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Abstract. This is a follow-up to a paper with the same title and by the same authors. In
that paper, all groups were assumed to be abelian, and we are now aiming to generalize the
results to nonabelian groups.

The motivating point is Pedersen’s theorem, which does hold for an arbitrary locally compact
group G, saying that two actions (A,α) and (B, β) of G are outer conjugate if and only if the
dual coactions (Aoα G, α̂) and (B oβ G, β̂) of G are conjugate via an isomorphism that maps
the image of A onto the image of B (inside the multiplier algebras of the respective crossed
products).

We do not know of any examples of a pair of non-outer-conjugate actions such that their
dual coactions are conjugate, and our interest is therefore exploring the necessity of latter
condition involving the images; and we have decided to use the term “Pedersen rigid” for cases
where this condition is indeed redundant.

There is also a related problem, concerning the possibility of a so-called equivariant coaction
having a unique generalized fixed-point algebra, that we call “fixed-point rigidity”. In particular,
if the dual coaction of an action is fixed-point rigid, then the action itself is Pedersen rigid,
and no example of non-fixed-point-rigid coaction is known.

1. Introduction

Let G be a locally compact group. Given an action α of G on a C∗-algebra A, we can form
the crossed product C∗-algebra Aoα G, and some obvious questions to ask are: How much does
the crossed product remember of the action? What extra information do we need in order to
recover the action from the crossed product? And what do we mean by recover, that is, what are
the various types of equivalences with respect to which we can we expect to recover the action?
In general, if we only know that two crossed products are isomorphic, we cannot say much about
how the corresponding actions are related. Moreover, we think of “rigidity” of an action as its
ability to be recovered.

Crossed-product duality refers to the problem of determining when a C∗-algebra is a crossed
product (up to some equivalence), and then to recover the action from the crossed product
together with the dual coaction, and sometimes other data.

The first result in this direction is Imai-Takai-Takesaki duality, giving an isomorphism between
Aoα Go

α̂
G and A⊗K(L2(G)), taking the double dual action ̂̂α to α⊗Ad ρ (where ρ denotes

the right regular representation), that is, recovers the action of a locally compact group up to
tensoring with the compact operators.

Characterizing which C∗-algebras are isomorphic to a crossed product by G, and recovery of
the action up to conjugacy was first studied by Landstad for reduced crossed products, then for
full crossed products, and later categorical versions were obtained (by the first and third authors).
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In [KOQ16b], we study what we called outer duality, but which would be better called “Pedersen
duality”, lying in some sense between the duality theories of Takai and Landstad. The crucial
result in this regard is Pedersen’s theorem, which says that two actions (A,α) and (B, β) are
outer conjugate if and only if there exists an isomorphism Φ: Aoα G→ B oβ G such that

Φ is α̂− β̂ equivariant(1.1)
Φ(iA(A)) = iB(B).(1.2)

The heart of the matter is whether condition (1.2) is redundant in the above result, giving rise to
the “Pedersen rigidity problem”: Do there exist non-outer-conjugate actions (A,α) and (B, β)
and an isomorphism Φ: Aoα G→ B oβ G satisfying (1.1)?

Motivated by this question, we call an action (A,α) Pedersen rigid if for every other action
(B, β), if the dual coactions (Aoα G, α̂) and (B oβ G, β̂) are conjugate, then (A,α) and (B, β)
are outer conjugate. If G is discrete, then every action is Pedersen rigid. However, even when G
is abelian and non-discrete, the problem seems delicate.

Let (C, δ) be a coaction and V : C∗(G) → M(C) an equivariant homomorphism. A related
question is whether the generalized fixed-point algebra of (C, δ, V ) only depends on C and δ?
There are currently no examples of V,W such that Cγ,V 6= Cγ,W . If (A,α) is an action such that
(Aoα G, α̂) has a unique generalized fixed-point algebra, then (A,α) is Pedersen rigid.

Moreover, we say that a class of actions is rigid if whenever (A,α) and (B, β) are any two
actions belonging to this class such that (Aoα G, α̂) and (B oβ G, β̂) are conjugate, then (A,α)
and (B, β) are outer conjugate.

In [KOQ18], we discussed Pedersen rigidity for actions of abelian groups, and presented several
“no-go theorems”, that is, situations where (1.2) is redundant. For example, we showed that
for any abelian group, the classes of all actions on commutative or stable C∗-algebras are both
Pedersen rigid.

The goal of this paper is to generalize all the no-go theorems in [KOQ18] from abelian groups to
arbitrary locally compact groups. While some of the results in [KOQ18] carry over fully, in other
cases we were only able to prove weakened versions. For example, we prove that every action α of
G on A is strongly Pedersen rigid when G is discrete or α is unitary and A is finite-dimensional,
or when α is a direct sum of strongly Pedersen rigid actions. We also prove that the results for
commutative or stable C∗-algebras generalize to the nonabelian case, and that for every compact
group the class of ergodic actions with full spectrum is Pedersen rigid. In fact, the no-go theorems
in the commutative or ergodic cases are stronger: two actions are conjugate if and only if the
dual coactions are. Our proof in the compact ergodic case is significantly easier than the abelian
version ([KOQ18, Proposition 4.8]), due to our use of unitary eigenoperators. In the abelian case
we appealed to the cohomology of 2-cocycles.

Our no-go theorem for local rigidity (see Theorem 8.1) required us to prove a new result that
might be of independent interest: α-invariant ideals of A are in one-to-one correspondence with
ideals of the crossed product that are invariant for the dual coaction. Gootman and Lazar [GL89,
Theorem 3.4] proved this for amenable groups, which was enough for our abelian no-go theorem
[KOQ18, Proposition 4.10]. Our proof of the correspondence for arbitrary groups depends upon
Landstad duality for full crossed products.

However, for one of the no-go theorems, the passing from abelian to nonabelian groups was
unsuccessful. In [KOQ18, Theorem 4.6] we proved that when G is abelian every unitary 1 action
of G is strongly Pedersen rigid. The nonabelian case (see Corollary 9.10) places a severe restriction
on A: it must be finite-dimensional. This is presumably due to our method of proof — we suspect
that unitary actions are strongly Pedersen rigid in general.

1An action α of G on A is unitary if α = Adu for some strictly continuous unitary homomorphism u : G → M(A).
In [KOQ18] we used the the term “inner” for such actions.
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Moreover, the question of whether all actions on finite-dimensional C∗-algebras are Pedersen
rigid is also still open.

2. Preliminaries

Throughout, G will be a fixed locally compact group. If A is a C∗-algebra, we write (A,α) for
an action of G and (A, δ) for a coaction of G.

If A,B are C∗-algebras and φ : A → M(B) is a nondegenerate homomorphism, we use the
same notation φ for the canonical extension to a unital strictly continuous homomorphism
M(A)→M(B).

If (A,α) is an action, an α-cocycle is a strictly continuous unitary map U : G→M(A) such
that Ust = Usαs(Ut) for all s, t ∈ G. For any α-cocycle U , the composition β = AdU ◦ α is also
an action on A, which is said to be exterior equivalent to α. Two actions (A,α) and (B, β) are
outer conjugate if β is conjugate to an action on A that is exterior equivalent to α.

A coaction of G on A is a nondegenerate faithful homomorphism δ : A → M(A ⊗ C∗(G))
such that (δ ⊗ id) ◦ δ = (id ⊗ δG) ◦ δ and span{δ(A)(1 ⊗ C∗(G))} = A ⊗ C∗(G), where δG :
C∗(G)→M(C∗(G)⊗C∗(G)) is the homomorphism determined on group elements by δG(s) = s⊗s.
In particular, a coaction δ maps A into

M̃(A⊗ C∗(G)) = {m ∈M(A⊗ C∗(G)) : m(1⊗ C∗(G)) ∪ (1⊗ C∗(G))m ⊆ A⊗ C∗(G)}.
A coaction (A, δ) is maximal if the canonical surjection

Aoδ Go
δ̂
G→ A⊗K

is an isomorphism, where we write K to mean the C∗-algebra of compact operators K(L2(G)). If
(A,α) is an action, then the dual coaction (Aoα G, α̂) is maximal.

If (A, δ) is a coaction and s ∈ G, the s-spectral subspace is
As = {a ∈ A : δ(a) = a⊗ s}.

More generally, by nondegeneracy the coaction extends uniquely to a homomorphism, still denoted
by δ, from M(A) to M(A⊗ C∗(G)), and we have spectral subspaces for these too:

M(A)s = {m ∈M(A) : δ(m) = m⊗ s}.
However, in general the extended map δ : M(A)→M(A⊗ C∗(G)) is not a coaction, because we
may have δ(M(A)) 6⊆ M̃(M(A)⊗ C∗(G)). The fixed-point algebra of A under δ is

Aδ = Ae = {a ∈ A : δ(a) = a⊗ 1},
where e is the identity element of G.

If (A,α) and (B, β) are actions, then a homomorphism φ : A → B is α − β equivariant if
φ ◦ αs = βs ◦ φ for each s ∈ G. On the other hand, if (A, δ) and (B, ε) are coactions, then a
homomorphism φ : A→ B is δ − ε equivariant if the following diagram commutes:

A
δ //

φ

��

M̃(A⊗ C∗(G))

φ⊗id
��

B
ε
// M̃(B ⊗ C∗(G)).

Note that the properties of the “tilde multiplier algebras” such as M̃(A⊗ C∗(G)) guarantee that
the right-hand vertical homomorphism φ ⊗ id is well-defined, even though φ : A → B may be
degenerate (see, for example, [KLQ16, discussion following Definition 3.2]).

If (A, δ) is a coaction, an ideal I of A is strongly δ-invariant if
span{δ(I)(1M(A) ⊗ C∗(G))} = I ⊗ C∗(G),
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in which case δ restricts to a coaction δI on I, which is maximal if δ is. Moreover, the inclusion
map ι : I ↪→ A is δI − δ equivariant, and the crossed product ιoG maps I oδI

G faithfully onto
an ideal of Aoδ G. We identify I oδI

G with this ideal. Finally, δ descends to a coaction δI on
A/I, which is maximal if δ is, and this gives a short exact sequence

0 // I oδI
G // Aoδ G // (A/I) oδI G // 0

that is equivariant for the dual actions, by [Nil99, Theorem 2.3].
An equivariant coaction is a triple (A, δ, V ), where (A, δ) is a coaction and V : C∗(G)→M(A) is

a δG− δ equivariant nondegenerate homomorphism. The generalized fixed-point algebra associated
to an equivariant coaction (A, δ, V ) is the set Aδ,V of all m ∈ M(A) satisfying Landstad’s
conditions

(i) δ(m) = m⊗ 1;
(ii) mV (f), V (f)m ∈ A for all f ∈ Cc(G);
(iii) s 7→ AdVs(m) is norm continuous.

Note that (1) says that m ∈ M(A)e, and (3) says that AdV is an action on Aδ,V . If (A, δ, V )
is an equivariant maximal coaction (so δ is maximal), and if we let B = Aδ,V and α = AdV :
G y B, Landstad duality for full crossed products [KQ07, Theorem 3.2] says that there is an
isomorphism

(Aδ,V oα G, α̂) '−→ (A, δ)
taking iG to V and iB to the inclusion B ↪→M(A).

A K-algebra is a pair (A, ι), where A is a C∗-algebra and ι : K → M(A) is a nondegenerate
homomorphism. The relative commutant of a K-algebra (A, ι) is the C∗-algebra

C(A, ι) = {m ∈M(A) : mι(k) = ι(k)m for all k ∈ K}.

The canonical isomorphism θA : C(A, ι) ⊗ K '−→ A is determined on elementary tensors by
θA(a⊗ k) = aι(k).

By [KLQ18, Lemma 3.8], if (A, ι) and (B, ) are K-algebras and φ : A→ B is a homomorphism
such that

φ(aι(k)) = φ(a)(k) for all a ∈ A, k ∈ K,
then there is a unique homomorphism C(φ) : C(A, ι)→ C(B, ) such that

C(φ)(aι(k)) = φ(a)(k) for all a ∈ C(A, ι), k ∈ K.

Again, the subtlety is that, even though φ might be degenerate, we are extending part of the way
into M(A). To belabor the point: we cannot express the condition on φ in the form φ ◦ ι = ,
because we do not require the homomorphism φ : A→ B to be nondegenerate, and consequently
we have no right to expect that it will extend to a homomorphism M(A)→M(B).

A K-action is a triple (A,α, ι), where (A,α) is an action and (A, ι) is a K-algebra such that α
is trivial on ι(K). In this case α restricts to an action C(α) on C(A, ι).

We adapt a few concepts from [KOQ18] from abelian to arbitrary locally compact groups G.

Definition 2.1. A maximal coaction (A, δ) of G is strongly fixed-point rigid if it has a unique
generalized fixed-point algebra, i.e., for any two G-equivariant strictly continuous unitary homo-
morphisms V,W : G→M(A) we have

Aδ,V = Aδ,W .

An action of G is strongly Pedersen rigid if its dual coaction is strongly fixed-point rigid.

Definition 2.2. A maximal coaction (A, δ) of G is fixed-point rigid if the automorphism group of
(A, δ) acts transitively on the set of generalized fixed-point algebras, i.e., for any two δ̂-equivariant
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strictly continuous unitary homomorphisms V,W : G→ M(A) there is an automorphism Θ of
(A, δ) such that

Θ(Aδ,V ) = Aδ,W .

An action of G is Pedersen rigid if its dual coaction is fixed-point rigid.

The elementary theory of [KOQ18, Section 3] carries over to the case of nonabelian G; in
particular, strong Pedersen rigidity of an action (B,α) of G is equivalent to the following: for every
action (C, β) of G, if Θ: (BoαG, α̂) '−→ (Coβ G, β̂) is a conjugacy then Θ(iB(B)) = iC(C), and
Pedersen rigidity of an action (B,α) of G is equivalent to the following: for every action (C, β) of
G, α and β are outer conjugate if and only if the dual coactions (B oα G, α̂) and (C oβ G, β̂) are
conjugate. Moreover (and this wasn’t explicitly mentioned in [KOQ18]) both strong fixed-point
rigidity and fixed-point rigidity are preserved by conjugacy of coactions, and consequently both
strong Pedersen rigidity and Pedersen rigidity are preserved by outer conjugacy of actions.

As explained above, the following two problems are equivalent:

Pedersen rigidity problem. Is every action Pedersen rigid?

Fixed-point rigidity problem. Is every maximal coaction fixed-point rigid?

Moreover, the following two strong versions are also equivalent:

Strong pedersen rigidity problem. Is every action strongly Pedersen rigid?

Strong fixed-point rigidity problem. Is every maximal coaction strongly fixed-point rigid?

In [KOQ18] we proved a number of no-go theorems, each giving particular sufficient conditions
for a positive answer to the Pedersen rigidity problem. Some of these are phrased in terms of the
following:

Definition 2.3. A class C of actions is Pedersen rigid if any two actions (A,α) and (B, β) in C
are outer conjugate if and only if the dual coactions (Aoα G, α̂) and (B oβ G, β̂) are conjugate.

3. Discrete groups

Theorem 3.1. If G is discrete, then every action of G is strongly Pedersen rigid.

Proof. Let (A,α) be an action. Since G is discrete, iA(A) is the fixed-point algebra of α̂ (see
Lemma 3.2 below), and this must coincide with all general fixed-point algebras. �

The following lemma is presumably folklore, but since we could not find a reference we include
proof.

Lemma 3.2. Let (A, δ) be a maximal coaction of a discrete group G. Then for every equivariant
homomorphism V : G→M(A) we have Aδ,V = Aδ, where as usual

Aδ = Ae = {a ∈ A : δ(a) = a⊗ 1}.

Proof. Let V be an equivariant homomorphism. First note that Aδ,V ⊆ A because if m ∈ Aδ,V
then

m = mV (1C∗(G)) ∈ A.

On the other hand, if a ∈ Aδ then a ∈M(A)e, for every c ∈ C∗(G) we have ac, ca ∈ A because
c ∈ M(A), and s 7→ AdVs(a) is trivially norm continuous by discreteness of G. Therefore
Aδ ⊆ Aδ,V . �
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4. Stable C∗-algebras

Theorem 4.1. The class of actions on stable C∗-algebras possessing strictly positive elements is
Pedersen rigid.

Proof. The proof of [KOQ18, Proposition 4.2] carries over verbatim, since the quoted result
[Com84, Section 8 Proposition] has no restriction on the group. �

Remark 4.2. There is an error in the discussion following [KOQ18, Proposition 4.2], where
we said that we won’t “find any examples of multiple generalized fixed-point algebras unless
at least one of A and B is nonstable”. This seems to be making an assertion about strong
fixed-point rigidity, whereas the proposition only concerns fixed-point rigidity (when phrased in
terms of coactions). The discussion should be changed to something along the following lines:
delete the first sentence “Thus (assuming,. . . )”, since it is not obvious how to rephrase it in
a useful way in terms of Pedersen rigidity, then in the second sentence change “phenomenon
of multiple generalized fixed-point algebras” to “phenomenon of conjugate dual coactions of
non-outer conjugate actions”.

5. Commutative C∗-algebras

Theorem 5.1. Actions on commutative C∗-algebras are conjugate if and only if the dual coactions
are conjugate. In particular, the class of such actions is Pedersen rigid.

Proof. The proof of [KOQ18, Proposition 4.3] carries over verbatim, since it did not use the
standing hypothesis from that paper that G be abelian. �

6. Compact groups

In [Lan84, theorem 8], Landstad proves that if G is a compact group and (A,G, α) is an ergodic
action with full spectrum (meaning that every π ∈ Ĝ occurs in α with multiplicity dim π), then
there is a unitary eigenoperator U ∈M(A⊗K(L2(G))), i.e.,
(6.1) (αs ⊗ id)(U) = U(1⊗ ρs) for all s ∈ G.
here ρ is the right regular representation of G. From now on we will write K = K(L2(G)).

Proposition 6.1. If G is compact and (A,G, α) is an ergodic action with full spectrum, then
(A⊗K, α⊗Ad ρ) ' (A⊗K, α⊗ id).

Proof. Let U be a unitary eigenoperator as in (6.1). Then for all y ∈ A⊗K,
AdU ◦ (αs ⊗Ad ρs)(y) = U(id⊗Ad ρs)

(
(αs ⊗ id)(y)

)
U∗

= U(1⊗ ρs)(αs ⊗ id)(y)(1⊗ ρ∗s)U∗

= (αs ⊗ id)(U)(αs ⊗ id)(y)
(
U(1⊗ ρs)

)∗
= (αs ⊗ id)(Uy)

(
(αs ⊗ id)(U)

)∗
= (αs ⊗ id)(UyU∗

= (αs ⊗ id) ◦AdU(y). �

Lemma 6.2. If G is compact and (A,G, α) is an ergodic action with full spectrum, then

(A⊗K)α⊗id = 1A ⊗K.

Proof. Let ω be the unique G-invariant state on A, so that for all a ∈ A,

ω(a)1A =
∫
G

αs(a) ds.
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Then for all a ∈ A, T ∈ K, ∫
G

(αs ⊗ id)(a⊗ T ) ds =
∫
G

αs(a) ds⊗ T

= ω(a)1A ⊗ T
= ω(a)(1A ⊗ T ).

Thus
1A ⊗K ⊆ (A⊗K)α⊗id,

and on the other hand, by linearity, density, and continuity,

(A⊗K)α⊗id ⊆ 1A ⊗K.

�

Theorem 6.3. Let G be compact, and let (A,α) and (B, β) be ergodic actions of G with full
spectrum. If α̂ ' β̂, then α ' β. In particular, the class of ergodic actions of G with full spectrum
is Pedersen rigid.

Proof. Since
(Aoα G, α̂) ' (B oβ G, β̂),

we have
(Aoα Go

α̂
G, ̂̂α) ' (B oβ Go

β̂
G,
̂̂
β),

so by crossed-product duality

(A⊗K, α⊗Ad ρ) ' (B ⊗K, β ⊗Ad ρ),

and hence by Proposition 6.1 we have an isomorphism

θ : (A⊗K, α⊗ id) ' (B ⊗K, β ⊗ id).

Then by Lemma 6.2,

θ(1A ⊗K) = θ
(
(A⊗K)α⊗id) = (B ⊗K)β⊗id = (1B ⊗K).

Thus
θ : A⊗K '−→ B ⊗K

is a K-isomorphism, so by [KOQ16a, Theorem 4.4] θ preserves the relative commutants:

θ(A⊗ 1B(L2(G))) = B ⊗ 1B(L2(G)).

Thus θ induces an equivariant isomorphism

θ0 : (A,α) '−→ (B, β). �

7. Categories and functors

In preparation for our no-go theorem on local rigidity (Theorem 8.1), we recall some categorical
machinery from [KOQ17]. The category C∗ has C∗-algebras as objects, and the morphisms
are just the usual homomorphisms between C∗-algebras (not into multiplier algebras). The
category Ac of actions has actions (A,α) as objects, and a morphism φ : (A,α) → (B, β) is
an α − β equivariant homomorphism φ : A → B. Note that we are not allowing φ to take
values in the multiplier algebra M(B), since this would make it inconvenient to handle ideals.
Warning: in earlier papers we used the same notation for categories in which the morphisms were
nondegenerate homomorphisms into multiplier algebras; the appropriate choice depends upon the
context.
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The category Co of coactions has coactions (A, δ) as objects, and a morphism φ : (A, δ)→ (B, ε)
is a δ − ε equivariant homomorphism φ : A→ B. The full subcategory of maximal coactions is
denoted by Com.

The category δG/Co of equivariant coactions has equivariant coactions (A, δ, V ) as objects,
and a morphism φ : (A, δ, V )→ (B, ε,W ) is a morphism φ : (A, δ)→ (B, ε) such that φ ◦ V = W .
The full subcategory of maximal equivariant coactions, where the coactions are required to be
maximal, is denoted by δG/Com.

The category K/C∗ of K-algebras has K-algebras as objects, and a morphism φ : (A, ι)→ (B, )
is a homomorphism φ : A→ B such that

φ(aι(k)) = φ(a)(k) for all a ∈ A, k ∈ K.
The category K/Ac of K-actions has K-actions as objects, and a morphism φ : (A,α, ι) →

(B, β, ) is a morphism φ : (A,α)→ (B, β) in Ac such that φ : (A, ι)→ (B, ) is a morphism in
K/C∗.

The destabilization functor DSt : K/Ac→ Ac is given by
DSt(A,α, ι) =

(
C(A, ι), C(α)

)
DSt(φ) = C(φ).

The categorial Landstad duality theorem for actions [KQ09, Theorem 5.1] (see also [KOQ16b,
Theorem 2.2]) can be formulated as follows: the functor

CPA: Ac→ δG/Com

defined by
CPA(A,α) = (Aoα G, α̂, iG)

CPA(φ) = φoG

is an equivalence.
Given an equivariant coaction (A, δ, V ), the homomorphism

uA := jA ◦ V : G→M(Aoδ G)

is a δ̂-cocycle, and we write the perturbed action on Aoδ G as

δ̃ := uA ◦ δ̂.
The functor CPC: δG/Com → K/Ac is given on objects by

CPC(A, δ, V ) = (Aoδ G, δ̃, V oG),

and if φ : (A, δ, V )→ (B, ε,W ) is a morphism then

CPC(φ) : (Aoδ G, δ̃, V oG)→ (B oε D, ε̃,W oG)
is the morphism in K/Ac given by CPC(φ) = φoG.

The quasi-inverse functor Fix is determined by the commutative diagram

δG/Com CPC //

Fix
%%

K/Ac

DSt
��

Ac
Given an equivariant maximal coaction (A, δ, V ), we write

FixA = C(Aoδ G,V oG)

Fix δ = C(δ̃),
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so that
Fix(A, δ, V ) = (FixA,Fix δ).

If φ : (A, δ, V )→ (B, ε,W ) is a morphism in δG/Com then

Fix(φ) : (FixA,Fix δ)→ (FixB,Fix ε)

is the morphism in Ac given by
Fix(φ) = C(φoG).

Categorical Landstad duality for actions can be illustrated by the commutative diagram

Ac CPA //

'
��

δG/Com

CPC
��

Fix
{{

Ac K/Ac
DSt

oo

of functors.
We will need to know that the functor Fix is exact, and we prove this in Lemma 7.1 below.

To be clear: when we refer to a short exact sequence in any of our categories in which the objects
are C∗-algebras with extra structure and the morphisms are homomorphisms that preserve
the structure, we mean that we have a sequence of morphisms in the category such that the
homomorphisms give a short exact sequence of C∗-algebras.

Lemma 7.1. The functor Fix is exact.

Proof. By construction, it suffices to verify that the two functors CPC and DSt are exact. The
first follows from exactness of the functor

(A, δ) 7→ Aoδ G

from Co to C∗, which is proven in [Nil99, Theorem 2.3].
For DSt, it suffices to show that the functor

(A, ι) 7→ C(A, ι)

from K/C∗ to C∗ is exact. This is presumably folklore, but we include the argument for
completeness: let

0 // (I, ρ) ψ
// (A, ι) π // (Q, ) // 0

be a short exact sequence of K-algebras. by naturality of the isomorphisms θ from destabilization,
the sequence

0 // C(I, ρ)⊗K
C(φ)⊗idK

// C(A, ι)⊗K
C(π)⊗idK

// C(Q, )⊗K // 0

is exact. Abstracting this, it now suffices to show why a sequence

0 // J
ψ
// B

τ // R // 0

in C∗ must be exact if the sequence

0 // J ⊗K
ψ⊗id

// B ⊗K τ⊗id
// R⊗K // 0

is exact. Since K is nuclear, ker(τ ⊗ id) = (ker τ)⊗ K. Also, ran(ψ ⊗ id) = (ranψ)⊗ K. Since
ker(τ ⊗ id) = ran(ψ ⊗ id) by assumption, we must have ker τ = ranψ, as desired. �
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8. Local rigidity

In this section we will prove the following generalization of [KOQ18, Proposition 4.10 and
Corollary 4.12] from abelian to arbitrary locally compact groups:

Theorem 8.1. Let (A,α) be an action, and let I be a family of α-invariant ideals of A such
that A = span I. If for each I ∈ I the restricted action αI is strongly Pedersen rigid, then α is
strongly Pedersen rigid.

Proof. We only need one modification of the proof of [KOQ18, Proposition 4.10]: instead of
referring to [GL89, Theorem 3.4], we use Theorem 8.2 below instead. �

The above proof rests upon the following correspondence between invariant ideals of an action
and of the dual coaction. It is proved for amenable G in [GL89, Theorem 3.4].

Theorem 8.2. For any action (A,α), the assignment I 7→ IoG gives a one-to-one correspondence
between α-invariant ideals of A and strongly α̂-invariant ideals of Aoα G.

Proof. First, let K be a strongly α̂-invariant ideal of Aoα G. Then the elementary Lemma 8.3
below gives us an equivariant maximal coaction

(K, α̂K , (iG)K).

Then we have a short exact sequence in δG/Com, so by Lemma 7.1 we can apply the functor Fix
to get a short exact sequence

(8.1) 0 // (L, γ) // (B, β) // (R, σ) // 0

in Ac. The natural equivariant isomorphism θ : B '−→ A takes the ideal L to an α-invariant ideal
I of A. Let µ be the restriction of the action α to I. Then I oµ G is an ideal of Aoα G, and it
remains to show that

I oµ G = K.

Applying the crossed-product functor CPA to the short exact sequence (8.1) gives a β̂-invariant
ideal Loγ G of B oβ G. Then applying the natural isomorphism

Θ: CPA ◦Fix '−→ id,

we have
Θ(LoG) = K.

On the other hand, by the category equivalence we have Θ = θ oG, so

I oG = θ(L) oG = Θ(LoG) = K.

We turn to the uniqueness. Suppose that I and J are α-invariant ideals of A such that

I oG = J oG = K.

Applying the natural isomorphism θ : Fix ◦CPA '−→ id, we get

I = θ(FixK) = J. �

Lemma 8.3. Let (B, δ, V ) be an equivariant coaction, and let K be a strongly δ-invariant ideal
of B. Then there is a unique δG − δK equivariant nondegenerate homomorphism

VK : C∗(G)→M(K)

such that for all c ∈ C∗(G) and k ∈ K we have

(8.2) VK(c)k = V (c)k.
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Proof. Let σ : B →M(K) be the canonical nondegenerate homomorphism given by
σ(b)k = bk for b ∈ B, k ∈ K.

Define VK by the commutative diagram

C∗(G) V //

VK $$

M(B)

σ

��

M(K).

Then (8.2) holds because
VK(c)k = σ(V (c))k = V (c)k. �

Bundles. In [KOQ18, Corollary 4.12] we proved that when G is abelian every locally unitary
action on a continuous trace C∗-algebra is strongly Pedersen rigid. This followed immediately
upon combining [KOQ18, Propositions 4.6 and 4.10], on unitary actions and inductive limits
of actions, respectively. While Theorem 8.1 is a fully functional generalization of [KOQ18,
Proposition 4.10] to nonabelian groups, Corollary 9.10 below is only a partial generalization
of [KOQ18, Proposition 4.6], restricting to unitary actions on finite-dimensional C∗-algebras.
Consequently, the best we can do toward locally unitary actions of arbitrary groups is pointwise
unitary actions on direct sums of finite-dimensional algebras, because we need the ideals of the
bundle C∗-algebra determined by neighborhoods in the base space to be finite-dimensional. But
in fact this case is so special that it is not really a bundle result at all:

Corollary 8.4. Every direct sum of strongly Pedersen rigid actions is strongly Pedersen rigid.

This is of course a special case of Theorem 8.1.

9. Finite-dimensional C∗-algebras and unitary actions

Theorem 9.1. Let (A, δ) be a maximal coaction. Suppose that there is an equivariant homomor-
phism V : G→M(A) such that the generalized fixed-point algebra B = Aδ,V satisfies:

(i) B = M(A)e, and
(ii) the norm topology on B equals the relative strict topology from M(A).

Then (A, δ) is strongly fixed-point rigid.

Proof. Let W : G→M(A) be another equivariant homomorphism, and let C = Aδ,W . We must
show that C = B. First note that C ⊆M(A)e = B.

Define U : G→M(A) by
Us = WsV

∗
s .

Since V,W are strictly continuous and bounded, U is also strictly continuous. The equivariance
of V,W trivially implies by direct computation that for all s ∈ G we have

Us ∈M(A)e = B.

By hypothesis (2), the map U : G→ B is norm continuous. A trivial computation shows that for
all s, t ∈ G,

Ust = Us AdWs(Ut) = Usαs(Ut).
Thus U is an α-cocycle, so we can define an exterior equivalent action

γ = AdU ◦ α : Gy B.

Recall the Pedersen isomorphism

Θ: (B oγ G, γ̂) '−→ (B oα G, α̂)
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determined by
Θ ◦ iγB = iαB and Θ(iγG(s)) = iαB(Us)iαG(s).

On the other hand, by Landstad we may take
(B oα G, α̂, iαG) = (A, δ, V ), B = Aδ,V ,

(B oγ G, γ̂, iγG) = (A, δ,W ), B = Aδ,W ,

with iαB = iγB both being the inclusion B ↪→M(A). In particular, we may assume that Θ = idA.
Since we have C = Aδ,W by definition, we conclude that C = B, as desired. �

Example 9.2. The conditions in Theorem 9.1 certainly required the generalized fixed-point
algebra B = Aδ,V to be unital. However, it is important to keep in mind that it is possible
for B to be unital without satisfying condition (2). For example, let G = T acting on C(T) by
translation, so that the crossed product A = C(T) o T is the compact operators K on L2(T).
Then the generalized fixed-point algebra is the unital algebra of multiplication operators Mφ for
φ ∈ C(T). On bounded sets, the strict topology on M(K) = B(L2(T)) agrees with the strong*
topology. Let (φn) be a sequence of unit vectors in C(T) whose supports Sn shrink to a point.
Then the multiplication operators Mφn

go to 0 strong*, but all have norm 1. Therefore the norm
topology of B = {Mφ : φ ∈ C(T)} is strictly stronger than the relative strict topology from M(K).
We thank Dana Williams for discussions leading to this example.

Proposition 9.3. Let (B,α) be an action such that
(i) iB(B) = M(B oα G)e, and
(ii) the norm topology on iB(B) equals the relative strict topology from M(B oα G).

Then for any finite-dimensional C∗-algebra A, the action (A ⊗ B, id ⊗ α) is strongly Pedersen
rigid.

Proof. The assumptions on (B,α) are that the dual coaction α̂ satisfies the hypotheses of
Theorem 9.1, and by that same theorem it suffices to show that dual coaction îd⊗ α also satisfies
those hypotheses. We have(

(A⊗B) oid⊗α G, îd⊗ α
)

=
(
A⊗ (B oα G), id⊗ α̂

)
.

Moreover,
iA⊗B(A⊗B) = A⊗ iB(B).

We want to show that
A⊗ iB(B) = M

(
A⊗ (B oα G)

)
e
.

Trivially the left side is contained in the right, so let
m ∈M

(
A⊗ (B oα G)

)
e
.

Note that
M
(
A⊗ (B oα G)

)
= A⊗M(B oα G)

since A is finite-dimensional. Choose a basis {a1, . . . , an} for A. Then m =
∑n
i=1(ai ⊗mi) with

mi ∈M(B oα G), and we have
n∑
i=1

(ai ⊗mi ⊗ 1) = m⊗ 1 = (id⊗ α̂)(m) =
n∑
i=1

(ai ⊗ α̂(mi)),

so because {a1, . . . , an} is linearly independent we see that for each i we have
α̂(mi) = mi ⊗ 1,

and hence mi ∈M(B oα G)e = iB(B). Therefore m ∈ A⊗ iB(B), as desired. �
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Corollary 9.4. For any locally compact group G, the trivial action of G on C is strongly Pedersen
rigid.

Proof. We will apply Theorem 9.1 to prove the equivalent statement that the canonical coaction
δG, which is the dual coaction on the crossed product C∗(G) = C o G, is strongly fixed-point
rigid. For this it suffices to prove that

M(C∗(G))e = C1M(C∗(G))

This fact is presumably folklore, but we could not find it in the literature, so we include the proof.
Obviously the right-hand side is contained in the left. On the other hand, if m ∈ M(C∗(G))e,
then

δG(m) = m⊗ 1,
and slicing by f ∈ B(G) gives

(id⊗ f) ◦ δG(m) = f(e)m.
But the homomorphism δG is symmetric:

δG = Σ ◦ δG
where Σ is the flip automorphism of C∗(G)⊗ C∗(G), consequently

(id⊗ f) ◦ δG(m) = (f ⊗ id) ◦ δG(m) = f(m)1.
So, as long as we choose f with f(e) 6= 0, we conclude that m ∈ C1. �

Let H be a subgroup of G with finite index. Let X = G/H, and let G act on X by left
translation. Choose a cross section x 7→ ηx of X in G. It is well-known that the map ϕ :
G×X → H defined by

ϕ(s, x) = η−1
sx sηx

is a cocycle for the action Gy X, i.e.,
ϕ(st, x) = ϕ(s, tx)ϕ(t, x).

Note that ϕ(e, x) = e for all x ∈ X, as is the case for all cocycles. Let C(X) be the commutative
C∗-algebra of functions on the discrete space X, and α : Gy C(X) be the associated action. Let
MX denote the matrix algebra on X, with matrix units {exy : x, y ∈ X} characterized by

exyeuv = δyuexv

e∗xy = eyx,

where δyu is the Kronecker delta.
In the following lemma we use the inflated coaction δH , and we recall its definition in this

special case: since H has finite index in G, we can regard C∗(H) as a C∗-subalgebra of C∗(G),
and Inf δH is defined by the commutative diagram

C∗(H) δH //

Inf δH ((

M(C∗(H)⊗ C∗(H))

��

M(C∗(H)⊗ C∗(G)),

where the vertical arrow is the identity on C∗(H) tensored with the inclusion map C∗(H) ↪→
C∗(G).

Lemma 9.5. Define

U =
∑
x∈X

(exx ⊗ 1⊗ ηx) ∈M
(
MX ⊗ C∗(H)⊗ C∗(G)

)
.

Then U is a cocycle for the coaction id⊗ Inf δH of G.
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Proof. First,

(id⊗ δG)(U) =
∑
x∈X

(exx ⊗ 1⊗ ηx ⊗ ηx),

while
(U ⊗ 1)

(
(id⊗ Inf δH)⊗ id

)
(U) =

∑
x,y∈X

(exx ⊗ 1⊗ ηx ⊗ 1)(eyy ⊗ 1⊗ 1⊗ ηy)

=
∑
x,y∈X

(exxeyy ⊗ 1⊗ ηx ⊗ ηy)

=
∑
x∈X

(exx ⊗ 1⊗ ηx ⊗ ηx).

For the other axiom of cocycles, let x, y ∈ X, c ∈ C∗(H), and d ∈ C∗(G). Then
AdU ◦ (id⊗ Inf δH)(exy ⊗ c)(1⊗ 1⊗ d)

= AdU
(
exy ⊗ δH(c)

)
(1⊗ 1⊗ d)

=
∑
u,v∈X

(euu ⊗ 1⊗ ηu)(exy ⊗ δH(c)(evv ⊗ 1⊗ η−1
v )(1⊗ 1⊗ d)

= exy ⊗ (1⊗ ηx)δH(c)(1⊗ η−1
y )(1⊗ d)

∈ exy ⊗ (1⊗ ηx)δH(c)(1⊗ C∗(G))
⊆ exy ⊗ (1⊗ ηx)(C∗(H)⊗ C∗(G))
⊆ exy ⊗ (C∗(H)⊗ C∗(G))
⊆MX ⊗ C∗(H)⊗ C∗(G).

We have shown that U is an (id⊗ Inf δH)-cocycle. �

Part of the following (not involving the coaction) is a very special case of a theorem of Green
[Gre80, Corollary 2.10], but since our situation is so elementary we give the proof.

Lemma 9.6. With the above notation, define π : C(X)→M(MX ⊗ C∗(H)) by

(9.1) π(f) =
∑
x∈X

f(x)exx ⊗ 1

and V : G→M(MX ⊗ C∗(H)) by

(9.2) Vs =
∑
x∈X

(
esx,x ⊗ ϕ(s, x)

)
.

Then (π, V ) is a covariant homomorphism of the action (C(X), α), and the integrated form is an
isomorphism

θ = π × V : C(X) oα G
'−→MX ⊗ C∗(H).

Moreover, the isomorphism θ transports the dual coaction α̂ to the coaction δ of G on MX⊗C∗(H)
given by

AdU ◦ (id⊗ Inf δH),

Proof. Both C(X) oα G and MX ⊗ C∗(H) are groupoid C∗-algebras: for the first we use the
transformation groupoid G×X with multiplication

(s, tx)(t, x) = (st, x),
and whose unit space {e} ×X we identify with X, and for the second algebra we use the product
groupoid X2 ×H, where X2 denotes the full equivalence relation on X. It is folklore that these
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groupoids are isomorphic, and we recall how this goes: recall that we chose a cross section x 7→ ηx
from X to G, which determined a cocycle ϕ : G×X → H by

ϕ(s, x) = η−1
sx sηx.

This in turn leads to a groupoid isomorphism

ρ : G×X '−→ X2 ×H
via

ρ(s, x) =
(
sx, x, ϕ(s, x)

)
,

with inverse given by
ρ−1(x, y, h) =

(
ηxhη

−1
y , y),

and moreover ρ is a homeomorphism since X is discrete. Then ρ determines an isomorphism

θ : C(X) oα G
'−→MX ⊗ C∗(H)

between the groupoid C∗-algebras, given by the integrated form of the covariant homomorphism
(π, V ) defined in (9.1) and (9.2).

The isomorphism θ transports the dual coaction α̂ to a coaction δ. To compute δ, we first
consider an elementary tensor

exy ⊗ h ∈MX ⊗M(C∗(H)) = M
(
MX ⊗ C∗(H)

)
for x, y ∈ X,h ∈ H:

δ(exy ⊗ h) = (θ ⊗ id) ◦ α̂ ◦ θ−1(x, y, h)
= (θ ⊗ id) ◦ α̂(ηxhη−1

y , y)
= (θ ⊗ id) ◦ α̂

(
iG(ηxhη−1

y )iC(X)(χy)
)

= (θ ⊗ id)
(
iG(ηxhη−1

y )iC(X)(χy)⊗ ηxhη−1
y

)
= (x, y, h)⊗ ηxhη−1

y

= exy ⊗ h⊗ ηxhη−1
y .

Then for f ∈ Cc(H) we have

δ(exy ⊗ f) =
∫
H

f(h)δ(exy ⊗ h) dh

=
∫
H

f(h)(exy ⊗ h⊗ ηxhη−1
y ) dh

= exy ⊗
∫
H

f(h)(h⊗ ηxhη−1
y ) dh

= exy ⊗ (1⊗ ηx)
∫
H

f(h)(h⊗ h) dh(1⊗ η−1
y )

= exy ⊗ (1⊗ ηx) Inf δH(f)(1⊗ η−1
y ).

On the other hand,
AdU ◦ (id⊗ Inf δH)(exy ⊗ f) = U

(
exy ⊗ Inf δH(f)

)
U∗

=
∑
u,v∈X

(euu ⊗ 1⊗ ηu)
(
exy ⊗ Inf δH(f)

)
(evv ⊗ 1⊗ η−1

v )

= exy ⊗ (1⊗ ηx) Inf δH(f)(1⊗ η−1
y ).

Thus by density and continuity we have
δ = AdU ◦ (id⊗ Inf δH). �
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Theorem 9.7. Let G act transitively on a finite set X. Then the associated action α of G on
C(X) is strongly Pedersen rigid.

Proof. We will prove the equivalent statement that the dual coaction α̂ is strongly fixed-point
rigid, Now, by Lemma 9.6, α̂ is exterior equivalent to the coaction id⊗ Inf δH on MX ⊗ C∗(H).
Since MX is finite-dimensional, by Proposition 9.3 it now suffices to prove that Inf δH is strongly
fixed-point rigid. As in the proof of Corollary 9.4, we only need to show that

M(C∗(H))e ⊆ C1M(C∗(H)),

where we mean the fixed points in M(C∗(H)) relative to the coaction Inf δH of G. So, let
m ∈ M(C∗(H))e, so that Inf δH(m) = m⊗ 1M(C∗(G)). But then Inf δH(m) must coincide with
the image of m⊗1M(C∗(H)) inM(C∗(H)⊗C∗(G)), so Corollary 9.4 implies that m ∈ C1M(C∗(H)),
as desired. �

Corollary 9.8. Let G act on a finite set X, and let α be the associated action of G on C(X).
Then the dual coaction (C(X) oα G, α̂) is strongly fixed-point rigid.

Proof. Since X is a disjoint union of orbits, α is a finite direct sum of transitive actions on finite
sets, so the corollary follows from Theorem 9.7 and Corollary 8.4. �

We believe that all actions on finite-dimensional C∗-algebras are strongly Pedersen rigid.
However, there is a subtlety that has prevented us from proving a no-go theorem in that generality,
and we explain here: every action on a finite-dimensional C∗-algebra is a direct sum of actions
that are transitive on the primitive ideal spaces. Suppose that A is finite-dimensional and α :
Gy A is transitive on X = PrimA. Then up to isomorphism

A = Mn ⊗ C(X) =
⊕
x∈X

Mn.

Any automorphism of A can be expressed as a permutation of the copies of Mn followed by an
unitary automorphism. More precisely, for each s ∈ G we have

αs = AdUs ◦ βs,
where Us = (Uxs )x∈X is a tuple of unitary matrices and βs just permutes the coordinates in the
direct sum of matrices. The obstruction to U being a β-cocycle is a circle-valued 2-cocycle τ on
G, which we call the Mackey obstruction of the action α.

Theorem 9.9. Let α be an action of G on a finite-dimensional C∗-algebra A. If all the Mackey
obstructions discussed above vanish, then (A,α) is strongly Pedersen rigid.

Proof. We continue to use the notation in the discussion preceding the theorem. By hypothesis,
we can choose the unitaries Us so that U is a β-cocycle. Thus α is exterior equivalent to β, and
Proposition 9.3 tells us that β is strongly Pedersen rigid, so α is also strongly Pedersen rigid. �

Corollary 9.10. Every unitary action of G on a finite-dimensional C∗-algebra A is strongly
Pedersen rigid.

Proof. Since the action is unitary, G acts trivially on PrimA, and we are assuming that all the
Mackey obstructions vanish, so this is a special case of Theorem 9.9. �

Remark 9.11. In [KOQ18, Proposition 4.6] we proved that if G is abelian then every unitary
action is strongly Pedersen rigid. This worked in that much generality because if α is the trivial
action of an abelian group on A, then the homomorphism iαG : G→M(Aoα G) maps into the
center, and hence commutes with iβG for any other action satisfying A oα G = A oβ G. For
nonabelian G, the best we were able to do is Corollary 9.10, which imposes severe restrictions on
the action.
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