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ABSTRACT

Quantum systems, when interactingwith their environments, may exhibit nonequilibrium states that are tempting to be interpreted as quantum
analogs of chaotic attractors. However, di�erent from the Hamiltonian case, the toolbox for quantifying dissipative quantum chaos remains
limited. In particular, quantum generalizations of Lyapunov exponents, the main quanti�ers of classical chaos, are established only within the
framework of continuous measurements. We propose an alternative generalization based on the unraveling of quantum master equation into
an ensemble of “quantum trajectories,” by using the so-called Monte Carlo wave-function method. We illustrate the idea with a periodically
modulated open quantum dimer and demonstrate that the transition to quantum chaos matches the period-doubling route to chaos in the
corresponding mean-�eld system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5094324

It is one of the pillar concepts of Chaos theory that complex deter-
ministic dynamics are rooted in the local instability which forces
two initially close trajectories to diverge. This divergence is con-
ventionally quanti�edwith Lyapunov exponents (LEs), a powerful
tool to quantify dynamical chaos. The history of attempts to gen-
eralize LEs to quantum dynamics is nearly as old as the history of
Quantum Chaos. Most of this history is about the Hamiltonian

limit, where the spectral theory of Quantum Chaos1 was estab-
lished �rst. The corresponding generalizations range from early
ideas to use quasiprobability functions and de�ne quantum LEs

in terms of a “distance” between them2–4 to very recent advances

based on out-of-time correlation functions.5–7 When a quantum
system is open and its dynamics are modeled with a quantum
master equation,8 the evolution of the system’s density operator
can be unraveled into an ensemble of evolving trajectories, each
one described by a wave function.8 Dynamics of these wave func-
tions is essentially stochastic; therefore, LEs could be introduced
in a more intuitive way than in the Hamiltonian limit. But will
so-de�ned exponents make sense? Here, we de�ne a particular
type of quantum LEs and give a positive answer to this ques-

tion. Since quantum trajectories9 are not just a formal trick but

a part of reality, e.g., in optical10 and microwave11 cavity systems,
we believe that our results will be of interest to the theoreti-

cians (and, hopefully, to the experimentalists) dealing with these
systems.

I. INTRODUCTION

Hamiltonian chaos, a fascinating product of the sensitivity to
initial conditions and topological mixing co-working in the phase
space of classical nonlinear systems, has been extended to the quan-
tum realm quite early. As a result, a profound understanding of the
spectral signatures of Hamiltonian quantum chaos1,12–14 has been
reached. Quantum generalization of Lyapunov exponents, one of the
main quanti�ers of the Hamiltonian classical chaos, has also been at
the focus of intensive studies during last three decades;2,15–18 this topic
experiences now yet another revival, see Refs. 5–7, 19.

The fast progress in experimental quantum physics, especially
in such �elds as cavity quantum electrodynamics,10 quantum opti-
cal systems,20 arti�cial atoms,21 and polaritonic devices,22has diverted
attention from the idealHamiltonian limit to amore realistic descrip-
tion. All the corresponding systems are open, i.e., they interact with
their environments (or are subjected to actions from outside), and,
therefore, their dynamics are essentially dissipative.8,23 It turned out
that this type of quantum evolution is no less complex and versatile
than the unitary one.24,26

There is ample evidence, both computational and experimen-
tal, that asymptotic states of open far-out-of-equilibrium quantum
systems can yield (when measured, e.g., by means of quantum
tomography) structures similar to classical chaotic attractors.27–33

However, the quanti�cation of dissipative quantum chaos remains
little explored. Approaches attempting to match variations in the
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spectra of generators of dissipate quantum evolution34–36 or their
zero-eigenvalue elements (asymptotic density operators)30,31,37 with
transitions between regular and chaotic regimes in the corresponding
mean-�eld equations have brought some interesting results. How-
ever, at the moment, these �ndings are supplemented only by con-
jectures and speculations.

How to generalize LEs, or, for a start, “the largest” LE, to the
case of open quantum systems? A promising strategy is (1) to unravel
the solution of the master equation, governing the evolution of the
systems density operator, into a set of quantum trajectories and then
(2) to quantify (somehow) the divergence rate between initially close
trajectories.

Strictly speaking, there are in�nitely many ways to unravel a
givenmaster equation but very few of them are physically plausible.38

To the best of our knowledge, the only existing realization of this idea
is related to the framework of di�usive-type continuous measure-
ments, which deals with trajectories of the stochastic Schrödinger
equation.39 This approach allowed, e.g., to obtain Lyapunov expo-
nents, based on the expectation values of x and p observables, for
the quantum version of periodically modulated Du�ng oscillator,
albeit in the vicinity of the classical limit.40–42 It allows (potentially)
to go deeper into the quantum regime; however, the decreasing value
of Lyapunov exponent makes discrimination between regular and
chaotic quantum states a hard task.44–48

The continuous measurement framework has a perfect physical
meaning. For example, it describes an optical cavity whose output
is monitored via homodyne detection;9,38 this creates a perspective
to measure LEs in an experiment.41 However, high computational
cost compromises the physics-related bene�ts of this approach and
constrains numerical studies to the resolution of single-parameter
behavior of model systems.42,43

In this paper, we propose an alternative approach to quantum
generalization of Lyapunov exponents. It de�nes the largest quan-
tum Lyapunov exponent in terms of the “quantum jump” unraveling
based on the Monte Carlo wave-function (MCwf) method.49–52 This
unraveling is very relevant in the context of quantum optics and
cavity systems.9 Computational e�ciency of the currently available
numerical implementations of the MCwf method53 has allowed us to
explore the parameter space of a scalable quantummodel and reveal a
complex structure of intermingled regular and chaotic domains. We
also go deep into the quantum regime and quantify there transitions
corresponding to the classical period-doubling route to chaos.

II. MODEL

Within the Markovian approximation framework (which
assumes weak coupling to environment), the evolution of an
open quantum system can be described by the Lindblad master
equation,8,35,36

%̇ = L(%) = −i[H, %] + D(%), (1)

where the �rst term in the r.h.s. captures the unitary evolution, and
the second term describes the action of environment. We consider a
system of N indistinguishable interacting bosons, that hop between
the sites of a periodically rocked dimer. This model is a popular theo-
retical testbed,58–60 recently implemented in experiments,61,62 known
to exhibit regular and chaotic regimes.30–33 Its unitary dynamics is

governed by the Hamiltonian

H(t) = −J
(

b
†
1b2 + b

†
2b1

)

+
2U

N

∑

g=1,2

ng
(

ng − 1
)

+ ε(t) (n2 − n1) . (2)

Here, J denotes the tunneling amplitude, U is the interaction
strength, and ε(t) presents a periodical modulation of the on-site
potentials. In particular, we choose ε(t) = ε(t + T) = µ0 + µ1Q(t),
whereµ0 andµ1 denote static and dynamical energy o�sets between
the two sites, respectively. Q(t) itself is a periodic unbiased two-
valued quench-function with one full period T; more speci�cally,
Q(τ ) = 1 within 0 < τ ≤ T/2 and Q(τ ) = −1 for the second half
period T/2 < τ ≤ T. bg and b†

g are the annihilation and creation

operators on sites g ∈ {1, 2}, while ng = b†
gbg is the particle number

operator. The system Hilbert space has dimension N + 1 and can be
spanned with N + 1 Fock basis vectors, labeled by the number of
bosons on the �rst site n, {|n + 1〉}, n = 0, . . . ,N. Thus, the size of
the model is controlled by the total number of bosons.

The dissipative term involves a single experimentally relevant
jump operator:24,25

D(%) =
γ

N

(

V%V† −
1

2
{V†V , %}

)

, (3)

V = (b
†
1 + b

†
2)(b1 − b2), (4)

which attempts to “synchronize” the dynamics on the two sites
by constantly recycling anti-symmetric out-phase modes into sym-
metric in-phase ones. The dissipative coupling constant γ is taken
to be time-independent. Throughout the paper, we will assume
J = 1,µ0 = 1, γ = 0.1, and T = 2π .

Now we employ the MCwf method49,50 to unravel deterministic
Eq. (1) into an ensemble of quantum trajectories. It recasts the evo-
lution of the model system into evolution of the ensemble of systems
described by wave functions, ψr(t), r = 1, 2, . . . ,Mr , governed by an
e�ective non-HermitianHamiltonian, H̃. ThisHamiltonian incorpo-
rates the dissipative operator V , which is responsible for the decay of
the norm,

iψ̇ = H̃ψ , H̃ = H −
i

2
V†V . (5)

When the norm drops below a randomly chosen threshold,
the wave function is transformed according to ψ → Vψ and then
normalized.9

The density matrix can then be sampled from a set of Mr real-
izations as%(tp;Mr) = (1/Mr)

∑Mr
j=1

∣

∣ψj(tp)
〉 〈

ψj(tp)
∣

∣, which, given an

initial pure state ψ init, converges toward the solution of Eq. (1) at
time tp for the initial density matrix %init =

∣

∣ψ init
〉 〈

ψ init
∣

∣. We make
use of the recently developed high-performance realization of the
quantum jumps method53 and generate Mr = 102 di�erent trajecto-
ries for averaging, leaving t0 = 2 · 103T time for relaxation toward an
asymptotic state, and following the dynamics for up to t = 103T.

The further analysis is focused on the expectation values of two
observables, these are a normalized number of particles on the left
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site of the dimer, n(t), and the energy, E(t),

n(t) =
1

N
〈ψ(t)|b

†
1b1|ψ(t)〉, (6)

E(t) = 〈ψ(t)|H|ψ(t)〉. (7)

The former observable has a phase variable counterpart in the
nonlinear mean-�eld equation for the classical model that will be
introduced later.

III. DEFINITION OF THE LARGEST LYAPUNOV

EXPONENT

The largest quantum Lyapunov exponent is calculated as the
average rate of the exponential growth of the “distance” (de�ned with
some metrics) between the �ducial and auxiliary trajectories, ψf (t)
and ψa(t), evolving under Eq. (5), in full analogy to the classical
de�nition.54

In our approach, the distance is de�ned as the di�erence
between expectation values—along the �ducial and auxiliary trajec-
tories—of some, preliminary chosen, operator. The auxiliary trajec-
tory is initialized as a normalized perturbed vector ψ init

a = ψ init
f +

εψr , producedwith random i.i.d. entries inψr and ε � 1, adjusted so
that the initial di�erence between the �ducial and perturbed observ-
ables, nf (t) and na(t), 10 = |nf (0)− na(0)| is equal to a certain
�xed value. Figure 1 shows that the wave function ψ(t) remains
well-localized during evolution even in the aperiodic regime, and
the �ducial and perturbed observables remain close to each other
after many quantum jump events. As the di�erence1(tk) = |nf (t)−

na(t)| > 1max exceeds the threshold at t = tk, the perturbed state

FIG. 1. Evolution of fiducial and perturbed trajectories. Top panel: expectations
nf (t) (blue, solid) and na (green, dashed), together with fiducial wave function
amplitude ψf (t) (color coded). Bottom panel: evolution of the mismatch between
the expectations for the two quantum trajectories,1(t). Visible spikes correspond
to single quantum jumps, magenta vertical line indicates resetting of the per-
turbed trajectory when the mismatch goes above the threshold1max = 0.1 (black
dashed horizontal line). Other parameters are U = 0.5,µ1 = 1.5, and N = 200.

is renormalized close to the �ducial one along the mismatch direc-
tion ψf (t)− ψa(t) so that it returns |nf (t)− na(t)| = 10, and the
growth factor dk = 1(tk)/10 is recorded.54 Finally, the largest LE is
estimated as

λ = lim
t→∞

1

t

∑

k

ln dk. (8)

The procedure has much in common with calculating the �nite
size LEs (FSLEs), in particular, conditioning renormalization times
by �xed deviation threshold.55,56 Although in our case, an in�nitely
small perturbation limit is assumed, there remains an obvious poten-
tial of generalizing it to quantum FSLE, in particular, in view of the
physical experiment. Our de�nition also relates to the concept of
LEs introduced for classical jump systems.57These are linear systems,
whose evolution is interrupted with jumps events, which themselves
are governed by a �nite-state Markov process. There LEs are cal-
culated at the jump instances and, therefore, renormalization are
subordinated to the sojourn times of the underlyingMarkov process.
In fact, the value of the LE is independent of the particular distri-
bution of the times when the normalization is performed—provided
that the mean time (�rst moment of the distribution) is �xed. For
example, the exponent can be calculated by performing the renor-
malization after �xed time so that tk = kτ , as in Refs. 54 and 55. If τ is
matching themean time between the crossing then two LEs converge
to close values, see Fig. 2.

To check our idea, we consider two interaction strength val-
ues, U = 0.05 and U = 0.5 (the other parameters are µ1 = 1.5,
N = 200), for which regular and chaotic regimes in mean-�eld

FIG. 2. Finite time Lyapunov exponents converging to λ = 0 (regular) and
λ ≈ 0.27 (chaotic regime) for three individual trajectories for a given set of param-
eters (thin lines). We use as observable n(t) [U = 0.05 and U = 0.5 (green)]
and E(t) [U = 0.05 and U = 0.5 (red)]. The parameters are 10 = 10−4 and
1max = 0.1. Thick lines correspond to the exponent calculated by performing
renormalization after fixed time, tk = kT , for observable n(t), U = 0.05 and
U = 0.5 (light blue). Line color saturates to maximal value upon increase of time.
Other parameters are µ1 = 1.5 and N = 200.
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(a)

(b)

FIG. 3. Classical-quantum correspondence in the chaos development and Lya-
punov spectrum as function of the interaction strengthU. (a) Mean-field equations:
color-coded bifurcation histogram for the stroboscopic map (top panel) and Lya-
punov spectrum (bottom panel). (b) Quantum model: color-coded probability to
observe a fraction of particles n in the asymptotic regime (the maximal element
normalized to 1) (top panel) and quantum largest Lyapunov exponent for differ-
ent number of particles N (bottom panel). The parameters are J = 1,µ0 = 1,
µ1 = 1.5, and N = 200.

equations have been previously identi�ed.31 Lyapunov exponents
calculated by means of individual quantum trajectories converge
to their asymptotic values upon increase of t; see Fig. 2 (thin
lines). We also observe that for N > 200, the largest LE satu-
rates to the size-independent asymptotic value [Fig. 3(b) (bottom
panel)].

The result has proved to be independent on the choice of a par-
ticular observable, n(t) or E(t); both yield near the same asymptotic
values, up to numerical resolution of the method (see the relevant
discussion in Conclusions). Further on, we use n as an observ-
able, and calculate the largest LE based on averaging overMr = 100
trajectories.

We also calculated the largest LEs by following the stan-
dard prescription54 and performing renormalization after �xed time
τ = T, see Fig. 2 (thick lines). There one only has to ensure that the
mismatch1(t) remains small over τ , when the largest LE is positive;
for the chosen renormalization time τ , it requires10 ≤ 10−6.We also
observed someweak variability in the limiting value of LE depending
on the parameters of the method,10,1max, τ , a property genuine to
FSLE in classical nonlinear systems.55,56

IV. RESULTS

Here, we analyze the transition to dissipative quantum chaos.
First, we introduce the corresponding mean-�eld equations as
a reference. In the limit N → ∞, the dynamics of quantum
dimer can be approximated by the equations for expectation

values of three pseudospin operators Sx = (1/2N)
(

b
†
1b2 + b

†
2b1

)

,

Sy = −(i/2N)
(

b
†
1b2 − b

†
2b1

)

, and Sz = (1/2N) (n1 − n2). For a

large number of atoms, the commutator
[

Sx,Sy

]

= [iSz/N]
N→∞
= 0

and similarly for other cyclic permutations. Replacing operators with
their expectation values, 〈Sk〉 = tr[%Sk], anddenoting 〈Sk〉by Sk, one
obtains the semiclassical equations of motion,30

Ṡx = 2ε(t)Sy − 8USzSy + 8γ
(

S2y + S2z

)

,

Ṡy = −2ε(t)Sx + 8USxSz + 2JSz − 8γ SxSy,

Ṡz = 2JSy − 8γ0SxSz .

(9)

As S2 = S2x + S2y + S2z = 1/4 is a constant of motion, one can
reduce the mean-�eld evolution to the surface of a Bloch sphere,
(

Sx, Sy, Sz
)

= 1
2 (cosϕ sinϑ , sinϕ sinϑ , cosϑ), yielding the equa-

tions of motion,

ϕ̇ = 2J
cosϑ

sinϑ
cosϕ − 2ε(t)+ 4U cosϑ − 4γ

sinϕ

sinϑ
,

ϑ̇ = 2J sinϕ + 4γ cosϕ cosϑ .

(10)

A convenient choice to match the quantum and classical solu-
tions is to follow the fraction of particles at the �rst site, where the
classical counterpart is n(t) = [1 + cos θ(t)]/2.

Upon tuning parameter values, the nonlinear mean-�eld equa-
tions display complex dynamics; in particular, they exhibit period-
doubling route to chaos.30,31,33 Figure 3 shows a bifurcation diagram,
which depicts the marginal probability density function (pdf) of
stroboscopic values of n, as a function of U. For each value of U,
it was sampled with 104 values, nk = n(t0 + kT), k = 1, 2, . . . , 104,
generated by the �ow, Eq. (10), after the transient time t0 = 104T.
One Lyapunov exponent becomes positive as the chaotic attractor
emerges, and the other remains negative.

Depending on parameter values, the interaction with the envi-
ronment can strongly localize quantum trajectories by the classical
ones.27,28,40,42 Our case is notably di�erent: at any instant of time,
quantum trajectories are well-localized in the Fock space (Fig. 1),
but they do not follow the classical mean-�eld trajectories, as the
resulting structure of the probability distribution for the stroboscopic
expectation values of n has only a general structural resemblance,
see Fig. 3(b) (top). Nevertheless, working in the essentially quantum
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regime and tuning number of bosons N, we detect the emergence
of the positive largest quantum Lyapunov exponent following the
structural chaotization of the asymptotic state, see Fig. 3(b).

It is noteworthy that in the interval U ∈ [0.1, 0.2], where the
quantum asymptotic solution undergoes some kind of a “bifurca-
tion,” the quantum Lyapunov exponent becomes positive, while the
classical mean-�eld equations still yield a period-1 limit cycle. Sta-
bility analysis of the mean-�eld dynamics gives a clue about possible
resolution of this paradox. Indeed, we �nd that the largest Lyapunov
exponent is approaching and almost touches zero line, Fig. 3(a),
bottom, a signature of bifurcation that is nearly avoided in the mean-
�eld approximation, but is full-�edged in the genuine quantum
system. Similar mismatches between classical and quantum spectra
have been noticed before.63Whether the positive quantum Lyapunov

(a)

(b)

FIG. 4. Chaos-order phase diagram on the parameter plane “interaction strength
U—driving amplitude µ1” for the mean-field equations, Eq. (9), (a) and open
quantum dimer, Eqs. (2)–(4), (b). The color-coded quantum Lyapunov exponent
indicates regular and chaotic regimes. The number of bosons is N = 100; other
parameters as in Fig. 3.

exponent re�ects a dynamical property of the system, although the
structure of the asymptotic solution lacks an apparent structural
complexity, or it re�ects a particular quantum-speci�c e�ect, is an
issue for further studies.

Finally, we report the result of an extensive numerical experi-
ment aimed at calculating the largest quantum Lyapunov exponent
as a function of the particle interaction strengthU and the amplitude
of periodic modulations µ1. The mean-�eld system exhibits a vari-
ety of regimes on this parameter plane. The quantum phase diagram,
in general, more or less follows the classical picture; see Fig. 4. How-
ever, the quantum case exhibits a considerably earlier development
of chaos and a more complicated structure of regular and chaotic
regions. In particular, it follows that multiple two-way transitions are
possible, if one of the parameters is �xed and another increased. It
can be explained by the reduced complexity of the mean-�eld model,
Eq. (10). We conjecture that by going to the higher-order mean-
�eld approximations, by increasing the truncation order of accounted
correlation functions, and hence, by increasing the dimension of
resulting nonlinear system, wewould be able to observe an expansion
of the chaotic area.

V. CONCLUSIONS

We proposed an approach to calculate the largest Lyapunov
exponent for open quantum systems based on the MCwf unraveling
of the Lindblad equation. A numerical realization of this idea allowed
us to capture a quantum analogue of the period-doubling route
to chaos in a periodically modulated many-body quantum system.
The obtained phase diagram on the parameter plane “interaction
strength—amplitude of modulations” revealed a complex structure
of regular and chaotic regions with the two-side transitions happen-
ing upon the variations of each of the two parameters. Our �ndings
are relevant to such �elds as quantum electrodynamics, quantum
optics, and polaritonic devices, where the quest for the signatures
and quanti�ers of dissipative quantum chaos is receiving a growing
attention.

Our �ndings also pose several open issues. The main one is the
universality of the largest quantum LE. Namely, there are two inter-
related questions: Given a Hamiltonian and dissipators, what is the
proper choice of an operator to calculate the largest LE?Will its value
depend on the operator? Generally speaking, the answer to the last
question is “yes.” However, we believe that there must be a certain
universality. If two operators are not too “singular,” in the sense that
(i) their commutators with the Hamiltonian are not too small and
(ii) they are not too “dark” with respect to the dissipators, then the
values of the corresponding LEs will be close to each other. More
speci�cally, a random sampling of the LE operator from the set of all
possible (traceless) operators acting in the system Hilbert space, will
yield a value close to the average (over the set) value of the largest
LE; we plan to corroborate the hypothesis in a more accurate way.
We also think that this hypothesis can be substantiated by using the
concentration-of-measure argument (used, e.g., to prove universality
of the microcanonical thermalization64).

It would be also interesting to check the idea of de�ning LEs
with out-of-time correlation functions for open systems and compare
the corresponding exponents to the one obtained with our approach.
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With respect to the �rst part of this program, some steps have already
been made.65,66
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