
GANEx: A complete pipeline of training, inference
and benchmarking GAN experiments

Vajira Thambawita
SimulaMet

Norway
vajira@simula.no

Hugo Lewi Hammer
Oslo Metropolitan University

Norway
hugoh@oslomet.no

Michael Riegler
SimulaMet

Norway
michael@simula.no

Pål Halvorsen
SimulaMet, Norway

Oslo Metropolitan University, Norway
paalh@simula.no

Abstract—Deep learning (DL) is one of the standard methods
in the field of multimedia research to perform data classi-
fication, detection, segmentation and generation. Within DL,
generative adversarial networks (GANs) represents a new and
highly popular branch of methods. GANs have the capability
to generate, from random noise or conditional input, new data
realizations within the dataset population. While generation is
popular and highly useful in itself, GANs can also be useful to
improve supervised DL. GAN-based approaches can, for example,
perform segmentation or create synthetic data for training other
DL models. The latter one is especially interesting in domains
where not much training data exists such as medical multimedia.
In this respect, performing a series of experiments involving
GANs can be very time consuming due to the lack of tools
that support the whole pipeline such as structured training,
testing and tracking of different architectures and configurations.
Moreover, the success of generative models is highly dependent
on hyper-parameter optimization and statistical analysis in the
design and fine-tuning stages.

In this paper, we present a new tool called GANEx for making
the whole pipeline of training, inference and benchmarking GANs
faster, more efficient and more structured. The tool consists
of a special library called FastGAN which allows designing
generative models very fast. Moreover, GANEx has a graphical
user interface to support structured experimenting, quick hyper-
parameter configurations and output analysis. The presented tool
is not limited to a specific DL framework and can be therefore
even used to compare the performance of cross frameworks.

Index Terms—GANs, Neural Networks, Graphical User Inter-
face, GAN Experiments, GAN Library, GAN Statistics

I. INTRODUCTION

Generative models have become an active research area
in recent years as a result of the introduction of generative
adversarial networks (GANs) [1], [2]. Research such as deep
convolution GAN [3], conditional GAN [4], coupled GAN
[5], cycle GAN [6] and many more generative models [7]
based on the original GAN idea have been published in
recent years. These generative models are actively used in
multimedia research because of the capabilities for generating
images, sounds, texts and videos from noise or conditional
inputs. Most of the GAN architectures follow the same set of
logical training procedures, generative and adversarial network
architectures and closely related optimization procedures. Re-
searchers are wasting valuable time to implement the same

logical flow of GANs over and over again implementing
already available GAN architectures from scratch. In addition,
they are facing problems in organizing deep learning (DL)
experiments and experiment data.

In this context, our GANEx tool is a solution to perform
GAN based research more effectively and efficiently. This tool
is a complete pipeline for training, inference and analysis of
generative models for saving the time of researchers and sav-
ing valuable data of experiments. The GANEx tool is enriched
with real-time training analysing tools to support researchers
to get early-stage decisions such as stopping the unstable
training processes, detecting the unstable hyperparameters and
other decisions which are more important to take early before
starting the long training process of DL. Moreover, this tool
is capable to handle GAN experiments in structured way and
perform advanced analysis in the inference stage of GAN
experiments.

As depicted in Figure 1, our main GANEx tool consists of
three components; 1) a graphical user interface (GUI), 2) a
library called FastGAN and 3) a DL library (Pytorch). In this
paper, we discuss only the first two sections (our contributions)
because the last section is implemented using the well known
DL library Pytorch where details are found in [8]. Based on
this, the main contributions of the presented tools are:

• The FastGAN library, which is introduced to develop, fine-
tune, perform experiments and analyse generative models or
GANs efficiently and effectively.

• The GANEx GUI, which is introduced to perform GAN
experiments in a structured way and benchmarking them
quickly for saving valuable time and experiment results
such as parameters of GAN models, output data and other
analysed statistical data.

In the next section (section 2), we discuss the available GUI
based tools for running DL experiments. Section 3 covers the

GANEx user Interface

Handling experiments using
the GUI

FastGAN Library PyTorch Library

A GAN library based on
FastGAN framework

Back-end deep learning
library

Fig. 1: Overview of the GANEx execution flow978-1-7281-4673-7/19/$31.00 ©2019 IEEE

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

or reuse of any copyrighted component of this work in other works. DOI: https://dx.doi.org/10.1109/CBMI.2019.8877387

concept and architecture of the FastGAN library before we
discuss the GANEx GUI in section 4. We present some ideas
of how GANEx can be expanded in section 5 and finally, in
section 6, we give a description of the proposed demo.

II. RELATED WORK

NVIDIA DIGITS [9] is one of the popular tools among
researchers for running and analysing DL experiments in
computer vision problems such as classification, detection
and segmentation. Recently they have experimented how to
run basic GAN experiments using this tool and they have
added basic GAN training capabilities. However, NVIDIA
DIGITS capabilities of the current version are not enough
for analysing and performing advanced GAN experiments
because it has general purpose DL capabilities and it does not
have mechanisms to mange experiments and doing advanced
statistical analysis. Moreover, this kind of web-based solutions
are slower than stand-alone applications because it has limita-
tions to work directly with OS functionalities. Therefore, our
solution is designed using stand-alone application development
concepts to keep good performance and reliability.

GAN lab [10] is another web-based tool for understanding
the main GAN architecture. Users can play with simple
data generation problems using this tool. It visualizes how
the GAN changes the input noise to the target distribution.
They clearly emphasize gradient changes of model parameters
using visualization to give a deeper understanding of the
GAN architecture. This web-page was designed using the
Tensorflow Javascript [11] library, and they have not targeted
any researchers who are doing new advanced generative model
experiments.

Weka [12] is a popular tool among machine learning re-
searchers from beginners to advanced users. However, han-
dling DL experiments using the Weka tool is limited. Because
it mainly targets statistical machine learning algorithms, it
has restrictions for doing advanced DL experiments using
the popular DL frameworks such as Pytorch and TensorFlow.
But, the concepts for managing experiments underpinning the
Weka tool are helpful for developers of GUI-based experiment
tools. They use standalone application development methods
with Java for maintaining reliability of the tool with OS
interactions.

The TensorBoard [13] visualization tool comes with the
Tensorflow [14] DL library, and it is rich with more visualiza-
tion tools for model parameters and training process. This tool
is also powered by web technologies. Moreover, this tool can
be used to visualize the main components of any DL model.
However, GAN-specific statistical analysis is more difficult
with this tool as a result of a generalized tool with Tesorflow.
Structured experiment handling and data handling capabilities
have not been designed in this solution.

Deep learning studio [15] is another tool which is closer
to the concept of NVIDIA DIGITS. This tool has more
capabilities in designing deep neural networks compared to
the designing capabilities of NVIDIA DIGITS tool. In contrast
to these benefits, Deep learning studio suffers from a lack of

capabilities for visualization of model learning patterns and
reasoning of inference. However, this tool can be identified as
a tool including all the steps like designing a model, training a
model and inference from a pre-trained model. For example,
an autoencoder [16] which is one of the generative models
is demonstrated using this tool. The autoencoder model can
be designed easily using this tool because the input of this
type of model is an image while the output is also an image.
In contrast to autoencoder experiments, GAN experiments’
input data depend on latent spaces, images as well as labels
while they generate several output data such as images and
labels. Some generative models generate indirect inference
parameters like standard deviation and mean of probability
distributions. Therefore, statistical data analysing and param-
eter handling are more important for GAN experiments.

Deep learning studio and all other tools discussed above
are lacking of GAN specific modifications, statistical analysis
tools and developments procedures. Therefore, we address
these issues in our proposed solution, the GANEx tool which
is a complete GAN specific pipeline for training, inference
and doing advanced statistical analysis.

III. THE FASTGAN LIBRARY

The FastGAN implementation can be categorized as a core
library because it opens paths for developers to define there
own GAN experimental tools using other DL frameworks. The
FastGAN library implementation is the core of the GANEx
GUI tool. This library consists of high-end abstract logical
flow which can be used to implement GAN based experiments
very easily and quickly in a few steps. The main structure of
the library is depicted in Figure 2.

The FastGAN library can be defined on top of available
DL libraries such as Tensorflow, Pytorch, Microsoft Cognitive
Toolkit or any other DL libraries available today. However, our
first FastGAN library implementation is accomplished using
the Pytorch library. This back-end dependency is depicted at
the bottom of Figure 2. Visualization and 2D/3D plotting
tools have to be provided alongside the main DL library
for advanced statistical analysis of GAN experiments. The
first FastGAN library uses “pyqtgraphs” [17] for this purpose
because of the enrichment of plotting tools which are based
on statistical and engineering applications.

The second level of this library consists of three main
sections; FastGAN Nets, FastGAN Trainer and FastGAN
Analyser. The FastGAN Nets should be packed with state
of the art generative networks, discriminative networks, de-
coder and encoder networks which are used in generative
model implementations. The FastGAN Trainer defines the
logical training flows of generative models. It should have
all possible training mechanisms of generative model training
and adversarial generative model training. These mechanisms
can be implemented as methods which are applicable for
all generative models. For example, a training discriminator
with real labels, a training discriminator with fake labels and
a training generator with fake labels as real labels, can be
identified as sub-components of the main training of basic

FastGAN Nets FastGAN Analyser

FastGAN Runner

FastGAN Collection

PyTorch Library

FastGAN Trainer Fa
st

G
AN

 P
ar

a
H

an
dl

er

PyQT Graphs

Fig. 2: The FastGAN library structure

GAN architectures. The FastGAN Analyzer is the next main
module at the same level. This analyzer consists of various
analysis tools for generative models. These analysis tools
can include metrics for generative model comparison, plots
of training and inference stages, parameter representations,
input-output analysis, probability distribution representations
and many more engineering and statistical analysis algorithms
that are commonly used for generative models. The FastGAN
analyzer can be implemented as an independent module which
can be used for statistical analysis of any DL architecture.

The third level of the FastGAN library is named FastGAN
Runner which defines how to execute training, re-training
and inference of generative models based on the components
of the bottom levels. This level includes data pre-processing
mechanisms, parameters initialization methods for network
parameters and noises, initializing analysis mechanisms of a
specific GAN and interconnecting routings of all the compo-
nents of the bottom levels.

The top level of the FastGAN library can be implemented by
collecting implementations of all the state of the art generative
models using the components of the bottom levels. Then, we
can allow researchers to define their own parameters and input
data without considering developments of generative models.
If researchers are interested in more advanced modifications,
then they can go through the levels of FastGAN from top to
bottom as they required. This allows researchers to do GAN
experiments from simple modifications to more advanced
modifications.

The last component, the FastGAN Parahandler or parameter
flow, is defined using the JSON library and dictionary data
structures of Python in our test implementation. However,
researchers or developers can use any mechanism such as a
relational database to handle parameters and store parameters
via all the levels.

IV. THE GANEX GUI TOOL

The GANEx GUI implementation is developed on top of
the FastGAN library, and it enables a structured way for
researchers to train, re-train, save, analyse and manage exper-
iments and experiment data. The GUI of this tool is designed
using PyQT5 library which is based on the well known Qt
[18] project. In this GANEx tool, we designed a mechanism to

Projects
Interface

List of
experiments

Interface

Experiment
Interface

Create a
Project

Delete Project

Open a project

Projects JSON
(Auto saving)

Experiments
JSON

(Auto saving)

Create an
experiment

Open an
experiment

Experiment
details JSON
(Auto saving)

Delete
experiment

Data folder tab Analysing tabTraining tab Settings

Experiment
Details

Take epochs
and training or
retraining or

reset

Setup data
folder

Visualize all
statistical

plots

Setup hyper
parameters
and setup
hardware

Fig. 3: GUI and JSON flow of GANEx

save all experimental details and data automatically to avoid
losing them as a result of forgetting to save. In contrast to
this, if the researcher wants to delete experiments or projects,
they can use the delete option of our tool compared to the
saving options of general GUI tools. The main motivation
for this concept is that every experimental details may have
valuable point in future and therefore it should be a reference
or logged records to easily track previous experiments. The
main GUI flow of our GANEx is depicted in Figure 3. This
flow is defined from the top to the bottom; the top level is
the starting point of the tool while the bottom level represents
endpoints of the GUI flow. Four boxes in the bottom layer
shows different user interfaces for configuring and visualizing
experiments.

The top level of GANEx creates projects which can be
consist of several GAN experiments. These experiments may
have any type of FastGAN implementations. Then, GANEx
enables users to organize their experiments in a structured way.
As depicted in the left side of Figure 3, the GANEx tool uses
its own JSON recorder to record project details.

The next main window is “list of experiments interface”
which allows users to create different experiments based on
different type of generative models. This window summarizes
all the details about previous experiments and if researchers
want it is possible to continue to the previous experiments. The
user can create a new experiment by selecting a generative
model type within the wizard window. Then, the GANEx
GUI enables the main experiment window which has all the
functionalities to control a specific GAN experiment. This
experiments window is capable of handling several experi-
ments of different types of generative models at the same
time. Therefore, doing comparative generative model-based
experiments are straightforward. The experiments JSON file
organizes all details related to experiments of the current
project.

(a) Real-time plotting (b) Advanced analysis of generated images

Fig. 4: Sample screenshots of the GANEx tool; (a) - this screen shows real-time loss value plots of a GAN architecture to
monitor the failures of GAN training process, (b) - in this window, the user can use different heat maps and color histograms
to understand the generated outputs

The current implementation of the main experiment window
has capabilities to train a generative model, handle input data
sources, set or tune hyperparameters of generative models and
analyze generative models by visualizing input data, generated
data, training and re-training behaviour and many more statis-
tical and engineering analysing mechanisms. Example screen
shots of real application windows and plots are presented in
Figure 4.

V. EXPANDABLE GANEX

This GANEx implementation opens doors to a wide range
of directions for expansions. In the future, the GUI-based
GANEx tool can be improved to design complex GAN ar-
chitectures from scratch using drag and drop components
while implementing training and inference via GUI-based
flow diagrams. In adddition, the analysis functionalities can
be expanded based on the state of the art findings without
affecting them with the base implementation because we keep
the analysing part as an independent section. Moreover, our
tool can be upgraded with hardware resources monitoring for
researchers who are dealing with performance improvements.
Furthermore, using the concepts behind this tool, GANEx
shows direction to implement advanced tools for other DL
mechanisms also.

VI. DEMO

In this demo, participants can get hands-on knowledge of
GANEx, and they will experience the power of the tool.
They will be able to get an idea about how GANEx organize
experiments and experimental details. In this session, users
can train a pre-designed simple GAN model from scratch
using simple datasets like MNIST (handwritten digits) [19]
and CelebA (low resolution celebrity images) [20]. Then, they
can analyse the training process in real-time and generated
images using the analysis window of GANEx.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Proceedings of Advances in Neural Information Processing Systems
(NIPS), 2014, pp. 2672–2680.

[2] I. J. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
Computing Research Repository (CoRR), vol. abs/1701.00160, 2016.

[3] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
CoRR, vol. abs/1511.06434, 2015.

[4] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
Computing Research Repository (CoRR), vol. abs/1411.1784, 2014.

[5] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,”
in Proceedings of Advances in Neural Information Processing Systems
(NIPS), 2016, pp. 469–477.

[6] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of International Conference on Computer Vision (ICCV), 2017.

[7] A. Hindupur. (2017) Deep hunt: The gan zoo. [Online]. Available:
https://deephunt.in/the-gan-zoo-79597dc8c347

[8] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[9] L. Yeager, J. Bernauer, A. Gray, and M. Houston, “Digits: the deep
learning gpu training system,” in Proceeding of Automation of Machine
learning (AutoML), 2015.

[10] M. Kahng, N. Thorat, D. H. P. Chau, F. B. Viégas, and M. Wattenberg,
“Gan lab: Understanding complex deep generative models using inter-
active visual experimentation,” IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 1, pp. 310–320, 2019.

[11] A. Paler, “Surfbraid: A concept tool for preparing and resource esti-
mating quantum circuits protected by the surface code,” arXiv preprint
arXiv:1902.02417, 2019.

[12] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques, 4th ed. Morgan Kaufmann,
2016.

[13] G. LLC. (2019) Tensorboard. [Online]. Available:
https://www.tensorflow.org/guide/summaries and tensorboard

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), 2016, pp. 265–283.

[15] I. Deep Cognition. (2018) Deep learning studio. [Online]. Available:
https://deepcognition.ai/features/deep-learning-studio/

[16] P. Baldi, “Autoencoders, unsupervised learning and deep architectures,”
in Proceedings of the International Conference on Unsupervised and
Transfer Learning Workshop (UTL). JMLR.org, 2011, pp. 37–50.

[17] L. Campagnola. (2011) Pyqt graphs. [Online]. Available:
http://www.pyqtgraph.org/

[18] Q. G. N. H. QTCOM). (2019) Qt. [Online]. Available: https://www.qt.io/
[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[20] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

