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Abstract—We present results and comparative analysis on the
prediction of sensor events in a smart home environment with a
limited number of binary sensors. We apply two probabilistic
methods, namely Sequence Prediction via Enhanced Episode
Discovery — SPEED, and Active LeZi — ALZ, as well as Recurrent
Neural Network (RNN) with Long Short-Term Memory (LSTM)
in order to predict the next sensor event in a sequence. Our
dataset has been collected from a real home with one resident
over a period of 30 weeks. The binary sensor events are converted
to two different text sequences as dictated by SPEED and
ALZ, which are also used as inputs for the LSTM networks.
We compare the performance of the algorithms regarding the
number of preceding sensor events required to predict the next
one, the required amount of data for the model to reach peak
accuracy and stability, and the execution time. In addition,
we analyze these for two different sets of sensors. Our best
implementation achieved a peak accuracy of 83% for a set with
fifteen sensors including motion, magnetic and power sensors,
and 87% for seven motion sensors.

Index Terms—smart home, sensor data prediction, binary
sensors, recurrent neural network, probabilistic models

I. INTRODUCTION

The Assisted Living Project (ALP) is an interdisciplinary
project involving health, ethics, and technology experts [1].
The aim is to develop assisted living technology (ALT) to
support older adults with Mild Cognitive Impairment (MCI) or
Dementia (D) live a safe and independent life at home. MCI/D
is a cognitive decline that can affect attention, concentration,
memory, comprehension, reasoning, and problem solving [2].
A fair amount of research on smart home functions has aimed
at assisting older adults with MCI/D in their everyday life.
Examples are functions such as prompting with reminders or
encouragement, diagnosis tools, as well as prediction, antici-
pation and prevention of hazardous situations. These require
quite robust and reliable activity recognition and prediction
algorithms in order to be deployed in real homes.

Activity recognition and prediction can be performed by
various algorithms that have been reported in the literature.
Most of this work has used data collected in the lab based
on scripted activities. In addition, there is no comparative
study investigating different configurations for input of data,
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the required data size for accurate predictions, or providing
guidelines as to the applicability of these. In this work, we
apply state-of-the-art sequence prediction algorithms, both
probabilistic methods and recurrent neural networks, to binary
sensor data acquired from a real home with a relatively small
number of sensors over a period of 30 weeks. We compare
the performance of these methods for sensor event prediction
with regard to the amount of data, the time used for training
and testing the models, and the number of preceding events
required to predict the next event (memory length). We further
analyze the performance of the algorithms for two different
sets of sensors — one with events from fifteen sensors (motion,
magnetic and power) and one with events from seven motion
sensors only.

Section II gives an overview of algorithms used for sensor
sequential prediction in the literature. Section III describes
our field trial. Section IV presents the methods used in the
current work. In section V we present our results and discuss
our findings. The paper concludes in Section VI with a short
summary and ideas for improvement and future work.

II. RELATED WORK

Several sequential data prediction algorithms have been
investigated in the past years [3]. These have a broad range
of application areas, including sensor event and activity pre-
diction — the basis of several functions in smart homes. Such
algorithms can for instance lead to an improved operation of
automation functions (e.g. turn on the heater a sufficient time
prior to the person arriving at home); enable the realization of
prompting systems (e.g. prompt the resident if the predicted
activity has not been performed) [4]; or identify changes
and anomalies in certain behaviour patterns (e.g. movement,
everyday habits, etc.) and thus indicate the onset or the
progress of a condition [5].

The Active LeZi (ALZ) is a probabilistic method that has
been extensively employed for prediction on sequential data
[6]. It achieved a peak accuracy of 47% when applied on the
Mavlab testbed dataset, that includes 50 binary sensors [6].
Based on the ALZ, the Sequence Prediction via Enhanced
Episode Discovery (SPEED) algorithm was implemented [7].
SPEED was applied on the Mavlab dataset and reached an
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accuracy of 88.3% when the same dataset was used both
for training and for testing. Both algorithms convert the data
of binary sensors to a sequence of letters and build a tree
based on the observed patterns and corresponding frequency
of occurrence. The tree is Markov model-based, where at
any given point in time the next state depends solely on the
previous one [8]. Hence, the most probable next event can be
estimated based on the current state, by using the Prediction
by Partial Matching algorithm (PPM) [9].

Neural networks have also been used for sensor event
prediction with notable performance, typically recurrent neural
networks (RNN). Three RNN models — Echo State Net-
work (ESN), Back Propagation Through Time (BPTT), and
Real Time Recurrent Learning (RTRL) — were applied on a
fourteen-day dataset with only six binary sensors (four motion
and two magnetic). The ESN performed better with a root
square mean error (RMSE) of 0.06 [10]. In these networks,
the number of input and output values corresponded to the
number of sensors in the dataset, and each assumed value “0”
or “1” for being “off” or “on” at a certain time slot. The
prediction in this case was computed for the next six hours.
In a subsequent work, a Non-linear Autoregressive Network
(NARX) was compared to an Elman network. Both used as
input and output the start and end time of a sensor’s activation
[11]. In this study, each sensor had its own network trained
and tested on a twenty-day dataset with the same six binary
sensors. The NARX performed better when predicting only the
next step, with a RMSE ranging from 0.06 to 0.09, depending
on the sensor.

A similar study was carried out for a 16-room office
environment [12]. The dataset in this case was collected
through an app the employees had installed on a personal data
assistant (PDA). They would register themselves whenever
they entered/left a certain room. An Elman network and a
multilayer perceptron network were applied to predict the next
room a person would go to. There were four participants in the
study and the Elman network attained the best results, ranging
from 70% to 91% accuracy depending on the user. Each room
was codified in four bits as there were 16 rooms in total.
The input corresponded to two rooms and the output to the
predicted next room. This work also applied other methods
— Bayesian network, state prediction, and Markov predictor —
where comparable results were achieved [13].

Other related research includes prediction of the next activ-
ity as well as the time, location, and day it would occur using
Bayesian networks, which achieved 74% of activity prediction
[14]. Prediction of the time when a certain activity will take
place has also been investigated using decision trees [15] and
time series [16].

Our dataset was collected from a real home, while most
datasets from the cited works have been collected through
scripted activities primarily in lab environments. In addition, it
contains events from fifteen binary sensors, i.e. twice as many
as used in [10], [11], and less than one third of the number of
sensors used in the Mavlab testbed. The number of sensors is
comparable to the work in [12] (16 rooms), however in that
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Fig. 1. Sensors system installed in the field trial apartment.

study the events were inserted by each user in their PDA rather
than being generated automatically.

III. FIELD TRIAL

Our field trial includes nine apartments in a community care
facility with residents over 65 years old. In this work we use
data from one of the apartments where we have collected 30
weeks of data. The apartments comprise a bedroom, a living
room, an open kitchen area, a bathroom, and an entrance hall
(Fig. 1).

The purpose of the trial and the sensors system deployed
in the apartments have been decided in close collaboration
with the participants [1]. We installed a minimal number
of binary sensors in order to both minimize surveillance of
the residents and comply with the technical and economic
constraints imposed by the project. The set of sensors has
subsequently been chosen so that it can enable the realization
of useful functions for older adults with MCI/D as these were
indicated at dialogue cafés with the users [1]. Hence, our
set of sensors contains motion, magnetic, and power sensors.
These enable inference of occupancy patterns (movement
around the apartment) and some daily activities — kitchen-
related activities, dressing, being in bed —, and leisure activities
— reading, watching TV, listening to radio. Motion sensors
(Pyroelectric/Passive Infrared — PIR) detect motion through
the change of the infrared radiation in its field of view.
It sends a message “1” every time a motion is detected,
otherwise it sends no other message. In our dataset we had
to insert the “off” events (“0” message) so that the data are
consistent for all sensors. Magnetic sensors indicate whether
doors, windows, and drawers are open or closed, by sending
messages “1” and “0”, respectively. Power sensors measure
the electricity usage of a certain appliance, and can therefore
indicate whether it is turned on or off, and send messages “1”
and “0” respectively.

Fig. 1 shows the schematic of the apartment we collected
30 weeks of data from, with 15 sensors in total:



« Seven motion sensors: one in each room of the apartment,
and two over and by the bed to indicate whether the
person is in bed;

o Four magnetic sensors: entrance and back doors,
wardrobe, and cutlery drawer;

o Four power sensors on appliances: night stand lamp,
coffee machine, TV, and living room/reading lamp.

The sensors are connected wirelessly through Z-Wave and
xComfort protocols to a Raspberry Pi 3, which transfers
the data for storage in a secure server. The data comprise
timestamp (date and time with precision of seconds), sensor
ID, and sensor message (binary). Table I presents events
generated by the following example scenario: the resident
wakes up (PIR bedroom “on”), goes to the living room (PIR
living room “on”), turns on the TV (power TV “on”), goes
to the kitchen (PIR kitchen “on”), starts the coffee machine
(power coffee “on”), goes back to the living room (PIR living
room ‘“on”) while coffee is prepared, goes back to kitchen
(PIR kitchen “on”) to get the coffee (power coffee “off”) and
drink it in the living room (PIR living room “on”).

IV. SENSOR DATA PREDICTION METHODS
A. Preprocessing

The preparation of the data includes two steps: data cor-
rection and data conversion. The data correction is necessary
because the data acquired from binary sensors often contain
faulty events e.g. erroneous activation of motion sensors by
sunlight, bouncing of contact sensors, or switch-off delays
of motion sensors [17]. Such flawed data may substantially
affect the performance of the models that will learn erroneous
patterns. In our system, we observed that sometimes the
motion sensors do not send an activation event, as they should.
Missing sensor events have been inserted to correct for this.
For example, it is not possible to go to the bedroom directly
from the kitchen without passing through the living room. If
the living room motion sensor activation event is missing, it is
inserted. In the case where there are two possible sensor events
(e.g. two possible paths in the apartment), the choice of the
inserted sensor event is done such that the distribution of the
inserted events corresponds to the percentage distribution of
the two options as observed in the data. This process had a
significant effect on the obtained accuracy.

TABLE I
BINARY SENSORS DATA

Timestamp Sensor ID  Sensor message
01.09.2017 07:58:05 2 1
01.09.2017 07:58:40 4 1
01.09.2017 07:59:02 10 1
01.09.2017 07:59:50 5 1
01.09.2017 08:00:14 12 1
01.09.2017 08:01:01 4 1
01.09.2017 08:02:56 5 1
01.09.2017 08:03:05 12 0
01.09.2017 08:03:33 4 1

Subsequently, the corrected data is converted to two se-
quences of letters, as dictated by the ALZ and SPEED
algorithms. The resulting sequences are also fed into LSTM
networks that are configured as text generation networks.

The conversion assigns a dedicated letter to each of the
sensors. In the case of ALZ, only “on” events are taken into
account, and hence only lower-case letters are used. SPEED,
on the other hand, differentiates “on” and “off” events of the
same sensor by using upper- and lower-case letters, respec-
tively. Table II presents the assigned letters corresponding to
the example scenario in a smart home described in Table 1.

B. Active LeZi

ALZ [6] is a largely used algorithm for sequence prediction.
From the sequence of lower-case letters, ALZ derives several
patterns and their frequency of occurrence. This is based on
the LZ78 text compression algorithm [18]. Given a certain
sequence r1, Ts,...,T;, the LZ78 will parse it into n; subse-
quences w1, Wa, ..., Wy; such that for all 7 > 0 the prefix of
the subsequence w; is equal to some w; for 1 <7 < j.

For example, ALZ would generate the sequence “abcdebdb”
for the scenario in Table I. The derived patterns according to
LZ78 would be “a”, “b”, “c”, “d”, “e”, “bd”. ALZ generates
these and even more patterns from the original ones, if
possible. For example, “bd” also generates the pattern “d”.
This addition accounts for patterns that were not perceived by
the LZ78 algorithm and that are still possible in a smart home
environment. This modification increases the convergence rate
of the model [6]. Besides the patterns, their frequency of
occurrence is also counted. An order-k-1 Markov tree is then
constructed based on the patterns and their frequencies. Note
that k corresponds to the longest pattern found in a training
sequence. Fig. 2 shows the generated tree for the example
scenario with sequence “abcdebdb”.

Subsequently, the PPM algorithm is used for predicting
the next event. The PPM algorithm calculates the probability
distribution of each possible event based on a given sequence

TABLE II
ASSIGNMENT OF LETTERS TO SENSORS

Sensor (ID) Letter
PIR bedroom (2) a/A
PIR living room (4) b/B
Power TV (10) c/C
PIR kitchen (5) d/D
Power coffee machine (12) e/E

— .
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Fig. 2. Tree generated by the ALZ algorithm for the sequence “abcdebdb”.



by taking into consideration the different order Markov models
in the formed tree with different weights [9].

C. Sequence Prediction via Enhanced Episode Discovery

SPEED is, like ALZ, a sequence prediction algorithm based
on the occurrence of frequent patterns in home environments
[7]. SPEED defines an episode as the sequence between an
“on” and an “off” event of the same sensor, or vice-versa. For
example, the events that occur between the TV turned “on”
and “off”, these included, is an episode.

Upper- and lower-case letters represent a sensor’s “on” and
“off” events. For the example scenario presented in Table I,
SPEED would generate the sequence “AaBCbDEdBbDedB”.

SPEED extracts episodes from a given sequence and derive
patterns from them. In the previous sequence, the first episode
that is found is “Aa” and the patterns derived from it would be
“A”, “a” and “Aa”. These are used to generate a decision tree
that keeps track of the learned episodes and their frequencies,
as performed by ALZ. A tree for the example sequence is
presented in Fig. 3. Note that the height of the tree is the
length of the longest episode found in the sequence. The PPM
algorithm is also used for the prediction of the next event.

D. Long Short-Term Memory Network

RNN has been broadly applied to sequence prediction due
to its property of keeping an internal memory. Hence, it attains
a good performance for inputs that are sequential in time.
Examples of applications include text generation [19], speech
recognition [20] and pattern recognition in music [21]. The
LSTM [22] is an RNN architecture designed to be better at
storing and accessing information than the standard RNN [23].

In this work the LSTM network is configured as a text
generation network. The number of inputs is a certain number
of sensor events — equal to the memory length — and the
output is the predicted next event in the sequence (Fig. 4). The
input and output are one-hot encoded. In the one-hot encoding
representation, each letter is represented by a vector of bits of
length equal to the number of letters. All values are zero,
except for the one corresponding to that letter (see Fig. 4).

A stateless LSTM network model was implemented in
Python 3 using Keras open source library for neural networks.
A number of parameters were tuned in order to find the optimal
values. Memory length (i.e. number of events that are used
to predict the next event) was set to 9. The model has one
hidden layer with 64 neurons. The number of samples used
for training each iteration of the epoch (i.e. batch size) was 512
and learning rate of 0.01. Adam was used as the optimization
function, categorical cross-entropy as loss function, and the
activation functions in the hidden layer and output layer were
set as hyperbolic tangent and softmax, respectively. We used
the early stopping method to avoid overfitting and unnecessary
computations, allowing a maximum of 200 epochs for each
model’s training.

V. RESULTS AND DISCUSSION

Data have been collected from one apartment over a period
of 30 weeks. Table III shows the number of sensor events for

ALZ- and SPEED-text sequences, after data correction and
conversion, for the two sets of sensors we analyze (all 15
sensors and only the 7 PIR sensors).

A. Training and Testing Configuration

In the SPEED algorithm, the next event is predicted based
on the last sequence of events with length equal to the
maximum episode length [7]. In [7], the authors use the same
dataset for both training and testing, which leads to overfitting.

We have modified the testing procedure by calculating the
optimal number of last events to base the prediction on, i.e. the
number of events that leads to the maximum overall prediction
accuracy, which we refer to as the optimal memory length.
Memory lengths up to the maximum episode length have been
considered. In a previous paper [24], we applied the SPEED
method on our data that were obtained from the same home
as reported here over a period of two weeks. When using the
same procedure as in [7], we achieved an accuracy of 82% —
compared to 88% on the Mavlab dataset. When splitting the
data into training (60%), validation (20%), and testing (20%),
and optimizing the memory length as described above, we
achieved an accuracy of 75% on our data obtained from a real
home.

Similarly for ALZ we obtained 73% (compared to 47% in
[6]) when using the same dataset for training and testing, and
53% when using different datasets for training, validation and
testing, and optimizing the memory length as described above.
Hence we use this modified method for SPEED and ALZ in
the following sections.

In the case of SPEED and ALZ, the training set is used to
build the tree, the validation set is used to find the optimal
memory length, and the testing set is used to compute the
model’s accuracy.

We use the same split rates for the sets used in the LSTM
network, where the training set is used to train the network,
the validation set is used for tuning the parameters and the
testing set to calculate the accuracy. We can notice from
Table III that the majority of the events are from motion
sensors. Therefore, during the training process in the neural
networks, we use weights for each sensor to compensate the
fewer samples from the magnetic and power sensors. These are
computed using the “compute_class_weight” function
of the Scikit-learn open source library. The weight corresponds
to the total number of samples divided by the number of
occurrences of the class. In addition, for all the methods the
results show the mean accuracy achieved using a 5-fold cross-
validation process (using 60% of the data for training, 20%
for validation, and 20% for testing).

TABLE III
NUMBER OF EVENTS IN DATASET

Set of Sensors Number of Events

ALZ SPEED
All sensors (15) 60961 121922
PIR sensors (7) 55302 110604




Fig. 3. Tree generated by the SPEED algorithm for the sequence “AaBCbDEdBbDedB”.
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In the following, we examine the accuracy attained by the
four algorithms (ALZ, SPEED, LSTM with ALZ-text and
LSTM with SPEED-text) first against the memory length and
then against the size of the dataset given in weeks. Further we
compare our results to previous related work and summarize
our discussion in this section.

B. Optimum memory length

We examine the accuracy achieved on the validation set for
several values of memory length ranging from 1 to 30 events.
This is performed first for a dataset containing events from all
fifteen sensors (magnetic, power and motion) — Fig. 5 — and
then for a dataset containing only the seven motion sensors —
Fig. 6.

When using a dataset with fifteen sensors (Fig. 5), ALZ
achieved a best accuracy of 69% while SPEED reached 82%.
The optimal memory length was 4 events for ALZ and 7 for
SPEED. The LSTM networks achieved accuracies of 70% and
83% when using ALZ- and SPEED-text, respectively. In both
cases the optimal memory length is equal or larger than 8.
The larger optimum memory length for LSTM indicates that
probabilistic methods predict the next event based on fewer
previous events, in other words the LSTM is more efficient at
detecting patterns and correlations over a longer sequence.

It is also interesting to notice how the accuracy is affected
by memory lengths larger than the optimal. The accuracy of
the probabilistic methods drops substantially as the memory
length gets larger. In contrast, the LSTM networks roughly
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Fig. 6. Accuracy vs memory length for all algorithms on a dataset with seven
motion sensors.

stabilize at the peak accuracy for larger memory length values.
A reason for this is that probabilistic methods are based on
certain patterns happening quite frequently. Since our dataset
has few sensors, short patterns are more likely to happen
more often and therefore, they provide better predictions. The
LSTM, on the other hand, has the ability to find patterns
in long sequences and can therefore predict the next event
based on many past events and longer term patterns and
dependencies. Increasing the memory length further does not



improve the accuracy, however, which can imply that the
model has reached its best performance for this configuration.

Subsequently, we compare the accuracy results of a dataset
with fifteen sensors (Fig. 5) to the accuracy results of a dataset
that contains only the seven motion sensors (Fig. 6). The
accuracy curves for the LSTM network models show a similar
dependency to memory length. The optimal memory length
is 9 or larger. The LSTM with SPEED-text achieves 87%
while with ALZ-text achieves 73%. The ALZ method also
shows similar behaviour, and same optimal memory length of
4, with a higher accuracy of 71%. SPEED presents a very
peculiar behaviour. The maximum memory length is 2. This
is a consequence of the fact that SPEED builds the tree based
on episodes, and the longest episode in this case is two events.
For example, if the resident would go from the bedroom to
the living room and then to the kitchen, the resulting sequence
would be “AaBbCc”. There are no intertwined events, since
when one motion sensor activates, another deactivates. Hence,
the “off” events are easily predicted. When it comes to “on”
events, the sensor that is most frequently activated will always
be the one predicted to activate next, leading to lower accuracy
for “on” events.

C. Required amount of data for good accuracy

In the following, we investigate the behaviour of the
accuracy with respect to the size of the dataset used for
the complete process of training, validating, and testing the
models. The accuracy results are computed within the testing
set and using the optimal memory length found in the previous
analysis. Fig. 7 and 8 show the results when the algorithms
are applied to a dataset with all fifteen sensors and with only
seven sensors, respectively.

The best accuracy is achieved for 10 weeks of data or above.
There is no significant improvement in the accuracy for larger
datasets, we therefore show the plots for dataset sizes up to
10 weeks for better clarity on the lower range of the graph.

We first examine the accuracy in the dataset with all sensors
(Fig. 7). A peak accuracy of 83% was achieved by LSTM
with SPEED-text, while the SPEED algorithm achieved a peak
accuracy of 82%. The accuracy achieved by the LSTM with
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Fig. 7. Accuracy vs size of dataset for all algorithms on a dataset with all
Sensors.

ALZ-text was considerably lower at 69%. In this case, stability
is achieved much later than with the other methods. Finally,
the ALZ method reached a top accuracy of 70% with 4 weeks
of data. However, this method does not seem to be as stable
as the other algorithms.

Note that the probabilistic methods attain a good accuracy
(close to the peak accuracy) with only 2 days of data. By
comparison, the LSTM networks need approximately 2-3
weeks of data to start approaching their top accuracy. This
correlates well with the previously discussed ability of the
LSTM to learn longer term patterns and dependencies, and
attain better accuracy based on these.

Next we examine the accuracy results for the dataset using
only the seven motion sensors (Fig. 8). As expected, the
accuracy is higher since there are fewer sensors in this set.
Moreover, motion sensor events happen sequentially, without
intertwined events. The LSTM with SPEED-text achieved an
accuracy of 87%, by far the best among the methods. The
peak accuracy was achieved with slighlty less than 2 weeks of
data. In addition, stability is reached with less data compared
with the case in Fig. 7. The LSTM with ALZ-text and the
ALZ achieved very similar accuracies of 73%, and 74%
respectively. The SPEED method, however, achieved a poor
accuracy in this case. This is due to the short memory length
and lack of intertwined events, as discussed when presenting
Fig. 6. Also here, it is confirmed that probabilistic methods
require a rather small amount of data to achieve a considerable
accuracy, close to the peak accuracy that can be reached by
these methods. The LSTM with SPEED-text also achieved
a good accuracy with only a few days of data. However,
the LSTM network with ALZ-text needed considerably larger
amounts of data to attain acceptable prediction accuracy.

Most of the models reached a peak accuracy with 10 weeks
of data or more. It may appear somewhat surprising that the
best accuracy was reached for the same amount of data — 10
weeks — for both sets of sensors. However, as we pointed out
earlier, the majority of the events in the dataset is in fact from
motion sensors, and therefore, the two datasets are of similar
size.
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D. Execution time

Lastly, we examine the execution time to train and test
the models. Table IV shows the results for the set with all
sensors. In general, the probabilistic methods require longer
processing time, although the ALZ needs only slightly longer
time than the LSTM networks. SPEED requires eight times
longer time to model than the LSTM with SPEED-text. Note
that when using all the sensors these two models achieve
similar prediction accuracy. However, SPEED reaches a high
accuracy with much less data.

E. Discussion

We have applied two probabilistic methods on our data and
have achieved comparable results to those obtained from the
Mavlab testbed dataset. That testbed includes 50 sensors while
our dataset was obtained from a real home with fifteen sensors,
i.e. considerably fewer than the Mavlab testbed. In addition,
in that work the same dataset was used both for training and
for testing, which results in overfitting and overestimating the
accuracy of the model. We use separate datasets for training,
validation, and testing.

We have compared the performance of these two proba-
bilistic methods with LSTM networks. To our knowledge this
is the first time LSTM networks have been applied to this
specific task. ESN, that is an RNN like LSTM, has shown
good results [10], [11]. It is also the first time that probabilistic
methods are compared to LSTM neural networks for sensor
event prediction.

In our work, the best accuracy was achieved by the LSTM
network with SPEED-text, 83% with all the fifteen sensors and
87% with seven motion sensors. In [12] an Elman network was
applied to a dataset with 16 rooms and achieved peak accuracy
of 91%, which is higher than our results. However, the dataset
in that study was generated by the users themselves rather than
being collected by sensors, a fact that is expected to lead to
considerably fewer faulty events.

Our work showed that probabilistic methods can achieve a
high prediction accuracy (close to their peak accuracy) with
a relatively small amount of data (typically 2 days of data).
LSTM networks require a larger dataset (about 3 weeks with
SPEED-text and 10 weeks with ALZ-text) to reach good
accuracy. Also, probabilistic methods are found to base the
prediction on a relatively small number of previous events —
an optimal memory length of four for ALZ and seven for
SPEED was established in this work. On the other hand,
LSTM networks base the prediction on a sequence of eight last
events or more. This indicates that such networks are better at

TABLE IV
EXECUTION TIME OF ALGORITHMS

Algorithm Execution time (min)
ALZ 2.8
SPEED 16.5
LSTM with ALZ-text 2.1
LSTM with SPEED-text 1.5

finding longer-term dependencies and patterns in a sequence
of events. In addition, in LSTM the attained accuracy is quite
stable for memory lengths that are larger than the optimal.
On the other hand, probabilistic methods have an optimum
memory length, hence the accuracy decreases both for shorter
and for longer memory lengths than the optimum.

For the dataset containing events from the fifteen sensors,
our best result was achieved by the LSTM network with
SPEED-text (83%). SPEED achieved only 1% lower accuracy,
however, after considerably longer training time. Hence in
applications where it is an advantage to model with a small
amount of data where in addition execution time is not too
critical, SPEED may be a good choice, since it can achieve
an accuracy close to its peak with little data. In general,
our results have shown that it is possible to achieve good
accuracy with much less data than thought previously. SPEED
and LSTM with SPEED-text achieve better results than ALZ
and LSTM with ALZ-text. This is not surprising since the
conversion of data to SPEED-text sequences contains more
information (both “on” and “off”” events). This can also be
confirmed by the trees formed by ALZ and SPEED (Fig. 2
and 3).

For a dataset with no intertwined events though — the case
of our dataset with only the seven motion sensors — the best
choice is the LSTM with SPEED-text. SPEED does not work
well in this case, since the tree has a height of 2 so that only
“off”” events can be predicted reliably.

Another interesting finding is that more data than 10 weeks
does not improve significantly the results for any of the applied
methods. Hence, a change in the algorithms and/or in the way
the data are input, or additional information, is required to
improve the prediction accuracy.

Finally, regarding the number of sensors. A larger number
of sensors can lead to better prediction accuracy to the extent
that it entails more information to base the prediction on. A
smaller number may, however, be preferable both in terms of
reduced surveillance for the user, lower cost, and less nuance
for the esthetics of the home. Our work shows that it is possible
to achieve acceptable prediction accuracy with much fewer
sensors than thought previously.

VI. CONCLUSIONS AND FUTURE WORK

Activity recognition and prediction algorithms in smart
home environments using binary sensors have been indicated
to be useful for a number of functions. Most of the work
reported in the literature has been carried out using data
collected in lab environments and testbeds, with scripted
activities. Such smart home testbeds typically include a quite
large number of sensors, e.g. the Mavlab testbed deployed
around 50 sensors [6].

In this paper we presented results on sensor sequence
prediction using state-of-the-art methods: two probabilistic
methods (ALZ and SPEED) and LSTM networks with both
SPEED- and ALZ-text sequence inputs. Our dataset was
obtained from a real home with an older adult (> 65 years
old) and with a relatively small number of sensors (15).



We compared all the methods with regard to a number of
factors: the required number of preceding events to predict
the next event (memory length), the necessary amount of
data to achieve good accuracy and stability, the time used
for training/testing, and the number of sensors in the dataset.
To the extent of our knowledge, this is the first time such
a comparison has been carried out. Our best implementation
achieved an accuracy of 83% with LSTM with SPEED-text
for a set with fifteen sensors in total — motion, magnetic
and power sensors — and 87% with LSTM with SPEED-
text as input for seven motion sensors. For the most accurate
models using the SPEED-text, the LSTM required around 1/7
of the time SPEED required to do the modelling. On the
other hand, the LSTM required about 3.5 weeks of data before
reaching considerable (close to its peak) accuracy, whereas the
probabilistic methods only needed 2 days of data for reaching
considerable accuracy. The findings of our study can be useful
for deciding which methods to use in accordance with project
constraints (e.g. the number of available sensors, user privacy,
etc.) and the area of application.

Clearly, a higher prediction accuracy is required before such
algorithms can be applicable to real homes. Future work will
include the time information as part of the input in order
to improve the accuracy of our models. In addition, we will
investigate the reproducibility of the best prediction model in
other apartments with similar sensors and hence the variability
of the predictions. Moreover, we will examine the possibility
of using transfer learning methods across the apartments.
These will be published in future work.
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