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Students of a teacher training program (N=124) were asked to generate, unaided, a binary 

sequence of 40 symbols appearing to be as random as possible. It was found that the average 

probability of alternation, P(A), was 0.61, which agrees with previous experiments described in the 

literature, and that the students tend to underestimate the occurrence of runs with four or more 

equal symbols. When comparing to random sequences I argue that only asking for sequences of 

length 40 will overestimate P(A). 
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Introduction 

One of the goals of education in the subject of probability is to give students a better understanding 

of what constitutes random events and how to recognise random events. A democracy needs 

citizens that can understand and evaluate quantitative information and statistical analyses 

(Utdannings-direktoratet, 2012). Media sometimes reports clusters, for example the occurrence of 

many cancer cases in small communities, without acknowledging that such clusters may arise as a 

result of randomness. Knowledge of what to expect of random events is necessary in order to know 

how to process such information. However, it is difficult to get a good grasp of probability, and 

especially the occurrence of clusters. One type of cluster occurs in binary sequences. A binary 

sequence is a sequence that consists of two symbols, for example the sequence generated by tossing 

a coin multiple times and noting whether the outcome was head or tail, or throwing a die and noting 

whether it displays an even or odd number. The former could look like THHHHTTHTT, while the 

latter could look like 0111100100. A cluster in a binary sequence is a long run of the same symbol, 

for example four heads or four odd numbers in a row. Research (Bryant & Nunes, 2012; Chiesi & 

Primi, 2009; Falk & Konold, 1997; Williams & Griffiths, 2013) shows that people overestimate the 

number of changes in order for a binary sequence to be random and underestimate the average 

length of runs, i.e., the number of times a symbol is repeated consecutively.  

In Norwegian schools in the last 20 years there has been a stronger emphasis on probability than 

previously, especially with the introduction of curriculum reform in 1994 for high school, R94 

(Kirke, utdannings- og forskningsdepartementet, 1999), and in the curriculum reform in 2006 for 

both primary and secondary school, LK06 (Kunnskapsdepartementet, 2013). For example, the 

curriculum for the first year of high school demands that the student should be able to produce 

examples and simulations of random experiments (Kunnskapsdepartementet, 2013, p. 11). 

One might ask what the stronger emphasis on probability means to students’ understanding of 

clusters. If, successively, an even number has been thrown four times with a fair die, and students 

are asked if there is still a 50% chance to throw an even number in the next throw, most will 

immediately answer yes. However, when asked to construct sequences, they may tend to 
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underestimate such probabilities, i.e., seemingly assigning a less than 50% chance of getting the 

same result as in the previous throw. This paper will focus on Norwegian teacher students’ 

understanding of what constitutes a random binary sequence. In order to measure the randomness of 

binary sequences, Falk and Konold (1997) presents a framework for analysing binary sequences 

mathematically, using among other indicators a probability of alternation, P(A). I will be using 

parts of this framework. 

This paper sets out to explore the following question: To what extent are Norwegian teacher 

students able to understand the probability of forming of clusters in a binary sequence? The guesses 

will be measured by the calculated P(A), and by testing whether or not the students’ guesses for the 

number of runs of given lengths differ significantly from that of a fair die thrown. 

Review of the literature 

Children’s and adults’ understanding of what constitutes a random sequence tends to show some 

common misconceptions. One such misconception is the negative recency bias (Bryant & Nunes, 

2012, p. 10). This is the assumption that after a long sequence of the same result, e.g., six heads in 

row when tossing a coin, a tail is more likely in the next toss. The counterpart of this misconception 

is the positive recency bias (Bryant & Nunes, 2012, p. 10), in which people estimate that a certain 

result is more likely to be the next outcome because it has occurred frequently in the past. Positive 

recency bias occurs in for example estimating scoring in baseball (Gilovich, Vallone, & Tversky, 

1985). Many studies have been carried out investigating the negative recency effect. For surveys of 

such investigations, see for example Batanero and Sanchez (2005), Bryant and Nunes (2012), 

Chiesi and Primi (2009) and Falk and Konold (1997). 

Some of the studies carried out ask the participant to tell which of two or more sequences or 

patterns are random and which are not (Batanero & Serrano, 1999; Falk & Konold, 1997; 

Kahneman & Tversky, 1972) or which result is more likely to come next (Chiesi & Primi, 2009; 

Fischbein & Schnarch, 1997), and such studies are examples of judgement tasks. Others ask the 

participants to generate random sequences (Bakan, 1960; Towse & Mclachlan, 1999), and are 

production tasks. A variation is studied by Rapoport and Budescu (1992), where the participants 

generated random numbers as part of a game. Bar-Hillel and Wagenaar (1991) argue that judgement 

tasks are a purer way of studying the perception of randomness. However, the basic biases were 

discovered by production tasks, since these tasks were the ones in the early research. Another 

problem with judgement tasks is that when a researcher asks whether or not a given sequence is 

random, he may not himself know the answer. For example, Green (1982, p. 157) provides an 

example of two binary sequences of length 150 and 153 respectively and asks the subject to 

determine which sequence is made up. The one he would classify as not made up has a P(A) as low 

as 0.44 in addition to having one run of length 9, which is not expected for such a short sequence. 

At least when assigning production tasks, the researcher does not need to say anything wrong. In 

addition, when assigned production tasks, the students cannot guess among the alternatives, thus 

taking a more active role.  

Falk and Konold (1997) present a framework for analysing binary sequences with respect to 

randomness. For every binary sequence a number called probability of alternation, P(A), may be 



 

 

calculated. It is given by      
   

   
, where r is the number of runs, and n is the length of the 

sequence (Falk & Konold, 1997). In an infinitely long, truly random binary sequence, the expected 

P(A) is 0.5. The P(A) measure first order dependencies. Another measure is the second-order 

entropy (EN). This is based on the relative frequency of all ordered pairs, and is a measure of the 

amount of new information provided by the second symbol of the pair (Falk & Konold, 1997). The 

second order entropy is maximal (EN = 1) when all the four pairs, 00, 01, 10, 11, are equally 

probable. It is minimal (EN = 0) when P(A) = 1. Yet another measure is the complexity of the 

sequence, and can be defined as the “bit length of the shortest computer program that can reproduce 

the sequence” (Falk & Konold, 1997, p. 306). Another method Falk and Konold describes, due to 

Garner (1970), is to sort all sequences of a given length n into different disjoint sets based on their 

P(A). The most random sequences are the ones contained in the set which consist of the maximal 

number of sequences. In this paper we will focus on the P(A), and also of the number of subsets of 

length m with P(A) = 0, that is, the number of runs with a given length. 

The typical value of P(A) for a binary sequence constructed by a person seems to be around 0.6. 

The nine studies referenced by Falk and Konold (1997) have P(A) ranging from 0.56 to 0.63. For 

nine experiments, referenced in the same paper, where participants are judging whether or not a 

certain sequence is random the P(A) range from 0.57 to 0.65 in eight of the experiments while one 

has a P(A) of between 0.7 and 0.8 (Gilovich et al., 1985). Thus, the literature seems fairly 

consistent regarding the extent to which people overestimate the number of runs. However, there 

seems to be a lack in reporting standard deviation. It is also interesting to examine to what extent 

people tend to underestimate the possibility of long runs, which we may call clusters. The most 

consistent result on binary sequences is that both in generating and perception people tend to 

underestimate the number of long runs, i.e., consecutively equal results (Falk & Konold, 1997, p. 

302). 

Method 

I had 127 students enrolled in the first-year teacher education study program providing me with 

data. For entry into the program the students need more than a passing grade in mathematics from 

high school. In Norway, the lowest grade in high school is a zero, while 6 is the best obtainable 

grade. The requirement for entry to the teacher education program is a 4, while 2 is the lowest 

passing grade. Thus, the enrolled students had a somewhat better understanding of mathematics 

than that required for other study programs. As they were about to start learning about probability 

and combinatorics, the students were asked to imagine the following task: Throw a die 40 times and 

mark for each throw whether you get an even or an odd number. Mark an even number with 0 and 

an odd with 1. The students were asked to write down as realistic a sequence as possible. 

Afterwards they were asked to actually throw a die 40 times, and compare the results. Thus, I had 

about 5000 actual die throws to compare. The students were informed that the data they provided 

could be used for research. All data were collected anonymously. Among the participants three 

students did not produce a binary sequence of at least 40 symbols, and thus they were discarded. 

Therefore 124 student generated guessed sequences were analysed. 



 

 

In order to determine if the student made a good guess or not, the P(A) was the first indicator, and 

was compared with the theoretical P(A) of 0.5 and the P(A) of the actual die throws. In the latter 

comparison, a t-test was used since it was possible to calculate standard deviations. The second 

criterion was that the number of runs of each length in a guessed sequence should be approximately 

equal to the number of runs of that length in the thrown results. A list of the number of runs each 

student guessed for any given length from one to seven was made, and for each run length a t-test 

was carried out to compare to the corresponding list for the sequences obtained from the actual die 

thrown. The data was tested for normality using the Shapiro-Wilk test. A t-test ordinarily requires a 

normal distribution. However, the central limit theorem ensures that when the number of 

participants is large, it can be used even though the data does not have a normal distribution. 

Typically, this occurs when the number of participants is more than 30. 

The tests described above were carried out using R: A language and environment for statistical 

computing (R Core Team, 2016). 

Results 

Each student produced one sequence of 40 binary digits, representing even and odd numbers. The 

sequence guessed by participant number 85 is provided in Figure 1. An even number is represented 

by 0 while an odd number is represented by 1. Another example is given in Figure 2, the sequence 

of participant number 93. 

Figure 1: The guessed sequence of participant number 85 

 

Figure 2: The guessed sequence of participant number 93 

In addition to guessing how such a sequence would look like, the students each threw a die 40 

times, and recorded the outcome. An example of such a sequence, form participant number 88, is 

given in Figure 3 



 

 

Figure 3: The actually thrown sequence of participant number 88 

The probability of alternation was calculated for each participant. The mean P(A) among the 

participants was 0.61 (SD = 0.12). For the random numbers the students threw, the mean P(A) were 

0.51 (SD = 0.08), quite near the theoretical value of 0.5 for infinitely long sequences. Ten students 

made guesses with P(A) < 0.51. The P(A) for the estimated results were not normally distributed, 

the Shapiro-Wilk normality test giving p < .001, where for the random generated sequences, that is 

when the die was actually thrown, the P(A) was normally distributed, with the Shapiro-Wilk 

normality test giving p = .08. There was a significant difference between the made-up sequences 

compared to the actual throws (                       ). 

The number of runs of a given length in the estimated sequences varied. In Figure 4 the median and 

the quartiles of the number of runs of a given length for each student’s guesses are shown in a 

boxplot. For each run of a given length, the corresponding result for the actual throws is shown to 

the right for comparison. The box labeled RLG1 shows the first and third quartile of the number of 

runs of length one in the guessed data as the lower and upper sides of the box. The solid line in the 

middle of the box is the median, and the mean is given by an asterisk. Similarly, RLG2 shows the 

number of runs of length two. RLT1 shows the number of runs of length one for actually thrown 

dice, and so on. 

Figure 4: A boxplot of the number of runs of a given length  

We note that the students tend to underestimate the number of runs of length four and five, and 

overestimate the number of runs of length one and two. For each run length, a t-test were carried 

out, and in particular it showed that for every run length except three, there was a significant 

difference (p < .002) between the guessed results and the actual throws. For runs of length three, the 



 

 

difference was not significant (t(243.31) = 1.00, p = .32). With the sequence length being only 40, 

we cannot from this data conclude that students underestimate the numbers of run of length six or 

more. The reason is that with 20 expected runs, and only a 
 

       
 

  
 chance of getting a run of 

length six for every run started, a student trying for the most random sequence should not include 

runs of length six or more. Also, in Figure 4, especially note that the median of the number of runs 

of length five for the actual thrown dice is zero, even though the average is 0.58. However, 

remember that the probability to get a run of length five or more is double that of obtaining a run of 

exactly length five. Therefore, we should expect student guesses to include one run of length five or 

more, but not be surprised if none were included. We have not included runs of length longer than 

seven in the boxplot as no students included runs of that length in their guesses.  

Among the students there are some that made better guesses than others. Among the 124 students 

which completed the task, 49 included at least one run of length four or more in their guessing. Of 

these, 14 students included a run of length five or more. 

Discussion 

The average results for the probability of alternation, P(A), when the students are guessing, is in 

line with the literature, being 0.61. This is significantly different from a random binary sequence. I 

have not found the standard deviations from the previous experiments, so no hypothesis test could 

be done comparing this P(A) to the P(A)’s listed by Falk and Konold (1997). However, I conclude 

that this number seems fairly constant across countries and time. The list compiled by Falk and 

Konold (1997) seems to indicate that the P(A) becomes smaller as the length of the guessed 

sequence increase. The result from the current experiment seems to agree with experiment where 

sequences of comparable length has been used. One reason for a lower P(A) when longer sequences 

are used may be that participants then will expect some very long runs. For sequences as short as 

40, a student who knew about the correct distribution could argue, that since the median of runs of 

length five or higher is zero, such sequences should not be included in the guess, even though the 

mean is closer to one than zero, and that the expectation value for the number of runs of five or 

more in length is more than one. Excluding runs of length five or higher should lead to a somewhat 

higher P(A) than 0.5. Thus, it is not surprising that students overestimate the P(A). However, the 

observed average P(A) of 0.61 is higher than should be expected even when excluding runs of 

length five or more. 

From the results (Figure 4) we observe that the students’ guesses are relatively accurate concerning 

runs of length five, and this is confirmed by the t-test. The problems with underestimating the 

number of long runs begin with runs of length four or more. Each student should have expected at 

least one run of length five or more, as this will happen in one of 16 cases when starting on a run, 

and each student would be expected to start 20 runs. The approximate number of runs is P(A) 

multiplied by the sequence length, in this case 0.5·40. Out of 124 students, 49 included at least one 

run of length four or more in their guessing. Of these, 14 students included a run of length five or 

more. Thus, few students think that clusters are as common as they actually are. 

The probability of clusters arising in a binary sequence is comparatively easy to understand 

compared to the probability of clusters of for example diseases arising in a general population. 



 

 

Therefore it may be a start to educate students of clusters in such a setting, when known biases can 

be used to give the students a better understanding of how they tend to underestimate the occurrence 

of clusters. It is also easier to show them their own bias when using production tasks.  

Conclusion 

Teacher students do significantly underestimate the number of long runs, i.e., runs of four or more 

equal symbols when trying to construct binary sequences that shall appear random. They also 

overestimate the number of runs of length one and two significantly. They do not seem to 

underestimate the number of runs of length three significantly; the median guess is actually the 

same as for a random sequence. Also, a t-test could not determine a significant difference when it 

comes to sequences of length 3. 

For further research it would be interesting to ask participants to generate longer sequences, for 

example of length 150, where 75 runs would be expected, thus at least one run of at least seven, 

since the probability of getting a run of seven is 
 

       
 

  
  The current results suggest that students 

would grossly underestimate the occurrence of the really long runs, but a sequence length of 40 

does not allow us to conclude in this case. Another interesting experiment would be to tell some of 

the students about what constitutes a random binary sequence and tell some of them beforehand that 

you are to test their sequences on the P(A) and the number of runs of each given length. Then the 

results of this group of students could be compared to the students not having been given such 

instructions. Thus one could observe what effects such instructions would have.  

It would also be very interesting to ask the students to explain their thinking during the production 

of these sequences. This would add a qualitative dimension to the results and be useful for 

improving the education in order to help students understand clusters better. 

The author wishes to thank Trude Sundtjønn, Siri Krogh Nordby and Grethe Kjensli for help with 

data collection and George Hitching for comments. 
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