71). The 

liver steatosis as an isolated condition is usually viewed as a benign condition, but in 20-30% 

of the of cases, simple steatosis develops to NASH (33). The primary goal of this study was to 

assess which cell signaling pathways may contribute to the development of liver steatosis 

and NAFLD following HFD exposure during various life stages. The signaling pathways 

contributing to NAFLD are connected in a complex network. Activation or inhibition of these 

signaling pathways depends on the exposure and the developmental life stage. In this thesis, 

candidate genes involved in NAFLD associated signaling pathways were selected, and then, 

categorized into several functional groups (Table 4.2). The transcriptional levels of this gene 

panel were examined in liver samples from mice exposed to HFD during different life stages 

and compared with samples from mice on CD by qPCR analysis. Moreover, to be able to link 

potential changes in signaling pathways to physiological differences, body weight, liver lipid 

levels and serum IGF-1, were also evaluated.  

5.1 Analysis of weight data after HFD exposure 

Animal models showed that exposure to maternal obesity and HFD intake caused greater 

post-natal weight gain, TBW and adiposity in offspring compared to animals fed standard 

chow (55, 56, 108, 109). All groups showed a higher TBW compared to the control group, 

though the results were not significant higher. All HFD groups showed a tendency of a higher 

ALW compared to the control group and in the IU group the RLW was significantly higher 

compared to the control group. Increased liver weight in the IU group was also observed in 

the main study in which a significantly higher ALW was observed in the IU and UL groups 

compared the mice given a HFD as adults or throughout life (3). As discussed below, there 

was no increase in lipid accumulation in the IU group. There must consequently be other 

explanations for the increase in liver weight observed, as e.g. liver hypertrophy, but this has 

not been examined in the current study.  
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5.2 Analysis of lipids in liver after HFD exposure 

5.2.1 TAG measurement 

TAG is the most abundant type of fat in fatty livers, and lipid accumulation within 

hepatocytes that exceeds 5% of liver weight is one definition of simple liver steatosis (24, 29, 

110).  

TAG level in liver from the different treatment groups suggest an increasing degree of liver 

accumulation of TAG in the LA period, with further increases in the IU+LA and WL groups. 

The WL was the group with highest TAG concentration in the liver; however the results did 

not reach statistical significance which may be explained by the large variability of TAG 

accumulation between animals within this group. Further, the results showed that the LA, 

IU+LA, WL and AD groups all had mice represented in their groups that met the criteria of 

liver steatosis. In the WL group three mice had TAG levels between 9% and 16%; which 

means a mild steatosis if compared to grading of steatosis in humans proposed in Table 1.1 

in the introduction chapter. Percentages of animals with steatosis defined as >5% TAG were 

8.3% (1 of 8 animals), 37.5% (3 of 8 animals), 37.5% (3 of 8 animals) and 8.3% (1 of 8 

animals) in LA, UL, WL, AD respectively. These findings are supported by other studies were 

HFD increased levels of TAG with development of liver steatosis in mice as adults (69, 111, 

112). Even though the IU group demonstrated the same TAG mean level as the control 

group, a study of nonhuman primates suggested that prenatal HFD disturbed the lipid 

metabolism in a way that gave rise to a lifelong pre-disposition for NAFLD (93, 113). This 

might suggest an altered lipid metabolism in the liver for offspring fed HFD through the diet 

of the dam. This is also underpinned by studies showing that mice offspring of dams exposed 

to HFD during IU and LA developed hypercholesterolemia, adiposity, IR and hepatosteatosis 

(56, 114). Of note, the WL group had a higher TAG liver content than the AD group, 

supporting the notion that in utero exposure predispose the mice to liver steatosis. A study 

by Ashino et al indicated that in 82-day old mice offspring of dams fed a 45% HFD, there was 

an increase in the level of the lipogenic protein acetyl-CoA carboxylase which through a 

chain of interactions leads to decreased β-oxidation capacity (46). This finding suggests an 

increased susceptibility of offspring exposed to HFD in utero to NAFLD through reduced FFA 

oxidation capacity. We observed a moderate positive correlation between liver TAG and BMI 
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(rho=0.54). This likely reflects an increased level of circulating lipids in the obese animals 

leading to higher FFA uptake up by the liver, and increased liver TAG production and storage 

(111).  

5.2.2 FFA measurement 

FFA in liver is rapidly converted to TAG for storage in lipid droplets or eliminated via β-

oxidation or secreted by VLDL (71, 93). Several studies in humans supported this by results 

suggesting that FFA levels were not altered in the liver in patients with NAFLD (115, 116). No 

significant differences in FFA results compared to the control group were observed in the 

present study. The AD group showed a higher mean level of FFA compared to the other 

groups. However, the results for this group revealed a high within-group variation due to a 

markedly elevated FFA concentration in one single animal. 

5.2.3 Cholesterol measurement 

Liver Free Cholesterol (FC) accumulation is relevant to the pathogenesis of NAFLD/NASH 

(71). FC and CE were analyzed in our study to see if the levels were affected due to HFD 

exposure. There were no significant differences between the groups, but one animal had 

increased level of FC in the WL group compared to the other overall results. Due to one 

single observation it is difficult to suggest whether this is representative for a HFD treatment 

throughout life. Thus, the pairwise comparison between the WL group and the AD group 

that revealed significantly higher levels in the WL group should be interpreted with care. FC 

is considered to be an essential lipotoxic molecule crucial in the development of 

experimental and human NASH, and increased FC levels have been seen in NASH but not 

simple steatosis (116). A study in humans found that FC showed a stepwise increase from 

the control group to NAFLD and to NASH (115). A study in mice linked hepatic accumulation 

of FC rather than TAG towards hepatocyte death and liver damage (111). FC is suggested to 

be an important factor for disease progression from simple liver steatosis to NASH (71). 

Ioannou and co-workers have suggested that many mechanisms protects against excessive 

FC rise in liver, and one suggested solution was esterification of FC to a more inert 

Cholesterol ester (CE) by Acetyl-co-enzyme A acetyltransferase 2 (116). Our results 

suggested a slight increase in CE levels in all HFD treated groups compared to the control, 

but the difference between the diet groups did not reach statistical significance. Studies 
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suggested that the CE concentration in liver do not appear to be increased in human NAFLD 

(115, 117). 

5.3 Analysis of IGF-1 in serum after HFD exposure 

Most of the circulating IGF-1 is synthesized by the liver and is regulated by GH (74). In our 

study the IU group showed a borderline significant increase and the WL group a significantly 

increase of serum IGF-1 compared to the control, whereas the other HFD groups showed 

only modest increases. This suggests an impact of HFD treatment on systemic IGF-1, which 

may depend on both pre- and post-natal exposure conditions. A study proposes that HFD in 

itself, regardless of overweight, increases systemic IGF-1 levels (118). A study in humans 

showed that lower serum IGF-1 was associated with NASH, but not with liver steatosis. The 

distinction could be related to whether inflammation was present or not (74). A humans 

study suggested that IGF-1 has an anti-inflammatory impact on hepatocytes (76). A study in 

mice reported that IGF-1 has an protective effect on steatosis and inflammation and 

improves oxidative stress and mitochondrial function in the liver (77). However, as reviewed 

by Lewitt and co-workers, there are conflicting results from different studies whether 

obesity caused by HFD increases or decreases the IGF-1 level (119).  

5.4 Gene expression changes after HFD exposure 

In this thesis, the transcriptional response of a panel of 69 genes following exposure to HFD 

in different life stages was evaluated by qPCR. The genes were selected based on their role 

in NAFLD associated signaling pathways. There are many variables in a RT-qPCR set-up that 

can influence the qPCR assays, and it is important to have in mind what other factors can 

impact the results. After quality assessment of the qPCR analysis of the 69 genes; 48 genes 

were included for result evaluation. There was relatively high within-treatment group 

variability in the analysis performed. Later in this discussion chapter the technical and 

biological variables to consider when evaluating the gene expression results will be 

mentioned. The gene expression analysis showed three genes with significantly higher 

expression (Il10, Pparδ and Slc2a2) and four genes with a borderline significantly higher 

expression (Hnf4α, Insr, Nfe2l2 and Tnfrsf1α) compared to the control group. In addition, the 

FD results showed some tendencies that are included in a wider discussion on which 

signaling pathways in liver are changed due to HFD exposure during various life stages.  
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5.4.1 Genes related to liver steatosis 

Liver steatosis is often referred to as the first hit in the two hit and multi hit hypotheses of 

development of NAFLD (31, 34). Twelve genes that were grouped under liver steatosis were 

analyzed. Of these, the expression of the Pparδ gene was significantly higher in the LA group 

compared to the control. Dietary lipids regulate activity of PPAR transcription factors and 

induce an increase in the expression of their target genes (120). All genes belonging to the 

PPAR signaling pathway (including Rxrα that encodes the retinoid X receptor alpha that form 

heterodimers with all PPARs) and the Pparγ co activator Pparγc1β showed up-regulation in 

the early life stages (IU, LA and IU+LA). A study proposes that high expression of Pparδ in the 

liver can be a reaction to excessive accumulation of lipids, and/or products of oxidative 

stress, and/or pro-inflammatory mediators, to prevent hepatic IR and to limit further de 

novo lipogenesis (121, 122). None of the other eleven genes grouped under liver steatosis 

showed significant differences.  

5.4.2 Genes related to oxidative stress response and inflammation 

Proposed hits involved in NAFLD progression include oxidative stress and inflammation (31, 

111, 123). We analyzed eight genes related to oxidative stress response and eight genes 

related to inflammation. The Nfe2l2 gene, also known by the name Nrf2, showed a 

borderline significantly increased expression in the LA group compared to the control. The 

Nfe2l2 gene is a transcription factor that binds to antioxidant-responsive elements (ARE) and 

have shown to activate transcription of several anti-oxidative genes and involvement of 

reducing the concentration of ROS (124-127). Several studies have suggested the Nfe2l2 

gene to protect hepatic cell from oxidative damage during development of NAFLD (124, 

127). 

Our results also showed a borderline significant higher difference in expression for the 

Tnfrsf1a gene in the IU+LA group compared to the control. The pro-inflammatory cytokine 

Tumor necrosis factor (Tnf-α) exerts its biological responses by binding to cell surface 

receptors, including Tnfrsf1a, and studies have suggested that cytokines like Tnf-α and its 

receptors are higher in liver in NASH patients (68). It has been proposed that FFA induces the 

production of Tnf-α (67). A study argued that it might be dietary factors like HFD, which 

initiated inflammatory response in the liver (111). A suggestion of disturbance in the 
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cytokine-balance can be implied by the miRNA project at NIPH (personal communication) 

which suggest moderate increased levels of serum Tnf-α in mice from all HFD groups 

involving in utero exposure, but not in the LA and AD groups. 

In addition the results revealed a significant higher difference in expression of the Il10 gene 

in the IU group compared to the control. This result (p=0.035) was only shown in the 

Dunnett 2 sided test, and the ANOVA result provided p=0.160. We decided to report this 

result given the Dunnett 2 sided test functions as a stand-alone test regardless of ANOVA 

results. Il-10 is an anti-inflammatory cytokine that dampens inflammations (128). The Il-10 

serum level have been seen decreased in a human study with NAFLD, and a proposed cause 

was a chronic low-grade of inflammation in the patients (129). Another study of adipose 

tissue in mice observed decreased level of the Il10 gene in diet-induced obesity together 

with high levels of genes encoding TNF-α (130). They also showed high expression of the Il10 

gene in the lean mice. The study proposed that Il-10 protects against inflammation in the 

adipose tissue. In our study the high level of the Il10 gene indicates a protective effect 

5.4.3 Genes related to liver insulin response 

Excessive accumulation of TAG in hepatocytes has been shown to be strongly associated 

with IR (131) and IR is an important feature for developing liver steatosis (30). We analyzed 

eight genes involved in insulin signaling. Of these, the insulin receptor (Insr) gene in the 

IU+LA group showed borderline significant increased expression compared to the control 

group, and the other early developmental groups also showed a tendency of up-regulation. 

The insulin receptor (INSR) interacts with the insulin receptor substrate 1 (IRS-1) in the 

insulin signaling pathway (132). The Irs1 gene showed similar pattern as the Insr gene, 

supporting a modification of the insulin signaling pathway in response to HFD. This 

suggestion can be supported by results from the adipose tissue study at NIPH (personal 

communication) which showed increased level of serum insulin in the HFD exposed mice 

(significant positive trend in relation to number of days exposed to a HFD). 

5.4.4 Genes related to glucose regulation 

In an insulin resistant liver gluconeogenesis is increased due to impaired insulin signaling 

which normally inhibits gluconeogenesis. This may lead to hyperglycemia and 
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hyperinsulinemia (30). Six genes were analyzed to assess potential changes in glucose 

regulation in the different life stages due to HFD exposure. Of these, the Slc2a2 gene in the 

IU+LA group showed significant increased expression compared to the control group 

(p=0.040), and the other early life stages also showed a tendency of up-regulation (p=0.211 

for both IU and LA groups). A study in mice revealed increased level of Slc2a2/GLUT2 in mice 

liver showing IR (133). In addition to increased gluconeogenesis, the HFD mice offspring 

might also be prone to impaired glucose tolerance as suggested in the main obesity study at 

NIPH (3). The Slc2a2 gene, with the protein product known as GLUT2, plays an important 

role in liver glucose flux (133). The GLUT2 protein has shown to transport glucose 

bidirectionally in the hepatocytes (134). Several studies have suggested that the transport 

direction of glucose was dependent on the substrate concentration gradient that changes 

according to food-intake. Hence, the indirect connection between insulin and glucose levels 

(133, 135) Our results may indicate the same phenomena as the Slc2a2 gene showed the 

same expression as the Insr gene with increased expression following HFD exposure in the 

early life stages (Figure 4.8).  

5.4.5 Genes related to general development/function 

The genes in this group have various functions related to a general liver development and 

function. Of the six genes analyzed, the Hnf4α gene in the LA group showed a borderline 

significant increase in expression compared to the control group. The IU group also showed 

similar up-regulation, but this was not a statistical significant result (p=0.108). A few studies 

suggested that Hnf4α regulated the transcription of genes involved in the NAFLD progression 

through lipid metabolism and oxidative stress (123, 136). Hnf4α regulates the gene Hnf1α, 

which is an additional transcription regulator involved in lipid metabolism, but the 

expression of this gene was not examined in the present study. 

5.5 Differences in susceptibility for development of liver steatosis 

dependent on life stages of exposure to HFD 

Included in the main goal was to assess which of the various life periods could be more 

susceptible for development of liver steatosis due to the HFD treatment. Fetal programming 

is a known phenomena from years of research, and the research involved around DOHaD 

hypothesis have generated strong support for the notion that the earliest period of a life is 
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crucial for further development regarding health (39, 40, 42, 137). However, the 

contribution of dietary stress in different life stages to NAFLD susceptibility of the adult is 

less clear.  

The TAG measurements showed higher mean level in the IU+LA and WL groups compared to 

the AD group. Also, a higher number of animals showed liver steatosis; 37.5% in the IU+LA 

ant the WL versus 8.3% in AD. This suggests that the in utero exposure period is especially 

important for the susceptible to develop steatosis as an adult. Also it seems that a period of 

post-natal exposure is required for the phenotype to be revealed as the IU group did not 

show an increased accumulation of liver lipids.  

In some cases, the response in the IU+LA groups appeared to lower than in the IU group, as 

observed for serum Igf-1 (and also glucose tolerance data as presented by Ngo and co-

workers (3). If correct, this finding suggests that exposure during lactation may protect 

against some of the changes observed after in utero exposures.  

For the mRNA analysis, the significant and borderline significant genes showed an overall 

more marked increased in expression in the early developmental life stages compared to 

animals exposed throughout life or as adults. These observations underline the complexities 

of fetal programming and the importance also of post-natal conditions for modulation of 

gene expression and physiological adaptations.  

5.6 Overall considerations regarding this study 

This study has involved liver and serum samples from mice, different laboratory workflows 

and data processing. Here, we review some technical and biological variables to consider 

when evaluating the results. 

5.6.1 Mice as an animal obesity model 

Mice do not imitate completely the true human situation, and this is a limitation of animal 

studies in general. DIO is one of the most used models in rodents to explore obesity related 

questions. However, DIO is not a standardized model, thus different DIO studies vary e.g. in 

regards to fat percentage in the diet which is usually between 45% and 60% (as kcal from 

fat). The 60% diet is likely to be significantly more severe than the 45% diet. Furthermore, 

increasing the total percentage of lipids in the diet leads to a decrease of other nutrients, 
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hence there may be difficulties in interpreting if experimental results can be ascribed to an 

increase of one or a decrease of another macronutritient (93). Interpretation may be further 

challenged due to the fact that many DIO protocols do not used matched control and HFD 

diets, thus introducing further experimental variability. 

In most maternal exposure studies, dams are put on HFD to build obesity before mating 

which might give different results from studies in which HFD exposure starts at mating (94, 

138). In our study, the HFD contained 45% fat, and the dams were on regular diet (with 

approximately 10% fat) before mating. The HFD diet contained 45% kcal from fat and was 

matched to the control diet with an exchange of carbohydrates with fat. In addition, the HFD 

and the control diet were matched on protein, vitamin and minerals. 

We observed marked biological variability, not only between but also within each treatment 

group. Biological variability was high for TAG accumulation (shown in Figure 4.3), especially 

in the WL and AD groups that appeared to have some “high response” animals. The social 

structures between the animals in one cage may influence dietary intake and thus contribute 

to variability in such feeding experiments. 

5.6.2 Methodological aspects in gene expression 

In the gene expression analysis data a high intra-group variability was also observed and this 

variability may have both biological and technical origin. In this project, variability that may 

originate from technical sources has been thoroughly evaluated. RNA is a highly sensitive 

molecules and easily exposed to degradation through RNases, and caution in every step of 

the gene expression analysis need to be taken (139). In 2009 the guidelines “Minimum 

information for publication of quantitative real-time PCR experiments” (MIQE) were 

published as an aid to document all the important steps in a study using real-time PCR 

experiments (140). The MIQE guidelines can be a good tool to provide the important 

conditions in a study for the public readers (141). 

Pre-analytical steps are important to consider when evaluating the qPCR data. Tissues are 

more vulnerable for RNA degradation through the sampling and extraction procedure. A 

suggested reason can be the solid and rough structure of the tissue, the RNase enzymatic 

activity and problems during thawing, cutting and lysis process. Tissue-matrix effect is also 

relevant in RT-qPCR. Hemoglobin, fat, glycogen and DNA-binding proteins can inhibit the 
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reverse transcriptase as well as the PCR (103). Tissues like liver are rich in nucleases which 

may degrade RNA faster and more comprehensively than tissues like heart or muscle (142). 

In relative quantification studies, the focus is often to compare the difference in expression 

of a particular gene between different conditions. A sample maximization method is 

suggested as the proper strategy, where as many samples as possible are analyzed in the 

same setup and qPCR run in order to reduce run-to-run variations (87). In this study, all of 

the 71 samples were run in a one 384-well PCR-plate to avoid plate-to-plate variability for 

each gene. 

Both RNA purity and RNA integrity are important for qPCR analysis. The MIQE guidelines 

suggest that RNA samples with an OD 260/280 above 1.8 and OD 260/230 ratio between 1.8 – 2.2 

as pure RNA, and samples with lower values usually contain higher levels of contaminants 

that can inhibit both the RT and qPCR reactions (143). All of the 71 samples analyzed had an 

OD 260/280 ratio above 1.8 and complied with the guideline. Of the 71 RNA samples, 22 

samples had an OD 260/230 ratio below 1.8. Lower OD 260/230 ratio may indicate the presence of 

organic contaminant present, such as chaotropic salts. However, there is no consensus for 

what is the acceptable lower limit for the OD 260/230 (144). The reason for the observed low 

OD 260/230 ratios might be salt leftovers from the extraction procedure. It has been shown 

that trace amounts of guanidine thiocyanate in the lysis buffer influence the OD 260/230 ratio, 

but it is not likely to inhibit downstream applications (144, 145). Further, the OD 260/230 ratio 

also depends on RNA concentration in the sample. Trace amounts of contaminants can have 

a major impact if the RNA concentration is low. However, the most important focus is the 

amount of contaminant that is transferred to the cDNA synthesis, rather than the OD 260/230 

ratio (144).  

Comparison of a partially degraded RNA sample to an intact sample can artificially show 

some genes as being more highly expressed in the better quality sample (87). In addition, 

studies in humans suggest that degraded RNA sample can give significantly higher Cq values 

than a sample with high integrity (87, 143, 146). RNA integrity is measured by the instrument 

Agilent Bioanalyzer. RIN of 10 is viewed as perfectly intact and RIN of 1 as almost 

fragmented and degraded RNA (139). Several studies suggest that RNA samples with RIN 

below 5 should not be used for downstream applications (87, 103, 139). The RIN value for 
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the most of mice liver samples was over five; however, twelve samples had RIN numbers 

below than five. These samples were removed from downstream analysis. Table 4.3 in the 

result chapter shows the mean RIN values for the different developmental groups ranging 

from 5.83 (CTL) to 6.73 (LA). This is in concordance with a study that suggests that the 

average RIN for solid tissues (calf) was between six and eight (103).  

Some of the technical variability can partly be reduced by a suitable normalization method, 

and the geometric mean of multiple reference genes is commonly accepted (89, 139). The 

purpose of normalization is to remove the technical variations as much as possible so the 

difference in gene expression is biologically related. Normalization against three or more 

validated reference genes has established itself as a standard (87). In this study, we observed 

a high variability within treatment group. The SE of the mean of the normalized relative gene 

expression values of several samples was high. The reason for this is unclear, but the Cq 

values in general was high, several of the liver samples showed RIN values close to five, and 

sixteen samples had a low OD 260/230 ratio, which can inhibit the assays and give high Cq 

values. We speculate that the observed intra-group variability could be reduced by 

increasing the cDNA amount in the qPCR reaction, but the timeline did not give this 

opportunity. 

5.6.3 Methodological aspects in protein expression 

Multiplex protein expression analysis in a suspension format was performed using a ready-

made multiplex kit. The focus of the analysis was serum IGF-1. However, as serum material is 

a limited resource, we included some additional biomarkers of potential interest in the 

analysis. All samples were measured on the same microtiter plate to avoid plate-to-plate 

variability. Due to limited economical resources, we prioritized maximizing the number of 

biological parallel samples and only use one technical replicate per sample. The manual 

pipetting steps, especially the pipetting of serum, is considered the largest source of 

variability in such multiplex experiments and it was crucial for correct results to have a 

detailed work list. Even though the worklist was in place; erroneous pipetting in this study 

revealed during sample application led to removal of seven samples due to reduced 

available wells in the microtiterplate. The quantifications of the proteins are measured 

against standard curves with a certain dynamic range. The FABP4/A analysis gave results 

outside the dynamic range, and the software extrapolated the protein concentration. In this 
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case, these results would need to be diluted and re-analyzed to give reliable results. This was 

not performed. 

5.6.4 Methodological aspects in lipid class measurements 

The lipid analysis was performed by Vita AS, Oslo, Norway.  

TAG was the main focus for lipid class measurements, and the correlation of variant was 

stated to be 5%. The high variability in the TAG assay, especially in the WL group, is 

considered most likely to be treatment related, and not technical variation.  

5.7 Conclusion and suggestions for further studies 

The main objective of this master thesis was to determine potential changes in signaling 

pathways involved in NAFLD after exposure to HFD during different life stages, covering in 

utero to adult life. 

The findings from this study suggest that HFD exposure leads to disturbed fat metabolism 

with mild liver steatosis observed in the following percentages of animals: CTL (0%), IU (0%) 

LA (8.3%), IU+LA (37.5%), WL (37.5%) and AD (8.3%). Differences in mean TAG levels 

compared to the control group did not reach statistical significance, reflecting the marked 

variability in response within the HFD exposed groups.  

We found that HFD exposure during different life stages increased hepatic secretion of IGF-1 

protein expression in the IU and WL groups, and not increase in the LA, IU+LA and AD 

groups. This finding indicates a modification in the IGF-1 regulation and signaling for these 

groups with potential implications for organ growth. 

Further, the gene expression data did reveal changes in several of the signaling pathways 

related to NAFLD due to HFD exposure in different life stages. The results showed three 

significantly (Il10, Pparδ and Slc2a2; p<0.05) and four borderline significantly (Hnf4α, Nfe2l2, 

Insr and Tnfrsf1a; p<0.1) differentially expressed genes in some of the HFD groups compared 

to the control group. These results suggest that HFD during early development may induce 

persistent changes in liver expression of genes involved in lipid metabolism, oxidative stress 

response, inflammation, insulin response and glucose homeostasis. 
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Finally, our results indicated that HFD exposure in early life stages is important for 

programming of risk of NAFLD as an adult. The data suggested that gestation to adulthood is 

associated with a greater risk of liver steatosis than exposure from weaning to adulthood. 

However, analyzing additional liver samples for TAG concentration would be necessary to 

strengthen this observation. 

A suggestion for further studies can be a study for confirmation of the gene expression data 

with a focus on one or two signaling pathways combined with determination of the related 

protein expression in liver. In particular, the suggested increase in NAFLD in mice exposed to 

HFD at early life stages and throughout life compared to those exposed only as adult should 

be confirmed and the underlying differences in cell signaling should be explored in more 

depth. 

 

  



Page | 65 
 

References 

1. Le MH, Devaki P, Ha NB, Jun DW, Te HS, Cheung RC, et al. Prevalence of non-alcoholic fatty 
liver disease and risk factors for advanced fibrosis and mortality in the United States. PloS one. 
2017;12(3):e0173499. 
2. El-Kader SMA, El-Den Ashmawy EMS. Non-alcoholic fatty liver disease: The diagnosis and 
management. World journal of hepatology. 2015;7(6):846. 
3. Ngo HT, Hetland RB, Steffensen I-L. The Intrauterine and Nursing Period Is a Window of 
Susceptibility for Development of Obesity and Intestinal Tumorigenesis by a High Fat Diet in Min/+ 
Mice as Adults. Journal of Obesity. 2015;2015:25. 
4. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. Jama. 2015;313(22):2263-
73. 
5. Ludwig J, Viggiano TR, Mcgill DB, Oh B. Nonalcoholic steatohepatitis: Mayo Clinic experiences 
with a hitherto unnamed disease. Mayo Clinic Proceedings. 1980;55(7):434-8. 
6. Glastras SJ, Chen H, Pollock CA, Saad S. Maternal obesity increases the risk of metabolic 
disease and impacts renal health in offspring. Bioscience Reports. 2018. 
7. OECD. Health at a glance 2017: OECD indicators: OECD publishing; 2017 [cited 2018 20.05.]. 
Available from: http://www.oecd.org/health/health-systems/health-at-a-glance-19991312.htm. 
8. Norwegian Institute of Public Health. Overweight and obesity in Norway 2017 [cited 2018 
16.04.2018]. Available from: https://www.fhi.no/en/op/hin/risk--protective-factors/overweight-and-
obesity-in-norway. 
9. Stewart ST, Cutler DM, Rosen AB. Forecasting the effects of obesity and smoking on US life 
expectancy. New England Journal of Medicine. 2009;361(23):2252-60. 
10. The Global Burden of Disease Obesity Collaborators. Health Effects of Overweight and 
Obesity in 195 Countries over 25 Years. New England Journal of Medicine. 2017;377(1):13-27. 
11. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased 
oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation. 
2017;114(12):1752-61. 
12. Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. The Journal of Clinical 
Endocrinology & Metabolism. 2004;89(6):2595-600. 
13. World Health Organization. Body Mass Index - BMI 2018 [cited 2018 20.05.]. Available from: 
http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-
mass-index-bmi. 
14. Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and consequences 
of obesity. American journal of public health. 2016;106(9):1656-62. 
15. O'reilly JR, Reynolds RM. The risk of maternal obesity to the long‐term health of the 
offspring. Clinical endocrinology. 2013;78(1):9-16. 
16. Leibowitz KL, Moore RH, Ahima RS, Stunkard AJ, Stallings VA, Berkowitz RI, et al. Maternal 
obesity associated with inflammation in their children. World Journal of Pediatrics. 2012;8(1):76-9. 
17. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. The American 
Journal of Human Genetics. 2012;90(1):7-24. 
18. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS 
discovery: biology, function, and translation. The American Journal of Human Genetics. 
2017;101(1):5-22. 
19. Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, et al. Using extended 
genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS 
genetics. 2013;9(5):e1003520. 
20. Zillikens MC, Yazdanpanah M, Pardo LM, Rivadeneira F, Aulchenko YS, Oostra BA, et al. Sex-
specific genetic effects influence variation in body composition. Diabetologia. 2008;51(12):2233-41. 
21. Levy E, Saenger A, Steffes M, Delvin E. Pediatric obesity and cardiometabolic disorders: risk 
factors and biomarkers. EJIFCC. 2017;28(1):6. 



Page | 66 
 

22. World Health Organization. Childhood overweight and obesity 2018 [cited 2018 May 20 
2018]. Available from: http://www.who.int/dietphysicalactivity/childhood. 
23. Llewellyn A, Simmonds M, Owen C, Woolacott N. Childhood obesity as a predictor of 
morbidity in adulthood: a systematic review and meta‐analysis. Obesity reviews. 2016;17(1):56-67. 
24. Kneeman JM, Misdraji J, Corey KE. Secondary causes of nonalcoholic fatty liver disease. 
Therapeutic advances in gastroenterology. 2012;5(3):199-207. 
25. Anderson EL, Howe LD, Jones HE, Higgins JP, Lawlor DA, Fraser A. The prevalence of non-
alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PloS 
one. 2015;10(10):e0140908. 
26. Das K, Das K, Mukherjee PS, Ghosh A, Ghosh S, Mridha AR, et al. Nonobese population in a 
developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. 
Hepatology. 2010;51(5):1593-602. 
27. McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. Evidence of NAFLD 
progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for 
prognosis and clinical management. Journal of hepatology. 2015;62(5):1148-55. 
28. Zhu J-Z, Hollis-Hansen K, Wan X-Y, Fei S-J, Pang X-L, Meng F-D, et al. Clinical guidelines of non-
alcoholic fatty liver disease: A systematic review. World journal of gastroenterology. 
2016;22(36):8226. 
29. European Association for the Study of the Liver, European Association for the Study of 
Diabetes. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty 
liver disease. Obesity facts. 2016;9(2):65-90. 
30. Ahmed M. Non-alcoholic fatty liver disease in 2015. World journal of hepatology. 
2015;7(11):1450. 
31. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842-5. 
32. James O, Day C. Non-alcoholic steatohepatitis: another disease of affluence. The Lancet. 
1999;353(9165):1634-6. 
33. Yu J, Marsh S, Hu J, Feng W, Wu C. The pathogenesis of nonalcoholic fatty liver disease: 
interplay between diet, gut microbiota, and genetic background. Gastroenterology research and 
practice. 2016;2016. 
34. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the 
multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836-46. 
35. Alam S, Mustafa G, Alam M, Ahmad N. Insulin resistance in development and progression of 
nonalcoholic fatty liver disease. World journal of gastrointestinal pathophysiology. 2016;7(2):211. 
36. Welsh JA, Karpen S, Vos MB. Increasing prevalence of nonalcoholic fatty liver disease among 
United States adolescents, 1988-1994 to 2007-2010. The Journal of pediatrics. 2013;162(3):496-500. 
e1. 
37. Wankhade UD, Zhong Y, Kang P, Alfaro M, Chintapalli SV, Thakali KM, et al. Enhanced 
offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic 
and microbiome alterations. PloS one. 2017;12(4):e0175675. 
38. Walsh JM, McAuliffe FM. Impact of maternal nutrition on pregnancy outcome–Does it matter 
what pregnant women eat? Best Practice & Research Clinical Obstetrics & Gynaecology. 
2015;29(1):63-78. 
39. Barker DJ. The origins of the developmental origins theory. Journal of internal medicine. 
2007;261(5):412-7. 
40. Ekamper P, van Poppel F, Stein AD, Bijwaard GE, Lumey L. Prenatal famine exposure and 
adult mortality from cancer, cardiovascular disease, and other causes through age 63 years. 
American journal of epidemiology. 2015;181(4):271-9. 
41. Lukaszewski M-A, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal 
period program adipose tissue in offspring. American Journal of Physiology-Endocrinology and 
Metabolism. 2013;305(10):E1195-E207. 
42. Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for 
understanding disease etiology and prevention. Current opinion in pediatrics. 2015;27(2):248. 



Page | 67 
 

43. Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. 
Birth defects research Part A: Clinical and molecular teratology. 2010;88(10):938-44. 
44. McKay J, Mathers J. Diet induced epigenetic changes and their implications for health. Acta 
physiologica. 2011;202(2):103-18. 
45. Brumbaugh DE, Friedman JE. Developmental origins of nonalcoholic fatty liver disease. 
Pediatric research. 2014;75:140. 
46. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, et al. Maternal high-fat 
feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance 
and fatty liver. The Journal of nutritional biochemistry. 2012;23(4):341-8. 
47. Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE. 
Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal 
obesity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 
2014;307(1):R26-R34. 
48. Wang C-Y, Liao JK. A mouse model of diet-induced obesity and insulin resistance.  mTOR: 
Springer; 2012. p. 421-33. 
49. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the 
mouse genome. Nature. 2002;420:520. 
50. Justice MJ, Siracusa LD, Stewart AF. Technical approaches for mouse models of human 
disease. Disease models & mechanisms. 2011;4(3):305-10. 
51. Parekh PI, Petro AE, Tiller JM, Feinglos MN, Surwit RS. Reversal of diet-induced obesity and 
diabetes in C57BL/6J mice. Metabolism. 1998;47(9):1089-96. 
52. Wilson RM, Messaoudi I. The impact of maternal obesity during pregnancy on offspring 
immunity. Molecular and cellular endocrinology. 2015;418:134-42. 
53. Kim J, Kim J, Kwon YH. Effects of disturbed liver growth and oxidative stress of high-fat diet-
fed dams on cholesterol metabolism in offspring mice. Nutrition research and practice. 
2016;10(4):386-92. 
54. de Paula Simino LA, de Fante T, Fontana MF, Borges FO, Torsoni MA, Milanski M, et al. Lipid 
overload during gestation and lactation can independently alter lipid homeostasis in offspring and 
promote metabolic impairment after new challenge to high-fat diet. Nutrition & Metabolism. 
2017;14(1):16. 
55. de Fante T, Simino LA, Reginato A, Payolla TB, Vitoréli DCG, de Souza M, et al. Diet-induced 
maternal obesity alters insulin signalling in male mice offspring rechallenged with a high-fat diet in 
adulthood. PloS one. 2016;11(8):e0160184. 
56. Kruse M, Seki Y, Vuguin PM, Du XQ, Fiallo A, Glenn AS, et al. High-fat intake during pregnancy 
and lactation exacerbates high-fat diet-induced complications in male offspring in mice. 
Endocrinology. 2013;154(10):3565-76. 
57. Elahi MM, Cagampang FR, Mukhtar D, Anthony FW, Ohri SK, Hanson MA. Long-term maternal 
high-fat feeding from weaning through pregnancy and lactation predisposes offspring to 
hypertension, raised plasma lipids and fatty liver in mice. British Journal of Nutrition. 
2009;102(4):514-9. 
58. Thakali KM, Saben J, Faske JB, Lindsey F, Gomez-Acevedo H, Lowery Jr CL, et al. Maternal 
pregravid obesity changes gene expression profiles toward greater inflammation and reduced insulin 
sensitivity in umbilical cord. Pediatric research. 2014;76(2):202. 
59. Zhou D, Pan Y-X. Pathophysiological basis for compromised health beyond generations: role 
of maternal high-fat diet and low-grade chronic inflammation. The Journal of nutritional 
biochemistry. 2015;26(1):1-8. 
60. Chen Y, Wang J, Yang S, Utturkar S, Crodian J, Cummings S, et al. Effect of high-fat diet on 
secreted milk transcriptome in midlactation mice. Physiological genomics. 2017;49(12):747-62. 
61. de los Ríos EA, Ruiz-Herrera X, Tinoco-Pantoja V, López-Barrera F, Martínez de la Escalera G, 
Clapp C, et al. Impaired prolactin actions mediate altered offspring metabolism induced by maternal 
high-fat feeding during lactation. The FASEB Journal. 2018:fj. 201701154R. 



Page | 68 
 

62. Pfeifer A. PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development 
and Function. Frontiers in Physiology. 2018;9:70. 
63. Shaik AA, Qiu B, Wee S, Choi H, Gunaratne J, Tergaonkar V. Phosphoprotein network analysis 
of white adipose tissues unveils deregulated pathways in response to high-fat diet. Scientific reports. 
2016;6:25844. 
64. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic 
liver disease. Hepatology. 2005;42(5):987-1000. 
65. Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance 
in obesity. Nature Reviews Endocrinology. 2017;13(6):338-51. 
66. Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic 
syndrome. The lancet Diabetes & endocrinology. 2014;2(11):901-10. 
67. Berlanga A, Guiu-Jurado E, Porras JA, Auguet T. Molecular pathways in non-alcoholic fatty 
liver disease. Clinical and experimental gastroenterology. 2014;7:221. 
68. Petta S, Muratore C, Craxi A. Non-alcoholic fatty liver disease pathogenesis: the present and 
the future. Digestive and Liver Disease. 2009;41(9):615-25. 
69. Gregorio BM, Souza-Mello V, Carvalho JJ, Mandarim-de-Lacerda CA, Aguila MB. Maternal 
high-fat intake predisposes nonalcoholic fatty liver disease in C57BL/6 offspring. American Journal of 
Obstetrics & Gynecology. 2010;203(5):495. e1-. e8. 
70. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, et al. Inhibiting triglyceride 
synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with 
nonalcoholic steatohepatitis. Hepatology. 2007;45(6):1366-74. 
71. Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-
alcoholic fatty liver disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 
2015;1852(9):1765-78. 
72. Barrera F, George J. Non-alcoholic fatty liver disease: more than just ectopic fat 
accumulation. Drug Discovery Today: Disease Mechanisms. 2013;10(1-2):e47-e54. 
73. Adamek A, Kasprzak A. Insulin-Like Growth Factor (IGF) System in Liver Diseases. 
International journal of molecular sciences. 2018;19(5). 
74. Dichtel LE, Corey KE, Misdraji J, Bredella MA, Schorr M, Osganian SA, et al. The association 
between IGF-1 levels and the histologic severity of nonalcoholic fatty liver disease. Clinical and 
translational gastroenterology. 2017;8(1):e217. 
75. Ita JR, Castilla-Cortázar I, Aguirre G, Sanchez-Yago C, Santos-Ruiz MO, Guerra-Menendez L, et 
al. Altered liver expression of genes involved in lipid and glucose metabolism in mice with partial IGF-
1 deficiency: an experimental approach to metabolic syndrome. Journal of translational medicine. 
2015;13(1):326. 
76. Hribal ML, Procopio T, Petta S, Sciacqua A, Grimaudo S, Pipitone RM, et al. Insulin-like growth 
factor-I, inflammatory proteins, and fibrosis in subjects with nonalcoholic fatty liver disease. The 
Journal of Clinical Endocrinology & Metabolism. 2013;98(2):E304-E8. 
77. Nishizawa H, Iguchi G, Fukuoka H, Takahashi M, Suda K, Bando H, et al. IGF-I induces 
senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Scientific reports. 
2016;6:34605. 
78. Clemmons DR. The relative roles of growth hormone and IGF-1 in controlling insulin 
sensitivity. The Journal of clinical investigation. 2004;113(1):25-7. 
79. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, et al. 
Adverse outcome pathway (AOP) development I: strategies and principles. Toxicological Sciences. 
2014;142(2):312-20. 
80. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, et al. WikiPathways: a 
multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids 
Research. 2018;46(D1):D661-D7. 
81. Bader GD, Cary MP, Sander C. Pathguide: a Pathway Resource List. Nucleic Acids Research. 
2006;34(suppl_1):D504-D6. 



Page | 69 
 

82. Lodish H KC, Bretscher A, Amon A, Berk A, Krieger M, Ploegh H, Scott M. Molecular Cell 
Biology. 7 ed. New York: W.H.Freeman and Company; 2013. 1154 p. 
83. Mantione KJ, Kream RM, Kuzelova H, Ptacek R, Raboch J, Samuel JM, et al. Comparing 
bioinformatic gene expression profiling methods: microarray and RNA-Seq. Medical science monitor 
basic research. 2014;20:138. 
84. Schena M, Shalon D, Davis RW, Brown PO. Quantitative Monitoring of Gene Expression 
Patterns with a Complementary DNA Microarray. Science. 1995;270(5235):467-70. 
85. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene 
expression analysis. Biotechniques. 2008;44(5):619. 
86. Metzker ML. Sequencing technologies—the next generation. Nature reviews genetics. 
2010;11(1):31. 
87. Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis 
using real-time PCR. Methods. 2010;50(4):227-30. 
88. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative 
PCR and the 2− ΔΔCT method. methods. 2001;25(4):402-8. 
89. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate 
normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal 
control genes. Genome biology. 2002;3(7):research0034. 1. 
90. Tatsumi K, Ohashi K, Taminishi S, Okano T, Yoshioka A, Shima M. Reference gene selection for 
real-time RT-PCR in regenerating mouse livers. Biochemical and biophysical research 
communications. 2008;374(1):106-10. 
91. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature 
Protocols. 2008;3:1101. 
92. Goni R, García P, Foissac S. The qPCR data statistical analysis. Integromics White Paper. 
2009:1-9. 
93. Hughes AN, Oxford JT. A lipid-rich gestational diet predisposes offspring to nonalcoholic fatty 
liver disease: a potential sequence of events. Hepatic medicine: evidence and research. 2014;6:15. 
94. Williams L, Seki Y, Vuguin PM, Charron MJ. Animal models of in utero exposure to a high fat 
diet: a review. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2014;1842(3):507-19. 
95. Duale N, Steffensen IL, Andersen J, Brevik A, Brunborg G, Lindeman B. Impaired sperm 
chromatin integrity in obese mice. Andrology. 2014;2(2):234-43. 
96. Gutzkow K, Duale N, Danielsen T, Stedingk H, Shahzadi S, Instanes C, et al. Enhanced 
susceptibility of obese mice to glycidamide‐induced sperm chromatin damage without increased 
oxidative stress. Andrology. 2016;4(6):1102-14. 
97. ThermoFisher. How Luminex technology works 2018 [cited 2018 April 9]. Available from: 
https://www.thermofisher.com/no/en/home/references/protein-analysis-guide/multiplex-assays-
luminex-assays/how-luminex-technology-works.html. 
98. Faul F, Erdfelder E, Lang A-G, Buchner A. G* Power 3: A flexible statistical power analysis 
program for the social, behavioral, and biomedical sciences. Behavior research methods. 
2007;39(2):175-91. 
99. Folch J, Lees M, Sloane Stanley G. A simple method for the isolation and purification of total 
lipids from animal tissues. J biol Chem. 1957;226(1):497-509. 
100. Zymo Research. Quick-RNA MiniPrep R1054 2018 [cited 2018 21.05.]. Available from: 
https://dwo0hlbtc3ypb.cloudfront.net/amasty/amfile/attach/_R1054_R1055_Quick-
RNA_Miniprep_Kit_ver.3.2.2.pdf. 
101. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual: Cold spring 
harbor laboratory press; 1989. 
102. Agilent Technologies. Agilent 2100 Bioanalyzer 2100 Experts's User guide May 2005 [cited 
2018 April 07]. Available from: https://www.agilent.com/cs/library/usermanuals/Public/G2946-
90004_Vespucci_UG_eBook_(NoSecPack).pdf. 
103. Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. 
Molecular aspects of medicine. 2006;27(2-3):126-39. 



Page | 70 
 

104. Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW. Comparison of relative mRNA 
quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. 
Biotechnology letters. 2006;28(19):1601-13. 
105. Duale N, Brunborg G, Rønningen KS, Briese T, Aarem J, Aas KK, et al. Human blood RNA 
stabilization in samples collected and transported for a large biobank. BMC research notes. 
2012;5(1):510. 
106. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-
PCR data analysis: current concepts and the novel “gene expression’s C T difference” formula. Journal 
of Molecular Medicine. 2006;84(11):901-10. 
107. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse 
transcription-PCR data: a model-based variance estimation approach to identify genes suited for 
normalization, applied to bladder and colon cancer data sets. Cancer research. 2004;64(15):5245-50. 
108. Howie G, Sloboda D, Kamal T, Vickers M. Maternal nutritional history predicts obesity in adult 
offspring independent of postnatal diet. The Journal of physiology. 2009;587(4):905-15. 
109. Borengasser SJ, Kang P, Faske J, Gomez-Acevedo H, Blackburn ML, Badger TM, et al. High fat 
diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic 
programming of liver in rat offspring. PloS one. 2014;9(1):e84209. 
110. Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology. 
2016;150(8):1769-77. 
111. Li S, Zeng X-Y, Zhou X, Wang H, Jo E, Robinson SR, et al. Dietary cholesterol induces hepatic 
inflammation and blunts mitochondrial function in the liver of high-fat-fed mice. The Journal of 
nutritional biochemistry. 2016;27:96-103. 
112. Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C, et al. 
Maternal obesity during pregnancy and lactation programs the development of offspring non-
alcoholic fatty liver disease in mice. Journal of hepatology. 2010;52(6):913-20. 
113. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, et al. Maternal 
high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. The Journal of clinical 
investigation. 2009;119(2):323-35. 
114. Chechi K, Cheema SK. Maternal diet rich in saturated fats has deleterious effects on plasma 
lipids of mice. Experimental & Clinical Cardiology. 2006;11(2):129. 
115. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of 
nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081-90. 
116. Ioannou GN. The role of cholesterol in the pathogenesis of NASH. Trends in Endocrinology & 
Metabolism. 2016;27(2):84-95. 
117. Bellanti F, Villani R, Facciorusso A, Vendemiale G, Serviddio G. Lipid oxidation products in the 
pathogenesis of non-alcoholic steatohepatitis. Free Radical Biology and Medicine. 2017;111:173-85. 
118. Memmott RM, Pearman K, Gills J, Tullot T, Wong V, Singer B, et al. Increased NSCLC 
tumorigenesis in mice fed a high fat diet is associated with increased plasma IGF-1 levels and PD-1 
expression in CD4+ tumor-infiltrating lymphocytes. AACR; 2017. 
119. Lewitt MS, Dent MS, Hall K. The insulin-like growth factor system in obesity, insulin resistance 
and type 2 diabetes mellitus. Journal of clinical medicine. 2014;3(4):1561-74. 
120. Dubois V, Eeckhoute J, Lefebvre P, Staels B. Distinct but complementary contributions of 
PPAR isotypes to energy homeostasis. The Journal of Clinical Investigation. 2017;127(4):1202-14. 
121. Vacca M, Allison M, Griffin JL, Vidal-Puig A. Fatty acid and glucose sensors in hepatic lipid 
metabolism: implications in NAFLD. Semin Liver Dis. 2015;35(3):250-61. 
122. Vacca M, Degirolamo C, Massafra V, Polimeno L, Mariani-Costantini R, Palasciano G, et al. 
Nuclear receptors in regenerating liver and hepatocellular carcinoma. Molecular and cellular 
endocrinology. 2013;368(1-2):108-19. 
123. Baciu C, Pasini E, Angeli M, Schwenger K, Afrin J, Humar A, et al. Systematic integrative 
analysis of gene expression identifies HNF4A as the central gene in pathogenesis of non-alcoholic 
steatohepatitis. PloS one. 2017;12(12):e0189223. 



Page | 71 
 

124. Zhang Z, Zhou S, Jiang X, Wang Y-H, Li F, Wang Y-G, et al. The role of the Nrf2/Keap1 pathway 
in obesity and metabolic syndrome. Reviews in Endocrine and Metabolic Disorders. 2015;16(1):35-
45. 
125. Ishii T, Itoh K, Yamamoto M. [18] Roles of Nrf2 in activation of antioxidant enzyme genes via 
antioxidant responsive elements.  Methods in enzymology. 348: Elsevier; 2002. p. 182-90. 
126. Wang C, Cui Y, Li C, Zhang Y, Xu S, Li X, et al. Nrf2 deletion causes “benign” simple steatosis to 
develop into nonalcoholic steatohepatitis in mice fed a high-fat diet. Lipids in health and disease. 
2013;12(1):165. 
127. Tang W, Jiang Y-F, Ponnusamy M, Diallo M. Role of Nrf2 in chronic liver disease. World 
Journal of Gastroenterology: WJG. 2014;20(36):13079. 
128. Sharma DL, Lakhani HV, Klug RL, Snoad B, El-Hamdani R, Shapiro JI, et al. Investigating 
Molecular Connections of Non-alcoholic Fatty Liver Disease with Associated Pathological Conditions 
in West Virginia for Biomarker Analysis. Journal of clinical & cellular immunology. 2017;8(5). 
129. Zahran WE, El-Dien KAS, Kamel PG, El-Sawaby AS. Efficacy of tumor necrosis factor and 
interleukin-10 analysis in the follow-up of nonalcoholic fatty liver disease progression. Indian Journal 
of Clinical Biochemistry. 2013;28(2):141-6. 
130. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue 
macrophage polarization. The Journal of clinical investigation. 2007;117(1):175-84. 
131. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin 
resistance: lessons from genetically engineered mice. The Journal of clinical investigation. 
2008;118(3):829-38. 
132. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for 
gene and protein annotation. Nucleic acids research. 2015;44(D1):D457-D62. 
133. Yonamine C, Pinheiro-Machado E, Michalani M, Alves-Wagner A, Esteves J, Freitas H, et al. 
Resveratrol Improves Glycemic Control in Type 2 Diabetic Obese Mice by Regulating Glucose 
Transporter Expression in Skeletal Muscle and Liver. Molecules. 2017;22(7):1180. 
134. Thorens B, Mueckler M. Glucose transporters in the 21st Century. American Journal of 
Physiology-Endocrinology and Metabolism. 2009;298(2):E141-E5. 
135. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58(2):221-
32. 
136. Yu D, Chen G, Pan M, Zhang J, He W, Liu Y, et al. High fat diet‐induced oxidative stress blocks 
hepatocyte nuclear factor 4α and leads to hepatic steatosis in mice. Journal of cellular physiology. 
2018;233(6):4770-82. 
137. Catalano PM. Obesity and pregnancy—the propagation of a viscous cycle? : Oxford University 
Press; 2003. 
138. Zheng J, Xiao X, Zhang Q, Yu M, Xu J, Wang Z. Maternal high-fat diet modulates hepatic 
glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring. 
International journal of molecular sciences. 2014;15(9):14967-83. 
139. Becker C, Hammerle-Fickinger A, Riedmaier I, Pfaffl M. mRNA and microRNA quality control 
for RT-qPCR analysis. Methods. 2010;50(4):237-43. 
140. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: 
minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry. 
2009;55(4):611-22. 
141. Bustin SA, Beaulieu J-F, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, et al. MIQE precis: Practical 
implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR 
experiments. BioMed Central; 2010. 
142. Sidova M, Tomankova S, Abaffy P, Kubista M, Sindelka R. Effects of post-mortem and physical 
degradation on RNA integrity and quality. Biomolecular detection and quantification. 2015;5:3-9. 
143. Taylor SC, Mrkusich EM. The state of RT-quantitative PCR: firsthand observations of 
implementation of minimum information for the publication of quantitative real-time PCR 
experiments (MIQE). Journal of molecular microbiology and biotechnology. 2014;24(1):46-52. 



Page | 72 
 

144. Cicinnati VR, Shen Q, Sotiropoulos GC, Radtke A, Gerken G, Beckebaum S. Validation of 
putative reference genes for gene expression studies in human hepatocellular carcinoma using real-
time quantitative RT-PCR. BMC cancer. 2008;8(1):350. 
145. Qiagen. RNA preparation on downstream applications. 2018 [cited 2018 May 13]. Available 
from: https://www.qiagen.com/gb/resources/resourcedetail?id=11226191-0a82-4a9b-ba4a-
99800b6f8595&lang=en. 
146. Huang X, Baumann M, Nikitina L, Wenger F, Surbek D, Körner M, et al. RNA degradation 
differentially affects quantitative mRNA measurements of endogenous reference genes in human 
placenta. Placenta. 2013;34(7):544-7. 

 

  



Page | 73 
 

Appendix A: Detailed protocols/primer sequences 

A1: Protocol for Luminex assay 

1. To avoid cross-contamination, pipette tips were changed between additions of each 

standard level, between sample additions and between reagent additions. Separate 

reservoirs were used for each reagent. 

2. Reagent preparation: All reagents were brought to room temperature before use. 

The wash buffer was made the day before. 20 mL of Wash Buffer Concentrate was 

added to 480 mL distilled water to prepare 500 mL of ready-to-use wash buffer. The 

ready work solution was stored in the refrigerator at 4°C in a glass container closed 

with a cork. All serum samples were thawed at 4°C and diluted 1:50 by 10 µL sample 

and 490 µL Calibrator diluent RD6-52 in 0.6 ml polypropylene test tubes. 

3. Standard Cocktails B, C, E and F were provided in the kit. Each standard was 

reconstituted with the volumes 0.275 mL, 0.2 mL, 0.2 mL and 0.25 mL of Calibrator 

Diluent RD6-52, respectively. The standards were gentle agitated for 15 minutes prior 

to dilutions. 100 µL each of the standard cocktails was combined in one single 

polypropylene tube, and in addition 600 µL Calibrator diluent RD6-52 was added to 

the one tube. This tube was used to make the dilution series. 

4. Microparticles were prepared within 30 minutes of use. The Microparticle Cocktail 

vial was centrifuged for 30 seconds at 1000 x g before removing the cap. The vial was 

gently vortexed to resuspend the microparticles. The Microparticle Cocktail was 

diluted using Assay Diluent RD1W (500 uL microparticles and 5 mL diluent) in the 

mixing bottle provided in the kit. Light was avoided for microparticles. 

5. The Biotin Antibody Cocktail vial was centrifuged for 30 seconds at 1000 x g before 

removing the cap. The vial was gently vortexed. The Biotin Antibody Cocktail was 

diluted using Assay diluent RD1W (500 µL biotin antibody cocktail and 5 mL diluent). 

The vial was gently mixed. 

6. Streptavidin-PE preparation was performed in a polypropylene test tube wrapped 

with aluminium foil to protect the Streptavidin-PE from light during handling and 

storage. The Streptavidin-PE vial was centrifuged for 30 seconds at 1000 x g before 

removing the cap. The vial was gently vortexed. The Streptavidin-PE concentrate was 

diluted to a 1X concentration by adding 220 µL of Streptavidin-PE concentrate to 5.35 
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mL of Wash Buffer. This provided enough Streptavidin-PE to assay one 96-well 

microplate. 

7. The diluted microparticles were resuspended by vortexing, and 50 µL of microparticle 

cocktail was pipetted in each well of the microplate. 

8. 50 µL of standard or sample was added to the assigned wells. The microplate was 

covered with a foil plate sealer. The microplate was incubated for two hours at room 

temperature on the horizontal orbital microplate shaker KS125 basic (IKA, 

Wilmington, NC, USA) set at 800 ± 50 rpm.   

9. The wash procedure was performed using the Bio-Plex Pro Wash Station (Bio-Rad 

Laboratories Inc., Hercules, CA, USA) with a magnetic device designed to 

accommodate a microplate. The microplate was put on the washer. One minute was 

allowed before removing the liquid.The wells were filled with Wash buffer (100 µL), 

and one minute was allowed before removing the liquid again. This wash procedure 

was repeated three times. 

10. 50 µL of diluted Biotin Antibody cocktail was added to each well. The microplate was 

covered with a foil plate sealer. The microplate was incubated for one hour at room 

temperature on a horizontal orbital microplate shaker set at 800 ± 50 rpm. 

11. The wash procedure was repeated. 

12. 50 µL of diluted Streptavidin-PE was added to each well. The microplate was covered 

with a foil plate sealer. The microplate was incubated for 30 minutes at room 

temperature on a horizontal orbital microplate shaker set at 800 ± 50 rpm. 

13. The wash procedure was repeated. 

14. The microparticles were resuspended by adding 100 µL of Wash buffer to each well. 

The microplate was incubated for two minutes on the shaker set at 800 ± 50 rpm. 

15. The microplate was read in the Bio-Rad Bio-Plex 200 dual laser flow based instrument 

within 90 minutes. 

A2: Protocols for isolation and quality controls 

A2.1 Zymo Research Quick-RNATM Mini Prep 

1. Reagent preparation: Before starting, 96 mL 100% ethanol was added to the 24 mL 

RNA wash buffer concentrate. Already reconstituted, aliquoted and frozen DNase I 

was thawed, and prepared as DNase I reaction mix in a RNase-free tube. 5 µL DNase I 
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and 75 µL DNA Digestion buffer per sample to be isolated was added and mixed 

gently in an RNase-free Eppendorf-tube. 

2. After thawing at 4°C, the lysates were cleared by centrifugation at 10 000 x for 30 

seconds.  

3. The supernatant was transferred to a filtration column and centrifuged at 10 000 x g 

for 1 minute for removing of the majority of gDNA. The flow-through was saved for 

RNA purification.  

4. All centrifugation steps in the following procedure were performed at 14 000 x g. 

5. To bind the RNA, equal volume of 95% ethanol was added to the sample in RNA lysis 

buffer (1:1). The tube was mixed well. The mixture was transferred to a new filtration 

column and centrifuged at for 30 seconds. The flow-through was discarded. As the 

columns only had capacity of 700 µL, the column had to be filled and centrifuged 

twice per sample.  

6. The column was prewashed with 400 µL RNA wash buffer added and centrifuged for 

30 seconds. The flow-through was discarded. 

7. 80 µL DNase reaction mix was added directly to the column matrix. The column was 

incubated in room temperature for 15 minutes, and centrifuged for 30 seconds.  

8. 400 µL RNA Prep buffer was added to the column and centrifuged for 30 seconds. 

The flow-through was discarded. 

9. 700 µL RNA Wash buffer was added to the column and centrifuged for 30 seconds. 

The flow-through was discarded. 

10. 400 µL RNA wash buffer was added to the column and centrifuged for 2 minutes to 

ensure complete removal of the wash buffer. The column was carefully transferred 

into an RNase-free Eppendorph tube. 

11. 50 µL DNase/Rnase-free water was added directly to the column matrix and 

centrifuged for 30 seconds to elute the RNA.  

12. The eluted sample RNA was stored immediately at -°80C. 

A2.2 NanoDrop spectrophotometer for assessment of quality and quantity 

1. The NanoDrop™ 1000 Spectrophotometer was initialized and as blank 1.5 µL 

Rnase/DNase-free H2O was used. 

2. The protocols RNA-40 and ss-DNA-33 were chosen for RNA and cDNA respectively. 
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3. Input volume for each sample was 1.5 µL. 

4. The results gave purity measures as absorbance ratios of 260/280 and 260/230 and 

yield in ng/µL. 

5. The instrument was cleaned between each measurement with lens-cleaning tissue 

on both upper and lower pedestals. After use the pedestals were cleaned with dH20. 

A2.3 RNA Nano 6000 Assay for RIN determination 

1. RNA ladder preparation: The RNA ladder was spun down and pipetted into an RNase-

free tube. The ladder was denatured for 2 minutes at 70°C and immediately cooled 

on ice. Aliquots required for daily use were prepared and stored at -70°C in 0.5 mL 

RNase-free vials. The frozen RNA ladder aliquots did not need additional heat 

denaturation. 

2. All reagents were equilibrated to room temperature for 30 minutes before use.  

3. The dye and dye mixtures were protected from light to avoid decomposing and 

hence reduction of signal intensity. The light covers were removed only when 

pipetting.  

4. RNA samples were denatured for 2 minutes at 70°C and kept on ice afterwards 

before use. 

5. The RNA ladder aliquot was thawed on ice before use. 

6. 550 µL of RNA 6000 gel matrix was spun through a spin filter for 10 minutes in room 

temperature at 1500 x g. The filtered gel was aliquoted into 65 µL aliquots in RNase-

free microcentrifuge tubes and stored at 4°C.  

7. The RNA dye concentrate was vortexed for 10 seconds and spun down. 1 µL of dye 

concentrate was added to 65 µL of filtered gel, and the two were mixed well by 

vortexing. The gel-dye mix was spun down for 10 minutes in room temperature at 

13 000 x g. 

8. A RNA Nano Chip was put on the chip priming station. 

9. 9 µL of the gel-dye mix was pipetted in the well marked G. 

10. The plunger was positioned at 1 mL and the chip priming station was closed. 

11. The plunger was pressed until it was held by the clip. After 30 seconds of wait, the 

clip was released. After a 5 seconds wait, the plunger was pulled back to the 1 mL 

position. 
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12. The chip priming station was opened, and 9 µL of gel-dye mix was pipetted into wells 

marked G.  

13. 5 µL of RNA marker was pipetted in all 12 wells and the well marked with a ladder 

icon. 

14. 1 µL of prepared and thawed ladder was pipetted in the well marked with a ladder 

icon.  

15. 1 µL of RNA sample was pipetted in each of the 12 sample wells. 

16. The chip was vortexed horizontally in the IKA vortexer for 1 minute at 2400 rpm. 

17. The electrodes of the Agilent 2100 Bioanalyzer were decontaminated for a minute 

with 350 µL RNaseZAP followed by 350 µL RNase-free water for minimum 10 

seconds. 

18. The Eukaryote Total RNA Nano protocol was chosen in the Bioanalyzer software and 

the chip was run in the instrument within 5 minutes.  

A3: Protocol for cDNA synthesis 

A3.1 cDNA synthesis using High-Capacity cDNA Reverse Transcription Kit 

1. The equipments (pipettes, tips, cooling block and more) and the laminar flow cabinet 

were cleaned with RNase away and ethanol before the procedure was carried out. In 

addition the cabinet was treated with UV light for 30 minutes  

2. The RNA was thawed at 4°C and correct amount of RNA was transferred to a 96-well 

PCR plate where correct amount of dH20 had been pipetted to achieve 100 ng/uL 

RNA as input concentration for the samples. The volume of RNA in each well was 20 

µL in the PCR plate.  

3. The kit components of the RT master mix were thawed on ice, and mixed according 

to the volumes stated in the package insert. 20 µL of RT master mix was pipetted 

manually in each well in the PCR plate. This gave equal amount of diluted sample 

RNA and RT mastermix; and the total reaction volume was 40 µL. 

4. The PCR plate was sealed with adhesive cover and centrifuged for one minute at 

13 000 x g before cDNA synthesis was performed in the Eppendorf Mastercycler. 

5. cDNA was stored at -80°C until used. 
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A4: Primer sequences for reference genes and target genes  

Table A.1: Overview of all genes analyzed (reference and target genes) with their primer sequences and 
melting point listed.  

Gene 
symbol 

Gene name Forward/reverse 
primers (F/R) 

Primer sequence (5’→3’) Tm° 

Reference genes 

Actβ actin, beta ( F CCCGCGAGTACAACCTTCT 64.0 

R CGTCATCCATGGCGAACT 65.0 

Gusβ glucuronidase beta F CTCTGGTGGCCTTACCTGAT 62.0 

R CAGACTCAGGTGTTGTCATCG 63.0 

Hprt1 hypoxanthine guanine 
phosphoribosyl transferase 

F GACCGGTTCTGTCATGTCG 63.0 

R ACCTGGTTCATCATCACTAATCAC 63.0 

RpL13a ribosomal protein L13a F ATCCCTCCACCCTATGACAA 59.0 

R GCCCCAGGTAAGCAAACTT 59.0 

Tubβ5 Tubulin beta 5 class 1 F CTGAGTACCAGCAGTACCAGGAT 51.0 

R CTCTCTGCCTTAGGCCTCCT 58.0 

Ywhaz tyrosine 3-
monooxygenase/tryptophan 
5-monooxygenase activation 
protein, zeta polypeptide 

F CTTCCTGCAGCCAGAAGC 
 

59.0 

R GGTTTCCTCCAATCACTAGCC 
 

59.0 

Target genes 

Adipor1 adiponectin receptor 1 F GCTTGGTTTTGTGCTATTTC 59.0 

R TTCTCTGAATGACAGTAGACAG 56.0 

Adipor 2 adiponectin receptor 2 F ATGTCATCTCAGAAGGGTTC 58.1 

R GATGAGAGTGAAACCAGATG 57.1 

Akt2 thymoma viral proto-
oncogene 2 

F GAAAGGAGACTGTAAAAAGTGG 58.0 

R ATACAGTATCGTCTTGGGTC 56.0 

Cat catalase F CTCCATCAGGTTTCTTTCTTG 60.3 

R CAACAGGCAAGTTTTTGATG 60.8 

Cd36 cd36 antigen F CATTTGCAGGTCTATCTACG 57.0 

R CAATGTCTAGCACACCATAAG 57.0 

Cebpα CCAAT/enhancer binding 
protein (C/EBP), alpha 

F AAGGGTGTATGTAGTAGTGG 53.0 

R AAAAAGAAGAGAAGGAAGCG 59.3 

Cebpβ CCAAT/enhancer binding 
protein (C/EBP), beta 

F ATCACTTAAAGATGTTCCTGC 57.0 

R TGTCTTCACTTTAATGCTCG 58.0 

Cyp2e1 cytochrome P450, family 2, 
subfamily e, polypeptide 1 

F GATGGAGAAGGAAAAACACAG 60.2 

R GGTATTTCATGAGAATCAGGAG 59.1 

Ephb2  Eph receptor B2 (alias Erk) F CAGCATCAAGGAAAAGCTAC 59.1 

R CTATATAGATCTTCATGCCTGG 57.0 

Fasn fatty acid synthase F GATTCAGGGAGTGGATATTG 58.0 

R CATTCAGAATCGTGGCATAG 61.0 

Fgf21 fibroblast growth factor 21 F CAGTCCAGAAAGTCTCCTG 57.4 

R AGAAACCTAGAGGCTTTGAC 56.7 

  



Page | 79 
 

Table A.1 continued: Overview of all genes analyzed (reference genes and target genes) with their primer 
sequences and melting point listed.  

Gene 
symbol 

Gene name Forward/reverse 
primers (F/R) 

Primer sequence (5’→3’) Tm° 

Target genes 

G6pc glucose-6-phosphatase, 
catalytic  

F TTCAAGTGGATTCTGTTTGG 60.1 

R AGATAGCAAGAGTAGAAGTGAC 53.6 

Gpx1 glutathione peroxidase 1 F CGACATCGAACCCGATATAGA 64.0 

R ATGCCTTAGGGGTTGCTAGG 64.0 

Gpx2 glutathione peroxidase 2 F TCCCTTGCAACCAGTTCG 65.0 

R CTTGAGGCTGTTCAGGATCTC 63.0 

Grb2 growth factor receptor bound 
protein 2  

F AGAAGAAATGCTCAGCAAAC 58.7 

R ATCATTTCCAAACTTGACGG 61.4 

Grb10 growth factor receptor bound 
protein 10  

F CTTGGAAGAAGCTGTATGTG 57.5 

R GTGTCTGGGTTCTTTTGAAG 58.8 

Gsk3α glycogen synthase kinase 3 
alpha 

F GGAGATCATCAAGGTACTAGG 56.8 

R AGATTTGAACACCTTTGTCC 58.1 

Gsk3β glycogen synthase kinase 3 
beta 

F CACTCTTCAACTTTACCACTC 55.5 

R ATTAGTATCTGAGGCTGCTG 56.2 

Hmox1 heme oxygenase 1 F CATGAAGAACTTTCAGAAGGG 60.0 

R TAGATATGGTACAAGGAAGCC 57.0 

Hmox2 heme oxygenase 2 F TACGGCACCAGAAAAGGAAA 64.0 

R GTGCTTCCTTGGTCCCTTC 64.0 

Hnf4α hepatic nuclear factor 4, alpha F TCCTAGGCAATGACTACATC 57.0 

R CTGGATCAAAGAAGATGATGG 61.0 

Igf1 insulin-like growth factor 1 F GACAAACAAGAAAACGAAGC 59.0 

R ATTTGGTAGGTGTTTCGATG 59.0 

Igf1r insulin-like growth factor 1 
receptor 

F AGAACCGAATCATCATAACG 59.0 

R TTTTAAATGGTGCCTCCTTG 61.0 

Igf2 insulin-like growth factor 2 F GTACTTCCGGACGACTTC 57.1 

R CTGAACTCTTTGAGCTCTTTG 58.5 

Il4 interleukin 4 F CTGGATTCATCGATAAGCTG 60.0 

R TTTGCATGATGCTCTTTAGG 60.0 

Il6 interleukin 6 F TGATGGATGCTACCAAACTGG 60.0 

R TTCATGTACTCCAGGTAGCTATGG 60.0 

Il6rα interleukin 6 receptor, alpha  F AAAGTTCTACAGAAGCAACG 56.3 

R TTGAGTCTCAGGATGATGAAG 59.4 

Il10 interleukin 10 F CAGGACTTTAAGGGTTACTTG 57.0 

R ATTTTCACAGGGGAGAAATC 59.0 

Il13 interleukin 13 F GGTCCTGTAGATGGCATTGCA 62.0 

R GGAGCTGAGCAACATCACACA 63.0 

Il33 interleukin 33 F GCTACTACGCTACTATGAGTC 53.0 

R CAGATGTCTGTGTCTTTGATG 58.0 

Ins1 insulin 1 F GAGGTACTTTGGACTATAAAGC 55.0 

R TTGAAACAATGACCTGCTTG 61.0 
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Table A.1 continued: Overview of all genes analyzed (reference and target genes) with their primer sequences 
and melting point listed.  

Gene 
symbol 

Gene name Forward/reverse 
primers (F/R) 

Primer sequence (5’→3’) Tm° 

Target genes 

Ins2 insulin II F AGCAGGAAGGTTATTGTTTC 57.0 

R ACATGGGTGTGTAGAAGAAG 57.0 

Insr insulin receptor  F AAGACCTTGGTTACCTTCTC 56.0 

R GGATTAGTGGCATCTGTTTG 60.0 

Irs1 insulin receptor substrate 1 F GATCGTCAATAGCGTAACTG 57.0 

R ATCGTACCATCTACTGAAGAG 55.0 

Irs2 insulin receptor substrate 2 F CCAGGAGACAAGAACTCC 57.1 

R GCTTCACTCTTTCACGAC 55.7 

Lep leptin  F CTTTGGTCCTATCTGTCTTATG 57.0 

R TCTTGGACAAACTCAGAATG 57.8 

Lepr leptin receptor F CTGAGATACAGTACAGCATTG 55.0 

R TGATATTGACATCGATCACG 60.0 

Lipe lipase, hormone sensitive F AACTCCTTCCTGGAACTAAG 57.0 

R CTTCTTCAAGGTATCTGTGC 57.0 

Lpin1 lipin1 F CAGGAAGAAAGATAAACGGAG 59.0 

R CATTCTTGGGGAAATACAGG 61.0 

Mlxip MLX interacting protein F CCTTTCCAGGATCTCTTCTC 59.4 

R AGATGTAATGAGGCTATTGGG 59.5 

Mlxipl  MLX interacting protein-like 
(alias ChREBP) 

F ATATCTCCGACACACTCTTC 55.6 

R CAACATAAGCATCTTCTGGG 59.7 

Neil1 nei endonuclease VIII-like 1 
(E. coli) 

F ATCTACGTTTTTACACAGCC 56.0 

R AAGTACGTTCTCTCTGAACC 55.0 

Neil2 nei like 2 (E. coli) F TTGTCTGAAAAGTTCCATCG 60.0 

R ATGTTCCCTAATCCTGAGAAG 59.0 

Neil 3 nei like 3 (E. coli F GACTTTCTAACAGTGAACTCC 55.0 

R CCTTGTTTTCTCCATCTTTCC 61.0 

Nfe2l2 nuclear factor, erythroid 
derived 2, like 2 (alias Nrf2) 

F AGCATGATGGACTTGGAATTG 64.0 

R CCTCCAAAGGATGTCAATCAA 64.0 

Nfκb1 nuclear factor of kappa light 
polypeptide gene enhancer in 
B cells 1, p105 

F ATCTATGATAGCAAAGCCCC 59.6 

R TGGATGTCATCTTTCTGAAC 57.6 

Nr1h2 nuclear receptor subfamily 1, 
group H, member 2  

F TCACCCACTATTAAGGAAGAG 57.4 

R TCTAAGATGACCACGATGTAG 56.8  

Nr1h3  nuclear receptor subfamily 1, 
group H, member 3(alias 
Lxrα)  

F GATGTTTCTCCTGATTCTGC 58.8 

R CTCCAACCCTATCCCTAAAG 59.1 

Ogg1 8-oxoguanine DNA-
glycosylase 1 

F CAGAAATTCCAAGGTGTGAG 60.0 

R AATGTTGTTGTTGGAGGAAC 59.0 

Pcsk9  proprotein convertase 
subtilisin/kexin type 9 

F GAGATTATGAAGAGCTGATGC 58.1 

R GTTTGTTCAATCTGTAGCCTC 57.9 
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Table A.1 continued: Overview of all genes analyzed (reference and target genes) with their primer sequences 
and melting point listed.  

Gene 
symbol 

Gene name Forward/reverse 
primers (F/R) 

Primer sequence (5’→3’) Tm° 

Target genes 

Pklr pyruvate kinase liver and red 
blood cell 

F GTGAAGAAGTTTGATGAGATCC 59.2 

R CAAGAAAACCTTCTCTCTGCTG 59.2 

Pparα peroxisome proliferator 
activator receptor alpha 

F GATGTCACACAATGCAATTC 59.0 

R CAGTTTCCGAATCTTTCAGG 61.0 

Pparδ peroxisome proliferator 
activator receptor delta 

F CTGACAGATGAAGACAAACC 57.0 

R CTTCCTCTTTCTCCTCTTCC 59.0 

Pparγ peroxisome proliferator 
activated receptor gamma 

F AAAGACAACGGACAAATCAC 59.0 

R GGGATATTTTTGGCATACTCTG 61.0 

Pparγc1β peroxisome proliferative 
activated receptor, gamma, 
coactivator 1 beta 

F AAGAACTTCAGACGTGAGAG 56.0 

R TCAAAGCGCTTCTTTAGTTC 59.0 

Rxrα retinoid X receptor alpha F TAACAGAGCTGGTGTCTAAG 54.6 

R TTAGAGTCAGGGTTGAACAG 56.9 

Scd1 stearoyl-Coenzyme A 
desaturase 1 

F GTGGGGTAATTATTTGTGACC 59.5 

R TTTTTCCCAGACAGTACAAC 56.7 

Slc2a2 solute carrier family 2 
(facilitated glucose 
transporter), member 2 

F TTGTGCTGCTGGATAAATTC 60.0 

R AAATTCAGCAACCATGAACC 61.0 

Slc2a4  solute carrier family 2 
(facilitated glucose 
transporter), member 4 

F CAATGGTTGGGAAGGAAAAG 63.0 

R AATGAGTATCTCATAGGAGGC 56.0 

Socs3 suppressor of cytokine 
signaling 3  

F CCAAAGAAATAACCACTCCC 59.9 

R GATCTGCGAGGTTTCATTAG 58.9 

Sod1 superoxide dismutase 1, 
soluble 

F GGTCCAGCGGATGAAGAG 64.0 

R GGACACATTGGCCACACC 65.0 

Sod2 superoxide dismutase 2, 
mitochondrial 

F TGGACAAACCTGAGCCCTAA 65.0 

R GACCCAAAGTCACGCTTGATA 64.0 

Sod3 superoxide dismutase 3, 
extracellular 

F CTTGGGAGAGCTTGTCAGGT 63.0 

R CACCAGTAGCAGGTTGCAGA 64.0 

Srebf1 sterol regulatory element 
binding transcription factor 1 

F AATAAATCTGCTGTCTTGCG 59.5 

R CCTTCAGTGATTTGCTTTTG 59.9 

Tnfα tumor necrosis factor alpha F TTGAGATCCATGCCGTTG 63.0 

R CTGTAGCCCACGTCGTAGC 62.0 

Tnfrsf1a tumor necrosis factor 
receptor superfamily, 
member 1a  

F GGTTATCTTGCTAGGTCTTTG 57.1 

R GATCCCTACAAATGATGGAG 58.4 

Ulk1 Unc-51 like kinase 1 F AGATTGCTGACTTTGGATTC 58.3 

R AGCCATGTACATAGGAGAAC 55.6 

Ulk2 unc-51 like kinase 2 F GAGCTTAATGCCTAGTATTCC 56.3 

R GATTTCTCTGAAGCAAACCC 60.3 

Vldlr very low density lipoprotein 
receptor 

F CTGTGGAGATATTGATGAATGC 60.9 

R TTTCTCTCTAGGCCAATCTTC 59.1 
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A5: KEGG pathway for NAFLD

Figure A.1: NAFLD signaling pathway from KEGG database. Figure used with permission from KEGG Database (132). 
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Appendix B: Products and manufacturers 

B1: Products and manufacturers 

Product Manufacturer Country 

2100 Bioanalyzer Agilent Technologies USA 

4Lab™ Automated liquid handling robot 4titude United Kingdom 

Absolutt alkohol prima (100% (absolute) ethanol) Kementyl Norge Norway 

Bio-Plex 200 dual laser flow system Bio-Rad USA 

Bio-Plex Pro Wash Station Bio-Rad USA 

CFX384 Real-Time PCR system Bio-Rad USA 

Distilled water (dH20)  Produced at NIPH Norway 

Eppendorf Master Cycler Eppendorf Germany 

Eppendorf tubes (1.5 mL/2 mL) Eppendorf Germany 

Framestar 384-well PCR plate 4titude United Kingdom 

Gene specific primers Sigma Aldrich USA 

High-Capacity cDNA Reverse Transcription kit  Applied Biosystems USA 

KAPA SYBR Fast qPCR Master mix kit Kapa Biosystems USA 

KS125 basic microplate shaker IKA USA 

Mouse premixed  multi-analyte kit R&D Systems USA 

NanoDrop™ 1000 Spectrophotometer ThermoFisher Scientific USA 

Polypropylene tubes 0.6 mL Axygen USA 

Quick-RNA™ MiniPrep kit Zymo Research USA 

RNA 6000 Nano LabChip Assay kit Agilent Technologies USA 

RNase away Molecular Bioproducts USA 

Rnase free stainless beads 5 mm Qiagen Germany 

Tris EDTA (TE) buffer Invitrogen, ThermoFisher 

Scientific 

USA 

Tear-A-Way 96-well PCR plate non-skirted 4titude USA 

TissueLyser II Qiagen Germany 
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Appendix C: Additional results 

C1: Protein expression results for seven biomarkers 

 

Figure A.2: Effects of exposure to a high fat diet. HFD exposure effect on the proteins IGF-1(A), FABP4/A (B), 
PDGF-BB (C) and Lipocalin 2 (D) expression levels during different periods of life. The concentrations of the 
above mentioned proteins were measured from all developmental groups. Total number of samples = 70. CTL, 
n = 14; IU, n =10; LA, n =12; IU+LA, n =12; WL, n =11; AD, n =11.  

  

0

10000

20000

30000

40000

50000

60000

70000

CTL IU LA IU+LA WL AD

M
e

an
 C

o
n

c 
p

g/
m

L

IGF-1

0

200000

400000

600000

800000

1000000

1200000

CTL IU LA IU+LA WL AD
M

e
an

 C
o

n
c 

p
g/

m
L

FABP4/A

0

2000

4000

6000

8000

10000

CTL IU LA IU+LA WL AD

M
e

an
 C

o
n

c 
p

g/
m

L

PDGF-BB

0

20000

40000

60000

80000

100000

120000

140000

CTL IU LA IU+LA WL AD

M
e

an
 C

o
n

c 
p

g/
m

L

Lipocalin 2D) 

A) 

C) 

B) 



Page | 85 
 

 

Figure A.3: Effects of exposure to a high fat diet. HFD exposure effect on the proteins Chitinase 3-like 1 (A), 
PAI-1/Serpin E1 (B) and Ostepontin (C) expression levels during different periods of life. The concentrations of 
the above mentioned proteins were measured from all developmental groups. Total number of samples = 70. 
CTL, n =14; IU, n =10; LA, n =12; IU+LA, n =12; WL, n =11; AD, n =11. 
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C2: Results for RNA yield, purity, integrity and cDNA yield and purity 

Table A.2: An overview of all results involving RNA and cDNA yield and purity, and RNA integrity. Total number 
of samples; n=71. The samples with blue marked rows were taken out of the study due to high degree of 
degraded RNA (RIN # below 5).  

Sample 
ID 

Grouping NanoDrop 
RNA yield 
ng/uL 

OD 
260/280 
of RNA 

OD 
260/230 
of RNA 

Bioanalyzer 
RNA RIN# 

NanoDrop 
cDNA 
yield 
ng/ul 

OD 
260/280 
of cDNA 

OD 
260/230 
of cDNA 

566 CTL 417 2,06 1,58 6,2 1918 1,83 2,24 

893 CTL 668 1,96 1,08 NA 1579 1,86 2,27 

897 CTL 1010 2,09 1,58 6,7 1650 1,85 2,28 

635 CTL 509 2,17 2,32 2,2 1836 1,85 2,28 

285 CTL 1081 2,14 2,12 6,8 1844 1,85 2,27 

286 CTL 876 2,14 2,05 6,7 1906 1,85 2,27 

336 CTL 429 1,88 1,88 7,1 1854 1,86 2,27 

69 CTL 1204 2,04 1,69 6,7 1815 1,84 2,3 

135 CTL 517 2,14 1,80 2,4 1823 1,84 2,27 

136 CTL 720 2,13 1,79 5,8 1915 1,84 2,27 

137 CTL 472 2,16 1,87 6,5 1854 1,85 2,27 

418 CTL 814 2,15 2,12 7 1940 1,85 2,28 

273 IU 469 2,00 1,65 6,3 1810 1,85 2,28 

291 IU 1253 2,06 1,87 6,3 1785 1,86 2,28 

318 IU 441 2,13 2,21 2,6 1975 1,84 2,25 

753 IU 693 2,09 1,65 3,1 1869 1,84 2,27 

760 IU 628 2,13 1,84 6,5 1828 1,85 2,24 

763 IU 1090 2,13 1,94 7,8 1873 1,85 2,26 

601 IU 1268 2,04 1,89 7 1966 1,85 2,26 

608 IU 371 2,02 1,59 6,3 1961 1,84 2,25 

638 IU 910 2,08 1,86 6,8 1796 1,84 2,24 

270 IU 1440 2,09 1,92 7,7 1602 1,86 2,26 

271 IU 1126 2,09 2,04 6,2 1572 1,84 2,27 

644 IU 538 2,09 2,03 5,9 1455 1,85 2,25 

579 LA 463 2,11 1,73 7,1 1839 1,85 2,25 

580 LA 576 2,19 2,23 6,3 1772 1,85 2,27 

807 LA 1144 2,03 1,69 6,3 2115 1,83 2,24 

809 LA 708 2,06 1,85 6,5 1577 1,85 2,24 

822 LA 779 2,04 1,64 NA 1535 1,85 2,26 

624 LA 600 2,16 1,91 6,5 1568 1,85 2,25 

664 LA 930 2,15 2,04 7,3 1640 1,85 2,25 

665 LA 585 2,15 2,01 6,8 1609 1,86 2,27 

193 LA 323 2,08 1,86 6,6 1712 1,85 2,26 
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Table A.2 continued: An overview of all results involving RNA and cDNA yield and purity, and RNA integrity. 
Total number of samples; n=71. The samples with blue marked rows were taken out of the study due to high 
degree of degraded RNA (RIN # below 5). 

Sample 
ID 

Grouping NanoDrop 
RNA yield 
ng/uL 

OD 
260/280 
of RNA 

OD 
260/230 
of RNA 

Bioanalyzer 
RNA RIN# 

NanoDrop 
cDNA 
yield 
ng/ul  

OD 
260/280 
of cDNA 

OD 
260/230 
of cDNA 

201 LA 392 2,10 1,95 7,1 1822 1,84 2,26 

238 LA 351 2,08 1,85 6,8 1861 1,84 2,26 

261 IU+LA 458 2,05 1,67 6,2 1553 1,86 2,25 

434 IU+LA 1115 2,06 1,59 6,8 1703 1,85 2,24 

129 IU+LA 366 1,90 1,64 6,5 1811 1,85 2,23 

890 IU+LA 390 2,18 2,41 8,4 1891 1,85 2,23 

901 IU+LA 518 2,09 1,69 6,4 1881 1,85 2,22 

902 IU+LA 680 2,12 1,74 4,2 1829 1,83 2,2 

903 IU+LA 1102 2,02 1,71 6,2 1609 1,76 2 

885 IU+LA 284 1,93 1,62 NA 1526 1,85 2,17 

610 IU+LA 452 1,99 1,55 NA 1442 1,85 2,19 

672 IU+LA 990 2,12 2,01 6,6 1818 1,83 2,24 

673 IU+LA 859 2,11 2,10 6,9 1939 1,85 2,23 

32 IU+LA 1795 2,09 2,04 7,8 1833 1,85 2,26 

427 WL 797 2,11 1,80 6,3 1607 1,86 2,26 

459 WL 589 2,18 2,10 2,5 1547 1,85 2,25 

481 WL 454 2,04 2,08 5,5 1542 1,85 2,25 

26 WL 907 2,18 2,21 7,3 1464 1,85 2,25 

34 WL 1077 2,07 1,88 2,4 1438 1,86 2,25 

101 WL 677 2,1 1,57 6,7 1694 1,85 2,24 

115 WL 642 2,11 2,19 6,8 1874 1,84 2,24 

743 WL 924 2,12 2,21 7,6 1801 1,85 2,25 

744 WL 608 2,11 1,62 7,2 1597 1,85 2,25 

23 WL 432 2,18 2,30 7,1 1657 1,85 2,25 

25 WL 1885 2,09 2,02 7,5 1536 1,85 2,23 

35 WL 1295 2,12 2,02 6,8 1349 1,86 2,26 

126 AD 765 2,17 2,17 6,8 1703 1,85 2,26 

878 AD 548 2,12 1,87 6,3 1582 1,85 2,25 

124 AD 887 2,11 2,05 5,8 1433 1,85 2,27 

372 AD 604 2,16 2,23 2,3 1490 1,86 2,28 

381 AD 454 1,82 1,96 6,4 1582 1,86 2,26 

873 AD 1051 2,19 2,06 8,5 1784 1,85 2,25 

874 AD 382 2,1 1,73 6,8 1916 1,84 2,24 

875 AD 843 2,15 2,12 6,9 1812 1,85 2,26 

307 AD 788 2,09 1,97 7,2 1534 1,85 2,27 

345 AD 346 1,96 1,98 6,8 1549 1,85 2,26 

10 AD 1041 2,15 2,19 7,5 1528 1,85 2,26 

63 AD 1336 2,11 2,10 7,2 1496 1,85 2,25 
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C3: Statistical p-values for gene expression analysis 

Table A.3: p-values for gene expression analysis. The genes marked in bold is reviewed as statistical significant 
or borderline significant different compared to the control group. The p-values of each group for the significant 
genes are listed below the overall p-value for the gene. Total number of genes analyzed =48. 

Gene p-value Statistical 

method 

Gene p-value Statistical 

method 

Akt2 0.526 ANOVA Neil1 0.625 Kruska-Wallis 

Cat 0.326 ANOVA Neil3 0.341 Kruska-Wallis 

Cd36 0.503 ANOVA Nfκb1 0.554 Kruska-Wallis 

Cebpα 0.316 ANOVA Nr1h2 0.874 ANOVA 

Cebpβ 0.310 Kruska-Wallis Nr1h3 0.426 Kruska-Wallis 

Cyp2e1 0.813 ANOVA Nfe2l2 0.031 Kruska-Wallis 

Fasn 0.431 ANOVA IU group 0.400 Mann-
Whitney U 
Test 

Fgf21 0.248 ANOVA LA group 0.053 Mann-
Whitney U 
Test 

G6pc 0.849 ANOVA IU+LA group 0.666 Mann-
Whitney U 
Test 

Gpx1 0.759 Kruska-Wallis WL group 0.720 Mann-
Whitney U 
Test 

Grb2 0.790 Kruska-Wallis AD group 0.941 Mann-
Whitney U 
Test 

Gsk3β 0.651 ANOVA Pparα 0.772 ANOVA 

Hnf4α 0.069 ANOVA Pparδ 0.046 ANOVA 

IU group 0.108 Dunnett t (2 
sided) 

IU group 0.243 LSD 

LA group 0.073 Dunnett t (2 
sided) 

LA group 0.046 LSD 

IU+LA group 0.781 Dunnett t (2 
sided) 

IU+LA group 0.665 LSD 

WL group 0.927 Dunnett t (2 
sided) 

WL group 0.258 LSD 

AD group 1.000 Dunnett t (2 
sided) 

AD group 0.717 LSD 

IGF-1 0.256 ANOVA Pparγ 0.592 ANOVA 

Igf2 0.246 ANOVA Pparγc1β 0.406 ANOVA 

Il4 0.795 Kruska-Wallis Rxrα 0.348 Kruska-Wallis 
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Table A.3 continued: p-values for gene expression analysis. The genes marked in bold is reviewed as statistical 
significant or borderline significant different compared to the control group. The p-values of each group for the 
significant genes are listed below the overall p-value for the gene. Total number of genes analyzed =48. 

Gene p-value Statistical 
method 

Gene p-value Statistical 
method 

Il6rα 0.689 ANOVA Scd1 0.428 ANOVA 

Il10 0.160 ANOVA Slc2a2 0.277 Kruska-Wallis 

IU group 0.035 Dunnett t (2 
sided) 

IU group 0.211 Mann-
Whitney U 
Test 

LA group 0.172 Dunnett t (2 
sided) 

LA group 0.211 Mann-
Whitney U 
Test 

IU+LA group 0.364 Dunnett t (2 
sided) 

IU+LA group 0.040 Mann-
Whitney U 
Test 

WL group 0.665 Dunnett t (2 
sided) 

Slc2a4 0.482 ANOVA 

AD group 0.389 Dunnett t (2 
sided) 

Socs3 0.348 Kruska-Wallis 

Il33 0.121 ANOVA Sod1 0.903 ANOVA 

Insr 0.083 ANOVA Sod2 0.457 ANOVA 

IU 0.097 Dunnett t (2 
sided) 

Sod3 0.737 Kruska-Wallis 

LA 0.160 Dunnett t (2 
sided) 

Srebf1 0.510 ANOVA 

IU+LA 0.103 Dunnett t (2 
sided) 

Tnfα 0.378 Kruska-Wallis 

WL 0.997 Dunnett t (2 
sided) 

Tnfrsf1a 0.093 Kruska-Wallis 

AD 0.337 Dunnett t (2 
sided) 

IU group 0.156 Mann-
Whitney U 
Test 

Irs1 0.359 Kruska-Wallis LA group 0.905 Mann-
Whitney U 
Test 

Lepr 0.588 Kruska-Wallis IU+LA group 0.063 Mann-
Whitney U 
Test 

Lipe 0.502 ANOVA WL group 0.604 Mann-
Whitney U 
Test 

Lpin1 0.303 ANOVA AD group 0.131 Mann-
Whitney U 
Test 

Mlxip 0.282 ANOVA Ulk1 0.794 Kruska-Wallis 

 

 


