
A Deep Learning Approach to Dynamic Passive
RTT Prediction Model for TCP

Desta Haileselassie Hagos∗, Paal E. Engelstad†, Anis Yazidi‡, Carsten Griwodz§
∗†University of Oslo, Department of Technology Systems, Kjeller, Norway

∗†‡Oslo Metropolitan University, Department of Computer Science, Oslo, Norway
§University of Oslo, Department of Informatics, Oslo, Norway

Email: ∗destahh@ifi.uio.no, {∗desta.hagos, †paal.engelstad, ‡anis.yazidi}@oslomet.no, §griff@ifi.uio.no

Abstract—The Round-Trip Time (RTT) is a property of
the path between a sender and a receiver communicating
with Transmission Control Protocol (TCP) over an IP network
and over the public Internet. The end-to-end RTT value
influences significantly the dynamics and performance of TCP,
which is by far the most used communication protocol. Thus,
in communication networks, RTT is an important network
performance variable. By measuring the traffic at an intermediate
node, a network operator or service provider can estimate the
RTT and use the estimation to study and troubleshoot the
per-connection characteristics and performance. This paper aims
at improving the accuracy and timeliness of the RTT estimation,
to help network operators improving their analysis. We propose
and evaluate a novel deep learning-based model capable of
dynamically predicting at real-time the RTT between the sender
and receiver with high accuracy based on passive measurements
collected at an intermediate node, taking advantage of the
commonly used TCP timestamps. We validate extensively our
prediction methodology in a controlled experimental testbed and
in a realistic scenario on the Google Cloud platform. We show that
our model, which is based on classical deep learning algorithms,
gives reasonably effective state-of-the-art performance results
across multiple TCP congestion control variants. We also show
that the model works well for transfer learning. Even though the
RTT prediction model was trained on an emulated network, it
performs well also when applied to a realistic scenario setting,
as demonstrated in our experimental evaluation.

Keywords—TCP, RTT Prediction, LSTM, Passive Measurements

I. INTRODUCTION AND MOTIVATION

Passive measurement techniques of TCP flows have
gained much attention in the networking research community
lately [3, 7, 9, 25]. The main reason is that such
measurements are becoming increasingly useful for network
operators and Internet Service Providers (ISPs) to evaluate
the communication performance of applications and services
running on their network. Monitoring the traffic at an
intermediate node, allows the ISP to assess the underlying
network performance, which is crucial for their operation. The
RTT is one of the most important indicators of communication
performance. The RTT is a TCP state variable that influences
congestion control in many TCP variants, and the RTT
has a huge influence on the performance of the end-to-end
communication. In order for network access providers to
determine and diagnose application performance issues on the
public Internet, knowledge about the characteristics of the
network is a very important factor. The ability to passively
compute and dynamically predict the RTT is very crucial for
a lot of reasons. For example, it allows network operators to
measure and optimize the network performance of real-time
applications and services, and it helps providers understand
the responsiveness, availability of their network services,

performance and predict the behavior of a TCP connection.
Network operators and service providers care about RTT,
and they even make RTT a Service Level Agreement (SLA)
parameter in legal contracts with their customers [27].
Customers who demand better services can passively detect
the occurrence of SLA violations and this ability would allow
the network providers to quickly respond to Quality of Service
(QoS) problems [27]. This is particularly important for the
quality of latency-sensitive and bandwidth-intensive real-time
media applications (such as video, audio, and application
sharing), etc. [27]. RTT is the length of time it takes for an
outgoing TCP client packet plus the minimal time spent for an
acknowledgment of that segment from the server to be received
by the client [23]. The RTT between the sending and receiving
endpoints is typically a combination of a fixed BaseRTT, a
fixed propagation time, and the amount of queueing that is
experienced along the path. Thus, the changes in the RTT
might give an indication of changes in queuing and the
congestion in the network, and be a useful input to the TCP
congestion control algorithm.

TCP is a highly reliable connection-oriented transport
protocol capable of adding reliability and preventing excessive
congestion on the Internet [17]. Note that congestion control
in TCP was not part of the protocol initially until the first
Internet congestion collapse was observed [16]. TCP controls
congestion by also aiming for fair sharing of the available
network resources by the competing flows, using strategies
empowered by TCP [17]. TCP fairness means that if N TCP
sessions share the same bottleneck link of a bandwidth B,
each session should ideally get an average rate of B

N
and

1

N
of the available link capacity assuming that all the active

TCP connections have the same increase of rates and similar
RTTs. If the multiple TCP sessions have different RTTs but
share the same bottleneck link, the flows with larger RTTs
usually achieve lower throughput, while the flows having
smaller RTT may utilize the bandwidth more aggressively than
the others [13]. Indeed, the RTT directly influences the TCP
throughput according to the following equation:

Ti ∝
1√

pi.RTTi

(1)

where Ti is the throughput, pi is the probability of a packet
loss rate, and RTTi is RTT of a TCP flow i. Equation 1 shows
that the throughput ratio of individual TCP connections is
inversely proportional to the RTT [29]. This means that RTT
is one of the most important state variables that determine
the aggressiveness of a TCP flow. This also means that
passively predicting RTT is useful for the deployed TCP
variants to optimize for high bandwidth by leveraging the TCP
timestamps option carried in each TCP header. Evaluating the

978-1-7281-1025-7/19/$31.00 ©2019 IEEE

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

or reuse of any copyrighted component of this work in other works.

RTT, inflated by queueing across the network [29], may also
give a more detailed view of the sender state than merely
the throughput, as the RTT also influences the Retransmission
Timeout (RTO) of an active TCP session and the Congestion
Window (cwnd) size [19]. The cwnd is also one of the most
important TCP per-connection state variables. The cwnd is a
TCP per-connection state internal variable that represents the
maximum amount of data a sender can potentially transmit per
RTT at any given point in time based on the sender’s network
capacity and conditions. TCP decides the maximum number
of bytes that can be outstanding without being acknowledged
at any time maintained independently by the sender.

Benefits: It is very natural to ask: why RTT prediction
performed in an intermediate node from passive measurements
is important? In addition to the reasons we address above,
there are myriad reasons we may want to use passive RTT
measurements. Passive RTT prediction in an intermediate node
is important, for example, when (i) We have no control over
either end-host of communication so we can’t launch active
measurements from either host, but want to know the RTT
between them. (ii) We want to know the RTTs of the actual
communication occurring on the Internet, and not the RTT
between a pair of hosts artificially picked. (iii) The TCP
active probes used in active measurements (such as ping
messages) are blocked by firewalls etc. For more details
about the difference between active and passive measurement
techniques, we refer the reader to our previous work [12].

Recurrent Neural Networks (RNN) models: In this paper,
we are interested in the capabilities and potentials of RNN
models for implementing our passive RTT prediction model
for TCP using timestamps and timestamp echoes [18]. Hence,
we have explored an approach to dynamically predict an
end-to-end RTT for TCP from passive measurements using
Long Short-Term Memory (LSTM)-based RNN architecture.
As described in Section III, different approaches have
been proposed to estimate RTT from passive measurements.
However, we believe that no previous research works have
applied deep learning models to estimate RTT in relation
to TCP from passive measurements. To the best of our
knowledge, this paper is the first to study the applicability
of LSTM for passive RTT measurement schemes in real-time.

RNNs are powerful neural sequence models that achieve
state-of-the-art performance on sequential, time-dependent
prediction and classification tasks. However, when the input
sequence is very long, RNNs have a significant limitation
of gradient vanishing. LSTM [15] is a special kind of RNN
introduced with the purpose of overcoming this shortcoming
of RNNs. LSTM has the ability to solve the vanishing
gradient problem by dynamically controlling the information
flow within the layers through its memory blocks and capture
the long-term dependencies of the connections in a sequence
effectively [15]. In an LSTM model, we consider a time-series
prediction task of length n producing an output yt at each
time-step t∈ {1, 2, 3, ..., T} by mapping a temporal input
feature vector sequence xn

1
= (x(1), x(2), x(3), ..., x(n-1), x(n))

where xi ∈ R
n to a corresponding output vector sequence yn

1
=

(y(1), y(2), y(3), ..., y(n-1), y(n)) where yi ∈ R
n by calculating the

network unit activations of a weighted sum using the Equations
2-7 iteratively from t = 1 to n. As it is shown in Equations 2,
3, and 5, LSTM [15] uses three, an input, forget and output,

gates shared by all cells in the LSTM block in order to learn
long-term dependencies and control the flow of information.
The input gate determines the flow of input activation into the
memory cell whereas the output gate determines the output
flow of cell activation into the rest of the network. The forget
gate determines the extent to which the current value remains
in the memory cell of the LSTM unit before it gets gradually
discarded when its data is no longer needed.

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (2)

ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf) (3)

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcmmt−1 + bc) (4)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (5)

mt = ot ⊙ h(ct) (6)

yt = φ(Wymmt + by) (7)

where the i, f, c, o are input, forget, memory state, and output
gate activation vectors respectively at each time step t. σ is the
logistic sigmoid function while ⊙, g and h are element-wise
product of the vectors, the cell input and output non-linearity
activation functions of the entire neural network applied to
each layer of the deep network respectively. W and b represents
a vector of weighted recurrent connections and the bias vector.
mt is the hidden state output of the LSTM layer. Finally,
φ is the activation function in the hidden layer applied to
the network output. Figure 1 describes the basic unit of an
LSTM network where the input sequence to the LSTM cell is
carried over each time-step of t-1, t and t+1. Ct and Ct−1 are
the memory cell state activation vectors from the current and
previous blocks at time t and t-1 respectively.

Yt-1 Yt Yt+1

ReLU��

x

+x

ReLU�

x

xt-1 xt xt+1

ReLU��

x

+x

ReLU�

x

ReLU��

x

+x

ReLU�

x

��
it

O� O� O�

�� �� ��
it ��

��

ct-1

��
it

��

Fig. 1: LSTM Networks. For more thorough details, refer [28]

Why did we use deep learning? As explained above in
Section I, both cwnd and RTT are TCP state variables relevant
to congestion control. However, neither the value of cwnd
nor the value of RTT is contained in the TCP header. The
cwnd size is stored in the memory of the TCP sender, and
the RTT is a product of the varying behavior of the network
between the TCP sender and receiver. Therefore, trying to
predict these values somewhere other than at the TCP sending
node is challenging. Deep learning techniques have found a
great success in multiple areas of research. In our case, let’s
consider a situation where a network model is trained for
a specific intermediate node which has been trained for a
specific bandwidth, background load, multiplexing rate, and
a multitude of different router conditions, can predict well for
exactly this node. Hence, we want a model that is able to train
in one scenario setting and apply it as a pre-training on another
setting by leveraging trained knowledge. As it is presented in
Section VI, this paper proofs that it makes sense in principle
to use learning algorithms for TCP state predictions.

Contributions: We summarize our main contributions below.

• We present a dynamic deep learning-based approach
for RTT prediction in relation to TCP from passive
measurements collected at an intermediate node.

• We identify the main challenges in the passive estimation
of RTT across a broad range of network conditions.

• We show that the learned prediction model performs
reasonably well by leveraging trained knowledge from
the emulated network when it is applied and transferred
on a real-life scenario setting.

• We demonstrate the benefits and explore the applicability
of our prediction model using an LSTM architecture.

• We experimentally validate our prediction model
extensively through several controlled experiments across
an emulated and realistic settings.

II. BACKGROUND

RTT measurements are used in congestion control
algorithms to determine connection timeouts. Delay-based
congestion control algorithms use the measured RTT as an
implicit feedback to control congestion, and they adjust the
cwnd size according to the queuing packet delay instead of
packet loss [20]. These algorithms increase the cwnd size
quickly when the queuing delay is low and decreases the cwnd
slowly when the delay is high. Different rate and delay-based
TCP stacks come with a variety of features that will violate
the assumptions we might make if we only look at one or two
TCP implementations. Hence, the following are a list of the
most widely used TCP variants we consider in our analysis to
cover the whole scope of the problem.

1) TCP Westwood: Westwood [10] is a sender-side
modification of the traditional TCP algorithm [17]. At the
time of congestion triggered in response to RTO or triple
DupACKs, TCP Westwood [10] estimates the available
end-to-end per-connection bandwidth by monitoring the
flow of returning ACK rates instead of packet loss and
sets the cwnd size equal to the measured bandwidth which
helps to avoid too much reduction of the cwnd.

2) TCP-Vegas: Vegas [5], instead of packet loss, uses
a measured RTT as congestion feedback and hence
it attempts to accurately tune the cwnd by using the
measured BaseRTT of every segment sent and reacting
to changes in it by altering the cwnd.

3) BBR: BBR is an emerging TCP delay-controlled
congestion control algorithm from Google fully deployed
across all Google TCP services and the B4 Wide Area
Network (WAN) backbone connections [6]. Unlike the
traditional congestion algorithms, BBR doesn’t overreact
to packet loss. Instead, it reacts to actual congestion and
relies on maximizing the throughput with minimal queue
by sequentially probing and periodically estimating the
underlying available bottleneck bandwidth and minimum
path RTT in a similar fashion as TCP Vegas [5].

Roadmap: The rest of this paper is organized as follows.
Next, in Section III, we summarize the related work in the
literature considered as a state-of-the-art. In Section IV, we
describe our controlled experimental setup for the evaluation.
Section V gives an overview of our methodology highlighting
the practical challenges and considerations. Section VI presents

the validation scenario settings of our prediction model. The
experimental results and discussion are presented in detail in
Section VII. Finally, Section VIII concludes the paper and
outlines directions of research for future extensions.

III. RELATED WORK

Our work benefits from a wide range of existing passive
measurement related research works in computer networking.

TCP RTT Measurement: TCP implements a retransmission
strategy by setting the time-out interval to ensure data delivery
in the absence of any acknowledgment for a particular
segment from the receiver side [30]. The timer relies on
the measurement of the network latency which TCP does
by periodically estimating the current RTT of every active
connection in order to determine the RTO when it sends
data and receiving an acknowledgment for it. Accurate
measurement of RTO is crucial to TCP performance and
it is determined by estimating the mean and a variance of
the estimated RTT [30]. When the timer RTO expires, the
segment is retransmitted. To compute the current RTO, TCP
sender keeps track of the Smoothed Round-Trip Time (SRTT)
and the Round-Trip Time Variation (RTTVAR) state variables.
When the first RTT measurement R is made on the active
connection, the host should compute the following Jacobson
RTO Estimation algorithm [17].

SRTT = R (8)

RTTVAR = R/2 (9)

RTO = SRTT+ max(G, K ∗ RTTVAR) (10)

However, when a subsequent RTT measurement RTT ' is made,
the host should compute the following algorithm [17].

RTTVAR = (1− β) ∗ RTTVAR+ β ∗ |SRTT− RTT'| (11)

SRTT = (1− α) ∗ SRTT+ α ∗ RTT' (12)

RTO = SRTT+ max(G, K ∗ RTTVAR) (13)

Understanding RTO: In a typical implementation,
TCP computes the RTT of an active connection using
the Exponential Weighted Moving Average (EWMA)
estimator [17]. As it is used in TCP RTT computation
implementations, the SRTT is also updated using the EWMA
estimator as it is shown in Equation 12 where the smoothing
factor (α) = 1

8
[30]. RTTVAR is also calculated using

EWMA as shown in Equation 11 where the smoothing gain
of the samples β (variance factor) = 1

4
. The new value of

RTO is given in Equation 13 as a function of SRTT and
RTTVAR where K is usually 4 and G is a clock granularity in
seconds. The TCP sender, dynamically adjusted based on the
estimated RTT, keeps a timer which activates retransmission
of packets that have not been acknowledged before the RTO
expires [30]. After computing the RTO, if its value is less
than 1 second, then the RTO value should be rounded up to
1 second [30]. However, the timeout can expire spuriously
across low-bandwidth network paths and triggers unnecessary
retransmissions when no packets have been lost [11]. Modern
operating systems like Linux have a minimum value for RTO
in order to avoid unnecessary high retransmission delays of
an open active connection. The potential pitfall of choosing a
low RTO, however, is that it may trigger retransmission of a
packet even though the segment is received and an ACK is on

its way. Setting a low value for RTO works better when there
is a moderate background traffic [26]. For more technical
descriptions and the rules governing the measurement of
SRTT, RTTVAR, and RTO refer [30].

Algorithms for Avoiding Spurious Timeouts: To address
this problem, a number of approaches have been proposed.
For example, RTO estimators like [30] are based on the
assumptions of older technologies. As described earlier,
spurious timeouts lead to problems that cause several
unnecessary retransmissions and congestion control back-off
that affect the TCP throughput. In addition to this, estimating
the RTT measurements are challenging in the presence of
timeouts and packet loss in the end-to-end path. This is
because on the receipt of an ACK after R retransmissions,
the sender cannot tell which one of the R+1 data sent is
being acknowledged which again affects the measurement of
SRTT shown in Equation 12. Wrongly computed SRTT values
will eventually lead to wrong RTO values. If the value of
RTO is too small, it will lead to unnecessary retransmission
of data segments which again increases the load on the
underlying network capacity. But if the value of RTO is
too large, the sender waits too long before retransmitting
lost segments which again increases delay and lowers the
throughput for connections with packet loss. Making use of
the TCP timestamps, the Eifel [11] algorithm has pointed out
that it is possible to detect spurious TCP timeouts problems
and recover by restoring a TCP sender’s congestion control
state saved before the timeout.

There are other previous research works who have
examined and reported RTT estimation for TCP [2, 21, 22].
The approach presented in [22] uses a unidirectional flow
during the TCP handshake of a connection to estimate
RTT using the time from SYN to SYN+ACK method. The
approaches proposed in [22] calculates one RTT sample
per TCP connection associated either during the three-way
handshake or during the slow-start phase. If we have captured
the TCP three-way handshake as presented in [22], we can
calculate the initial RTT (iRTT) by taking the time difference
from the SYN packet to the ACK packet of the handshake.
However, since the TCP handshake packets are processed by
the kernel, the RTTs during the data transfer will probably
be slightly larger than the iRTT. Hence, this approach may
tend to underestimate the actual RTT. In addition to this,
since TCP sets the initial retransmission timeout value to
3 seconds [30], therefore this approach is not applicable
in scenarios where the TCP connection setup takes longer
which leads to long delays and packet losses introduced
by the network. The study in [2] has reported a statistical
characterization of RTT variability where the measurement
point is closer to the sender. However, their study does
not take delayed ACKs into account. The authors of [21]
have introduced an approach for RTT measurements of TCP
connections based on bidirectional traces captured at the
monitoring point using a Finite State Machine (FSM) that
replicates the TCP sender states of observed ACKs depending
on the underlying TCP flavor. The authors have pointed out
that the estimation of the TCP parameters (e.g., cwnd) may
have potential errors primarily due to over-estimation of the
RTT and incorrect window sizes of a connection [21]. Another
limitation of this work, given differences of the many existing
flavors of TCP stack implementations, the use of a separate

state machine for each TCP variant is unscalable and we
also believe that the constructed replica may not manage to
reverse or backtrack the transitions taking the amount of data
into consideration. In addition to this, the replica may also
not observe the same sequence of packets as the sender and
ACKs observed at the intermediate node may not also reach the
sender. Our deep learning-based approach to passively predict
the continuous RTT measurement throughout the lifetime of
a TCP session builds upon these classical approaches by
avoiding the limitations taking advantage of the commonly
used timestamp option as explained in Section V.

IV. EXPERIMENTAL EVALUATION

A. Testbed Hardware

We have carried out our experiments using a cluster of
HPC machines based upon the GNU/Linux operating system
running a modified version of the 4.15.0-39-generic kernel
release. The prediction model is performed on an NVIDIA
Tesla K80 GPU accelerator computing with the following
characteristics: Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz,
64 CPU processors, 128 GB RAM, 12 CPU cores running
under Linux 64-bit. All nodes in the cluster are connected to
a low latency 56 Gbit/s Infiniband, gigabit Ethernet and have
access to 600 TiB of BeeGFS parallel file system storage.

B. Passive RTT Monitoring Methodology and Trace Analysis

Passive measurement methodology is a technique of
tracking the behavior and characteristics of packet streams
where the network is not influenced by injecting extra traffic.
More details on the two types of network measurement
technique categories (i.e., active and passive) are briefly
described in [12]. The RTT seen by a TCP segment is defined
as the time a sender waits until it receives a corresponding ACK
from the receiver before it sends more data packets. In this
paper, we are interested in presenting a deep learning-based
RTT prediction model using a packet statistics passively
monitored between the sender and receiver endpoints of a
network. In order to increase the RTT measurement precision,
the timestamps option which every TCP segment carries in
the header field is used in our methodology. When the server
receives a data segment, it copies the timestamps into the
ACK and this, in turn, enables the client to compute the RTT
accurately for every acknowledged data segment.

Trace Analysis: To evaluate our prediction model and perform
our analysis on both the emulated and realistic network
conditions, we have generated our own dataset. In order to
capture all sessions on the network when the client and
server are sending TCP packets and measure the TCP data
packets from both directions, we have used the fully controlled
experimental setup shown in Figure 2. The data passively
collected at an intermediate node is fed into a model that
can be trained in another context, e.g., an emulated scenario
as discussed in Section VI. The background traffic for all
our experiments are generated using the iperf [8], an open
source TCP streaming benchmark, traffic generator on an
emulated LAN link where we run each TCP variant by adding
a configurable variation of the emulation parameters bandwidth
(in Mbit/s), delay (in ms), jitter (in ms) and packet loss (%)
within a flow. The values of configuration parameters of the
emulator for our samples collection are presented in Table I.

The cross-traffic variability and verification of the popular
Linux-based network emulator we used, Network Emulator
(NetEm) [14], are thoroughly addressed in [12].

Passive Monitor

Receiver

LSTM
Prediction

LSTM

Methodology

LSTM
di i

NetEm

loss

bandwidth

delay jitter

b

del

Network
Emulator

Measured RTT DataActual RTT

Verification
Monitor SRTT

n
Monitor SRTT

192.168.1.2

192.168.2.16

128.39.74.9

Sender

128.39.74.10

Fig. 2: Controlled Experimental Setup

TABLE I: Network emulation parameters

Bandwidth (in Mbit/s) Delay (in ms) Jitter (in ms) Packet loss (%)

10 1 0.001 0.01
100 2 0.1 0.05
300 3 0.2 0.1
500 5 0.5 1
700 7 1 1.5

1000 10 2 2

Verification of the Emulator: Given that the software
emulator is not precise, we can ask: can we trust the network
emulator for all the variations of bandwidth, delay, jitter and
packet loss values introduced by the emulator irrespective of
the measurement we get from TCP stream? As the precision
of the emulator cannot be measured from TCP streams, we
set up a different experiment using UDP to evaluate and
measure the precision where both the emulator and traffic
generator create variations. We verified the raw performance
by measuring the bandwidth, delay, jitter and packet loss
variations created by the traffic generator and network emulator
at the receiver side and we found out that each variation run
by the emulator doesn’t affect our results. But it is good
to remember that emulator experiments are always going to
have some differences compared to a real network as different
networks behave completely differently.

V. EXPERIMENTAL METHODOLOGY

In this paper, we are exploring an approach to dynamically
and reliably predict an end-to-end RTT for TCP from passive
measurements using an LSTM-based RNN architecture. As
illustrated in Figure 3, there are different techniques to estimate
passive RTT values from packet arrival times at an intermediate
monitoring point. The first and third RTT computation
techniques shown are the initial three-way handshake [22] and
the termination of a connection phase that carries the FIN
control flag. The three-way handshake method uses a TCP
segments association during the initial handshake phase to
compute the minimum RTT with a small packet burst (so less
affected by propagation delay through intermediate devices)
but it also has limitations as described in Section III. A
similar estimation technique can also be applied during the
connection termination phase. However, these two techniques
do not consider continuously estimating RTT through the

course of the connection and hence they are statically limited
to the setup and termination of the TCP connection. In our
paper, however, we are interested in the second estimation
method where we have to account for the cases where there
are large packet bursts by continuously measuring the TCP
data segments sequence and their corresponding ACK for
estimating RTTs when they carry data throughout the lifetime
of the connection by associating the timestamps and timestamp
echoes. This helps us to dynamically estimate the RTT between
the sender and receiver from the perspective of the intermediate
node by measuring the streams of RTT samples which can be
added to get an end-to-end RTT. Let’s simplify this more with
an easy to understand example. When the sender, on Figure 3,
sends a TCP data segment, the receiver acknowledges the data
segment with an ACK and echoes the sender’s timestamp.
The intermediate node recognizes the sender’s timestamp in
both data segments and associates the data segments with
timestamps matching. When the sender receives an ACK, it
sends more data packets by echoing the receiver timestamps.
The intermediate node captures this data segment, it recognizes
the receivers timestamps in both data segments and forms
an association. Finally, with a timestamp matching of all
these data segments, the intermediate node can observe a
full estimated RTT. Hence, in order to reliably associate the
data segments with its corresponding ACK that triggered
it, compute accurate RTT and avoid the ambiguity between
delayed and retransmitted segments, we have employed the
TCP timestamps option.

Sender Monitor Receiver

TCP AC
K

TCP data segment1

Total

Estimated RTT

R1

R2TCP data segment2

SYN-ACK

SYN

ACK

T
o
t
a
l

R
T
T

ACK

ACK

FIN

FIN

Remote RTT

Local RTT

Remote RTT

Local RTT

T
T
o
t
a
l

R
T
T

(1)

(2)

(3)

Fig. 3: Passive RTT estimation techniques

Timestamps option: The reason why we used the timestamp
option in our evaluation is to avoid the impact of incorrect
(spurious) timeouts and get the accurate RTT measurement.
Anytime TCP experiences spurious timeouts unnecessarily,
it significantly suffers from unnecessary retransmissions and
congestion control back-off. This, in turn, triggers TCP to
drop the Slow Start Threshold (ssthresh) to half the current
cwnd and reduces the value of cwnd. This is because when
the retransmission of a lost packet is as a result of the RTO
value expiration, TCP cannot infer anything about the state
of the network. Unless TCP uses the timestamp option while
sending the retransmitted packets, it cannot correctly measure

the RTTs for those packets [23]. In addition to this, research
studies like the Eifel mechanism have shown that the timestamp
option substantially improves the overall TCP connection’s
performance over paths with a large Bandwidth-delay product
(BDP) [11]. Since TCP is a symmetric protocol, allowing
data segments to be sent and received at any given time in
both directions, the timestamp options are also specified in
a symmetrical manner [18] as they can be sent and echoed
in both directions. This means the actual Timestamp Value
(TSval) added by the sender is carried in both the ACK and
data segments are echoed in Timestamp Echo Reply (TSecr)
fields carried in the returning ACK or recently received data
segments [18]. In this way, we can avoid underestimating the
actual RTT measurement.

A. Practical Challenges

The TCP congestion control algorithms that are widely
deployed today perform the most important parameters used
for TCP performance evaluation such as handling the cwnd and
RTT from the sender-side. In this paper, we are interested in
passively inferring an end-to-end RTT for TCP from packet
arrival times collected at an intermediate monitoring point
of a network without having access to the sender. However,
there are some practical factors and concerns which complicate
the implementation of a passive RTT measurement from an
intermediate node. Here, we describe these practical challenges
and the approaches how we address them in our evaluation.

Sender ReceiverMonitor

Fig. 4: RTT computation scenarios

Let’s suppose two end-points are exchanging traffic in
both directions as shown in Figure 4. If we measure at
the intermediate point, one approach is to measure from the
perspective of the sender in both directions. This is because if
we measure the RTT at the receiver side, we cannot be sure
when we send an ACK that it will trigger a new sent packet at
the sender. In addition to this, the sender might not have any
data to send, or the sender may also still have opportunities
to send without receiving an ACK. If the sender sends data to
the receiver, and the receiver sends a corresponding ACK, then
the monitor could measure monitor-to-receiver-to-monitor part
of the RTT by observing the data packet and the associated
ACK. Similarly, if the receiver sends data to sender, and
sender sends an ACK, then the monitor could measure the
monitor-to-sender-to-monitor part of the RTT by observing
the data segments and the associated ACK. Finally, these two
values could be added together into an observation of an
estimated RTT. However, there are a number of limitations
that require consideration: (i) many connections send traffic
mainly in one direction, rather than in both directions (ii)
since Internet routing is not necessarily symmetric (i.e., the
path from sender to receiver is not necessarily the reverse of
the path from receiver to sender), the monitor might not be
on the path in both directions between sender and receiver,
and between receiver and sender. (iii) The RTT estimate is
combined from two different data-ACK pairs at different times.
In order to get a more reliable and accurate estimation, our

passive RTT prediction model takes advantage of the TCP
Timestamps option (see Section V).

Measuring at both endpoints: What happens if we capture the
traffic at both the sender and receiver endpoints and do the RTT
estimation separately? There will be a difference in the timing
of the received data which will affect the RTT estimation. It
means this, to get a good measure of the raw one-way RTT for
each direction, would require clock synchronization between
the sender and receiver endpoints. We have no way to combine
these two clocks with any strong guarantees unless the two
endpoints are reasonably synchronized (e.g., by using GPS
signals). However, it is important to remember that there isn’t
a timing difference for predicting the underlying TCP variant
since it simply measures the change in cwnd size.

Sender idle time: How do we technically handle the idle time
(delay) of the sender when the buffer is not full and the sender
waits for enough data to be pushed? As explained above,
since the queue is one-way, the idle time in the sender when
there isn’t enough data to send doesn’t have an impact on
the network propagation time, but it does for an application
latency. Hence, this is both application and implementation
dependent as there are many applications where the sender
has nothing to send. We may have a transmitting delay when
there is a lost packet that triggers a dupPACK. In the presence
of a packet loss or out-of-order packet, the response will
come right away. Basically, if the sender is application limited,
measuring RTT on the three-way handshake is very reliable.
However, we are interested in when a segment carries data. In
order to passively estimate RTT, we measure all the sequence
numbers of the data segments going in both directions at the
intermediate node and their corresponding ACK only if they
carry data. If the monitoring point is somewhere in the path,
all we observe is packets flowing back and forth, and we can’t
tell the difference between network and application latency.
Hence, we may treat them both the same way while data is
being exchanged between the sending and receiving endpoints.
The inclusion of TCP timestamps was supposed to help in
these calculations independently by observing the timestamps
sent and echoed in both directions and provide an improved
RTT estimation.

Multiple packets with the same sequence number: The fact
that TCP can send multiple packets with the same sequence
number is a challenge. For example, if we send a packet with
a sequence number and an ACK, how do we know when the
other packets have been sent if we see another packet with
the same sequence number? This is challenging and highly
depends on whether the connection is using TCP timestamps
or not. As explained in detail above, if TCP timestamps are
not enabled, RTT samples cannot be safely computed due to
the retransmission ambiguity, and thus unreliable. However, if
TCP timestamps are enabled, then the sender can accurately
compute an RTT sample even for retransmitted data using the
Timestamp Echo Reply (TSecr) [18]. This is one of the main
reasons why we are using the timestamps options for our RTT
measurement scheme. If more than one Echo Reply of a data
packet is received before a reply segment is sent, our model
estimates the RTT using the latest transmission time of most
recently sent data packet with the oldest sequence number
while ignoring the data packets with the earliest transmission
time. This helps us to avoid spurious retransmissions.

B. Considerations

Here is the list of TCP mechanism we consider in our analysis.

Delayed ACKs: During our RTT passive measurement
scheme, we took regular delayed ACKs into account by leaving
the delayed ACK enabled since major operating systems enable
it by default for TCP even though the algorithms and constants
are slightly different for each operating system. Most of the
widely-deployed TCP variants nowadays will have the delayed
ACK tag switch on by default to reduce network overhead.
That means the TCP implementation would have to deal with
whatever ACK algorithm the receiver is using and the receiver
can wait up to 500ms (common TCP implementations delay
the ACK only up to 200ms) before it sends an ACK in the
hope that it can save the packet [4, 18]. So most of the
TCP variants nowadays are configured in such a way that
they are allowed to send an ACK for every second full-sized
segment. In order to do that they receive data and wait for
up to 200ms. If nothing else comes, they send an ACK –
if something else comes, they send a cumulative ACK for
both. However, it is necessary to remember that the receiver’s
delayed ACK mechanism, noisy links, and other factors may
introduce bias by causing systematic overestimation of RTT
derived from Data-ACK matching (especially for slow-moving
TCP connections like an interactive telnet or ssh session).
In our analysis, to eliminate this bias when an ACK covers
multiple packets, we used only the RTT from the latest data
packet that is ACKed. It can also be done by filtering out the
ACKs of unacknowledged data segments whose value is less
than 2*MSS since those are quite possibly delayed ACKs [4].
TCP is generally supposed to delay ACKs until either: (i) at
least 2 full MSS of data has arrived, in which case the TCP
receiver should send an immediate ACK, or (ii) the delayed
ACK timer fires. If we get an ACK that is for >= 2*MSS
of data, then there is a very good chance that the ACK was
triggered by (i), in which case the latest data that arrived was
probably ACKed immediately. If we get an ACK that is for
less than 2*MSS of data, it was probably triggered by (ii), the
delayed ACK timer, and should be filtered out if we want the
RTT of the network path. This is precisely one of the reasons
why we avoid packet sizes over the regular legitimate MSS in
our experiments by disabling TCP segmentation offloading as
described below.

Maximum Segment Size (MSS): Our experiments are carried
out over a path that is jumbo-frame clean by disabling TCP
segmentation offloading in order to avoid packet sizes greater
than the regular legitimate values. If we measure at a higher
level and when packets are pushed down layer by layer on
the protocol stack, the negotiated MSS will be violated. This
means when the data size is greater than the legitimate MSS,
the messages will be split into several frames with a higher
chance of unnecessary retransmissions which will introduce
processing delays that affect the time it takes to send the data.
Therefore, in order to avoid this violation, we made sure that
each TCP flow uses a standard Maximum Transmission Unit
(MTU) value of 1500-byte data packets.

C. Impact of the Underlying TCP Variants

We believe RTT is generally unaffected by the underlying
TCP congestion algorithm that is being used, except indirectly
due to ambiguous retransmissions which will probably make

some RTTs seem longer when congestion is detected. TCP
congestion avoidance algorithms specify: (i) How much should
the current packets per burst be reduced when there is a packet
loss, and (ii) How should that number be increased for each
RTT. As described in Section II, RTT between two endpoints
is typically a combination of a fixed baseRTT, the propagation
time and whatever amount of queueing is experienced along
the way. The propagation time is not a function of congestion
control or even of TCP, it’s the same for any IP packet.
Therefore, we believe that there is no direct impact of the
underlying TCP variant on a per-packet measured RTT.

VI. VALIDATION SCENARIOS

Our model has been validated on the following settings.

Emulated setting: As illustrated in Figure 2, we used the
measured RTT data from the intermediate node as an input
to our methodology for an inference of the RTT prediction.
Finally, we verified the predicted RTT with the actual TCP
timestamps directly logged from the Linux kernel used only
for training and generate new data for the learning model
to predict on. Once we finish with the verification, we run
our learning model and get the predictions. We validated our
methodology using the experimental testbed shown in Figure 2
over a LAN link. In order to train and test our prediction
model, we employed a single trained network that adapts to
all experiments with variations of bandwidth, delay, jitter and
packet loss into one learning model. We have demonstrated
that our model can also be applicable in real networks.

Passive Monitor

192.168.2.16

128.39.74.9

192.168.1.2

Sender

10.0.1.0/24

35.185.121.103

128.39.74.10

Data Center

��������
���	
���
�
���
������

Fig. 5: Realistic Scenario Setup

Realistic setting: The ability to use embeddings of a model
trained on an emulated environment to a realistic setting is
a huge advantage in terms of scalability, applicability, and
robustness. In this paper, we are able to train in one scenario
setting and apply it as a pre-training in another scenario
setting. Therefore, we are able to show that the learned passive
RTT prediction model by leveraging a pre-trained knowledge
of the LSTM network from the emulated network performs
reasonably well as it is shown in the results when it is applied
and transferred to a realistic scenario setting bearing similarity
to the concept of transfer learning in the machine learning
community [32]. Here, we rely on passive measurements of
real-world TCP network trace to evaluate the effectiveness
of our model. This guarantees that our LSTM-based RTT
prediction model is able to discern the results to unforeseen
scenarios. As shown in Figure 5, we performed a realistic
experiment using Google cloud Virtual Machines (VMs)
hosted across different regions. The experimental results of
our realistic scenario are presented in Figure 7.

(a) (b) (c)

(d) (e) (f)

Fig. 6: RTT Prediction results comparison of an emulated setting between the TCP sending node and the intermediate node.
(a)-(d), TCP Westwood [10]. (b)-(e), TCP Vegas [5]. (c)-(f), TCP BBR [6].

(a) (b) (c)

(d) (e) (f)

Fig. 7: RTT Prediction results comparison of a realistic setting between the TCP sending node and the intermediate node. (a)-(d),
TCP Westwood [10]. (b)-(e), TCP Vegas [5]. (c)-(f), TCP BBR [6].

VII. EXPERIMENTAL RESULTS AND DISCUSSION

On Section I, we have justified the choice of deep
learning-based approaches in our paper. In this section, we
will explain how the key features of deep learning and their
implementations are being exploited.

Implementation details: We implemented our RTT prediction
model in Python using the Keras deep learning framework
with Google’s TensorFlow backend [1] running on NVIDIA
Tesla K80 GPU where we apply an LSTM-based architecture
to estimate the RTT trained over multiple epochs by taking the
RTT samples as values in time-series. As shown in Figure 1
at each time-step of t, as a learning process, the LSTM model
takes an entire array of the Data-ACK matching based on
timestamps captured on the monitoring point between the
sender and receiver as an input feature vector (x) indexed by
timestamps obtained from the kernel. We propagate the input
to the model through a multilayer LSTM cell followed by
a dense layer of 15-dimensional hidden states with Rectified
Linear Unit (ReLU) activation function for the different layers
that generates an output of a sequence dimensional vector of
predicted RTT (yt) of the same size indexed by timestamps.
Our LSTM network is trained using the Truncated Back
Propagation Through Time (TBPTT) training algorithm for
modern RNNs applied to sequence prediction problems [31].
We used this training algorithm to minimize LSTM’s total
prediction error between the expected output and the predicted
output for a given input of the measured RTT time-series.
We trained our LSTM-based learning algorithm without the
knowledge of the input features from the TCP sender-side
during the learning phase. We learn the model from the training
data and then finally predict the test labels from the testing
instances on all variations of the emulation parameters. In order
to train our prediction model more quickly, and get a more
stable and robust to changes RTT estimation model, we have
applied one of the most effective optimization algorithms in the
deep learning community, the Adam stochastic algorithm [24]
with an initial learning rate of 0.001 and exponential decay
rates of the first (β1) and second (β2) moments set to 0.9
and 0.999 respectively. Totally, all of our configurations were
trained for a maximum of 100 epochs with the mini-batch size
of 256 samples. We further optimize a wide range of important
hyperparameters related to the neural network topology to
improve the performance of our prediction model. In order
to train and test our prediction model, we employed every
experiment with a ratio of 60% training, 40% testing split and
a 5-fold cross-validation on all variations of bandwidth, delay,
jitter and segment loss into one learning model.

Evaluation metrics: In order to evaluate and measure how
well our LSTM-based prediction model performs in terms of
capturing the time-series RTT patterns under different network
conditions, all the neural networks are trained, as it is shown
in Tables II and III, by employing both the Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE)
performance metrics. The RMSE measures the root average
squared error between the predicted and actual value, while
MAPE measures the absolute deviation between the predicted
and actual value as a percentage. The well-known RMSE and
MAPE metrics are both means of estimating the point-wise
errors in predictions and it is good to remember that these
metrics don’t depend on RTT sample sizes. Hence, the metrics

values do not change for different numbers of samples in the
output of the neural network. This is because the sum increases
with the number of summed elements, but mean is sum divided
by the number of elements, so it’s “per element”.

TABLE II: Prediction accuracy of an emulated setting

Kernel RTT vs. Sender SRTT Monitor SRTT vs. Kernel RTT

TCP Algorithms RMSE MAPE (%) RMSE MAPE (%)

Westwood [10] 0.1587 0.8632 1.4916 1.7391

Vegas [5] 0.1854 0.6341 0.7289 0.6581

BBR [6] 0.2103 1.0217 0.5733 1.2812

TABLE III: Prediction accuracy of a realistic setting

Kernel RTT vs. Sender SRTT Monitor SRTT vs. Kernel RTT

TCP Algorithms RMSE MAPE (%) RMSE MAPE (%)

Westwood [10] 0.2504 1.3185 1.5277 1.8479

Vegas [5] 0.4155 2.3097 1.8327 2.5103

BBR [6] 0.2714 0.8730 1.7942 2.0715

Discussion: We start by exploring in detail the practical
challenges in the dynamic inference of RTT for TCP
connections in IP networks from passively monitored traffic.
The plots presented in Figures 6 and 7 show the RTT prediction
as a function of the elapsed time since a packet is sent until
a corresponding ACK is received at the sender (y-axis) and
index of time in seconds (x-axis) of various TCP variants under
a wide range of network conditions and validation scenario
settings. The general sawtooth patterns of the time-series
RTT prediction plots we presented in Figures 6 and 7 are
consistent with the behavior of each TCP variant considered.
The minimum RTT during a given time window begins at
around 1ms in the emulated and 133ms in the realistic setting
but slowly ramp up to the maximum. We believe that this
happens because the packets are being queued somewhere.
When the queue gets filled, packets begin to be dropped and
therefore, the RTTs level off. They level out because we see
RTTs for packets that have been at the end of the queue.
However, with TCP BBR as it is shown in Figure 6 (c), (f)
and Figure 7 (c), and (f), the RTT can go down because when
BBR notices the queue, it decides to send slower to drain
it even if there are no packet drops [6]. Our measurement
results show that we achieve high accuracy of the RTT pattern
across different settings. We performed several experiments
that illustrate our main approach under multiple scenarios
settings and different configurations. However, due to lack of
space, the experimental results presented in Figures 6 and 7 are
a subset of the configurations for a proof of concept to show
that our prediction model is applicable both in an emulated
and real-world settings.

The experimental comparisons on both scenarios presented
on Tables II and III are between the actual RTT values we
obtained from Linux kernel of the TCP sending node against
the SRTT of RTT samples collected on the sender. The second
column on both tables compares the estimated SRTT of the
intermediate node (passive monitor) against the actual RTT
value of RTT obtained from Linux kernel of the TCP sending
node. For a more detailed explanation and definition of SRTT,
we refer the reader to Section III of this paper. On Tables II
and III, Kernel RTT is the actual RTT value used by the Linux
kernel of the TCP sending node. Whereas, monitor, as shown

in Figure 2, is the intermediate node between the sender and
the receiver. Tables II and III show the performance of our
model in an emulated and realistic scenarios, respectively, and
we observe that our prediction model performs comparably
well in both validation settings.

Optimality: The experimental results show that our deep
learning-based RTT prediction model performs with high
accuracy across different validation scenarios.

VIII. CONCLUSION AND FUTURE WORK

This work demonstrates how methods from the field of
Artificial Intelligence (AI) can in principle aid in solving
network-related complex problems. Under different variants
of TCP, RTT is a property of the path between the sender
and receiver whose value influences the dynamics of TCP.
Hence, an accurate and dynamic estimation of RTT is crucial
for TCP to maximize fair-share of the network resources.
It provides useful information for network operators in
investigating the critical factors that limit a flow rate and
cause a congestive collapse in their networks. In this paper, we
have proposed and evaluated a novel LSTM-based prediction
model capable of dynamically predicting at real-time the RTT
between the sender and receiver with high accuracy based
on passive measurements collected at an intermediate node,
taking advantage of the commonly used TCP timestamps. We
explored in detail a set of practical methodological challenges
and considerations involved in performing inference of RTT
dynamically and reliably from passive measurements. The
primary contribution of our work is building a prediction model
that works well for transfer learning. We have demonstrated
the efficiency of our model through extensive experiments
both on a controlled experimental testbed network and in
a realistic scenario setting on the Google Cloud platform.
As future work, we would like to explore extensions in
greater detail to the model we have presented across a
broad range of different network conditions and multiple
simultaneous TCP connections. By design, unlike loss-based
algorithms, the back-off parameter of delay-based congestion
control algorithms is not fixed which makes it fundamentally
challenging to predict the TCP variant from passive traffic
when there is variability in delay. Hence, now that we are able
to predict RTT with a high accuracy, we believe extending our
work in developing a delay-based pattern mining methodology
that identifies the underlying delay-based TCP flavors from
passive traffic and real measurements over the Internet using
the RTT prediction model as an input vector is a promising
direction for future research.

ACKNOWLEDGMENT

We would like to sincerely thank Professor Øivind Kure
for his comments on the final draft of our paper.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow:
A System for Large-Scale Machine Learning. In OSDI, 2016.

[2] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay. Variability in TCP
round-trip times. In ACM SIGCOMM, 2003.

[3] P. Benko and A. Veres. A passive method for estimating
end-to-end TCP packet loss. In GLOBECOM’02. IEEE, 2002.

[4] R. Braden. Requirements for Internet hosts-communication
layers. Technical report, 1989.

[5] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New techniques for congestion detection and avoidance,
volume 24. ACM, 1994.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson. BBR: Congestion-based congestion control. 2016.

[7] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson.
Design principles for accurate passive measurement. In
Proceedings of PAM, 2000.

[8] ESnet. iperf3. https://iperf.fr/iperf-servers.php, 2017.
[9] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski,

D. Papagiannaki, and F. Tobagi. Design and deployment of
a passive monitoring infrastructure. Springer, 2001.

[10] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and
S. Mascolo. TCP Westwood: Congestion window control using
bandwidth estimation. In GLOBECOM. IEEE, 2001.

[11] A. Gurtov and R. Ludwig. Responding to spurious timeouts in
TCP. In INFOCOM. IEEE, 2003.

[12] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure. General
TCP State Inference Model from Passive Measurements Using
Machine Learning Techniques. IEEE Access, 2018.

[13] M. Hanai, S. Yamaguchi, and A. Kobayashi. TCP Fairness
Evaluation with Modified Controlled Delay in the Practical
Networks. ACM, 2018.

[14] S. Hemminger et al. Network emulation with NetEm. 2005.
[15] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.
[16] V. Jacobson. Congestion avoidance and control. In ACM

SIGCOMM computer communication review. ACM, 1988.
[17] V. Jacobson. Congestion avoidance and control. ACM, 1995.
[18] V. Jacobson, R. Braden, and D. Borman. TCP extensions for

high performance. RFC 1323, 1992.
[19] M. Jain and C. Dovrolis. End-to-end available bandwidth:

measurement methodology, dynamics, and relation with TCP
throughput. IEEE/ACM Transactions on Networking, 2003.

[20] R. Jain. A delay-based approach for congestion avoidance
in interconnected heterogeneous computer networks. ACM
SIGCOMM Computer Communication Review, 1989.

[21] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Inferring TCP connection characteristics through passive
measurements. In INFOCOM. IEEE, 2004.

[22] H. Jiang and C. Dovrolis. Passive estimation of TCP round-trip
times. ACM SIGCOMM, 2002.

[23] P. Karn and C. Partridge. Improving round-trip time estimates
in reliable transport protocols. ACM SIGCOMM, 1995.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[25] M. Kühlewind, S. Neuner, and B. Trammell. On the state
of ECN and TCP options on the Internet. In International
Conference on Passive and Active Network Measurement.
Springer, 2013.

[26] A. Loukili, A. L. Wijesinha, R. K. Karne, and A. K. Tsetse.
TCP’s Retransmission Timer and the Minimum RTO. 2012.

[27] J. Martin and A. Nilsson. On service level agreements for IP
networks. In INFOCOM. IEEE, 2002.

[28] C. Olah. Understanding LSTM Networks, 2015.
[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP

throughput: A simple model and its empirical validation. ACM
SIGCOMM Computer Communication Review, 1998.

[30] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing
TCP’s retransmission timer. Technical report, 2011.

[31] H. Tang and J. Glass. On Training Recurrent Networks
with Truncated Backpropagation Through Time in Speech
Recognition. pages 48–55. IEEE, 2018.

[32] K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of
transfer learning. Journal of Big Data, 2016.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

