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Abstract. Many-body quantum systems are subjected to the Curse of Dimensionality: The
dimension of the Hilbert space H, where these systems live in, grows exponentially with number
of their components. However, with some systems, it is possible to escape the curse by
using a low-rank tensor approximation known as “matrix-product state/operator (MPS/O)
representation” in the quantum community and “tensor-train decomposition” among applied
mathematicians. Motivated by recent advances in computational quantum physics, we consider
chains of N spins coupled by nearest-neighbor interactions. The spins are subjected to an
action coming from the environment. Spatially disordered interaction and environment-induced
decoherence drive systems into non-trivial asymptotic states. The dissipative evolution is
modeled with a Markovian master equation in the Lindblad form. By implementing the MPO
technique and propagating system states with the time-evolving block decimation scheme, which
allows keeping the length of the state descriptions fixed, it is in principle possible to reach
the asymptotic states. We propose and realize a cluster implementation of this idea. The
implementation on four nodes allowed us to resolve the asymptotic states of the model systems
with N = 128 spins (total dimension of the Hilbert space dimH = 2128 ≈ 1039).

1. Introduction
Many-body systems are at the focus of the current research in theoretical and experimental
quantum physics. In addition to their fundamental importance for quantum thermodynamics
and information [1], these systems are perspective from the technological point of view; e.g., all
manufactured (by now) quantum computers are based on arrays of interacting superconducting
qubits [2].

All real-life quantum systems are open, meaning that they interact – to a different extent –
with their environments [3]. This ’action from outside’, termed “decoherence“ or ”dissipation“,
works together with the unitary evolution stemming from system’s Hamiltonians and, on large
time scales, these joint efforts result in the creation of an asymptotic stationary state. The
evolution of an open quantum system towards its asymptotic states is usually modeled with
a Markovian master equation, which describes the dynamics of the system density operator
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%(t), %̇(t) = L%(t) [3]. Formally, similar to the Schroedinger equation used to describe unitary
evolution of an isolated quantum system, this is a linear differential equation which can be solved
numerically, e.g., by diagonalizing generator of evolution L.

However, computational studies of many-body quantum systems are limited by the so-called
Course of Dimensionality: the total length L of description (number of parameters required to
specify a state) of an isolated quantum system consisting of N components (spins, qubits, ions,
etc.), each one with d degrees of freedom, scales as L(N) ∼ dN . To specify an arbitrary state of a
system of 50 qubits one needs 250 ≈ 1015 complex-valued parameters. This exceeds the memory
capacity of the supercomputer “Titan”[4]. In the case of open quantum systems, the complexity
squares: to describe a density operator one needs L(N) ∼ d2N real-valued parameters.

This is a famous problem in modern data science – manipulations (or even simply storing)
with data tensors becomes impossible when the data are sorted in high-dimensional spaces. The
attempts to break the curse led to the development of a variety of low-rank tensor approximation
algorithms [5]. These algorithms are used now in signal processing, computer vision, data mining,
and neuroscience [6]. The most robust algorithms are based on Singular Value Decomposition
(SVD), and one particularly efficient for multilinear algebra manipulations is the so-called
Tensor-Train (TT) decomposition [7]. In physical literature, it is commonly referred to as Matrix
Product State (MPS) [or Matrix Product Operator (MPO)] representation [8]. While these
two names are used simultaneously (though in different fields), the underlying mathematical
structure is the same [9]. The MPS/MPO/TT approach allows to reduce descriptions of some
many-body states to a linear scaling L(N) ∼ N [7].

The MPS/MPO representation allows for effective propagation of quantum many-body
systems in time by using the so-called Time-Evolving Block Decimation (TEBD) scheme [10]. In
short, this is a procedure to reduce the description of the state, obtained after every propagation
step, to a given fixed length Lcut. The accuracy of the propagation is controllable through Lcut:
If the information is thrown out after the restriction is substantial, the used TEBD propagation
is bad and leads to a wrong description. Otherwise, it is good. Some many-body systems
’behave’ well during the TEBD propagation and so the amount of the neglected information
is tolerable (we are not going to discuss physical properties underlying such a ’good behavior’
and refer the reader to an extensive literature on the subject; see. e.g., Ref. [8]). Important
is that the MPO/TT-TEBD scheme can be used to propagate open systems [11] and thus get
in touch with the corresponding asymptotic states [12, 13]. It is crucial therefore to estimate
computational resources needed for the realization of this program. Here we report the results
of our studies in these directions.

2. The algorithm
2.1. Tensor-Train Decomposition and Time-Evoling Block Decimation Propagation
Here we mainly follow works [7] and [8]; for more details, we refer the interested reader to them.

We start with the TT representation of a N -dimensional complex-valued tensor Ai1,i2...iN

with ik = 1, 2, . . .M [7],

A [i1, i2 . . . iN ] =
∑

α1...αN−1

Γ[1]i1
α0,α1

λ[1]α1
Γ[2]i2
α1,α2

λ[2]α2
. . .Γ

[N−2]iN−1
αN−2,αN−1λ

[N−1]
αN−1Γ

[N ]iN
αN−1,αN

. (1)

One may interpret this structure as a “train” of Γ’s that encode local structure in each
dimension, and λ’s that quantify correlations between them. Each Γ[k] is an array of M matrices
rk−1 × rk with restrictions rj ≤ M max (rj−1, rj+1) with boundary conditions r0 = rN = 1.
Thus, the dimensions of the matrices are 1 × M, M × M2, M2 × M3 . . .M2 × M, M × 1,
which corresponds to the full representation with MN complex parameters. The construction
of the TT representation invlove SVD operations (their number is proportional to the number
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Algorithm 1 : TEBD method implementation

1: upload: system & method parameters (N, Tj [ij , i
′
j ], Tj,j+1[ij , i

′
j , ij+1, i

′
j+1], dt, Tmax, R),

initial state (Γ
[j]ij
αj−1αj , λ

[j]
αj )

2: for t = 0 to Tmax do

3: propagate all Γ
[j]ij
αj−1αj on [t; t+ dt/2]

4: propagate Γ
[j]ij
αj−1αj , λ

[j]
αj , Γ

[j+1]ij+1
αjαj+1 with odd j on [t; t+ dt/2] . 4-6 do with hard cutoff of

the local bond dimension
5: propagate Γ

[j]ij
αj−1αj , λ

[j]
αj , Γ

[j+1]ij+1
αjαj+1 with even j on [t; t+ dt]

6: propagate Γ
[j]ij
αj−1αj , λ

[j]
αj , Γ

[j+1]ij+1
αjαj+1 with odd j on [t+ dt/2; t+ dt]

7: propagate all Γ
[j]ij
αj−1αj on [t+ dt/2; t+ dt]

8: end for
9: save results

10: release memory

of the system components). When SVD is performed, one can keep only certain singular values
based on the approximation criterion. One possibility is to discard all values smaller than a
fixed number. An alternative approach is to introduce a so-called bond dimension R, a cut-off

value such that on each bound i only singular values λ
[i]
j , j ≤ R, are kept and the rest are

truncated. We use the latter option. Each such local approximation on the set of singular value

{λ[i]} introduces a truncation error, Ei(R) =
∑

j>R

(
λ
[i]
j

)2
.

The TT representation provides a basis for an approximate tensor propagation algorithms.
Here we use Time-Evolving Block Decimation (TEBD) scheme [14, 11], which was specifically
designed for quantum systems but applicable also in the general case. Consider a tensor flow
governed by an evolution generator consisting only of operations acting on one or two adjacent
dimensions,

d

dt
A[i1 . . . iN ] =

∑
j

∑
ij

T
[1]j
ij

A[i1 . . . ij . . . iN ] +
∑
j1,j2

∑
ij1 ,ij2

T
[2]j
ij1 ,ij2

A[i1 . . . ij1ij2 . . . iN ], (2)

where operations T [1] and T [2] act only on the i-th component and a pair of components,
respectively. We use standard time discretization to iteratively integrate this equation (starting
from some initial tensor). In terms of operations the solution reads

A(t+ dt) = L(dt)A(t) = = exp

∑
j

T̂ [1]j + T̂ [2]j

 dt

A(t). (3)

As T operators generally do not commute, we have to approximate the matrix exponents. To
minimize the error, it is convinient to separate the operators into groups as large as possible
and such that all the operators belonging to one group commute with each other. All one-
dimension operators commute by default, and two-dimension acting on odd/even pairs commute
within their oddity groups. We use modified second order Suzuki-Trotter decomposition [8]. As
all operators are commuting by construction, corresponding computation can be parallelized.
Each two-index operator may include a cut-off if after the reorthogonalizationm, the number of
singular value exceeds bound dimension R. Corresponding accumulated truncation error E(t, R)
is then calculated as a sum of local errors over all the operation during evolution up to time t.
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Computations are dominated by SVD, so resulting complexity is O(NR3), where R is the bond
dimension. With O(N) cores available, it becomes O(R3) and thus the computational task is
perfectly scalable.

2.2. Lindblad Equation
We apply both TT and TEBD methods to evolve numerically many-body open quantum models.
The state of such systems is described by a density matrix %(t) of the size MN ×MN , where N
is the number of particles/spins and M is number of the local states, which we put to M = 2
for a 1/2-spins that we consider in the paper. Evolution of a quantum system in contact with
the environment is governed by Lindblad equation [3]

%̇(t) = L%(t) = LH%(t) + Ldis%(t) = −i [H, %(t)] +

M∑
s=1

γs

[
Ds%(t)D†s −

1

2
{D†sDs, %(t)}

]
, (4)

where L is the Lindblad superoperator consisting of conservative LH and dissipative Ldis parts,
H is Hamiltonian, Ds are dissipation operators, and γs are corresponding dissipation rates.
There is a stationary state solution for any Lindblad superoperator L%(∞) = 0 which is unique
(aside of special cases of symmetries which we do not address here). Finally, many-body density
operator % can be represented as an 2N -dimensional tensor % [i1, i2 . . . iN ; i′1, i

′
2 . . . i

′
N ] where every

pair of indexes ij , i
′
j (each one runs from 1 to 2) correspond to the j-th qubit/spin.

3. Implementation
The method described in Section II is implemented as shown in Algorithm 1. The algorithm
is implemented using the C++ programming language. We found, that the matrix operations
(mainly SVD) are the most time-consuming parts of the algorithm. In this regard, we employ
the Armadillo software library integrated with highly optimized mathematical routines from
the Intel Math Kernel Library to improve performance. Finally, Armadillo/MKL routines take
about 50-80% of computation time during the propagation step depending on the current system
state.

The algorithm assumes performing a set of integration operations for individual components
of the system at every time step. These operations are not independent but can be ordered
according to their dependencies for the organization of parallel computations. In particular, all
one- and two-particle interactions can be performed completely in parallel.

Figure 1. Distribution of computational and
communication functions run time. 64 MPI-
processes were executed on four nodes of the
cluster.

The cluster parallelization is done by using the MPI technology. We apply the classic master-
worker scheme for parallelization of the algorithm. For that, the single managing MPI-process
(master) forms separate tasks for one– and two–particle interactions, monitors their dependencies
from each other and readiness, distributes tasks to all other processes (workers) and accumulates
the results.

All computational experiments have been done on the Lobachevsky cluster with a 2× 8-core
Intel Xeon CPU E5-2660, 2.20GHz, 64 GB RAM, Infiniband QDR interconnect. The code was
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compiled with the Intel C++ Compiler, Intel Math Kernel Library and Intel MPI from the Intel
Parallel Studio XE suite of development tools and the Armadillo library.

Figure 2. Scaling of the spin current j through
a disordered spin chain with N spins for different
values of disorder strength h. Our results (big
colored circles) are plotted on top of the results
reported in Ref. [12]). The maximal size of the
model system used in our simulations is N =
128. For every set of parameters, we performed
averaging over 20 disorder realizations. The
propagation time step dt = 0.1 and bond
dimension R = 50.

4. Results
As test-beds we used two models of open spin chains with next-neigbor couplings [12, 13].

We integrate model from Ref. [12] with following parameters: N = 128, R = 50, Tmax = 50,
dt = 0.1. Parallel code was run on four computational nodes of the cluster (1 MPI-process per
CPU core, 64 MPI-processes overall). Total computation time was 143 s. The resulted diagram
for the distribution of computational and communication functions run time is presented in
Fig. 1. It is shown that the calculations are fairly well balanced, which is an undoubted
advantage of the parallelization scheme. However, MPI communications take a significant part
of the computation time, while further increasing the number of cluster nodes used will not
significantly speed up the calculations, which is a limitation of the scheme. Computational
efficiency (ratio of computation time to total execution time) was 47%.

We find that it is possible to reproduce - with high accuracy – the results reported in Ref. [12]
by using bond-dimension R = 50. On Fig. 2 we present a comparison of the results of the
sampling we perform with our code (big circles; yellow, red and green) with the results by
Žnidaric̆ and his co-authors. We use propagation step dt = 0.1 and propagate every system
up to t = 104, irrespectively of its size. For every value of N and disorder strength h, we

10-1 100 101 102
10-14

10-9

10-4

101

106

t

E
(R
,t)

(b) R=60

R=90

R=120

R=240

R=360

R=480

Figure 3. (a) Evolution of the operator entanglement entropy S for a single disorder realization
for the model from Ref. [13], for different values of bond dimension R. The propagation time
step dt = 0.1 and the system size is N = 128. Note that for R = 480 we did not reach the
asymptotic ’plateau’ because it was not possible to numerically propagate system further (we
hit the two-week limit). (b) Increase of the accumulated truncation error in time.
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additionally performed averaging for 20 disorder realizations. Each realization took from 2
minutes to 2 hours depending on the size of the system and involved up to two nodes (for large
system sizes, N > 64).

For the model from Ref. [13] we study the dynamics of the operator entanglement entropy (for
a fixed disorder realization) for different bond dimensions as shown on Fig. 3a. We found that
Rc = 360 constitutes a threshold value after which the asymptotic entropy does not change upon
further increase of the bond dimension. The calculation time for this value of bond dimension
was four weeks of continuous propagation on four computing nodes. We also analyze also the
evolution of accumulated error E(R, t) in this case. The operator entropy, which signals the
arrival to the asymptotic state, is not accompanied by the saturation of the error. The latter
continues to grow in a power-law manner, see the dashed line in Fig. 3b. This means that MPO
states – even with R = 480 – are still different from the genuine asymptotic state of the model
(which is the zero-value eigenelement of the corresponding Lindbladian).

5. Conclusions
We presented a parallel implementation of the MPO-TEBD algorithm to propagate many-body
open quantum systems. Parallelization is performed using the MPI technology and employs the
master-worker scheme for computational tasks distribution. High-performance implementations
of linear algebra from the Intel MKL were used to better utilize computational resources of
modern hardware.

The performance tests on the Lobachevsky cluster demonstrated that 64 MPI processes
running on four computational nodes is the optimal configuration for the model systems with
N = 128 spins. As a next step, we plan to explore the possibility of further improvements
of the parallelization by reducing the communications and increasing the efficiency of using
computational resources. After that, we hope to reach the limit N ' 400 with the test-bed
models.
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