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A B S T R A C T

To estimate the reliability and cognitive states of operator performance in a human-machine collaborative en-
vironment, we propose a novel human mental workload (MW) recognizer based on deep learning principles and
utilizing the features of the electroencephalogram (EEG). To determine personalized properties in high di-
mensional EEG indicators, we introduce a feature mapping layer in stacked denoising autoencoder (SDAE) that is
capable of preserving the local information in EEG dynamics. The ensemble classifier is then built via the subject-
specific integrated deep learning committee, and adapts to the cognitive properties of a specific human operator
and alleviates inter-subject feature variations. We validate our algorithms and the ensemble SDAE classifier with
local information preservation (denoted by EL-SDAE) on an EEG database collected during the execution of
complex human-machine tasks. The classification performance indicates that the EL-SDAE outperforms several
classical MW estimators when its optimal network architecture has been identified.

1. Introduction

Due to inadequate progress in artificial intelligence, a group of so-
phisticated automation technologies needs to be implemented along-
side human operations. It is widely recognized that human operators
become an important component in such human-machine (HM) systems
[1]. In a HM operational environment, human mental workload (MW)
monitoring is crucial for safety-critical tasks such as driving and oper-
ating flights, nuclear power plants, and manned-space flights [2]. While
there is no universally accepted definition of MW, it is known as the
transient human cognitive capacity or resource required to process a
specific cognitive task [3]. The degree of MW is also linked to vigilance
and situational awareness to indicate the capability to handle emer-
gencies [4].

A high level of MW represents the operator's high-risk operation
state, and implies a high possibility of leading to serious HM system
error. Aim at maximizing the HM collaboration efficiency, a moderate
level of MW is necessary to maintain optimal operator functional states
(OFSs) [5]. During certain mental tasks, the required cognitive re-
sources attempt to match the amount of mental effort [6]. Unlike ma-
chines and/or computers, the OFS of an operator does not always meet
the requirements of the task because of limited physiological experience

and working memory [4]. Since increased demand for mental resources
results in performance degradation [7] or even catastrophic accidents,
MW assessment is a significant requirement in human-centered HM
systems.

The approaches for assessing MW mainly include subjective ratings,
human performance and physiological measures. In a recently reported
work, physiological measures were deemed attractive because they can
be implemented with the least interference to the main task [8]. Among
the various physiological measures, electroencephalogram (EEG) is one
of the most commonly used techniques for recording brain activity [9].
Electroencephalogram signals have the capability to estimate human
cognitive states in real time. To classify EEG signals into accurate MW
levels, the machine learning-based approach has received much atten-
tion. However, the high dimensionality of EEG features may reduce the
training stability of a data-driven model. To tackle this problem, we
introduce deep neural networks to identify useful intermediate EEG
features that indicate distinguishable cognitive states. Different from
the feed-forward neural network with a single hidden layer, a deep
network is constructed by using multiple hidden layers aimed at the
abstracted combination of the salient EEG indicators.

The main purpose of this study is to find a personalized deep net-
work mapping between the psychophysiological features of, and the
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inherent variations in, MW levels. However, there are two issues that
limit the generalization capability for implementing a deep learning
model. (1) The noise induced by movements and muscular activities
contaminate the useful information in EEG features. (2) The data dis-
tribution of the EEG indicators varies across different individuals. To
remove the noise components in multidimensional features more suc-
cessfully, we introduce the stacked denoising autoencoder (SDAE) [10]
as a feature filter to discover the stable EEG variables at higher levels.
Moreover, individual-specific MW classifiers are developed via the en-
semble learning principle to alleviate cross-subject feature variations.
Thus, the personalized ensemble deep learning committee is built to
adapt cognitive properties to a certain human operator.

To improve the accuracy of classification further, we redesign the
shallow hidden layer of the member SDAE to a feature mapping layer
with the capability of preserving the local information in EEG dy-
namics. Motivated by Refs. [11,12], the individual-specific properties in
EEG are expected to be better extracted and fused to reflect the MW
levels. Finally, a new MW classification framework, an ensemble SDAE
classifier with local information preservation (denoted by EL-SDAE), is
proposed and validated in this work. Aiming at MW classification, we
also investigate and determine the optimal number of hidden layers and
hidden neurons for the EL-SDAE. The final results computed on the
basis of EEG signals collected from real-world HM tasks are compared
against several competitive deep and shallow MW classifiers to de-
monstrate the effectiveness of the EL-SDAE.

This paper is structured as follows. Section 2 briefly reviews related
works on physiological signal-based MW recognition. In Section 3, the
proposed EL-SDAE and details of the EEG databases used for validating
the MW classifier are presented. In Sections 4 and 5, we present the
results and corresponding discussions, respectively. Finally, conclusions
are presented in Section 6.

2. Related works

Human physiological signals, such as EEG, electrocardiogram
(ECG), and electrooculogram, can reflect hidden information related to
MW patterns [13]. Specifically, multi-channel EEG signals indicate
advanced cognitive functions such as reasoning and judgment. As the
corresponding brain network can become very active during cognitive
tasks, EEG has been implemented as an important tool for assessing MW
[14]. Based on the entire EEG power spectrum, the electrophysiological
activity of the cortex can be interpreted into several frequency bands,
which are known as delta, theta, alpha, beta, and gamma [15].

Among the related works, Orlandi et al. employed power spectral
densities obtained from EEG signals to investigate the effects of ship
handling maneuvers on MW in 10 marine pilots [16]. Fallahi et al.
utilized the subjective workload assessment technique accompanied by
EEG to analyze the MW of traffic control operators. The results in-
dicated that operators experience greater MW at high traffic density
than at lower levels [17]. Wang et al. showed that the wireless acqui-
sition of EEG signals can be utilized to classify different memory
workload levels [18]. Liu et al. conducted an experiment using a virtual
ship bridge simulator. The EEG signals were rerecorded to study the
MWs of the crew members during cooperative tasks [19]. Based on EEG
data and therapist's evaluation during driving skill training, Fan et al.
established a group-level classification model to distinguish the emo-
tional states and MW of patients in the autism spectrum disorder during
driving skill training [20]. Chen et al. demonstrated the validity of EEG
signals in evaluating the MW of construction workers and described the
development of a wearable EEG safety helmet prototype [21]. Puma
et al. used EEG signals to assess the increase in MW in multitasking
environments. The results showed that the consistent difference be-
tween the power levels in the alpha and theta bands is related to the
level of task performance [22].

Machine-learning based pattern recognition techniques can abstract
massive physiological data into a structural model automatically. Such

a model is capable of discriminating between different MW levels [4].
In related works, Cui et al. oversampled EEG data in minority class and
classified MW using a dynamic multilayer perceptron [23]. Zarjam
et al. investigated workload discrimination using EEG signals and
achieved high accuracy in subject-independent multichannel classifi-
cation [24]. Wei et al. introduced EEG-based MW recognition related to
multitasking [25].

Machine learning has gained popularity in various industrial,
medical, and commercial domains while deep learning is one of the
most competitive branches [10,26]. Among the popular primitives of
deep learning approaches, SDAE has performed well in a wide range of
domains, such as fault diagnosis and natural language analysis [27,28].
Each hidden layer of a SDAE model is an autoencoder, i.e., a symmetric
neural network with a single hidden layer, while the output and input
neurons are the same. The autoencoder adopts the unsupervised
learning principle wherein the outputs approximate to the inputs [29].
A special form of the autoencoder is called the denoising autoencoder
(DAE) [30]. It minimizes the reconstruction loss of corrupted input
features and learns robust representation of the noise inputs. The
training procedure is accomplished by using the back-propagation (BP)
algorithm. Following greedy layer-wise training for SDAE, a deep net-
work can be generated based on supervised fine-tuning [31].

3. Methods

3.1. EEG database for MW assessment

We employed an EEG database for validating the MW classifiers
built in our previous work [4]. In the laboratory environment, parti-
cipants were instructed to perform a simulated HM task based on au-
tomatic enhanced cabin air management system (ACAMS) [32,33] with
physiological signals simultaneously recorded under different task
loads. The ACAMS platform provided a micro-world in a spaceflight.
When a fault occurred in any parameter of the automatic control
system, the operator was required to fix the error manually. A total of
eight healthy subjects (A, B, C, D, E, F, G and H) were involved. Two
sessions of the same experimental task were carried out with each
subject.

The variations in the difficulty levels of each session were designed
via a cyclic-loading schedule of eight consecutive phases. The first and
the last phases were the baseline conditions of 5min each. The six
consecutive task-load conditions were programmed with 1, 3, 4, 4, 3,
and 1 failures (denoted as the number of failed subsystems i.e., NTF) in
ACAMS. Each task load condition lasted for 15min. In this study, the
control conditions NTF=1 and NTF=4 were chosen for analysis and
labeled as low and high MW levels (denoted by LMW and HMW), re-
spectively.

Eleven channels of simultaneous EEG signals were recorded at a
sampling frequency of 500 Hz at the positions of F3, F4, Fz, C3, C4, Cz,
P3, P4, Pz, O1, and O2 [34]. A third-order Butterworth filter with a low-
pass cutoff frequency of 40 Hz was used to eliminate high-frequential
artifacts from the raw data. Independent component analysis was em-
ployed to correct the ocular artifacts. Fast Fourier transform with a
frequential resolution of 0.5 Hz was adopted to calculate the power
spectral density (PSD) in each 2 s, non-overlapping EEG segment [35].

For each EEG segment in all the channels, four PSD features, i.e., the
average power in the theta (4–8 Hz), alpha (8–13 Hz), beta (14–30 Hz),
and gamma (31–40 Hz) bands, were computed. The power differences
between four channel pairs —F3-F4, C3-C4, P3-P4, and O1-O2 — were
also elicited. In addition, we extracted EEG temporal features including
mean, variance, zero crossing rate, Shannon entropy, spectral entropy,
kurtosis, and skewness. The data matrix of each session is of the size
1800×137, where 1800 and 137 denote the number of EEG feature
vectors and the number of features, respectively. It is noted the first and
the last 450 instances (control condition NTF=1) were labeled as the
LMW class while the remaining were labeled as the HMW class (control
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condition NTF=4). For each matrix, each column of EEG data was
separately standardized (z-scored) to ensure that all the EEG features
were of equal significance. Fig. 1 depicts a 2 s segment of filtered EEG
signals of subject B and the corresponding EEG features.

3.2. Ensemble SDAE with local information preservation

3.2.1. Stacked denoising autoencoder
The competence of the SDAE benefits from its deep structure-based

multiple hidden layers [36]. The outline of the SDAE for EEG modeling
is illustrated in Fig. 2, wherein the numbers of input and output neurons

are 137 and 2, respectively. The basic element of SDAE is the auto-
encoder (AE) [37] for nonlinear feature dimensionality reduction. In
particular, an AE model is indeed a single-hidden-layer neural network
that shares the same inputs and outputs. Considering the issue of MW
classification, let us define the input and hidden activations of an AE as

∈ Rx D and ∈ Rxh
d, respectively. Here, x and xh are the input EEG

features, their abstractions with D and d being the corresponding di-
mensionalities. The transformation from x to xh is achieved by

= +sx Wx θ( ),h (1)

where ∈ ×RW D d and ∈ Rθ d denote the input weight matrix and bias
vector, respectively. The function ⋅f ( ) is the logistic sigmoid function
denoted by = + −s ez( ) 1/(1 )z . The reconstructed output ∈ Rxo

D is
generated by the following mapping from hidden to output neurons,
i.e.,

= + =
+ − +

s
e

x W x θ( ˜) 1
1

o
T

h
W x θ( ˜)T

h (2)

The BP algorithm for optimizing the squared-error cost function is
used to train the AE parameters W, θ, and θ̃.

∑= −
=

L x xx x( , ) .o
i

D
i

o
i

1

( ) ( ) 2

(3)

The trained parameters are defined as

∑= + +∗ ∗ ∗

=N
L s sW θ θ x W Wx θ θ{ , , ˜ } argmin 1 { , [ ( ) ˜]}.

i

N

i
T

i
1 (4)

In Eqn. (4), N represents the size of training EEG instances. The
trained AE model consists of its input and hidden layers,

= +∗ ∗sx W x θ( )(1) . Let us denote x(1) as the input of another AE. High-
level representations of the EEG feature abstractions x m( ) could be
hierarchically extracted by stacking AE (SAE) structures.

= + + +∗ ∗ ∗ ∗ ∗ ∗s s sx W W W x θ θ θ( ... ( ( ) )... ).M M M( ) 2 1 1 2 (5)

By adding an output layer with two nodes that correspond to binary
MW levels, the deep SAE network is derived as

= + = +sy Vx v( ), y s(Wx θ)M( ) (M) (6)

Fig. 1. Filtered EEG data in (a) a 2 s segment of 11 channels, (b) the corresponding 60 frequential features and (c) the corresponding 77 temporal features. Power
spectral density, variance, and zero crossing rate are denoted by PSD, var, and zcr in the legend, respectively.

Fig. 2. Architecture of SDAE for EEG modeling.

S. Yang, et al. Computers in Biology and Medicine 109 (2019) 159–170

161



where =y [1 0]T , =y [0 1]T , V , and v represent the LMW class, HMW
class, output weight matrix, and bias vector, respectively.

To elicit stable feature abstractions, a small portion of the input
features could be artificially corrupted by a random mapping.

= =x b x x i D˜ (˜ | ), 1,2, ...,i i i( ) ( ) ( ) (7)

where the probability from a uniform distribution is used to set x i( ) to 0.
By introducing Eqn. (7), the SDAE is generated to elicit noise-free EEG
feature representations for MW assessment. The pseudo codes of the
SDAE training algorithm are summarized in Table 1, wherein the pre-
training and fine-tuning are performed in lines 7 and 10, respectively.

3.2.2. Ensemble SDAE with local information preservation
To improve the MW classification accuracy of participant-specific

EEG features further, we proposed the EL-SDAE framework shown in
Fig. 3. The EL-SDAE employs the principle of ensemble learning that
integrates multiple individual learners into a model committee to per-
form complex classification tasks [38]. The base learner is designed

based on SDAE and shares a homogeneous network structure while
Bagging is used to construct the classification committee. It is noted
that the SDAE mapping only has the ability to find stable hidden
variables among the global feature distribution. To improve the dis-
crimination capability of the weak model further, we incorporate an
additional hidden layer into the member SDAE to preserve salient local
information by using locality preserving projection (LPP) [39]. A three-
layer deep SDAE (denoted by local SDAE) is combined with the Bagging
ensemble method to form the final EL-SDAE MW classifier.

In the first hidden layer of the base learner, the input EEG features
= ∈ =R i NX x{ , 1, 2, ..., }i

D1 are represented via a low dimensional
embedding by using a linear mapping.

= =i Na Ax , 1,2, ...,i i (8)

To find the transform matrix A, we define a neighborhood graph H
on the feature set X. To preserve the local information of the hidden

Table 1
Pseudo codes for training a SDAE.

Function: SDAE_train

Inputs: Training datasets X Y{ , } ∈ Rx D, ∈ Rxh d

Number of the hidden layers M
Outputs: SDAE parameters ∗ ∗ ∗ ∗W θ V v, , ,m m

1 Randomly assigned W θ V v, , ,m m
2 For =m M1:
3 For =i D1:
4

⎜ ⎟= ⎛
⎝

⎞
⎠

x b x x˜ ˜ |m
i

m
i

m
i

( )
( )

( )
( )

( )
( )

5 End For
6 Compute = +−sx W x θ[ ]m m m( ) ( 1)

7 Compute ∗ ∗W θ,m m according to Eqn. (4)
8 End For
9 Compute = +sy Vx v( )M( )

10 Compute ∗ ∗ ∗ ∗W θ V v, , ,m m according to Eqn. (4)
11 Return ∗ ∗ ∗ ∗W θ V v, , ,m m

Fig. 3. Architecture of the EL-SDAE model.

Table 2
Pseudo codes for training the EL-SDAE.

Function: EL-SDAE

Inputs: Dataset
Number of weak learners

Outputs: Strong classifier C X( )T C(X).
1 Compute α via = λXLX α XBX αT T

2 Generate mapping A from α
3 For =t T1: .
4 Generate =S X Y{ , }t t t from S via bootstrap
5 Randomly assigned W θ W θ V v, , , ,t t t t t t1, 1, 2, 2,
6 Compute = ⋅ +s bx W x Ax θ˜ [ (˜| ) ]o t t1, 1,
7 Compute = −L Ax x Ax x( , ˜ ) || ˆ ||o o 2

2

8 Determine ∗W t1, and ∗θ t1, via Eqn. (16)
9 Compute = ⋅ +∗ ∗sh W Ax θ[ ]t t t1, 1, 1,
10 Call SDAE_train on h t1, with =M 1
11 Return ∗W t2, ,

∗θ t2, , ∗ ∗V v,
12 Build ⋅C ( )t on all ∗ ∗ ∗ ∗W θ V v, , ,t t t t
13 End for
14 Return = ∑ =C Cx x( ) sign[ ( )]T t

T
t1
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distribution in X, we use Sij to weight the edge of each of the two EEG
feature vectors, xi and xj. The value of =S 1ij (or =S 0ij ) indicates that
the two feature vectors are (or are not) neighbors, i.e., belonging to the
same class. The following objective function of the low dimensional
embedding is then optimized [39].

∑ ∑= −
= =

Φ Sz zmin 1
2

‖ ‖
i

N

j

N

i j ij
1 1

2
2

(9)

In Eqn. (9), if the neighboring points xi and xj are mapped far apart,
the weighting function will impose a heavy penalty to ensure that the
mapping of two nearest neighbors in the original space is such that they
are also close in the projection space.

The objective function shown in Eqn. (9) can be rearranged as

∑ ∑ ∑= − =
= = =

Φ B PAx x A Ax x A AXLX A .
i

N

i ii i
T T

i

N

j

N

i ij j
T T T T

1 1 1 (10)

In Eqn. (10), B is a diagonal matrix whose elements Bii are the sum
of the columns of S, and = −L B P is the Laplacian matrix with the
constraint =AXBX A 1T T . By solving the generalized eigenvalue pro-
blem, the transform matrix A can be computed via Eqn. (11).

= λXLX α XBX αT T (11)

In Eqn. (11), λ indicates the eigenvalue and the corresponding ei-
genvector [11,40]. Let the column vectors −α α α, , ..., l0 1 1 be the solution
of Eqn. (11), so that the input weights of the three-hidden-layer SDAE
are given by = −A α α α[ , , ..., ]l0 1 1 .

According to Eqn. (6), the activation of the last hidden layer ht in
each local SDAE Ct can be expressed as Eqn. (12).

= ⋅ ⋅ + +∗ ∗ ∗ ∗s s bh W W x Ax θ θ{ [ (˜| ) ] }t t t t t2, 1, 1, 2, (12)

By adding an output layer, the MW class decision of Ct is computed
as Eqn. (13).

= = ⋅ +∗ ∗C sy h V h v˜ ( ) ( )t t t t t t (13)

The procedure of determining ∗W t1, and ∗θ t1, is similar to that in the
case of the standard SDAE, and the squared-error cost function is used.

= −L Ax x Ax x( , ˜ ) || ˆ ||o o 2
2 (14)

It is noted that different local SDAEs can also have different training
sets. We can define the summation of the training error as

∑= =
=

E
N

L i NAx x1
˜ ( , ˆ ), 1,2, ..., ˜ ,t

i

N

i i o
1

˜

,
(15)

where Ñ is the sample size of the training subset. Finally, the BP al-
gorithm can be implemented to compute the updating value δt for the
network weights.

= ∂
∂

= ∂
∂

∂
∂ ⋅

∂ ⋅
∂ ⋅

∂ ⋅
∂

E E
L

L
s

s
δ

W W x
W x

W x
W x
W( ˜)

( ˜)
˜

˜
t

t

t

t

t

t

t

t

t1, 1,

1,

1,

1,

1, (16)

In Eqn. (16), θ t1, is absorbed into W t1, with the index of zero and
=x̃ 10 . Eventually, ∗W t2, and ∗θ t2, are similarly computed via the layer-

wise pre-training while Vt and vt are determined by fine-tuning.
To fuse the outputs from all the base learners Ct , we implement

Bagging approach [41] in the EL-SDAE. The Bagging ensemble frame-
work randomly selects a subset from the entire EEG training data with
replacement sampling via the bootstrap method [42]. Approximately

=P 63%choose training EEG instances are employed for modeling a weak

Fig. 4. Participant-average MW classification performance vs. the number of hidden neurons in a SDAE model with 70 hidden neurons in each hidden layer.
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learner to ensure diversity in different models.

= − − = − ≈
→+∞

P l elim [1 (1 1/ ) ] 1 1/ 0.63choose
l

l
(17)

In Eqn. (12), l denotes the total times for sampling. Following the
repetition of T-round bootstrap, T different training subsets are gener-
ated, wherein each EEG feature vector may not appear in certain sub-
sets. Therefore, we can separately train T different member EEG clas-
sifiers C x( )t , while the estimated MW level for an unseen EEG vector is
fused from T outputs by majority voting. Assuming that T is odd,
through majority voting combined with T base classifiers, whether
more than half of the base classifiers would be of the HMW (or LMW)
class can be predicted based on the positive (or negative) values of
C x( )T .

∑= = ⎛

⎝
⎜

⎞

⎠
⎟

=

C Cy x x˜ ( ) sign ( )T
t

T

t
1 (18)

The pseudo codes of the EL-SDAE training algorithm are shown in
Table 2.

To evaluate the performance of the proposed and classical MW
classifiers, the predicted MW levels are compared with the target labels
eliciting five metrics, i.e., sensitivity, specificity, precision, negative
predictive value and accuracy. These are denoted by Psen, Pspe, Ppre, Pnpv,

and Pacc, respectively. Let us denote the positive class as LMW and ne-
gative class as HMW. True positive (TP) and true negative (TN) values
are the number of correctly predicted EEG feature vectors of LMW and
HMW classes, respectively. False positive (FP) is the number of overall
cases wherein the HMW features are wrongly classified as LMW, while
the false negative (FN) value corresponds to the contrary case.

4. Results

To verify the effectiveness of the proposed EL-SDAE in MW classi-
fication, two data splitting paradigms are designed. The subject-generic
paradigm is used to identify the optimal model structure of the EL-
SDAE, wherein the deep model is trained and tested on all 28800 EEG
instances of the eight subjects. The classification results are derived by
using 7/9 data for training and the remaining 2/9 for testing (it is noted
that the 10-fold cross validation is applied in Section 4.7). On the other
hand, the subject-specific paradigm is adopted to compare the classi-
fication performance across the different MW recognition models. The
EEG data of 3600 instances of each participant are divided into training
and testing sets in the same proportion, i.e., the sample sizes of the non-
overlapped training and testing sets for each subject are 2800 and 800,
respectively.

4.1. Model selection of member SDAE classifier

To improve the generalization capability of the base learner in the
EL-SDAE framework, we examined the classifier's performance under
different combinations of two parameters, i.e., the number of hidden
layers and the number of neurons in the hidden layers. The number of
hidden layers in member SDAEs is determined from the candidate
parameter set of {2,3, ..., 14} with 13 choices. To reduce computational
cost, the number of hidden neurons is fixed at 70. It is noted that
classifier accuracy is reduced to lower than 0.5 when more than 14

Fig. 5. Model selection of the member SDAE with a two-hidden-layer deep structure.

Table 3
Optimal neuron size of the first and second hidden layers.

Metrics 1st hidden layer 2nd hidden layer Maximum values

Psen 90 90 0.8822
Pspe 100 80 0.8627
Ppre 100 80 0.8606
Pnpv 20 70 0.9553
Pacc 100 80 0.8555
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member classifiers are adopted. The variations in the performance
metrics of the training and testing EEG sets are illustrated in Fig. 4. The
results show that the generalization capability of the SDAE does not
increase in a deeper network structure. Therefore, we employ the
member SDAE with the structure of two hidden layers to reduce com-
putational costs.

To find the optimal structure of a four-layer SDAE (with two hidden
layers), the classification performance indices, i.e., Psen, Pspe, Ppre, Pnpv
and Pacc are investigated and shown in Fig. 5. We search for the optimal
number of neurons within a finite parameter set {10,20, ..., 100}.Speci-
fically, the size of the hidden neurons across two layers can differ, and
thus there are 100 model structures required to be examined. The
classification performance under different combinations of neuron sizes

is shown via mesh plots. The results indicate that Psenfluctuates within a
small interval of 0.1. Except in the case of the parameter combination of
(20,70) (i.e., when the first and second hidden layers possess 20 and 70
neurons, respectively), the value of Pnpvreaches its maximum while the
smaller Pspeand Ppreindicate the difficulty in recognizing low MW level.
Table 3 lists the optimal neuron sizes at which each of the five classi-
fication indices reaches its maximum value. It is noted that Pspe, Ppre, and
Paccall reach their highest values when the hidden layer contain 100 and
80 neurons while Psenand Pnpvare also close to their maximum values
under these conditions. Hence, we select the SDAE with 100 and 80
neurons in the hidden layers as the optimal structure of the base model.

4.2. EL-SDAE performance for MW classification

Table 4 summarizes the testing confusion matrices for the eight
subjects under the optimal performance of the SDAE and EL-SDAE. For
the EL-SDAE classifier, the output dimensionality of the local in-
formation preservation mapping is fixed at 40 for all feature sets. The
number of hidden neurons is selected at around 100 and 80 to improve
the diversity of the local SDAEs. Citing subject A as an example, the
number of LMW levels that are correctly classified is 326 while the
number of LMW levels erroneously classified as HMW levels is 44.
Moreover, the number of HMW levels that are correctly classified is 356
and that of instances incorrectly classified as LMW levels is 74.
Therefore, we can compute Psen = 326/(326 + 44) = 0.8811,
Pspe = 356/(356 + 74) = 0.8279, Ppre = 326/(326 + 44) = 0.8150,
and Pnpv = 356/(356 + 44) = 0.8900. The overall classification rate
Paccis thus 0.8525. The five performance metrics of the SDAE and EL-
SDAE for the testing EEG feature sets are summarized in Table 5. It is
shown that the EL-SDAE classifier outperforms the standard SDAE for
all participants, and the average accuracy of binary MW classification is
improved by 6.5%.

4.3. Performance comparison with shallow MW classifiers

In Fig. 6, the performance of the proposed EL-SDAE is computed
based on the optimal SDAE structure and compared with those of four
shallow learning machines, i.e., logistic regression (LR), naive Bayesian
model (NB), extreme learning machine (ELM), K-nearest neighbor
(KNN). The LR model is a classical binary classifier trained via the
maximum likelihood method and has no hyperparameter that needs to
be tuned [43]. For the NB classifier, we examine the accuracy across
different prior probability combinations {(0.1, 0.9),
(0.2, 0.8), ...(0.9, 0.1)}, and the optimal values (0.2, 0.8) of the highest
average accuracy are selected. In addition, ELM is a single-hidden-layer
neural network with random input weights [44]. We investigate its
hidden neuron size across {10,20, ...100}and the optimal value is 90.
Moreover, KNN is an instance-based learning method and we set 100
nearest neighbors for the classification model [45]. It is found from the
figure that the EL-SDAE achieves the highest accuracy for the eight
subjects among all classifiers.

4.4. Performance comparison with different ensemble classifiers

In Fig. 7, we compare different ensemble learning methods with the
EL-SDAE on the basis of five MW classification metrics. We first in-
troduce a Bagging-based ensemble model via standard SDAE (denoted
by B-SDAE), wherein 17 random sample sets are drawn from the EEG
training data. Moreover, two special SDAE-based ensemble models with
the same number of base learners are introduced to verify the effec-
tiveness of the temporal and frequential EEG features. These two
models generated via the Bagging method are denoted by B-Time and
B-Frequency. It can be seen that the EL-SDAE model achieves the
highest average performance in terms of all five classification metrics. It
is found that when the EEG feature selection is carried out in the B-
Frequency and B-Time models, the MW classification performance

Table 4
Testing confusion matrices of eight participants for SDAE and EL-SDAE.

Subject
index

Predicted SDAE EL-SDAE

Target
LMW

Target
HMW

Target
LMW

Target
HMW

A Low 326 44 373 18
High 74 356 27 382

B Low 373 10 384 1
High 27 390 16 399

C Low 369 63 388 23
High 31 337 12 377

D Low 303 133 317 91
High 97 267 83 309

E Low 357 84 364 47
High 43 316 36 353

F Low 342 75 372 37
High 58 325 28 363

G Low 395 36 396 17
High 5 364 4 383

H Low 322 68 357 28
High 78 332 43 372

Note: The largest number of correctly predicted instances for each subject is in
boldface.

Table 5
Testing classification performance of SDAE and EL-SDAE classifiers.

Methods Subject Psen Pspe Ppre Pnpv Pacc

SDAE A 0.8811 0.8279 0.8150 0.8900 0.8525
B 0.9739 0.9353 0.9325 0.9750 0.9538
C 0.8542 0.9158 0.9225 0.8425 0.8825
D 0.6950 0.7335 0.7575 0.6675 0.7125
E 0.8095 0.8802 0.8925 0.7900 0.8413
F 0.8201 0.8486 0.8550 0.8125 0.8338
G 0.9165 0.9864 0.9875 0.9100 0.9488
H 0.8256 0.8098 0.8050 0.8300 0.8175
Mean 0.8470 0.8672 0.8709 0.8397 0.8553

EL-SDAE A 0.9540 0.9340 0.9325 0.9550 0.9438
B 0.9974 0.9614 0.9600 0.9975 0.9788
C 0.9440 0.9692 0.9700 0.9425 0.9563
D 0.7770 0.7883 0.7925 0.7725 0.7825
E 0.8856 0.9075 0.9100 0.8825 0.8963
F 0.9095 0.9284 0.9300 0.9075 0.9188
G 0.9588 0.9897 0.9900 0.9575 0.9738
H 0.9273 0.8964 0.8925 0.9300 0.9113
Mean 0.9192 0.9218 0.9222 0.9181 0.9202

Note: The largest value for each participant and the performance index are in
boldface.
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significantly decreases.

4.5. Analysis of member classifiers in EL-SDAE

In this section, we examine the performance of different base lear-
ners in the EL-SDAE and the results are shown in Fig. 8. It can be seen
that the testing MW classification rates are lower than those of the
training state. By obtaining the average value of the eight subjects for
each performance metric, we observe that the performance of the DAE
is slightly higher than that of the SDAE. Moreover, after employing
linear mapping with local information preservation as an additional
hidden layer in the local SDAE model, salient psychophysiological
features can be obtained through feature representations. Significant
improvements are found in all the testing values of Pspe, Ppreand Pacc. In
the case of Psenand Pnpv, the corresponding values of only one subject's
EEG features (i.e., subject D) are slightly lower than those in the DAE
and SDAE. According to the average values of the classification metrics
of eight subjects, the base learner constructed via the local SDAE pos-
sesses better interclass discriminating capability under both training
and testing conditions. It indicates the effectiveness of implementing

local SDAE as the member classifier to build the final MW recognition
committee.

4.6. Computational cost analysis

Table 6 compares the average CPU time of 10 runs of training and
testing all eleven MW classifiers on the EEG feature set from a single
subject. According to the table, we find that the EL-SDAE and KNN
achieve the highest and lowest training computational cost, respec-
tively. This can be attributed to two aspects. Construction of the local
information preservation mapping induces additional computational
cost pertaining to feature dimensionality reduction, i.e., the training
time cost for the base learner using local SDAE is higher than that
employing standard SDAE. Moreover, the EL-SDAE method introduces
multiple weak classifiers, and the outputs of each weak classifier need
to be voted on produce the final decision. This results in higher com-
putational burden on the Bagging-based models, i.e., EL-SDAE, B-SDAE,
B-Frequency, and B-Time. However, the testing time cost of the EL-
SDAE remains comparable to that of the standard SDAE but is sig-
nificantly lower than that of the KNN. The observation shows the

Fig. 6. Classification accuracy comparison between EL-SDAE and shallow MW classifiers.

Fig. 7. Box-whisker plots of the MW classification performance indices derived from different ensemble classifiers.
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potential of the EL-SDAE for online testing.

4.7. Cross validation and statistical analysis

In Table 7, we present the classification accuracy derived by the 10-
fold cross-validation on the entire dataset of training and testing in-
stances of each subject [46]. That is, the EEG data of two sessions (3600
instances) of each subject are randomly divided into 10 subsets (each
subset has 360 instances). For each iteration, nine subsets are used for
training the MW classifier and the remaining subset is used for testing.
After all subsets are tested, the average accuracy is computed and
presented in the table. In total, the 10-fold cross-validation accuracy of

11 classifiers mentioned in the previous sections is computed. From
Table 7, it can be seen that the proposed EL-SDAE achieves the highest
performance on subjects A, B, C, D, E, F, and H while the local-SDAE
achieves the highest accuracy on subject G. This indicates that the EL-
SDAE outperforms the other 10MW classifiers on the basis of 10-fold
cross-validation accuracy of all subjects.

To investigate the robustness of the classification algorithms, we
compute the standard deviation of the 10 values of the accuracy that
are derived on each subset in the process of the cross-validation. The
results of each classifier and each subject are presented in Table 8. We
observe that the minimum value of the standard deviation for subjects
B, C, and E and the lowest average standard deviation are achieved by
the EL-SDAE. Thus, the generalization capability and the stability of the
EL-SDAE are competitive for the task of the subject-specific MW clas-
sification.

We also validate the obtained accuracy and standard deviation of
the 10-fold cross validation of all subjects based on two-tailed t-test.
The performance of the EL-SDAE is compared with those of the re-
maining 10MW classifiers. All the accuracy and standard deviation
values for statistical tests are on the basis of Tables 7 and 8 The p values
and the statistics of t-test method are presented in Table 9. Since there
are 10 hypotheses that are tested on the same data source, we apply the
Holm–Bonferroni method to correct the significance level for different
cases. The elicited p values are ordered from the lowest to the highest
and the correct significance level is + −α k/(10 1 )wherein kis the
ranking of the certain p value. We observe that the mean accuracy of
the EL-SDAE is significantly higher than those of the other 10MW
classifiers. Moreover, the standard deviation of the accuracy of the EL-
SDAE is significantly lower than that of the DAE, ELM, KNN, NB, SDAE,
B-Time, B-SDAE, and is comparable with that of the LR, B-Frequency,
and local-SDAE. The t-test results partially validated the robustness of
the EL-SDAE for the generalization capability across multiple subjects.

Fig. 8. Comparison of training and testing classification performance indices of different base learners in EL-SDAE.

Table 6
Average CPU time (in seconds) for training and testing a MW classifier with
EEG feature set for a subject's data. The standard deviation (denoted by s.d.)
and mean values are calculated on the basis of 10 runs of trials. The average
testing classification accuracy for all subjects are also listed for the purpose of
comparison.

MW Classifier Average testing Pacc Training Testing

Mean s.d. Mean s.d.

ELM 0.6897 0.1209 0.0447 0.0254 0.0185
NB 0.7414 1.8155 0.1378 0.2574 0.0703
KNN 0.7850 0.1190 0.0138 1.0901 0.0685
LR 0.8752 6.0197 0.5487 0.0429 0.0238
DAE 0.8698 11.1892 0.8581 0.1385 0.0100
SDAE 0.8553 10.4677 0.6923 0.1014 0.0264
Local SDAE 0.9073 12.2753 1.4970 0.1034 0.0333
B-SDAE 0.8575 13.7963 0.9189 0.0936 0.0186
B-Frequency 0.8528 12.4840 0.7497 0.1092 0.0194
B-Time 0.7584 12.0784 0.6396 0.1092 0.0264
EL-SDAE 0.9202 15.9082 0.6070 0.1014 0.0212

Note: The minimum and maximum values in each column are underlined and
marked in boldface, respectively.
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5. Discussion

In the present study, we introduce a novel ensemble deep learning
framework denoted by EL-SDAE for recognizing MW levels via EEG
signals. In particular, the LPP-based local information preservation
mapping is used to learn subject-specific, intermediate EEG abstrac-
tions. After identifying the optimal mapping architecture, we combine
it with the SDAE to generate a local deep SDAE network as the base
learner. The EL-SDAE employs the Bagging paradigm to build the
classifier ensemble for two reasons. On the one hand, the sizes of the
instances in each training subset can be enlarged by random sampling
with replacement. This mitigates the problem of inadequate training of
the deep learning model since the deep architecture involves more
tunable parameters. On the other hand, the Bagging approach takes
only a part of the EEG examples for constructing each member model

and enables the classification committee to inhibit the noised feature
distribution in the entire training set.

The superiority observed in the case of both the local SDAE and EL-
SDAE over the classical SDAE under the paradigm of subject-specific
MW classification indicates that local information preservation map-
ping has the capability to find the personalized EEG feature re-
presentations. It also verifies the usefulness of the LPP in supervised
physiological feature fusion [1]. Consistent with the results from Wu
et al. [41], the Bagging-based approach further increase the classifica-
tion rate by integrating the outputs of multiple weak models. Specifi-
cally, EEG features fed into the EL-SDAE adopt comprehensive fre-
quency ranges in the theta, alpha, beta, and gamma bands, which are
consistent with most existing work on MW classification using EEG
power features. For instance, Ke et al. inferred that there are workload-
related EEG features that are at least partially unaffected by task types
and time effects on alpha and theta bands. Baldwin et al. indicated that
a wide range of task-sensitive features exist in the alpha, theta, and beta
bands in the frontal, central and parietal areas [35,47,48].

Another contribution of the study is the optimal structure of the
two-hidden-layer member SDAE that has been identified as 100 and 80
hidden neurons. As suggested in Ref. [49], both the SDAE and AE can
be utilized to abstract neurophysiological signals. The implementation
of the AE on EEG signals for the issue of sleep state identification was
reported with a classification accuracy of 80.4% [50]. In the EL-SDAE
framework, the number of hidden neurons is set around the optimal
value to ensure the required diversity of the base learners. It is also
noted that a large number of hidden neurons may not improve the
generalization capability. In Fig. 9, we implement an AE model with the
number of hidden neurons selected within a candidate set
{10,20, ..., 300}of the EEG feature sets from eight participants. It is shown
that the testing results do not improve significantly with increase in the
number of neurons in the hidden layer.

On the other hand, the limitations and future work of the present
study include the following three aspects. (1) Despite the high accuracy

Table 7
Subject-specific classification accuracy derived by the 10-fold cross-validation of each MW classifier. MACC denotes the mean accuracy.

MW Classifier A B C D E F G H MACC

DAE 0.9167 0.9547 0.8797 0.7475 0.8278 0.9114 0.9081 0.8608 0.8758
ELM 0.8647 0.9131 0.8414 0.6997 0.8008 0.8667 0.8750 0.7961 0.8322
KNN 0.8661 0.9089 0.7372 0.6922 0.8233 0.8250 0.8808 0.8072 0.8176
LR 0.9381 0.9653 0.9047 0.8206 0.9181 0.9494 0.9361 0.8969 0.9161
NB 0.8222 0.8825 0.7092 0.6294 0.8308 0.8414 0.8564 0.6433 0.7769
SDAE 0.8997 0.9392 0.8592 0.6981 0.8303 0.8786 0.8956 0.8275 0.8535
B-Frequency 0.9267 0.9753 0.8733 0.7417 0.8827 0.9110 0.9130 0.8563 0.8850
B-Time 0.7283 0.8970 0.7313 0.6513 0.6703 0.8333 0.8740 0.7663 0.7690
B-SDAE 0.9053 0.9530 0.8717 0.7117 0.8357 0.8930 0.9033 0.8530 0.8658
Local-SDAE 0.9217 0.9797 0.8806 0.7978 0.8961 0.9556 0.9378 0.9000 0.9086
EL-SDAE 0.9493 0.9810 0.9237 0.8483 0.9353 0.9597 0.9363 0.9013 0.9294

Note: The minimum and maximum values in each column are underlined and in boldface, respectively. The subject index is shown by A, B, C, D, E, F, G, and H.

Table 8
Standard deviations (SDs) of the 10-fold cross validation accuracy for each MW classifier tested.

MW Classifier A B C D E F G H SD

DAE 0.0231 0.0159 0.0135 0.0262 0.0200 0.0148 0.0163 0.0165 0.0183
ELM 0.0240 0.0133 0.0145 0.0267 0.0265 0.0192 0.0188 0.0200 0.0204
KNN 0.0305 0.0134 0.0158 0.0269 0.0297 0.0189 0.0231 0.0143 0.0216
LR 0.0107 0.0103 0.0134 0.0177 0.0127 0.0126 0.0125 0.0129 0.0129
NB 0.0420 0.0153 0.0256 0.0343 0.0228 0.0102 0.0185 0.0348 0.0254
SDAE 0.0195 0.0151 0.0186 0.0220 0.0216 0.0087 0.0119 0.0156 0.0166
B-Frequency 0.0220 0.0092 0.0156 0.0234 0.0235 0.0201 0.0090 0.0197 0.0178
B-Time 0.0251 0.0208 0.0248 0.0329 0.0329 0.0132 0.0195 0.0364 0.0257
B-SDAE 0.0252 0.0184 0.0221 0.0343 0.0236 0.0157 0.0145 0.0286 0.0228
local-SDAE 0.0249 0.0119 0.0273 0.0330 0.0656 0.0079 0.0088 0.0315 0.0264
EL-SDAE 0.0113 0.0047 0.0101 0.0229 0.0077 0.0101 0.0100 0.0138 0.0113

Note: The minimum and maximum values in each column are underlined and in boldface, respectively. The subject index is shown by A, B, C, D, E, F, G, and H.

Table 9
Results of two-tailed t-test on the 10-fold validation performance between the
EL-SDAE and the other 10MW classifiers.

MW Classifier Mean s.d.

p value t value p value t value

EL-SDAE vs. DAE 0.0022 4.7020 0.0020 −4.7685
EL-SDAE vs. ELM <0.0001 8.9254 0.0012 −5.2335
EL-SDAE vs. KNN 0.0002 7.0861 0.0059 −3.8956
EL-SDAE vs. LR 0.0035 4.3120 0.2734 −1.1886
EL-SDAE vs. NB 0.0004 6.4100 0.0031 −4.4019
EL-SDAE vs. SDAE 0.0007 5.7861 0.0339 −2.6301
EL-SDAE vs. B-Frequency 0.0043 4.1458 0.0130 −3.3084
EL-SDAE vs. B-Time 0.0003 6.4865 0.0008 −5.6756
EL-SDAE vs. B-SDAE 0.0019 4.8520 0.0001 −7.6596
EL-SDAE vs. local-SDAE 0.0307 2.6991 0.0592 −2.2502

Note: The significant cases are in boldface. The significance level is 0.05 and is
corrected by the Holm–Bonferroni method for different cases.
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of the EL-SDAE, the average values of the two classification indices, Pspe
and Pspe, are still slightly lower than those of the local SDAE. The po-
tential reason is that the effect of Bagging is not obvious in a stable deep
model with minimal deviation. (2) To mitigate over-fitting, we employ
only three hidden layers of the local SDAE in the ensemble classifier. In
future work, we will enrich the diversity of the SDAE architecture with
deeper structures to extract more salient feature representations. (3) Du
et al. proposed a multimodal detection method combining EEG and ECG
signals, and the results indicated that the average correlation coefficient
and root mean square error are 0.85 and 0.09, respectively [51]. The
algorithm based on AE achieves high classification performance in
fetal-ECG signal reconstruction [52]. However, the input of the EL-
SDAE was only fixed with EEG features. It will be worth considering
other modalities of peripheral physiological signals in future research.

6. Conclusion

In this paper, an ensemble deep learning model EL-SDAE is pro-
posed for binary MW classification by abstracting high-dimensional
EEG features. The EEG data is collected on eight subjects with two-
session experiments under the ACAMS platform in complex HM colla-
boration environments. In the EL-SDAE framework, base models are
constructed via local SDAE of three hidden layers, and this learns useful
EEG feature representation with local information preservation map-
ping. By employing the Bagging method, multiple local SDAEs are fused
into personalized EEG classification committees to improve subject-
specific MW recognition performance. The subject-average classifica-
tion achieved an accuracy of 92%, which outperforms several classical
shallow and deep classifiers. It is noted the high performance of the EL-
SDAE entails cost of the increased computational burden and additional
model parameters. Our future work will focus on using of the multiple
modalities of physiological data with adaptable network depth.
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