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Abstract The Stochastic Point Location (SPL) problem [20] is a fundamental
learning problem that has recently found a lot of research attention. SPL can be
summarized as searching for an unknown point in an interval under faulty feed-
back. The search is performed via a Learning Mechanism (LM) (algorithm) that
interacts with a stochastic Environment which in turn informs it about the direc-
tion of the search. Since the Environment is stochastic, the guidance for directions
could be faulty. The first solution to the SPL problem, which was pioneered two
decades ago by Oommen, relies on discretizing the search interval and perform-
ing a controlled random walk on it. The state of the random walk at each step
is considered to be the estimation of the point location. The convergence of the
latter simplistic estimation strategy is proved for an infinite resolution, i.e., infinite
memory. However, this strategy yields rather poor accuracy for low discretization
resolutions. In this paper, we present two major contributions to the SPL problem.
First, we demonstrate that the estimation of the point location can significantly
be improved by resorting to the concept of mutual probability flux between neigh-
boring states along the line. Second, we are able to accurately track the position
of the optimal point and simultaneously show a method by which we can estimate
the error probability characterizing the Environment. Interestingly, learning this
error probability of the Environment takes place in tandem with the unknown
location estimation. We present and analyze several experiments discussing the
weaknesses and strengths of the different methods.
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1 Introduction

Stochastic Point Location (SPL) is a fundamental optimization problem that was
pioneered by Oommen [20] and ever since has received increasing research inter-
est [28,12]. A Learning Mechanism (LM) attempts to locate a unique point λ∗ in
an interval whilst the only assistance comes from the information provided by a
random Environment (E) which informs it, possibly erroneously, whether the loca-
tion is to the left or to the right of the point. The probability of receiving correct
response from Environment is basically fixed and unknown. The SPL problem,
which was addressed by Oommen and few others [20,28,12,14,22,21], is indeed
a general optimization framework where a large class of optimization problems
could be modeled as an instantiation of it, see [31] for a survey of all the reported
solutions to the SPL.

The assumption that the parameter or point location in the SPL setting does
not change over time is not the case in many real-life dynamic systems such as
web-based applications [11]. Indeed, the probability of receiving correct response
from Environment might be unknown and even non-stationary. Sliding window [13]
is a traditional strategy for estimation in non-stationary Environments. However,
choosing the appropriate window size would be crucial. When the window size
is too small, the estimation will be poor. Contrarily, if the window size is rather
large, the estimation will be degraded.

It is worth mentioning that Continuous Point Location with Adaptive Tertiary
Search (CPL-ATS) strategy [23] is another method of solving SPL which system-
atically and recursively searches for sub-intervals that λ∗ is guaranteed to locate
in, with an arbitrarily high probability. A series of guessing which starts with the
mid-point of the given interval estimates the point location and repeats until the
requested resolution is achieved. The given interval is partitioned into three sub-
intervals where three LA work in parallel in each sub-interval and at least one of
them will be eliminated from further search. So, it is crucial in CPL-ATS to con-
struct the partition and elimination process. This method is further developed into
the CPL with Adaptive d-ary Search (CPL-AdS) Strategy [24] where the current
interval is partitioned into d sub-intervals, instead of three. The larger d results
in faster convergence, but the decision table of elimination process becomes more
complicated. An extension of the CPL-AdS scheme, which could also operate in
non-stationary environments, is presented in [12]. The decision formula is proposed
to modify the decision table in [24] to resolve certain issues of original CPL-AdS
scheme.

In [35] an SPL algorithm based on Optimal Computing Budget Allocation
(OCBA), named as SPL-OCBA, is proposed. SPL-OCBA employs OCBA and the
historical sample information to find the location of a target point. Zhang et al.
[33] integrated SPL with Particle Swarm Optimization (PSO)- which is a popular
swarm intelligence algorithm- in a noisy Environment, in order to alleviate the



On solving the SPL problem using the concept of Probability Flux 3

impacts of noise on the evaluation of true fitness and increase the convergence
speed.

In order to fasten the SPL scheme, the work reported in [26] proposes to use
the last two transitions of the SPL to decide whether to increase or decrease the
step size. Intuitively, two suggestions from the Environment in a row for going left
or right will increase the step size. On the other hand, the step size is decreased
whenever the SPL oscillates between two sates; this might be an indication that
the optimal point is located between those two states.

In [8], SPL is modified in accordance with the classical Random Walk-based
Triple level Algorithm (RWTA), where Environment provides three kinds of re-
sponses, i.e, right, left or unmoved.

A generalization of the hierarchical SPL scheme [28] to the case of deceptive
Environment was proposed in [34]. In order to deal with the deceptive nature of
the Environment and still be able to estimate the optimal location, the original
tree structure found in [28] was extended by a symmetric tree rooted at the root
node and it was shown that the SPL will converge to a leaf node in that symmetric
tree in case the Environment is deceptive, while it will converge to the leaf node
in the original tree if the Environment is informative i.e., not deceptive.

There is a wide range of scientific and real-life problems that can be modeled
as the instances of SPL problem, such as adaptive data encoding, web-based appli-
cations, etc. [11]. In [7], Granmo and Oommen presented an approach for solving
resources allocation problems under noisy Environment using a learning machine
that is basically an SPL. The basic SPL version is used to determine the prob-
ability of polling a resource among two possible resources at each time instant.
The scheme was also generalized to handle the case of more than one material
using an hierarchical structure. The paradigm has been applied to determining
the optimal polling frequencies of a web-page and to solving sampling estimation
problems with constraints [6].

In [30], it is proposed to apply the SPL paradigm to solve the stochastic root
finding problem which is a well-known stochastic optimization problem. The clas-
sical solution to solve this problem is based on stochastic approximation. Yazidi
and Oommen show that it is possible to model the problem as variant of the SPL
with adaptive d-ary search.

Recently, Yazidi et al. [29] show that quantiles can be estimated using an SPL
type search. The scheme has computational advantages as it uses discretized mem-
ory and it is able to adapt to dynamic environments. Another recent application
of the SPL [23] is estimating the optimal parameters of Distance Estimation Func-
tions (DEF). Distance Estimation (DE) [10] is a classical problem where the aim
is to estimate an accurate value for the real (road) distance between two points
which is typically tackled by utilizing parametric functions called Distance Esti-
mation Functions. The authors use the Adaptive Tertiary Search strategy [23], to
calculate the best parameters for the DEF. The proposed method uses the cur-
rent estimate of the distances, the feedback from the Environment, and the set
of known distances, to determine the unknown parameters of the DEF. It is sug-
gested that SPL is a better way to determine DEF parameters rather than the
traditional Goodness of-Fit (GoF) based paradigm [10].

SPL can also be used to find the appropriate dose in clinical practices and
experiments [16].
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A possible interesting application, which we focus on in our ongoing research,
is to determine the difficulty level of a cognitive training method by SPL. One of
the key challenges, faced by many learning methods, is to find the cognitive level
of a participant in order of designing suitable level of training. To the best of our
knowledge, in most legacy methods, alternating between different training levels
and scenarios is simply done by increasing the difficulty if the task is managed,
once or over a set of repeated iterations, or by decreasing/fixing the difficulty
level if the task is not managed. This problem could be modeled by SPL with
certain conditions, such as non-stationary point location, since the manageable
difficulty level will change as time goes for trained participant, and unknown cer-
tainty/probability of the results. Because there are many factors that might affect
the response to a training test that are not related to the real ability of the par-
ticipant. For instance, Titrated delayed matching-to-sample (TDMTS) method,
which is used by behaviour analysts, could easily be modeled as a SPL problem.
TDMTS can be used to study important variables for analyzing short-term mem-
ory problems [1].

Spaced Retrieval Training (SRT) [3] is also a method of learning and retaining
target information by recalling that information over increasingly longer intervals;
a method which is especially used for people with dementia [2]. For progressive
diseases like dementia, it is so important to estimate the ability level, i.e. point
location in SPL, as quickly as possible, since the ability will be rapidly modified
during time, affected by training, disease, and patient’s condition.

This paper is partially based on our previous work published in [18]. In [18],
we show that the SPL problem can be solved by introducing two key multinomi-
ally distributed random variables and tracking them using the Stochastic Learning
Weak Estimator (SLWE) method. SLWE [25] figures among the most prominent
estimators for non-stationary distributions. We proposeed to integrate the SLWE
as the inherent part of a more sophisticated and accurate solution for the SPL.
The recursive updated form of the SLWE makes it a viable strategy in our prob-
lem since the tracked distribution in the case of SLWE is updated incrementally.
Therefore, our strategy for estimation of point location revolves around tracking
the distribution at each time step and estimating the point based upon it. We
applied different statistical operators: maximum, expectation, and median on the
estimated probability vectors to obtain our estimates. The results indicate that,
the estimates obtained from these methods are smoother than those obtained from
legacy SPL solutions and can track the changes more efficiently. The results, also,
confirm that using the concept of mutual probability flux between states, accord-
ing to which transitions are considered as the events of multinomially distributed
random variable, is a superior alternative to [20]. We name the contribution as
Flux-based Estimation Solution (FES). In the simulation part of initial work re-
ported [18], Environment effectiveness fixed to p = 0.7 and the resolution fixed
to N = 16. It was shown there that the estimated error reduced up to 75%. In
the current paper, we do not fix the resolution and consider the case where we
can tune the resolution. A new contribution in this paper is to introduce the Last
Transition-based Estimation Solution(LTES). This estimator is much simpler than
FES and in the case that we have no constraint on the resolution, LTES could
estimate the point location equally well with FES.
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The Environment effectiveness, i.e. probability of correct answer, is unknown
and might vary over time. As the second contribution of this paper, we estimate
the probability in tandem with the unknown location estimation.

The remainder of this paper is organized as follows. In Section 2, the SPL
problem is defined formally. Section 3 is devoted to presenting our solution for both
estimating the point location as well as the Environment effectiveness probability.
In this perspective, Section 3.1 introduces the concept of mutual probability flux
which is formally proved to be a stronger method compared with the last visited
state of the Markov Chain. In Section 3.2, we introduce our estimation approach
reckoned as Flux-based Estimation Solution (FES) that is based on a subtle usage
of the concept of flux probability. We show that the LTES is a special case of
the FES method, and a comparison between the LTES with the FES method is
provided at the end of this part. Section 3.3 deals with the related fundamental
problem of estimation of the Environment effectiveness. To evaluate the behavior
of estimators, extensive simulation results based on synthetic data are presented
and discussed in Section 4. Experiments based on real-life data related to online
tracking of topics are presented in Section 5. Finally, we drew final conclusions in
Section 6.

2 Stochastic Point Location Problem in a Dynamic Setting

This problem considers that the learning mechanism (LM) moves within [0, 1]
interval and attempts to locate a point ( 0 ≤ λ∗(n) ≤ 1) that may changes over
time n. The Environment E is considered to be informative;

LM receives the right direction to the point location with probability p∗(n) >
0.5. This probability of receiving a correct response, which reflects the “effective-
ness” of the Environment, is unknown by LM and assumed to be varying.

As aforementioned, we intend to track λ∗(n) in an efficient manner. We follow
the model presented in [20] and discretize the interval and perform a controlled
random walk on it, characterized by λ(n). More precisely, we subdivide the unit
interval into N + 1 discrete points

{0, 1/N, 2/N, · · · , (N − 1)/N, 1},

where N is called the resolution of the learning scheme. Let λ(n) be the current
location at time step n:

– If E suggests increasing λ(n):
λ(n+ 1) = min(λ(n) + 1/N, 1)

– If E suggests decreasing λ(n):
λ(n+ 1) = max(0, λ(n)− 1/N)

Hereafter, the binary function E(n, i) stands for the Environment answer at
step n and location λ(n) = i/N , where E(n, i) = 1 refers to the Environment
suggestion to increase λ(n) and E(n, i) = 0 refers to the Environment suggestion
to decrease λ(n). Let Z be an integer value between 0 and N − 1, based on above
rules, if Z/N ≤ λ∗(n) < (Z + 1)/N at time n we have:
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Pr(E(n, i) = 1) = p∗(n) if 0 ≤ i ≤ Z
= q∗(n) if Z < i ≤ N

Pr(E(n, i) = 0) = q∗(n) if 0 ≤ i ≤ Z
= p∗(n) if Z < i ≤ N

(1)

Where q∗(n) = 1− p∗(n).
Based on the results presented in [20], in the stationary case in which λ∗(n) =

λ∗, this random walk will converge into a value arbitrarily close to λ∗, when
N → ∞ & n → ∞. However, the above asymptotic results are not valid for the
non-stationary SPL. Practically, we might experience some constraints, both on
time n ≤ T and on the resolution N ≤ R. Throughout the rest of this paper, we
pursue better estimates for λ∗(n) than λ(n).

3 Estimation Strategies

In this section, we first show the superiority of the Last Transition-based Esti-
mation Solution(LTES) over the last location estimate. Then, a multinomially
distributed random variable is considered. We track its probability distribution
with SLWE method [25] and estimate the λ∗(n) from the estimated distributions.
Then, we explain how we can estimate the probability p∗(n) using the estimation
of λ∗(n).

In [18], we showed that tracking probability distribution for different state
transitions, instead of the point locations, yields a better performance. The reason
is that the estimation by Markov chain will have many transitions around the true
and unknown λ∗(n). In the following, we prove that using the concept of mutual
probability flux is a stronger tool for solving the SPL problem than using the
current point location. In the proof, we consider the static case, i.e. λ∗(n) = λ∗.

3.1 Superior Accuracy with the Concept of Mutual Probability Flux

For simplicity, let xi = i/N for i = 0, 1, . . . , N . So, the Markov chain states will
be the possible value of xi for 0 ≤ i ≤ N which belongs to the set of values
{0, 1/N, 2/N, · · · , 1}. Suppose πi be the stationary (or equilibrium) probability of
the chain being in state xi. Then, the equilibrium probability distribution vector
will be Π = [π0, π1, · · · , πN ]T .

We know that, the Markov chain is an instantiation of the birth-death process1.
It is also known that, such a process is a time reversible Markov chain, i.e. satisfies
the detailed balance equation:

πiMi,j = πjMj,i for all i 6= j

where Mi,j ’s are transition probabilities. For a complete overview about time
reversibility, we refer the reader to an excellent book by Kelly [15]. The following
simple proof shows time reversibility of our Markov chain.

If |i− j| > 1 for 0 ≤ i, j ≤ N , i.e. xi and xj are not adjacent, then the detailed
balance equation is obviously true. For a given i, we can divide the states into two

1 Since the only possible transitions are moving one state to the left or right.
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parts, L = {xk|k ≤ i} and R = {xk|k > i}. Since the Markov chain is a birth-
death chain, the only passage between the two parts is the transition xi to xi+1

or xi+1 to xi. The flow from L to R is πiMi,i+1 and from R to L is πi+1Mi+1,i.
Since Π is stationary, the total flow must be 0, which concludes what is desired:

πiMi,i+1 = πi+1Mi+1,i. (2)

Let x+i denotes the event according to which the Markov chain makes a tran-
sition from xi to xi+1 or from xi+1 to xi. The informed reader would observe the
latter event can be related to the concept of flux probability [19, Chapter 8.4]. In
fact, in the literature, the flux probability between two neighboring states xi and
xi+1 is given by Mi,i+1πi which represents the absolute probability of observing a
transition from xi to xi+1. We can see that the probability of x+i can be described
as the sum of two flux probabilities; namely the flux probability corresponding to
transiting from xi to xi+1, and the flux probability of transiting in the opposite
direction from state xi+1 to xi. In other words, the probability of the event x+i ,
which is shown by π+

i , equals to the following sum

π+
i = Mi,i+1πi +Mi+1,iπi+1. (3)

We call this quantity as mutual probability flux between states xi and xi+1. In
the light of this explanation, we call Π+ = [π+

0 , π
+
1 , · · · , π

+
N−1]T the mutual flux

probability vector between two neighboring states.
Now we intend to investigate the relation between Π and Π+. Let xZ ≤ λ∗ <

xZ+1 and e = p
q > 12. As a result of equation (2) and referring to relations in (1),

the following balance equations hold.

πi = e.πi−1 whenever i ≤ Z (4)

In the case i ≤ Z we have Mi,i+1 = p and Mi+1,i = q.

πi =
πi−1

e
whenever i > Z + 1 (5)

In the case i > Z + 1 we have Mi,i+1 = q and Mi+1,i = p. Finally, since we have
MZ,Z+1 = p and MZ+1,Z = p:

πZ+1 = πZ (6)

These relations show that values are increasing from π0 to πZ and decreasing from
πZ+1 to πN ; and therefore, πZ and πZ+1 take the maximum value.

Let λtr(n) be the mean of last two states, i.e. λtr(n) = λ(n−1)+λ(n)
2 . In this

case, π+
i would be the stationary probability of λtr(n) chain being in transition

x+i . We can easily see that the probabilities for Π+ = [π+
0 , π

+
1 , · · · , π

+
N−1]T have

higher probabilities around the λ∗.
Whenever i < Z, using equation (3), we have

π+
i = pπi + (1− p)πi+1 = p

q

p
πi+1 + qπi+1.

and therefore
π+
i = 2qπi+1 whenever i < Z. (7)

2 Suppose the Environment is stationary; λ∗(n) = λ∗, p∗(n) = p > 0.5, and q∗(n) = q = 1−p
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In the case i = Z we have:

π+
Z = pπZ + pπZ+1 = 2pπZ , (8)

and finally whenever i > Z

π+
i = qπi + pπi+1 = qπi + p qpπi,

π+
i = 2qπi whenever i > Z.

(9)

Up to this point, we have showed the relation between Π and Π+. Now, to
show the convergence of Π+, we just need to prove π+

Z is greater than π+
i for

i 6= Z (i.e. i < Z and i > Z).

Case 1: i < Z: Based on equations (4), (5), and (6), we know that πZ > πi
for i < Z. We also know that 2q < 1, when p > 1/2; and therefore, 2qπi < πZ .
However, we showed that 2qπi = π+

i , and as a result:

π+
i = 2qπi+1 < πZ < 2pπZ = π+

Z

Case 2: i > Z: Again, we observe that πZ > πi for i > Z. So, we have

π+
i = 2qπi ≤ πi ≤ πZ < 2pπZ = π+

Z .

Thus, we have proved that π+
i < π+

Z for i 6= Z, which means that, the transition
has higher probabilities at π+

Z and lower values at other locations.
Since π+

Z is greater than πZ , we expect that the λtr(n) estimator, or LTES,
performs better than λ(n). This can be investigated by comparing the expected
estimation error of SPL and LTES. Let ESPL be the expected estimation error for
SPL and let ELTES be the expected estimation error for the LTES. For the sake
of simplicity, we suppose that λ∗ is in the middle of the interval [Z/N, (Z + 1)/N ]

which means λ∗ = Z+(Z+1)
2N .

ESPL =
∑
i

πi | λ∗ − xi |

=
∑
i

πi |
Z + (Z + 1)

2N
− i

N
|

=
∑
i6=Z

πi |
Z + (Z + 1)

2N
− i

N
| +πZ |

Z + (Z + 1)

2N
− Z

N
|

(10)

On the other hand for the LTES we have

ELTES =
∑
i

π+
i | λ

∗ − x+i |

=
∑
i

π+
i |

Z + (Z + 1)

2N
− i+ (i+ 1)

2N
|

=
∑
i6=Z

π+
i |

Z + (Z + 1)

2N
− i+ (i+ 1)

N
| +π+

Z |
Z + (Z + 1)

2N
− Z + (Z + 1)

2N
|

=
∑
i6=Z

2qπi |
Z + (Z + 1)

2N
− i+ (i+ 1)

2N
|

(11)
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As for large N , 2i+1
2N ≈ i

N , we can write

ELTES =
∑
i 6=Z

2qπi |
Z + (Z + 1)

2N
− i

N
| .

From the above equations we get:

ESPL >
∑
i6=Z

πi |
Z + (Z + 1)

2N
− i

N
|

> 2q(
∑
i6=Z

πi |
Z + (Z + 1)

2N
− i

N
|)

= ELTES

(12)

The last inequality is due to the fact that 2q < 1.
Therefore we conclude that the expected estimation error for LTES is smaller

than SPL for large enough N . The results in section 4 confirm the discussion above.

3.2 Flux-based Estimation Solution (FES)

Let X+(n) denote a multinomially distributed variable over the possible transi-
tions x+i , i = 0, . . . , N − 1; where the concrete realization of X+(n) at time step
n is λtr(n). Please note that the distribution of X+(n) can be explained using
the mutual flux probability vector Π+(n). The portion of transitions defined as
P (X+(n) = x+i ) = π+

i (n), i = 0, . . . , N − 1.
The SLWE method estimates the probabilities

Π+(n) = [π+
0 (n), π+

1 (n), . . . , π+
N−1(n)]T

by maintaining a running estimate S(n) = [s0(n), s1(n), · · · , sN−1(n)]T of Π+(n)
where si(n) is the estimate of π+

i (n) at time n. The updating rule is (the rules for
other values of sj(n), j 6= i, are similar):

si(n+ 1) ← αsi(n) + (1− α) when λtr(n) = x+i

← αsi(n) when λtr(n) 6= x+i
(13)

0 < α < 1 is a user-defined parameter for updating the probability distribution.
The intuition behind the updating rule is that if λtr(n) 6= x+i we should decrease
our estimate si(n) which is given by the second part of the updating rule. Similarly,
if λtr(n) = x+i we should increase our estimate which is given by the first part of
the updating rule.

It is worth mentioning that in [25], X(n) = X, i.e. it is not modeled as a
function of time and as a result Π(n) = [π0, π1, · · · , πN ]T is time-invariant. The
theorems and results are also proven in the asymptotic case when n → ∞ which
is in contradiction with the non-stationary assumption for Environment. It is dis-
cussed that in practice the convergence takes place after a relatively small value
of n. For instance, if the Environment switches its multinomial probability vec-
tor after 50 steps, the SLWE could track this change. However, we prefer to use
the notation in a way that the point location, and thereafter, the multinomially
probability vector are clearly shown to be non-stationary. SLWE converges weakly,
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independently of α value, however the rate of convergence is a function of α. Based
on previous section where we showed πi < πZ , i 6= Z, and as S(n) converges to
Π+(n), we are able to estimate the point location, λ∗(n), by finding the maximum
probability, i.e.

z = arg max
i

(si(n))

λmax(n) = x+z
(14)

Note that the maximum value refers to a pair that LM transits to the most. For
non-unique z, the last visited pair with the max probability value is chosen. See
Algorithm 1.

As n → ∞, and for appropriate choices of α → 1; S(n) → Π+(n). Thus,
equation (14) reduces to z = Z, as we know that π+

Z is the largest component in
the vector Π+(n). Then, the error will be ≈ 0 as time goes to infinity.

As a side remark, if α ≤ 0.5 and λtr(n) = x+i , then si(n) ≥ 0.5 for event x+i .
In other words, λmax(n) = λtr(n) if α ≤ 0.5. Because of this, we set α > 0.5 in
our simulations to avoid repeating the same estimation.

Algorithm 1: Estimation of λ∗(n) by FES

input : N, T, i = bN/2c, E(n, i), X(n), α

initialization

λ(0) = xi, S(0) = [s0(0), s1(0), . . . , sN−1(0)]T = [1/N, 1/N, . . . , 1/N ]T

begin

for n = 1 to T do

j = i− (−1)E(n,i)

if j ≤ 0 or j ≥ N then
j = i

i = j

λ(n) = xi

x+i =
λ(n)+λ(n−1)

2

S(n) = αS(n− 1) + (1− α)Ii /* Ii = [0, 0, · · · , 1, · · · , 0]T ; a vector of size

N with 1 at ith position and 0 elsewhere. */

λmax(n) = x+z where z = arg max
i

(si(n))

output: λ(n), λmax(n)

3.2.1 LTES as a Special Case of FES

The informed reader would remark that the FES scheme needs to keep track of the
maximum component of the mutual flux probability vector. For each component,
the middle point of the corresponding pair of states is used as an estimate of the
point location. A special case of the FES method is to operate without memory,
and in this case, the maximum component of the mutual flux probability vector
will simply correspond to the middle point of the last visited pair of states. This
is also true regarding Algorithm 1, where we see that if we replace α by 0, then
FES reduces to the LTES algorithm.

A potential strength of LTES (λtr) is that we only need to tune the parame-
ter, namely N , while the FES estimator (λmax) contains two parameters N and
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α. However, both parameters are related to how rapidly the estimator adjust to
changes in the Environment. This suggests that if we are able to tune over N , the
LTES approach and Oommen’s method could perform equally well as the more
sophisticated algorithm with weak estimation.

In the following, we show how to estimate the p∗(n) using λtr and weak es-
timators. The Oommen estimate i.e. λ(n) can not be a basis for estimation of
p∗(n). The reason is that we increase or decrease the probability by comparing
the estimation of point location λ̂(n) and Environment suggestion E(n, i) at point
λ(n). In Oommen’s method since λ̂(n) = λ(n) the probability estimation always
would be 0.5.

3.3 Estimation of Environment Effectiveness Probability

To estimate p∗(n) based on the estimation of λ∗(n), we use simple binomial weak
estimator. Let λ̂(n) be the estimation of λ∗(n). We adjust over γ which is the
parameter for binomial weak estimator. See Algorithm 2. Since the probability
assumed to change over [0.5, 1], the initial guess of the probability is set to p̂(0) =
0.75.

– If (λ(n) < λ̂(n) and E(n, i) = 1) OR (λ(n) > λ̂(n) and E(n, i) = 0):

p̂(n) = 1− γ(1− p̂(n− 1))

– Else if (λ(n) < λ̂(n) and E(n, i) = 0) or (λ(n) > λ̂(n) and E(n, i) = 1):

p̂(n) = max(0.5, γp̂(n− 1)) (15)

– Else if (λ(n) = λ̂(n)):
p̂(n) = p̂(n− 1)

Basically, the probability p̂(n) increases by a multiplicative parameter γ if the
Environment direction E(n, i) agrees with the estimation of point location, λ̂(n),
and vice verse; the opposite probability (1 − p̂(n)) increases by a multiplicative
factor γ if they disagree. Since we know that p∗(n) change over [0.5, 1], we restrict
our estimations to this domain by setting the lower bound 0.5 in equation (15).

Algorithm 2: Estimation of p∗(n)

input : N, T, E(n, i), λ(n), λ̂(n), γ

initialization

p̂(0) = 0.75

begin

for n = 1 to T do

if (λ(n) < λ̂(n) AND E(n, i) = 1) OR (λ(n) > λ̂(n) AND E(n, i) = 0) then

p̂(n) = 1− γ(1− p̂(n− 1))

else if (λ(n) < λ̂(n) AND E(n, i) = 0) OR (λ(n) > λ̂(n) AND E(n, i) = 1)

then

p̂(n) = max(0.5, γp̂(n− 1))

else

p̂(n) = p̂(n− 1)

output: p̂(n)
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4 Experimental Results

In this section, we resort to simulation experiments to evaluate the performance of
the estimators suggested in this paper. As mentioned before, both λ∗(n) and p∗(n),
which are not known by LM, could be either constant or dynamic. In this regard,
there are many possibilities to define the Environment in which two general types
of Environments are considered. Those Environments can show the characteristics
of estimators in the best manner.

– Both λ∗(n) and p∗(n) change after a fixed amount of time. So their values are
fixed for a while until a sharp change happens. We use the sample abbreviation
SWITCH-1000-10000 for this type, which means λ∗(n) changes after 1000 steps
and p∗(n) changes after 10000 steps. The next value of λ∗(n) is randomly
chosen from [0, 1], and for p∗(n) the random value is chosen from [0.5, 1].

– Both λ∗(n) and p∗(n) vary gradually as continuous functions of time. We
consider the changes as sine functions. A sample abbreviation for this type
would be SINE-1080-10080, which means that λ∗(n) has a period of 1080 and
p∗(n) has a period of 10080. More precisely, λ∗(n) = 0.5 + 0.5 sin((n/540)π)
where the sine argument changes by π/180 radians every 3 steps. Therefore,
period equals 3 · 360 = 1080. Moreover, p∗(n) = 0.75 + 0.25 sin((n/5040)π)
where the sine argument changes by π/180 radians every 28 steps; so the
period equals 28 · 360 = 10080.

The key aspects of presented estimators can be discussed through eight cases that
highlight the salient features of our scheme. For the sake of clarity, these cases are
classified into seven headings which are introduced briefly in the following.

The first section 4.1 presents the initial settings when both λ∗(n) and p∗(n)
change moderately. Cases SWITCH-1000-1000 and SINE-1080-1080 are presented
in this part in Fig. 1 and Fig. 2 respectively. Next, in section 4.2 the effect of
faster changes in λ∗(n) and p∗(n) are addressed through cases SWITCH-100-100
(Fig. 3) and SINE-360-360 (Fig. 4). In the third section 4.3 the effect of changing
rate of p∗(n) on estimating λ∗(n) in SWITCH dynamic is examined. To do so, the
changes of λ∗(n) are fixed on 1000, and two alternative cases SWITCH-1000-100
(Fig. 5) and SWITCH-1000-10000 (Fig. 6) are compared with SWITCH-1000-
1000 (Fig.1). Additionally, in Fig. 7 a trace plot for tracking λ∗(n) via LTES
(λtr) is presented and the behavior of the estimator is discussed through three
cases SWITCH-1000-100, SWITCH-1000-1000, and SWITCH-1000-10000. Table
1 summarizes the choices of tuning parameters resulting into the minimum error
for λtr and λmax to the SWITCH cases. The fourth section 4.4 focuses on the
SINE dynamic and presents the results for the effect of changing rate of p∗(n) on
estimating λ∗(n). Similarly, the period of sine function at λ∗(n) are fixed on 1080,
and two alternative cases SINE-1080-360 (Fig. 8) and SINE-1080-10080 (Fig. 9)
are compared with SINE-1080-1080 (Fig. 2). Table 2 summarizes the same data as
Table 1 for SINE cases. Fifth section 4.5 is devoted to study the effect of relation
between λ∗(n) and p∗(n) dynamics on the estimators. Fig. 10 depicts tracking
λ∗(n) throughout the two scenarios SINE-1080-1080 and SINE-1080-1080-Shift
where the second scenario has a shift in the phase of λ∗(n). The differences in
the tracking performance is discussed in detail. Table 3 is assisting the discussion
in this section. Estimation of Environment effectiveness is addressed in the last
two sections. In section 4.6, Fig. 11 and Fig. 12 present the estimation error for
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various SWITCH and SINE cases respectively. Moreover, Table 4 summarizes the
choices of tuning parameters resulting into the minimum error while Environment
effectiveness is estimated. In order to compare the effect of tuning parameters, in
Table 4, the estimation error for p∗(n) with N = 5 and α = 0.9 are reported as well.
Finally, section 4.7 analyses the results of estimation of Environment effectiveness
through tracking curves depicted in Fig. 13 and Fig. 14.

It is worth mentioning that there are two main other approaches to solve
the SPL problem which we do not compare with here. The first approach was
pioneered by Yazidi et al. [28] and is based on arranging the search space into a
tree structure. The second main approach is the CPL-ATS strategy [23,24] and
is based on diving the search interval into d sub-intervals and then recursively
eliminating at least one sub-interval, thus shrinking the search space. We did not
compare with these methods because in contrast to our solution and to Oommen’s
original SPL solution [20], much more queries are required per iteration. In fact,
when it comes to the hierarchical solution [28], three queries are required in the case
of a binary tree structure while the CPL-ATS strategy requires as many queries
as the number d of sub-interval. Therefore, it would be inappropriate to compare
against our method and Oommen’s original SPL which use only one query per
iteration. Furthermore, the CPL-ATS strategy suffers from the fact that is not
suitable for dynamic Environment as it eliminates irreversibly parts of the search
space at each epoch. Before proceeding to the experimental results, it is necessary
to clarify some general issues regarding the reported data and figures. First, some
figures shows the estimation error for a variety of tuning parameters N and α.

Below, we refer to this as “error plots”. In all experiments we have considered
α ∈ [0.6, 0.7, 0.8, 0.9, 0.95, 0.99], however, in the sake of clarity, we only depict
α ∈ [0.6, 0.9, 0.95] cases in the error plots.

Along with λmax(n) estimation, λmed(n) and λexp(n) estimations are presented
in [18] respectively as the median and expectation of probability vector. Formally,
λmed(n) and λexp(n) are defined by

– the expected value of the X+(n) at step n

λexp(n) =

N−1∑
i=0

x+i si(n), (16)

– the median of the X+(n) at step n:

λmed(n) = x+z where z is the index satisfying:
z∑
i=0

si(n) ≥ 0.5 and

N−1∑
i=z

si(n) ≥ 0.5.
(17)

Intuitively, it makes sense to estimate λ∗(n) by the most visited transition
which is given by λmax(n). However, if the system varies rapidly, the probability
vector estimate S(n) will be quite poor. In such a case, taking the expectation
might be a more robust alternative, as given by λexp(n).

Although the main proposal of this paper is λtr(n) and λmax(n), in order of
comparison, we include error plots for λ(n), λmed(n) and λexp(n).

The presented plots in section 4.5, show estimation error of p∗(n) as a function
of tuning parameter γ. Since the main objective of this paper is to track λ∗(n),
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Fig. 1: SWITCH-1000-1000. In each of the three sub-figures, one of the max,
med, and exp along with the Oommen’s method λ(n) and the transition λtr are
depicted.

and there are many parameters in estimation of p∗(n), we restrict the plots to the
best choices of N in λtr, and (N and α) in λmax. However, we added minimum
estimation error for p∗(n) when N = 5 and α = 0.9 to discuss the effect of
resolution on estimation of p∗(n).

To measure the estimation error in the estimation of λ∗(n) and p∗(n), the
Mean Absolute Error (MAE) will be used. For λ∗(n) this becomes

MAEλ =
1

T

T∑
n=1

| λ̂(n)− λ∗(n) | (18)

where T is the total number of time steps and λ̂(n) is the estimate at time step
n. Similarly, for p∗(n) this becomes

MAEp =
1

T

T∑
n=1

| p̂(n)− p∗(n) | (19)

where p̂(n) is the estimate at time step n.
Finally, to remove any Monte Carlo error in the results, we ran a total of 100

chains of length T = 105 for all cases.

4.1 Moderate changes of both λ∗(n) and p∗(n)

In this section both λ∗(n) and p∗(n) change moderately. Fig. 1 shows the estima-
tion error as a function of resolution for some choices of α. At any resolution, λtr
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Fig. 2: SINE-1080-1080. In each of the three sub-figures, one of the max, med,
and exp along with the Oommen’s method λ(n) and the transition λtr are depicted.

has lower estimation error than λ(n) and indeed, all the cases λmax, λmed, and
λexp perform more efficiently than λ(n) for, at least, a specific choice of α.

We also note that, the higher resolution will not result in a smaller error in
all the cases. For instance, for λ(n), the estimation error increases after resolution
N = 65 in which there is a minimum of errors. As it is represented in Table 1,
the minimum error for λ(n) equals e = 0.063149 when N = 65. We reach error
e = 0.061353 for λtr at resolution N = 50. The best error for λmax is e = 0.059138
when N = 50 and α = 0.9. The minimum error over all scenarios is e = 0.058559
which is achieved by λmed estimator when N = 50 and α = 0.95.

Fig. 2 shows the estimation error as a function of resolution for some choices of
α for SINE-1080-1080. All the curves have an optimum resolution point in which
any higher resolution cause higher estimation error. In the SINE-1080-1080 case,
λmax and λtr are best satisfying estimators. λtr with minimum error e = 0.04682
at N = 80, slightly outperforms λmax with minimum error e = 0.047095 at (N =
80, and α = 0.6).

4.2 Fast changes of both λ∗(n) and p∗(n)

Here the effect of faster changes in λ∗(n) and p∗(n) are addressed through cases
SWITCH-100-100 and SINE-360-360.
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Fig. 3: SWITCH-100-100. In each of the three sub-figures, one of the max,
med, and exp along with the Oommen’s method λ(n) and the transition λtr are
depicted.

Fig. 3 is devoted to SWITCH-100-100 that both λ∗(n) and p∗(n) randomly
switch to a new value in their domain. As expected, comparing the error with the
SWITCH-1000-1000 case, the estimation errors are higher. From Table 1 we see
that the minimum error for the estimators λ(n), λtr, and λmax are e = 0.1069,
e = 0.10258, and e = 0.1021 respectively. The minimum error in case SWITCH-
100-100 equals to e = 0.1021 and is achieved by λmax when N = 20 and α = 0.6

As expected, we see that faster changing Environment could be tracked more
accurately with smaller values of resolution and α. For instance, compare resolution
N = 20 in this case, for λmax, to N = 50 in case SWITCH-1000-1000. The
same comparison between α = 0.9 and 0.6 shows that to track faster changing
Environment, we must rely less on memory.

In Fig. 3, we observe that the best choice of α is dependent on the resolution;
for example, if N = 5, the λmax, λmed, and λexp with α = 0.95 and α = 0.9 are
superior to the choices with α = 0.6. However, if N = 15, α = 0.6 would be a
more desirable option.

Regarding fast changes, Fig. 4 is devoted to SINE-360-360 in which both λ∗(n)
and p∗(n) change continuously as a sine function with period 360 degree. The mini-
mum error in this case equals e = 0.08425 that is achieved by λtr at N = 35. Again,
the simpler estimator λtr outperforms λmax with minimum error e = 0.085329
when (N = 35 and α = 0.6). Note that, the λmax estimator is more efficient than
λ(n) that has minimum error e = 0.08634 when N = 35. In comparison with
SINE-1080-1080, the estimated error is higher and the best resolution is much
smaller in case SINE-360-360. Compare the best resolution N = 35 to the case
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Fig. 4: SINE-360-360. In each of the three sub-figures, one of the max, med, and
exp along with the Oommen’s method λ(n) and the transition λtr are depicted.

SINE-1080-1080 which equals to N = 80. Notice that α values closer to 1, produce
weaker estimations.

4.3 Effect of changing rate of p∗(n) on estimation of λ∗(n) in SWITCH cases

In this section the effect of changing rate of p∗(n) on estimating λ∗(n) in SWITCH
dynamic is examined. Two alternative cases SWITCH-1000-100 (Fig. 5) and SWITCH-
1000-10000 (Fig. 6) are compared with SWITCH-1000-1000 (Fig.1). In Fig. 7 a
trace plot for tracking λ∗(n) through LTES (λtr) is presented and the behavior of
the estimator is discussed. Additionally, Table 1 summarizes the choices of tuning
parameters resulting into the minimum error for λtr and λmax to the SWITCH
cases.

From Fig. 5 and Table 1, we observe that estimators perform better in SWITCH-
1000-100 in comparison with SWITCH-1000-1000. For instance, compare minimum
error of estimator λtr in case SWITCH-1000-100 which is e = 0.03671 for N = 80
with e = 0.06135 for N = 50 in case SWITCH-1000-1000.

The minimum error in various settings is e = 0.03538 which is achieved by
λmed estimator when N = 75 and α = 0.9.

Fig. 6 presents the case SWITCH-1000-10000 where p∗(n) changes ten times
slower than SWITCH-1000-1000. It is observable that estimators show a better
performance in case SWITCH-1000-10000 compared with SWITCH-1000-1000.
As presented in Table 1 we see that the minimum error for the estimators λ(n),
λtr, and λmax are e = 0.05027, e = 0.048795, and e = 0.04521 respectively. The
best estimator is λmax when α = 0.95 and N = 50.
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Fig. 5: SWITCH-1000-100. In each of the three sub-figures, one of the max,
med, and exp along with the Oommen’s method λ(n) and the transition λtr are
depicted.

In summary, the results, as shown in Fig 5, 6, and Table 1, indicate that
when the Environment effectiveness changes fast, the minimum estimation error
will be smaller. Comparing minimum errors e = 0.03539 to e = 0.05914 and
e = 0.04521 for cases SWITCH-1000-100, SWITCH-1000-1000, and SWITCH-
1000-10000 respectively. However, the error in SWITCH-1000-10000 when p∗(n)
changes very slow is better than moderate changes in SWITCH-1000-1000. This
result is somewhat counterintuitive. In order to understand it, we compare the
trace plots of SWITCH-1000-100, SWITCH-1000-1000, and SWITCH-1000-10000
together in Fig. 7.

Fig. 7 shows tracking λ∗(n) under optimal choices of parameters for λtr in
order to study the impact of Environment effectiveness on estimation of λ∗(n).
For the sake of simplicity, suppose there is a same chain λ∗(n) in all the cases.

Consider λ∗(n) along with three Environment effectiveness chains p∗f (n), p∗m(n),
and p∗s(n), for SWITCH-1000-100 (fast changes), SWITCH-1000-1000 (moderate
changes), and SWITCH-1000-10000 (slow changes) respectively, in which their
average value are approximately the same i.e.

1

T

T∑
t=1

p∗f (n) ≈ 1

T

T∑
t=1

p∗m(n) ≈ 1

T

T∑
t=1

p∗s(n).

Consider SWITCH-1000-10000 with p∗s(n) and let the estimation of λ∗(n) be
λ̂(n); suppose the following three scenarios:
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Fig. 6: SWITCH-1000-10000. In each of the three sub-figures, one of the max,
med, and exp along with the Oommen’s method λ(n) and the transition λtr are
depicted.

Fig. 7: (a) shows how λtr tracks λ∗(n) in case SWITCH-1000-100. (b) and (c)
show the same for SWITCH-1000-1000 and SWITCH-1000-10000 respectively. In
all cases, a slice of Environment from n = 60000 to n = 90000 are represented.
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1. The Environment effectiveness is close to 1, see n = 60000 to n = 70000 in
Fig. 7 (c). λ∗(n) is easily tracked in this segment and the estimation λ̂(n) is
satisfactory.

2. The Environment effectiveness is slightly distant from 1, but it is informative,
see n = 70000 to n = 80000 in Fig. 7 (c) where p∗s(n) value is close to 0.8.
Because the information from Environment is somewhat faulty, tracking the
point location in this segment is more difficult, but still satisfactory.

3. The Environment effectiveness has a value close to 0.5, see n = 80000 to
n = 90000 in Fig. 7 (c). The estimation λ̂(n) is unsatisfactory and it is almost
a random chain with a lot of fluctuations. The reason is that estimator does
not receive new information from Environment and after a short time λ̂(n) will
deviate from λ∗(n).

In summary, we keep the well estimation in the first segment, the estimation
performance is reduced in the second segment, but still satisfactory. Within the
third segment, possibility of error is rather high, and λ̂(n) fluctuates at a distant
point from λ∗(n). For p∗s(n) segments like the last one is discouraging, since we
remain in an unsatisfactory situation for a long period of time.

Alternatively, consider the Environment effectiveness p∗f (n), Fig. 7 (a). It is
possible to detect segments like the above three segments but with a much shorter
length. So, the behavior of λ̂(n) in each of them is not long lasting. Faster changes
make the behavior of estimators more like the second segment, with fluctuations
around λ∗(n).

In Fig. 7 (b); i.e. SWITCH-1000-1000 case, the error is the highest among the
three cases. In this case, p∗m(n) and λ∗(n) are changing at the same time. So, the
changes of p∗m(n) has no positive effect on estimation of λ∗(n). The best resolution
in this case equals N = 50, which suggests more changes than SWITCH-1000-
10000 with N = 65 and SWITCH-1000-100 with N = 80. This smaller resolution,
produces a higher error. To investigate the negative effect of the simultaneous
changes more, we run the SWITCH-1000-1000 case where there is a 500 steps
delay between λ∗(n) and p∗m(n) changes. That reduces the minimum error to
e = 0.05144 for N = 65, and approves the negative effect of simultaneous changes
in SWITCH cases.

The main observations in Fig. 7 are:

– Tracking λ∗(n) is heavily affected by Environment effectiveness. In Fig. 7 (c),
there are no fluctuations when p∗s(n) ≈ 1, however, when p∗s(n) ≈ 0.8, the
estimator fluctuates more around the optimal λ∗(n), and then when p∗s(n) is
slightly larger than 0.5 the fluctuations are much more bigger.

– Faster changes in Environment effectiveness leads to better estimations of
λ∗(n). Note that, the rate of changes must be regulated in a way that λ̂(n) can
converge to λ∗(n) when Environment effectiveness is close to 1.

– When λ∗(n) and p∗(n) changes together, it is much harder to track λ∗(n).
– Since the average value of Environment effectiveness in three cases are supposed

to be the same, and the most estimation error is produced in the third segment,
there is a better performance in case p∗f (n) in total.

From Table 1, we observe that the best estimations belong to the case SWITCH-
1000-100 and estimator λmax.
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Table 1: Summary of the choices of tuning parameters resulting into minimum
error for λtr and λmax in SWITCH experiments. The smallest error value in each
experiment is represented in bold font.

Estimator
SWITCH-

1000-1000 100-100 1000-100 1000-10000

Error N Error N Error N Error N

Oommen(λ(n)) 0.06315 65 0.1069 25 0.03797 90 0.05027 80

LTES(λtr) 0.06135 50 0.10258 20 0.03671 80 0.04879 65

F
E

S
(λ

m
a
x
)

α = 0.6 0.06098 50 0.1021 20 0.03646 80 0.04843 65

α = 0.7 0.06069 50 0.10253 20 0.03628 80 0.04806 65

α = 0.8 0.06 50 0.10349 20 0.03586 80 0.047312 65

α = 0.9 0.05914 50 0.10916 20 0.03539 75 0.04589 65

α = 0.95 0.05928 50 0.1233 15 0.0355 75 0.04521 50

α = 0.99 0.07094 35 0.20845 10 0.0406 40 0.06035 45

4.4 Effect of changing rate of p∗(n) on estimation of λ∗(n) in SINE cases

This section focuses on the SINE dynamic and presents the results for the effect
of changing rate of p∗(n) on estimating λ∗(n). Two alternative cases SINE-1080-
360 (Fig. 8) and SINE-1080-10080 (Fig. 9) are compared with SINE-1080-1080
(Fig. 2), and Table 2 summarizes the same data as Table 1 for SINE cases.

As reported in Table 2, the best estimation error for case SINE-1080-360
(Fig. 8) is achieved through λtr at N = 60 which equals to e = 0.05363; com-
pare to the best estimation error for SINE-1080-1080 that equals e = 0.04682. In
contrast to the SWITCH case, we see that faster changes of probability does not
result in smaller estimation errors. We later explain that along with the rate of
changes, another factor which plays a role is the phase of changes. In SINE-1080-
1080 both λ∗(n) and p∗(n) are in phase but in SINE-1080-360 they have different
periods and can not be in phase. The effect of this will be addressed in section 4.5
in details. The final case, SINE-1080-10080 in Fig. 9, provides a more clear insight.

In SINE-1080-10080, the changes are asymmetric and the Environment effec-
tiveness varies slower. The minimum estimation error equals e = 0.08935 and
occurs for λmax at (N = 40, α = 0.7). In this case, we observe that λmax estimator
slightly outperforms λtr. The minimum error for λtr is e = 0.08952 at N = 40.
Moreover, λexp results the best minimum error, e = 0.08835 when N = 35 and
α = 0.6

By comparing SINE-1080-10080 with SINE-1080-1080 and SINE-1080-360, we
observe that its estimation error is the weakest.

If only SINE-1080-360 and SINE-1080-10080 are compared with together, we
detect a better estimation at faster changing Environment effectiveness. While
SINE-1080-1080 is not following this hypothesis. In contrast to SWITCH cases,
where moderate changes of p∗(n) in SWITCH-1000-1000 show the weakest perfor-
mance, moderate changes of p∗(n) in SINE-1080-1080 show the best results. This
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Fig. 8: SINE-1080-360. In each of the three sub-figures, one of the max, med, and
exp along with the Oommen’s method λ(n) and the transition λtr are depicted.

suggests that another factor affects the estimation. Later in section 4.5, Fig. 10, we
explain it through the assessment of two different trace plots for SINE-1080-1080
case.

Table 2: Summary of the choices of tuning parameters resulting in minimum error
for λtr and λmax in SINE Experiments. The smallest error value in each experiment
is represented in bold font.

Estimator
SINE-

1080-1080 360-360 1080-360 1080-10080

Error N Error N Error N Error N

Oommen(λ(n)) 0.04791 80 0.08634 35 0.05502 65 0.09244 40

LTES(λtr) 0.04682 80 0.08425 35 0.05363 60 0.08952 40

F
E

S
(λ

m
a
x
)

α = 0.6 0.0471 80 0.08533 35 0.05377 60 0.08937 40

α = 0.7 0.04749 80 0.08659 35 0.05398 60 0.08935 40

α = 0.8 0.0485 75 0.08965 35 0.0548 60 0.08959 35

α = 0.9 0.05106 75 0.09706 35 0.05733 60 0.09085 35

α = 0.95 0.05578 75 0.11246 35 0.06228 55 0.09474 30

α = 0.99 0.111 65 0.31157 20 0.12002 30 0.14673 25
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Fig. 9: SINE-1080-10080. In each of the three sub-figures, one of the max, med,
and exp along with the Oommen’s method λ(n) and the transition λtr are depicted.

We have collect the best parameter values and resulted minimum errors of λ(n),
λtr, and λmax in Table 2. The best estimations belong to the case SINE-1080-1080.
Here, LTES estimator (λtr) is the best estimator.

4.5 The relation between λ∗(n) and p∗(n) changes and the estimation
performance

To study the effect of relation between λ∗(n) and p∗(n) dynamic on the estima-
tors, we consider the case SINE-1080-1080 that both λ∗(n) and p∗(n) are changing
according a sine curve. So, we re-run the SINE-1080-1080 case when the argument
of sine functions for λ∗(n) and p∗(n) differ by π/2. More formally, what we have
reported on Fig. 2 and on the top of Fig. 10 is λ∗(n) = 0.5 + 0.5 sin( π

3·180 ) and
p∗(n) = 0.75 + 0.25 sin( π

3·180 ). In the second run, λ∗(n) argument is added by
π/2, so λ∗(n) = 0.5 + 0.5 sin( π

3·180 + π/2) (Fig. 10 (c)-(d)). Hereafter, we call it
SINE-1080-1080-Shift. We observe significant differences between tracking λ∗(n)
throughout the two scenarios SINE-1080-1080 (Fig. 10 (a)-(b)) and SINE-1080-
1080-Shift (Fig. 10 (c)-(d)). The estimators λtr and λmax track λ∗(n) more ac-
curately in SINE-1080-1080 than SINE-1080-1080-Shift. Moreover, the minimum
estimation error for λtr in SINE-1080-1080-Shift is e = 0.10504, while it equals to
e = 0.04682 for λtr in SINE-1080-1080. Similarly, the minimum estimation error
for λmax in SINE-1080-1080-Shift is e = 0.10382. Compare it to e = 0.0471 for
λmax in SINE-1080-1080. We explain it by analyzing Fig. 10. In general, when
λ∗(n) value is close to 0 or 1, the effect of wrong guidance from Environment is
reduced. The reason is that λ(n) cannot pass the boundaries.
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Fig. 10: SINE-1080-1080. (a) and (b) subfigures show how the estimation tracks
λ∗(n) when the argument of sine function is the same by λtr and λmax, respectively.
The (c) and (d) sub-figures show the same when the argument of sine function
differ by π/2.

Let λ∗(n) = 0.5 + 0.5 sin(θ), so we have p∗1(n) = 0.75 + 0.25 sin(θ) for SINE-
1080-1080 and p∗2(n) = 0.75 + 0.25 sin(θ − π/2) for SINE-1080-1080-Shift.

Let us take the case SINE-1080-1080 where p∗(n) and λ∗(n) are in phase,
i.e. p∗(n) = p∗1(n) . Interestingly, the valley of p∗1(n) corresponds to the valley
of λ∗(n). Since p∗1(n) has a valley around 0.5, then the tracking of λ∗(n) will be
handicapped during that period but this will not affect much the accuracy as λ∗(n)
is also experiencing a valley and the changes are slow over that valley. However,
in case SINE-1080-1080-Shift where p∗2(n) and λ∗(n) are out of phase, a valley of
p∗2(n) coincides with a change of λ∗(n) from its lowest value to its biggest value.
Then, during that valley of p∗2(n), λ∗(n) tracking gets handicapped and the error
is big due to the scheme not being able to track the true underlying λ∗(n) that
changes dramatically from its min to its max. To be more precise, let

θ1 = 2kπ + π/4, θ2 = 2kπ + 3π/4, θ3 = 2kπ + 5π/4, θ4 = 2kπ + 7π/4, and
θ5 = 2(k+ 1)π+ π/4 where k is a positive integer. This way we divide a period of
1080 steps to four equal parts each with 270 steps. For the above values, λ∗(n1)
up to λ∗(n2) is situated in the range [0.85, 1]; i.e. in 270 successive steps the point
location is placed within this range. However, for the next 270 steps, i.e. from
λ∗(n2) to λ∗(n3), the values locate in range [0.15, 0.85]. We observe that the rate
of changes is not uniform. Similarly, λ∗(n3) to λ∗(n4) is placed in the range [0, 0.15]
and λ∗(n4) to λ∗(n5) is situated in the range [0.15, 0.85].

Similar to the discussions we had about SWITCH cases, we have

1

T

T∑
t=1

p∗1(n) ≈ 1

T

T∑
t=1

p∗2(n).
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This time p∗1(n) and p∗2(n) are exactly the same, but their relation to λ∗(n) makes
them different.

In range n1 to n2, where λ∗(n) is located in [0.85, 1], p∗1(n1) to p∗1(n2) is situated
in the range [0.93, 1]. In range n2 to n3, where λ∗(n) is located in [0.15, 0.85],
p∗1(n2) to p∗1(n3) is situated in the range [0.57, 0.93]. Moreover, in the range n3

to n4, where λ∗(n) is located in [0, 0.15], p∗1(n3) to p∗1(n4) is placed in the range
[0.5, 0.57]. Finally, for range n4 to n5, where λ∗(n) is located in [0.15, 0.85], p∗1(n4)
to p∗1(n5) is situated in the range [0.57, 0.93].

The intervals for values of p∗2(n) are achieved through shifting p∗1(n) values.
When λ∗(n) is in range [0.85, 1] it takes values in [0.57, 0.93], and when λ∗(n) is in
range [0.15, 0.85] it takes values in [0.93, 1]. When λ∗(n) is placed in range [0, 0.15]
it takes values in [0.57, 0.93], and when λ∗(n) is placed in range [0.15, 0.85] it takes
values in [0.5, 0.57]. See Table 3 for a summary:

Table 3: Summary of SINE-1080-1080 alternatives

n range θ range λ∗(n) range p∗1(n) range p∗2(n) range

n1 − n2 (2kπ + π/4)− (2kπ + 3π/4) [0.85, 1] [0.93, 1] [0.57, 0.93]

n2 − n3 (2kπ + 3π/4)− (2kπ + 5π/4) [0.15, 0.85] [0.57, 0.93] [0.93, 1]

n3 − n4 (2kπ + 5π/4)− (2kπ + 7π/4) [0, 0.15] [0.5, 0.57] [0.57, 0.93]

n4 − n5 (2kπ + 7π/4)− (2(k + 1)π + π/4) [0.15, 0.85] [0.57, 0.93] [0.5, 0.57]

A comparison of the two Environments reveals why estimation of SINE-1080-
1080 (p∗1(n)) outperforms SINE-1080-1080-Shift (p∗2(n)):

– In range n1 − n2, since p∗1(n) values are higher, we will have more promising
estimations. Note that p∗2(n) is in range [0.57, 0.93], λ∗(n) is close to 1, when it
reaches its peak, hence its value changes slowly. That is to say in this period,
estimations in SINE-1080-1080-Shift are satisfactory. See, for instance, around
n = 24500 in Fig. 10 (c)-(d).

– In range n2−n3, the changes in λ∗(n) are fast. Estimation in SINE-1080-1080
case is more difficult than SINE-1080-1080-Shift, because p∗1(n) is in range
[0.57, 0.93] and p∗2(n) is in range [0.93, 1].

– In range n3 − n4, the changes in λ∗(n) are not fast and the value is close to
the boundary. p∗1(n) is in range [0.5, 0.57] while the information from Environ-
ment is almost random. However, since λ∗(n) is in a peak, its value is close to
boundary and does not change fast, as we explained before, the most fluctua-
tions will be nearby the true λ∗(n); see around n = 21000 in Fig. 10 (a)-(b).
Tracking λ∗(n) changes in SINE-1080-1080-Shift case is more accurate than in
SINE-1080-1080 case.

– In range n4 − n5, the changes in λ∗(n) are fast. Tracking λ∗(n) in SINE-1080-
1080 Environment, similar to the range n2 − n3, is acceptable to some extent.
However, tracking the point location in SINE-1080-1080-Shift Environment is
almost impossible. As can be seen in Fig. 10 (c)-(d) around n = 22500, the
combination of fast changes of λ∗(n) and distance from boundaries, cause huge
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Fig. 11: Estimation of p∗(n) with binomial weak estimation via two alternative
choices of λ∗(n) estimations (λmax and λtr) for SWITCH-1000-1000 (a), SWITCH-
100-100 (b), SWITCH-1000-100 (c), and SWITCH-1000-10000 (d).

deviation. Such periods result in higher estimation error in SINE-1080-1080-
Shift Environment than SINE-1080-1080.

Therefore, both the rate of changes in Environment effectiveness and its rela-
tionship to the point location might affect the estimations.

4.6 Estimation of Environment effectiveness: p∗(n)

In Fig. 11 and Fig. 12 the estimation error for various SWITCH and SINE cases
are presented respectively. Moreover, Table 4 summarizes the choices of tuning
parameters resulting into the minimum error while Environment effectiveness is
estimated.

In order to depict the estimation performance of p∗(n), we restrict the re-
sults to estimation based on two cases λmax and λtr, for these are the main
contribution in this paper which perform the best. Moreover, we consider the
best parameters of these two estimators based on results of previous error plots.
The tuning parameters resulted to the the best minimum error reported in Table
4. We will consider and discuss the results for N = 5 and α = 0.9 in Table 4
later. In the following we will compare the results from best λ∗(n) estimations.
The best minimum error in case SWITCH-1000-1000 is achieved for p̂max when
(N = 50, α = 0.9 and γ = 0.99) equals to e = 0.0524. The error for alternative
method, i.e. p̂tr equals to e = 0.08406 when (N = 50, and γ = 0.97), see Table 4.

The best minimum error in case SWITCH-100-100 is simultaneously achieved
for p̂max and p̂tr at value e = 0.10819 with parameters (N = 20, α = 0.6, and γ =
0.92). In comparison with SWITCH-1000-1000, it is weaker than the previous case
in which Environment changes more slowly.
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In case SWITCH-1000-100, the best minimum error is obtained through p̂max

when (N = 75, α = 0.9 and γ = 0.94), that equals to e = 0.08126. Error for p̂tr
equals to e = 0.10135 in the case (N = 80, and γ = 0.94).

Finally, the case SWITCH-1000-10000 where the minimum error for p̂max when
(N = 50, α = 0.95 and γ = 0.999) equals to e = 0.04036. The error for alternative
method p̂tr equals to e = 0.10736 in case that (N = 65, and γ = 0.95).

Overall, it seems like λmax performs a little better than λtr. However, a signifi-
cant disadvantage of λmax compared with λtr is that the tracking of λ∗(n) requires
tuning of two parameters compared to only one for λtr. For dynamically changing
environments it is usually hard enough to tune one parameter.

Fig. 12: Estimation of p∗(n) with binomial weak estimation via two alternative
choices of λ∗(n) estimations (λmax and λtr) for SINE-1080-1080 (a), SINE-360-
360 (b), SINE-1080-360 (c), and SINE-1080-10080 (d) Environments.

In case SINE-1080-1080 illustrated in Fig. 12 (a), we choose N = 80 for λtr
and (N = 80, α = 0.6) for λmax as the best parameters. As reported in Table 4,
the best estimation error for both p̂max and p̂tr occurs at γ = 0.94 and equals
e = 0.11103.

Similarly, We observe that both estimators are equally well for cases SINE-
360-360, SINE-1080-360, and SINE-1080-10080; where the best estimation error
equals to e = 0.125, e = 0.11201, and e = 0.08299 respectively, see Table 4 for
more details.

Even though the estimation error for point location in case SINE-1080-10080
is weaker than all the cases SINE-1080-1080, SINE-360-360, and SINE-1080-360,
its estimated probability is preferred; because slower changes can be tracked more
easily.

In SINE cases, apart from the case SINE-1080-10080 and SINE-1080-1080-
Shift, the estimation error is poor, i.e. optimal error is greater than 0.1 in both
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p̂tr and p̂max. In Fig. 11, Fig. 12 and Table 4, we see that in some cases p̂tr and
p̂max perform equally well, even though the estimators λtr and λmax results are
different. The reason is in estimation of Environment effectiveness, the important
data is whether the suggested direction by Environment agrees with the estimation
or not. In other words the distance between estimation and the point location is
not important, and the crucial issue is that both point location and estimation of
it, are at the same side- left or right- of the query location. So we can have exactly
the same results even if the estimated point is not the same in two estimators.

A natural question that might arise is that whether the best parameters for
estimation of λ∗(n) are the best for estimating p∗(n) or not. A simple simulation,
where we set N = 5 and α = 0.9, provides a negative answer to this question.
These parameters results into a smaller estimation error for all the cases compare
to the best parameters. Moreover, the p̂max estimations are all better than p̂tr.
For instance, in case SWITCH-1000-1000 the estimation error for p̂tr drops from
e = 0.08406 for N = 50, to e = 0.06812 for N = 5. For p̂max, error drops from
e = 0.0524 with e = 0.04199 for the same resolutions. Similarly, for SINE-1080-
1080, please compare the error e = 0.11103 for N = 80 and α = 0.6 to e = 0.06308
and e = 0.05056 for p̂tr and p̂max respectively, when N = 5 and α = 0.9; see Table
4. We try to justify the reason behind this in the following.

Recall equations (4), (5), and (6) where we have:

πi = e.πi−1 whenever i ≤ Z,
πZ+1 = πZ , and
πi =

πi−1

e whenever i > Z + 1,

where e = p
q . To find a relation between resolution and π+

Z we have:

1 =

N−1∑
i=0

π+
i

=

Z−1∑
i=0

π+
i +

N−1∑
i=Z+1

π+
i + π+

Z

(20)

By substituting the relations (7), (8), and (9):

= 2q(

Z−1∑
i=1

πi +

N−1∑
i=Z+1

πi) + 2p(πZ)

= 2qπZ(

Z−1∑
i=1

(
1

e
)i +

N−1∑
i=Z+1

(
1

e
)i−Z) + 2p(πZ)

(21)

By removing q and simplification:

= 2pπZ [1 +
1

e2
(

Z−2∑
i=0

(
1

e
)i +

N−2∑
i=Z

(
1

e
)i−Z)]. So

πZ =
1

2p[1 + 1
e2 (

∑Z−2
i=0 (1

e )i +
∑N−2
i=Z (1

e )i−Z)]

(22)

The above equation implies that for a static environment the larger N , the smaller
πZ . Since for the estimation of p∗(n) the accuracy of point location is not impor-
tant, a smaller resolution will increase the probability to be at the correct pair, i.e.
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Z/N ≤ λ∗(n) < (Z + 1)/N . Based on this argument, we can formally prove that
a smaller resolution gives a better estimation of p∗(n) while a larger resolution
yields a better estimation of λ∗(n). Based on the above theoretical result that is
in accordance with our experimental results, we therefore suggest to run the SPL
in parallel using two different resolutions: a smaller resolution for better estimation
of p∗(n) and a larger resolution for better estimation of λ∗(n).

Table 4: Summary of tuning parameters resulting into minimum error, along with
the parameters N = 5 and α = 0.9 for ptr and pmax. The lowest error value among
ptr and pmax for each case is represented in bold font.

Case
Estimator

λtr λmax

Error N γ Error N α γ

SWITCH-1000-1000 0.08406 50 0.97 0.0524 50 0.9 0.99
SWITCH-1000-1000 0.06812 5 0.98 0.04199 5 0.9 0.99

SWITCH-100-100 0.10819 20 0.92 0.10819 20 0.6 0.92
SWITCH-100-100 0.08698 5 0.94 0.07445 5 0.9 0.95

SWITCH-1000-100 0.10135 80 0.94 0.08126 75 0.9 0.94
SWITCH-1000-100 0.08711 5 0.94 0.07086 5 0.9 0.95

SWITCH-1000-10000 0.10736 65 0.95 0.04036 50 0.95 0.999
SWITCH-1000-10000 0.08444 5 0.999 0.0399 5 0.9 0.999

SINE-1080-1080 0.11103 80 0.94 0.11103 80 0.6 0.94
SINE-1080-1080 0.06308 5 0.97 0.05056 5 0.9 0.97

SINE-360-360 0.125 35 0.92 0.125 35 0.6 0.92
SINE-360-360 0.077 5 0.94 0.07433 5 0.9 0.94

SINE-1080-360 0.11201 60 0.94 0.11201 60 0.6 0.94
SINE-1080-360 0.07282 5 0.94 0.06873 5 0.9 0.94

SINE-1080-10080 0.08299 40 0.99 0.08299 40 0.7 0.99
SINE-1080-10080 0.04871 5 0.99 0.0345 5 0.9 0.99

SINE-1080-1080-Shift 0.07681 25 0.97 0.07681 20 0.8 0.97
SINE-1080-1080-Shift 0.0586 5 0.97 0.05437 5 0.9 0.97

4.7 Environment effectiveness tracking

The results of estimation of Environment effectiveness through tracking curves,
which are depicted in Fig. 13 and Fig. 14, are analyzed in this section.

Fig. 13 compares tracking p∗(n) for two cases SWITCH-1000-100 (a)-(b) and
SWITCH-1000-10000 (c)-(d) based on estimations λmax and λtr. We observe that
p̂tr fluctuation is higher than p̂max. Indeed, p̂max documents a little better peak
performance (as the trace plots show), but with the price of requiring tuning of
an additional parameter in λmax.
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Fig. 13: Comparison of how the estimators track p∗(n) with different dynamics.
The sub-figures (a) and (b) show how λ∗(n) is tracked by λtr and λmax respectively
in case SWITCH-1000-100. Sub-figures (c) and (d) track λ∗(n) by λtr and λmax

respectively, in case SWITCH-1000-10000. In SWITCH-1000-100 cases a slice of
Environment from n = 60000 to n = 62000 are represented. The represented slice
for SWITCH-1000-100 is n = 60000 to n = 90000.

Moreover, as we see more clear at SWITCH-1000-10000 case, whenever proba-
bility is closer to 1, any change in λ∗(n) intensely affects the p∗(n) estimators. So
we detect sharper changes in p∗(n) estimators within the range of n = 60000 to
n = 70000. Then, there is a middle range probability around 0.8 from n = 70000
to n = 80000. In this range estimators fluctuate more but change less shapely.
Interestingly, within the range of n = 80000 to n = 90000 there are fewer fluc-
tuations. The reason is that the Environment provides almost random directions
and the changes of λ∗(n) are not followed by the estimators efficiently. Since λ∗(n)
estimation is the basis for p∗(n) estimation, the changes in λ∗(n) could not affect
p∗(n) estimations. Therefore, there are no sharp changes when p∗(n) is close to
0.5.

Even though the estimation error for point location in case SWITCH-1000-
10000 is weaker than SWITCH-1000-100, its estimated probability is preferred;
because slower changes can be tracked more easily.

Fig. 14 compares tracking p∗1(n) with p∗2(n) for SINE-1080-1080 and SINE-
1080-1080-Shift, based on two estimations λmax and λtr. An interesting observation
regarding the Fig. 14 is the different behavior of estimations near value 1. The
estimation for p∗1(n) is more accurate comparing to p∗2(n), which can be explained
due to the value of λ∗(n). The tracking is promoted by the fact that in SINE-1080-
1080 (Fig. 14 (a)-(b)), λ∗(n) is both close to 1 and changes more slowly. However,
the tracking is weakened in SINE-1080-1080-Shift due to λ∗(n) changes faster in
the middle ranges. Through comparing the two results, it can be seen that although
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Fig. 14: SINE-1080-1080. Comparison of how the estimations track p∗(n), when
λ∗(n) and p∗(n) are either in-phase (a)-(b), or out of phase (c)-(d).

the estimation of λ∗(n) is weaker in SINE-1080-1080-Shift, the proposed estimators
for p∗(n) in SINE-1080-1080-Shift are more precise. Compare the minimum error
e = 0.07681 in SINE-1080-1080-Shift to e = 0.11103 in SINE-1080-1080.

5 Real-Life Experiment

In this Section, we show how our proposed algorithms can be used for topic tracking
in a stream of text by enhancing an existing estimator proposed in the literature
[32]. Online tracking of topics in a stream of text, such as news/social media feeds,
has been addressed in several research [4,25,9].

Consider News and Entertainment (including sports) as the two topics of in-
terest. The aim is to model this problem such that the point location would be
the probability of current topic being News. This quantity has the characteristics
of point location (λ∗(n)). Additionally, we need some guidance from Environment
to be able to run the proposed algorithms. As we will explain in the following,
we can consider x(n) ∈ {0, 1} to be a stream of zero and ones, where zero stands
for Entertainment and one stands for News. So, x(n) is a Binomial variable and
λ∗(n)- i.e. probability that the current topic is News- is the Bernoulli parameter
for each trial.

In [32], the Stochastic Search on the Line-based Discretized weak Estimator
(SSLDE) is used to estimate the parameters of a distribution, when these param-
eters changes with time. Note that in distribution parameter estimation problem,
the Environment is rather artificial and is constructed to suggest whether increase
or decrease the current estimate. We follow the same method as the SSLDE for
the online tracking problem and create an artificial Environment that guides us
to the point location.
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Recall that for resolution N , we have λ(n) ∈ {0, 1/N, 2/N, · · · , i/N, · · · , (N −
1)/N, 1}. The estimator is assigned initially the value λ(0) = bN/2c

N . The updating
rules for SSLDE [32] depends on whether the current estimate is greater or less
than N/2. Suppose that λ(n) = i

N and, as mentioned above, let x(n) be the
Binomial variable that takes zero or one at time n.

1. Case 1: [i ≥ (N/2)]:
– If x(n) = 1 and rand() ≤ N

2·i :

E(n, i) = 1 → λ(n+ 1) =
min((i+ 1), N)

N

– Else:

E(n, i) = 0 → λ(n+ 1) =
i− 1

N

2. Case 2: [i < (N/2)]:
– If x(n) = 0 and rand() ≤ N

2(N−i) :

E(n, i) = 0 → λ(n+ 1) =
max((i− 1), 0)

N

– Else:

E(n, i) = 1 → λ(n+ 1) =
i+ 1

N

where 0 ≤ rand() ≤ 1 is a uniform random number generator. Now, we are able to
track the probability of the current topic be News by using the above suggestions
by Environment.

5.1 Tracking Problem

As mentioned above, News and Entertainment are the two topics we consider in
this experiment. To generate the text feed, a large set of related articles are col-
lected from the popular Norwegian newspaper site vg.no. The articles are shuffled
randomly with the assumption that the algorithm is unaware of when transitions
between News and Entertainment take place. In the same line as in [9], based
on the stream of text, two methods are used for generating binary observations
namely the keyword-list approach and the Machine learning approach.

– Keyword lists. A keyword list is a set of words for each topic, here News
and Entertainment. For generation of the keyword lists, the popular Pointwise
Mutual Information criterion [17] is used. We assume that one word at time
is received from the News feed and the task is to track the probability of the
current topic of the text stream is News. The best possible estimate based
on the keyword list approach is to compute the portion of keywords in each
article that are News keywords. This approach is called offline approach. The
performance of our algorithm can be compared to this offline approach and see
how close our online estimates are to the optimal offline approach.
Fig. 15 shows the tracking of the probability that the current topic is News
for FES (Max) and LTES (Tr) for the first 15000 words. The total number of
keywords in the experiment was 800400, while there was not a fixed period for
changing between topics. We see that our algorithms are able to track changes
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Fig. 15: Trace plot for FES (Max) and LTES (Tr) for tracking the probability of
the current topic be News in topic tracking experiment with keyword list approach.
The black curves show the offline estimate.

in the News stream well. For instance, look at period n = 5000 to n = 11000.
A difference between these real data from the simulations in section 4 is that
here the rate of changes is not fixed. As we see in Fig. 15 the offline estimate
changes rapidly in some periods (for n = 2000 to n = 5000) and does not
change for a long period (n = 5000 to n = 11000). Since in average the data
has long fixed periods, the best achieved resolution is N = 185, which is better
for the long periods.
It is worth mentioning that this tracking data can be used as a classifier.
Consider what we really want to understand from the data is that if the current
feed belongs to the News or Entertainment. Indeed, the required answer is if the
probability of the current topic be News is greater than 0.5 or not. Interestingly,
for classification application, the best resolution is much smaller, i.e N = 45.
The reason is that for classification, the flexibility is much more important
compared to accuracy.

– Machine Learning. The most used approach to automatically classify text
into different classes like topics or sentiment is to train a machine learner. The
process starts by dividing the training text stream in batches of 20 words,
each within one of the News or Entertainment topics. In the machine learning
approach, the documents (batches) were represented by word frequencies in a
bag of word matrix. These batches are used to train a machine learning model.
For this experiment multinomial ridge regression [5] is used through the glmnet
package in R [27]. For the testing part, the single words of the text stream were
collected into batches of 20 words. Each batch in this phase were classified
into one of the News or Entertainment topics using the trained multinomial
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regression model. The probabilities of the current topic were updated in the
same manner as for the keyword list approach.

Fig. 16: Evaluation of FES (Max) and LTES (Tr) for tracking the News in feed
experiment in machine learning approach. The black curves show the offline esti-
mate.

Fig. 16 shows the tracking of the probabilities for the different topics for the
machine learning approach. The total number of batches was 189141 which we
depict the tracking in the first 5000 batches. Data changes faster in the ML ap-
proach and therefore the best resolution is much smaller; N = 35. We see that
the fluctuations are greater than Fig. 15 because of this smaller resolution, but in
turn, it is more adaptable with fast changes. Similar to the keyword list, if we use
the algorithms for classification, the resolution will be even smaller; i.e. N = 11.
So, being aware of that there might be different best parameters in the estimation
for different applications is an important point.

6 Conclusion

A wide range of real-life problems can be modeled as a SPL problem, espe-
cially when the Environment is considered to be non-stationary. The random walk
method, that Oommen presented for solving the SPL problem, is known to con-
verge into a value arbitrarily close to the point location, when both resolution
and time tend to infinity. Oommen’s method simply discretizes the interval and
performs a controlled random walk on it. This paper is an extention of the prelim-
inary work presented [18] where we propose a new method to estimate the point
location in the SPL problem domain. In the current paper, we have introduced
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the mutual probability flux concept and have proved that Flux-based Estimation
Solution (FES) and Last Transition-based Estimation Solution (LTES), as a spe-
cial case, always outperform Oommen’s method. Moreover, we present a method
to estimate Environment effectiveness, p∗(n). This simple method could track the
probability of receiving correct response from the Environment in tandem with
the unknown location estimation.

Apart from theoretical proofs several experiments are presented in order to un-
derstand the characteristics of each method. We argued that λtr, proposed in this
paper, is equally simple but with better estimation performance than Oommen’s
method. λmax, λexp and λmed show better estimation performance than λtr in
low resolutions, but this comes with the price of tuning one additional parameter.
This suggests that if we have no constraint on N , i.e. λ∗(n) represents a continuous
quantity, we can tune just with N and estimate with LTES. But in the case where
freely tuning over N is not possible, tuning with α and using one of λmax, λexp,
and λmed could provide more accurate estimations.

As experiments show, the tracking of λ∗(n) performs better when p∗(n) value
is close to 1. The estimation performance of λ∗(n) drops drastically when p∗(n)
is close to 0.5. This is as expected, since in case p∗(n) = 1, our estimation proce-
dure will be correct, i.e. λ̂(n) switches back and forth around the true λ∗(n). In
contradiction, in the case p∗(n) is close to 0.5, we have more faulty feedback, and
so an unsatisfactory estimation of λ∗(n).

Based on the results, we have also discussed when λ∗(n) value is close to 0 or 1,
the effect of faulty guidance from Environment will be reduced to some extent and
the estimation is slightly better. Moreover, if p∗(n) takes the same value in average,
faster changes of p∗(n) are preferable; with the condition that changes in p∗(n) are
slow enough that estimator could converge into λ∗(n) when p∗(n) is reaching to 1.
In this case, faster changes interrupt a long lasting weak estimation and bring the
estimator back into a more accurate value. However, if p∗(n) and λ∗(n) changes
simultaneously, the positive effect of faster changes of p∗(n) is lost. We have also
discussed that, not only the rate of changes, but also the relation between λ∗(n)
and p∗(n) affects the estimation error where p∗(n) represents reliability of the
feedback from Environment. A satisfactory estimation of p∗(n) informs us to what
extent we can trust the feedback and subsequently the estimations we have built
upon that.
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