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Abstract-Sensor fusion has attracted a lot of research atten­
tion during the last years. Recently, a new research direction 
has emerged dealing with sensor fusion without knowledge of 
the ground truth. In this paper, we present a novel solution to 
the latter pertinent problem. In contrast to the first reported 
solutions to this problem, we present a solution that does not 
involve any assumption on the group average reliability which 
makes our 1·esults more general than previous works. We devise 
a strategic game where we show that a perfect partitioning of the 
sensors into reliable and unreliable groups corresponds to a Nash 
equilibrium of the game. Furthermore, we give sound theoretical 
results that prove that those equilibria are indeed the 1111ique Nash 
equilibria of the game. We then propose a solution involving a 
team of Learning Automata (LA) to unveil the identity of each 
sensor, whether it is reliable or unreliable, using game-theoretic 
learning. Experimental results show the accuracy of our solution 
and its ability to deal with settings that are unsolvable by legacy 
works. 

Index Terms-Unreliable Sensors Identification, Game Theory, 
Learning Automata, Sensor Fusion. 

I. INTRODUCTION

Data fusion from noisy sensors [l], [2], [3], [4] has been 

an active research topic specially with the emergence of the 

concept of Internet of Things [5] (IoT). 

Data fusion involves combining multiple observations from 

an environment or phenomenon to produce a more robust, 

a more accurate or a more complete desc1iption about a 

process being monitored. The underlying idea is to remedy 

the imperfection of information by exploiting the redundancy 

or complementarity of the data. 

Sensors are known to yield measurement e1rnrs due to 

different physical phenomena that limit their accuracy. The 

process of fusing measurements from redundant unreliable 

sensors each characterized by some level of fidelity is known 

to increase the reliability of the aggregated measurement and 

yields more accurate insight about the process being monitored 

[2], [l], [6], [7]. 

A. Yazidi and H. Hammer are with the Department of Computer Science, 
Oslo Metropolitan University, Oslo, Norway. 

Konstantin Samouylov is with the Applied Probability and lnfotmatics 
Department, Peoples' Friendship University of Russia (RUDN University) 
and with the Institute of Informatics Problems, Federal Research Center 
"Computer Science and Control" of the Russian Academy of Sciences, 
Moscow, Russian Federation. 

Enrique Herrera-Viedma is with Andalusian Research Institute in Data 
Science and Computational Intelligence, University of Granada, Granada, 
Spain. He is also with Department of Elect,ical and Computer Engineering, 
Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi-Arabia. 

The authors would like to thank FEDER financial supp011 from the Project 
TIN2016-75850-P. lt also was supported by the RUDN University Program 
5-100. 

The vast majority of research in this direction assumes 

that the reliability of the sensors can be deduced by com­

paring their readings against the ground truth. The Weighted 

Majority Voting (WMV ) algorithm [8] is a typical example 

of an algorithm that operates under the assumption that the 

ground truth is revealed subsequently to measurement and 

thus the reliability of the sensors can be deduced. Other 

algorithms suppose that the reliability of the sensors is known 

beforehand through an offline training phase where the ground 

truth is available during that phase or computed based on 

the physical properties of the sensors. Given the knowledge 

of the reliability of a sensor, a multitude of conventional 

fusing approaches can be deployed such as Ordered Weighted 

Averaging (OWA) method, Bayesian approaches, Dempster 

Shafer theory and Kalman filters [9], [10), [11), [12). However, 

in many real-life applications accessing the ground truth is 

practically impossible especially in harsh environment [13). 

In such settings, assessing the reliability of the sensors is far 

from being obvious under the absence of the ground truth. 

Although the problem of assessing the reliability of sensors 

under the absence of the ground truth is apparently impossible 

to solve, with few insights, Yazidi et al. [14) have shown 

that it is possible to solve this seemingly impossible paradox. 

In [14), Yazidi et al. advocated a solution to the problem 

motivated by the observation that the agreement between 

the sensors themselves is a key factor in determining their 

respective reliability. Similar ideas resorting to the agreement 

between the source of information as a way to assess their 

credibility have been reported in the literature [15), [16] 1 • 

However, in contrast to those studies, in our current settings the 

readings are stochastic and therefore the reliability needs to be 

learned in an online and gradual manner. In [16), the authors 

propose to aggregate the decision from different sources of 

information using a modified average. More precisely and in 

contrast to the Murphy's approach [l 8], the weights given 

to the sources of evidence are not equal. The weights are 

computed by measuring the similarity between the different 

bodies of evidence using a so-called Similarity Measure Matrix 

(SMM). However, this makes the complexity of the algorithm 

quadratic in te1ms of number of sensors. Furthermore, the 

SMM does not take into account the behavior over time of 

the sensor. In fact, in our settings some sensors systematically 

deviate from the resl which can not be deduced by only 

one observation instance al a tin1e as it is the case of [1 6). 

1 We thank an anonymous reviewer for drawing our attention to seminal 
references on using agreement between sources of information as a metric to 
assess their reliability [15], [16] and for pointing an early application of game 
theory in information fusion [17]. 
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The latter temporal aspect was addressed in a subsequent 
work [15] where the authors introduce a dynamic reliability 
measure that is measured by assessing the degree of consensus 
among the sensors. More precisely, the authors in [15] divide 
the reliability into a static part which is deduced dming a 
supervised training phase where the ground truth is available, 
and a dynamic part which is evaluated in an unsupervised 
manner, i.e., without the knowledge of the ground trnth. 
However, the latter work suffers from an inherent drawback 
present in [ 16] since the complexity of computing the dynamic 
reliability part using SMM is quadratic. 

The theoretical results reported in [14] are largely based on 
the work of Boland [19] who studied a generalized version 
of the Condorcet Jury Theorem. In fact, while the Condorcet 
Jury theorem treats the case of homogeneous voters, Boland 
presents the results for heterogeneous voters belonging to two 
groups where the two groups have opposite interests expressed 
in a probabilistic manner. By virtue of analogy with the sensor 
fusion problem, the approach in [14] foresees two groups of 
sensors, one group of reliable sensors with the interest in 
reporting the ground truth and another group of unreliable 
sensors which has interest in misreporting the truth. In a 
subsequent work, Yazidi and Herrera-Viedma [20] propose 
an alternative solution that does not involve the majority 
voting concept as a way for deducing the reliability of the 
sensors. Instead of applying a majority-based update such as 
in [21], Yazidi and Herrera-Viedma [20] propose rather to use 
a reinforcement learning with continuous feedback as opposed 
to the binary feedback methodology proposed in [14]. 

However, the premises of aforementioned two main works 
[14], [20] for identifying unreliable sensor is a condition 
according to which the truth prevails over lies expressed using 
the condition (NR-l)PR+Nupu > (NR+Nu )/2 where NR, 
Nu , PR and Pu are the number of reliable sensors, number 
of unreliable sensors, the probability that a reliable sensor 
reports the truth, and the probability that an unreliable sensor 
reports the truth respectively. Please note that in the particular 
case where (PR,PU) = (1, 0) meaning that a reliable sensors 
always reports the truth while an unreliable sensor always 
misreports the truth, the condition reduces to a simple majority 
condition where the number of reliable sensors constitutes the 
majority of the sensors. It is worth mentioning that the main 
advantage of the work in [20] compared to the original work 
[14] is that the former is more general and does not require
that the total number of sensors NR + Nu is an even number,
and therefore we could say that the advantage is relying on
more mild condition.

In this paper, we present a more general solution to the 
problem of identifying unreliable sensors that does not invoke 
the condition (NR -l)pR+Nupu > (NR+Nu )/2 commonly 
used in the original solutions [20], [14]. To solve the problem 
under those general settings, we resort to the field of game 
theo1y in order to gradually learn the identity of the sensors 
in a decentralized manner. We apply LA as a learning strategy 
in order to evolve the game toward a strategic equilibrium state 
which con-esponds to unveiling the identity of the sensors. 

Among recent applications of LA in game theory figure 
relay selection in cooperative transmission in vehicular ad-
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hoc networks [22], opportunistic spectrum access in cognitive 
networks [23], distributed multiuser computation offloading 
for cloudlet-based mobile cloud computing [24] and user asso­
ciation for heterogeneous networks [25]. The research on the 
applications of game the01y to the field of inf01mation fusion 
is ve1y scarce with few exceptions [17], [26]. A notable work is 
due to Deng et al. [17] who propose to use evolutiona1y game 
theory, and more particularly replicator dynamics, in order to 
find the most supported evidence in a multievidence system. 

In this paper, we will show that a perfect partitioning of 
the sensors into reliable and unreliable groups corresponds 
to a Nash equilibrium of an appropriately designed game. We 
design an LA that is able to converge to this Nash equilibrium 
through repeated learning. 

The contribution of this aiticle can be summarized as 
follows: 

• We present a general solution to the problem of iden­
tifying unreliable sensors without the knowledge of the
ground truth that requires milder conditions compared to
the legacy solutions [20], [14]. In fact, our solution does
not impose any condition on the group average reliability.

• The solution is able to converge a petfect pai·titioning of
the sensors even under stochastic deceptive environments
[27].

• In order to cope with the stochastic nature of the sensor
readings, we use reinforcement leai·ning and model the
sensor reliability identification problem as a repeated
game. Our work can pave the way towai·ds more research
interest in the intersection between game theory and
information fusion which is still a fertile area of reseai·ch.

• We formally prove that, by a careful design of the utility
function, the set of Nash equilibria of the game yield an
optimal solution to our sensor fusion problem.

• We show that the experimental results ai·e in concordance
with the theoretical findings.

The rest of the paper is organized as follows. Section II 
briefly reviews the the01y of LA which is the main tool 
used in this paper. Section III gives a fo1mal statement of 
the problem. In Section IV , we present a game-theoretic­
based scheme for identifying unreliable sensors in a stochastic 
environment in the absence of knowledge of the ground truth. 
Some experimental results that validate our theoretical findings 
are presented in Section V. Section VI concludes the paper. 

II. STOCHASTIC LEARNING AUTOMATA 

Learning Automata (LA) is a decision making mechanism 
for learning under uncertainty and limited information from 
the environment [21], [28], [29], [30]. The eai·licst work on LA 
is due to the Soviet cyberneticist Tsetlin [31] who devised the 
earliest first learning machines called Tsetlin Automata. The 
Tsetlin LA was shown to be able to exhibit a self-organizing 
collective behavior using simple learning rules. Such collec­
tive behavior was demonstrated for the case of the Goore 
game [32] which is a distributed control involving unreliable 
feedback from the environment. The adoption of the term 
"Learning Automata" is due to Narendra and Thathachar [28] 
who built a general family of LA algorithms and established 



the theoretical fundaments of the so-called variable structure 
LA schemes. 

In simple terms, the LA is a theory according to which a 
learning agent can gradually learn to interact with a random 
environment by sequentially choosing actions and receiving 
feedback about the choices. The LA update loops can be 
characterized by the learning loop depicted in Figure l .  

In formal tenns, a L A  is defined by the following quintuple 
(A, B, Q, F(., .), G(.)), with: 

I) A = { a1, a2, ... , a,.} is the set of actions that the LA
can select from, and a(t) denotes the actions chosen at
time instant t.

2) B = {,81, .82, ... , .Bm} is the set of all possible input to
the LA subsequent to an action choice. ,B(t) denotes the
input at time instant t.

3) Q = {q1, q2 , ... , qs} represents the states of the LA
where Q(t) is the state at time instant t.

4) F(., . ) : Q x B H Q is a the transition function at time t,
such that, q(t+ 1) = F[q(t), ,B(t)]. In other words, F( ., .)
gives lhe next state of the LA at time instant t + 1 given
the cmTent state and the input from the environment both
at time t. The next state can be obtained either using a
deterministic or stochastic mapping.

5) G(. ) defines output function and it is a mapping G :
Q H A which dete1Tnines the action of the LA as a
function of the state.

The Environment, E is characterized by : 

• C = { c1, c2, ... , c,.} is a set of penalty probabilities,
where Ci E C corresponds to the penalty of action ai.

State Q 
Transition Function F

Input �- Output Function G Output a 

�l , ' 
Automaton 

Penalty probabilities C 

Fig. 1. Feedback Loop of LA. 

LA consists of two main streams of approaches: Fixed 
Structure Stochastic Automata (FSSA) and Variable Structure 
Stochastic Automata (VSSA). It is worth mentioning that the 
Tsetlin Automata falls under the class of FSSA. In the VSSA 
family, the LA maintains a probability vector in the case of 
finite state action environments, or a probability distribution 
over the actions space in the case of infinite state action 
environment that are updated recursively according to the 
responses from the environment. In the case of FFSA, the 
decisions of the LA are taken according to a time invariant 
mapping between the cross product of its internal finite states 
and the feedback from the environment. 

Continuous LA schemes, which by definition operate on a 
continuous probability space, are known to be slow specially 
because the larger the probability of one action, the smaller the 
magnitude of increase of its probability. A breakthrough in the 
field of LA is the advent of discretized LA [33), [34) which are 
shown to be significantly faster than their preceding versions of 
continuous LA. Discretized LA algotithms work with a finite 
probability space in which the probability of one action takes 
values from a limited set of values. The discretization of the 
probability space can be either linear or non-linear depending 
on whether the finite values of the probability are equi-distant 
or not. 

There are many ways to classify LA algorithms. LA can 
be classified according to the nature of feedback from the 
environment into P-Model, Q-Model and S-Model [35). In the 
case of P-Model, the feedback of the environment is binary, 
either reward or penalty. By the way of notation convention 
0 corresponds to reward and 1 corresponds to penalty. In the 
Q-Model, the feedback of the environment can be mapped to a
discrete set of values in the interval [0, l]. In the S-Model, the
feedback from the environment can be any continuous number
in the interval [0 , l]. Usually the feedback is normalized in
order to be bounded within the interval [0 , 1].

LA has found a large set of applications. Those applications 
include routing problems [36), [37), [38), [39), [40), image 
processing [41), [42), recommendation systems [43), [44), 
[45), priority assignment in queueing systems [46), adaptive 
polling protocols [47), [48), [49), resource allocation under 
uncertainty [50), to mention a few. 

III. MODELING THE PROBLEM

We consider a population of N sensors, S

{s1,s2, ... ,sN}- Let T(t) be the unknown ground truth at 
the time instant t modeled by a binary variable which can 
take one of the two possible values, 0 and 1. The value of T 
is unknown and can only be inferred through measurements 
from sensors. The output from the sensor Si is referred to as 
Xi. Let 1r be the probability of the state of the ground truth, 
i.e., T = 0 with probability 1r. 

We suppose that the probability of the sensor reporting a 
value erroneously is symmetric. Formally, this reduces to: 

Prob(xi = 0IT = 1) = Prob(xi = llT = 0). (1) 

Further, let Pi denote the Correctness Probability (CP) of 
sensor si, where: Pi = Prob(xi = 0IT = 0) = Prob(xi = 
llT = 1 ). Let qi = l - Pi denote the Error Probability (EP) 
of of sensor Si. 

Using the law of total probability it is easy to prove that 
Prob(xi = T) is, indeed, Pi· 

We can define a reliable sensor to be one that has a CP Pi >
0.5 and an unreliable sensor as one that has a CP Pi < 0.5. 

In addition, we assume that evety Pi can have one of two 
possible values from the set {PR ,PU }, where PR > 0.5 and 
Pu < 0.5. Then, a sensor Si is said to be reliable if Pi= PR, 
and is said be unreliable if Pi= PU· We assume that PR and 
Pu are unknown to the algorithm. 



Based on the above, the set of reliable sensors is SR =
{ s;Jp; = PR}, and the set of umeliable sensors is Su =

{ s; Jp; =Pu}. Furthe1more, let N R = JS RI and Nu = JSu J. 
Let qR = 1 - PR and qu = 1 - Pu denote the EP of SR 
and Su respectively. In order to have a meaningful problem, 
we suppose that Nu 2 1, NR 2 1 meaning that there is at 
least one reliable sensor and one unreliable sensor in the set of 
sensors. We will use the term identity of a sensor to refer to its 
type which can be reliable or unreliable. Furthem10re, we will 
use the terms fair sensor and reliable sensor interchangeably. 

IV. SOLUTION: GAME-THEORETIC LEARNING
We will formulate the problem of sensor reliability eval­

uation as a repeated strategic game where the aim is to 
ensure convergence of the unreliable sensors to one action 
of the game and convergence of the unreliable sensors to 
the opposite action. We suppose that each sensor can be 
assimilated to a player in our strategic game. Let a; denote 
the action of sensor s;, referring to the group choice of 
sensor s;. We suppose that ai(t) E {O, 1} where {O, 1} 
corresponds to the set of two groups we are considering, and 
let a(t) = {a1(t), a2(t), ... , aN(t)} denote the action profile 
of the game at time instant t.

We shall now define the reward of player i, r;(t). For this 
purpose, let Ga, (t) denote the set of sensors choosing the same 
action as sensor s; at time instant t. This is defined formally 
as Ga,(t) = {k E (1,N] such that a;(t) = ak(t)}. 

Formally r;(t) is given by 

{
1, 

r;(t) = I: . l{xk(t)=x,(t)}
kEGa, ,k#·• 
-----'--

l
�G�a-, �, {�i�}I __ _ 

if JGa,J = 1 
(2) 

otherwise. 

Please note, that according to the above definition, whenever 
s; is the only sensor in Ga,, meaning that Ga, (t) = { i}, we
assign 1 to r;. In the alternative case where JG a, (t)J > 1, 
ri(t) reduces to the normalized ratio of the number of players 
agreeing with sensor i among those sensors that have chosen 
the same group as s; at time t. As we will see later in the proof 
of the theoretical results distinguishing between the latter two 
cases depending on the cardinally of Ga, (t) is cmcial for the 
convergence of our scheme to a desired equilibrium. 

The utility is defined by 

u;(a;, a_; ) = E[r;J(a;, a_;)] (3) 

ui is the utility function of player i which is his expected 
payoff when he selects his pure strategy a; while the other 
players select the profile a_;, Each player in the game aims 
to maximize his expected payoff. Due to the fact that the 
sensors provide noisy readings according to an underlying 
unknown stochastic process, the payoff r; is a random variable, 
and therefore the expected payoff is considered. It is worth 
mentioning that this game is a stochastic game [51] since for 
a fixed action profile (ai, a_; ) the payoff is not deterministic 
but rather stochastic. For an example of a stochastic game 
involving LA we refer the reader lo [23] that also considers 
the expected payoff as in our work. 
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Fork E {0, 1}, let Nu,k(t) the number of unfair sensors 
choosing action k at time t. By abuse of notation we denote 
action k as Gk , Let NR,k(t) be the number of reliable sensors 
choosing action Gk . Whenever there is no confusion, we will 
omit the time index t.

A. Co11struction of the learning automata

Let Pi,k ( t) denote the probability that the ith sensor takes
action k at time t. Note that k E {O, 1}. 

We give the following update mechanism: 

Pi,k(t + 1) +-- P;,k(t) + >.r.;(t) (1 - P;,1.;(t)), a;(t) = k
p;,1.;(t + 1) +-- P;,k(t) - >.ri(t)p;,k(t), a;(t) i- k

where >. denotes the learning rate that satisfies the condition: 
0 < >. < 1. The informed reader observes that each agent 
or sensor ·i will choose a group at time instant t. The 
reinforcement signal is dependent on the readings of the other 
sensors that have chosen the same group. The reinforcement 
signal is propo1tional to the number of sensors agreeing with 
the sensor s; and that have chosen the same group as si 
whenever JGa,(t)J > 1. Furthermore, the reinforcement signal 
is normalized by the size of the group, 

The algorithm is given in the form of pseudo-code in 
Algorithm l. 

Algorithm 1 Distributed Sensor Identification 
Require: Initially, for all i, Pi,o(0 ) = Pi,I (0 )  = 1/2, t = 0. 
Require: c convergence parameter, >. learning rate. 

while Not all LA converged do 
Each sensors; senses ground truth and reports xi(t) 
Each sensor s; chooses an action ai(t) according to 

probability vector [p;,0(t),P;,1(t)]
Each sensors; receives feedback ri(t) 
for all s.; in the set of sensors do 

Pi,k(t + 1) +-- Pi,k(t) + >.r.;(t) (1 - P;,k(t)), ai(t) = k
Pi,k(t + 1 ) +-- Pi,k(t) - Ari(t)Pi,k(t), a;(t) i- k

if Pi,k(t + 1) > 1 - c OR P;,k(t + 1) < c then
LA; has converged 

end if 
end for 
increment time t, t = t + 1. 

end while 

B. Theoretical results

Before we proceed with the main findings of this article,
we shall present two theorems that are essentials in order to 
prove our main theoretical results. 

Theorem I. Let s; E SR and suppose that a; = k.
Furthermore, we ass11111e that JG a, J > 1 which is eq11ivale11t 
in this case to NR,k + Nu,k > 1. The11, 



Theorem 2. Let Si E Su and suppose that a; = k.

Furthermore, we assume that I Ga; I > 1 which is equivalent 
in this case to NR,k + Nu,k > 1. Then, 

u;(a;, a_;) =
(Nu,k - l)(pi +qi)+ NR,k(PuPR + qu qR)

NRk+Nu 1.,-l , , 
(5) 

Proof The proofs of Theorem 1 and Theorem 2 follow the 
same lines as those of Theorem 1 and Theorem 2 found in 
[20]. The proofs can be obtained by recun-ence and they are 
omitted for the sake of brevity. □

Theorem 3. The game admits two pure Nash equilibria where 
all unreliable sensors converge to the same action, while all 
reliable sensors converge to the altemative action Those two 
pure Nash equilibria satisfy: 

• a.; = aj if Si and Sj in SR ors.; and Sj in Su .
• a; = 1 - aj if Sj in SR and s.; in Su or Sj in Su and

Si in SR,

Proof We will show that the game admits two pure Nash 
equilibria. According to the above theorem, a Nash equilibrium 
corresponds to the case where all sensors of the same identity 
choose the same group while all sensors of the opposite 
identity choose the opposite groups. 

Without loss of generality, we suppose all the reliable 
sensors in SR select Gk and all the unreliable sensors in Su 

select G1_,., where k E {O, 1}. We will show that no sensor 
in Gk or in Gi-k can change unilaterally its action without 
decrease in the utility. By definition, this case corresponds to 
a Nash equilibtium. 

a) Case 1: Let us consider a sensor Si in G1., , i.e., the
group containing exclusively fair sensors. 

The utility of s; is given by 

u;(ai = k, a_i) 

{
1, if NR,k = 1 

= (Nn,k-l)(p1+qy,) - p2 
+ q2 if NR,k > 1

(
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) 
(Nn ,k-l) - R R> 

Please note that the above result is obtained by applying 
Theorem l using Nu,k = 0 and under the condition that 
I Ga , I = N R,k > 1. In the counter-part case where N R,k = 1 
we have ui(ai = k, a_i) = 1 which is a consequence of Eq. 
(2). 

We suppose that the sensor changes its action to G1_,.,, 
After this change of action, the number of fair sensors in G i-k 
becomes N R,I-k = 1 while the number of unfair sensors in 
Gi-k remains unchanged, i.e., Nu,i-k = Nu . 

Applying Theorem l ,  the utility becomes 

ui(a; = 1 - k,, a-i) =
(1 - l)(Pk + qh_) + Nu (PuPR + quqR) 

1 +Nu - 1 
= PRPU + qRlJu (7) 

Let us now consider ui(ai = k, a_i)-u;(a; = 1-k,, a_i) 
which quantifies the amount of change of the utility of si as 
a consequence of unilaterally switching action to Gi-k• 

There are two sub-cases to be considered. The first sub-case 
arises when otiginally N R,k = 1 which implies that we only 
have one fair sensor among the whole pool of sensors. 

ui(a; = k, a_i) -ui(ai = 1 - k,, a_i) =
1 - (PRPU + qRqu) < 0 (8) 

The second sub-case arises when originally N R,k > 1 which 
implies the number of total fair sensors among the whole 
pool of sensors is strictly larger than 1. After some algebraic 
simplifications, we obtain 

·u;(a; = k, a_;) - ·u;(a; = 1 - k,, a_i) =
(Pk+ qh_) - (PRPu + qRqu) 

= Pn(PR - Pu)+ qn(qR - qu) 
= PR(PR - pu) + (1- PR)(-PR +Pu) 

= (PR - Pu )(2PR - 1) (9) 

We know that PR > Pu , and that since PR> 1/2 we also 
have 2pR - 1 > 0. Therefore 

u;(a; = k, a_i) - u;(a; = 1 - k,, a-i) =
(PR-Pu)(2pR- 1)>0 (10) 

Hence the utility decreases in both sub-cases as a conse­
quence of a unilateral change of action. 

b) Case 2: Let us consider a sensors; in Gi-k, i.e., the
group containing exclusively unreliable sensors. It is easy to 
note that si is an unreliable sensor. The utility of Si is given 
by 

if Nu,1-k = 1 
if Nu,1-k > 1 

(11) 

We suppose that the sensor s.; switches actions by choosing 
Gk , After this change of action, the number of unfair sensors 
in Gk becomes Nu,k = 1 while the number of fair sensors in 
Gk remains unchanged, i .e., NR,k = NR, 

Applying Theorem 2, the new utility of s; subsequent to 
action switch becomes 

At this juncture, we consider u;(a; = 1- k, a_;) -u;(a; =
k, a_;) which quantifies the amount of change of the utility 
value of si as a consequence of unilaterally switching action. 

There are two sub-cases to be considered. The first sub­
case is when 01iginally Nu,I-k = 1 which implies that there 
is only one unfair sensor among the whole pool of sensors. In 
this sub-case, we obtain 

u;(ai = 1 - k, a_;) - ui(a; = k, a_i) 
= 1 - (PRPU + qRqu) < 0 (13)



The second sub-case is when originally Nu,i-k > 1 which 
implies the number of total unfair sensors among the whole 
pool of sensors is sttictly larger than 1. 

After some algebraic simplifications, we obtain 
ui(ai = 1- k,a-i) -ui(ai = k,a-i) (14) 

= (pi +q& ) -(PRPU +qRqu ) 

= (Pu -PR)(2pu - 1) 
The above quantity is strictly positive since it is the product 

of two strictly negative quantities. Therefore the utility of Si 
decreases as a consequence of unilaterally changing its action. 

Based on the above results, under a Nash equilibrium, 
all unreliable sensors converge to the same action, while all 
unreliable sensors converge to the alternative action. A Nash 
equilibrium satisfies: 

• ai = aj if both Si and Sj belong to SR, or in the case
where both Si and Sj belong to Su.

• a; = 1 - aj if Sj in SR while Si in Su , or in the case
where Sj in Su while s; in SR,

It is straightforward to note that there are two Nash equi­
libria resulting from the latter definition which correspond to 
1) when all fair sensors converge to Go and all unfair sensors
converge to G 1 or 2) vice-versa, i.e., all fair sensors converge
to G1 and all unfair sensors converge to Go .

□ 

Theorem 4. The Nash equilibria given in Theorem 3 are !he 
unique pure Nash equilibria of !he game. 
Proof. We will show that those two Nash equilibria are in 
fact the unique pure Nash of the game by reasoning by 
contradiction. The informed reader observes that this is a 
stronger result than the result of Theorem 3 that states that 
the desirable solutions resulting into pe1fect partitioning of 
the sensors are indeed Nash equilibria. 

We shall consider all possible configurations excluding the 
Nash cases in Theorem 3 and show by conu·adiction that they 
violate the definition of Nash equilibrium. In formal tenns if 
A represents all possible actions action profiles, which has 
2N possible states as each sensor has two actions, then we 
need to show that any action profile in the set A\ A* is not a 
Nash equilibrium where A* denotes the set of Nash equilibria 
defined by Theorem 3. 

It is easy to note that when N = 2, i.e., NR = Nu = 1, then 
A \ A* corresponds to the states where both sensors choose 
the same action. Clearly, this is not a Nash equilibrium as 
any sensor which unilaterally deviates by changing action will 
experience an increase of its utility to 1. 

Now let us consider tl1e case where N > 2. We can 
generalize the result from the previous case where N = 2 and 
note when all the sensors converge to one action exclusively 
leaving one of the groups empty, any sensor deviation, whetlier 
this sensor is fair or unfair, by choosing the opposite group 
increases its utility to 1. Therefore this case is not a Nash 
equilibrium. 

As a consequence, and reasoning by elimination, we are 
left with the alternative cases where none of the two groups 
is empty. Furthermore, we must have at least one group 

containing at least one fair sensor and at least one unfair 
sensor. In fact, fuis is true, as we are excluding the actions 
profiles where the groups are homogeneous which is a Nash 
equilibiium. 

Without loss of generalities, we suppose that the group 
containing at least one fair and at least one unfair sensor is Gk , 
As a consequence NR,k +Nu,k 2 2. We also have G1 -k =J- 0, 
and therefore NR,1-k + Nu,1-k > 0. 

We shall now consider two sub-cases according to 
whether (JVu,k-l)pu+NR,kPR is larger or strictly smaller thanNn k+Nu k-1 Nu,1-,-Pu+NR.,:_kPR 

Nn;-1<.+Nu 1-k c sub-case 1: In this first sub-case, we operate with the
condition that 

(Nu,k - l)pu + NR,kPR < Nu,1-kPU + N R,1 -kPR (15)
NR,k + Nu,k - 1 - NR,1-k + Nu,1 -k

We consider a fair sensor si fuat changes action from group 
Gk to Gi -k• Since PR > Pu , we can write 

(Nu,k -l)pu + NR,kPR > Nu,kPU + (NR,k -l )PR (16) 
In fact, this is true as we have 

(Nu,k - l)pu +NR,kPR - (Nu,kPU + (NR,k - l)pR) = 
-pu +PR > 0

(17) 
Therefore, using the above result together with the assump­

tion (Eq. (15)) gives 

Nu,kPU + (NR,k - l)PR < Nu,1-kPU + NR,1-kPR 

NR,k + Nu,k -1 NR,1-k + Nu,1-k 
(18) 

We consider a fair sensor s; that unilaterally changes its 
action from group Gk to Gi-k- The original utility of fue 
sensor s.i before switching to the alternative group is given by 

u;(ai = k, a_;) 
= Nu,k(PuPR + qMR ) + (NR,k - l)(p� + qh) (19)

NR,k + Nu,k -1 
This is can be written as 

ui(ai = k, a_;) 
Nu,kPU + (NR,k - l)PR

+ =PR NR,k + Nu,k - 1 

( Nu kPU + (NR k -l)PR
) qR 1- ' NR,k + Nu,k -1 

(20) 

After switching action to Gi-k, the new value of the utility 
becomes 

ui(ai = 1 - k, a_;) 
Nu,1-dPRPu + qRqu) + NR,1-k(P'h + q71.) 

NR,1-k + Nu,1-k 
( Nu 1-kPU + NR 1-kPR

) =PR 
' , 
NR,1-k + Nu,1 -k 

+qR(l _ Nu,1-kPU + NR , 1-kPR
) (2 l )  

NR,1-k + Nu,1-k 



In order to compare the utility before and after swapping 
action, let us consider the function g(.) defined as the convex 
combination 

g(p) = PR· P + QR" (1 - p) (22) 

Let us investigate the dynamics of g(p) by studying its 
derivative function, g' (p ), which specifically, has the form 
g'(p) = 2pR - 1. Since, by definition, PR > 1/2, we can 
confirm that 2pR -1 > 0 which is equivalent to stating that 
g'(p) > 0. g(.) is thus a strictly increasing function. As per 
inequality (18) we have 

Nu, kPU + (Nn,k -l)PR < Nu,1-kPU + NR,1- kPR (23)
NR,k + Nu,k - l Nn,1- k + Nu,1-k 

Resorting to the strictly increasing property of the function 
g(.), we obtain 

(
Nu kPU + (NR k - l)PR ) ( Nu 1- kPU + NR 1-kPR

) g , , <g , , Nnk+Nuk-l NR1-k+Nu1-k ' ' ' ' (24)
Then we can deduce 

This shows that the utility increases by swapping action and 
therefore this is not a Nash equilibrium. 

d) Sub-case 2: In this second sub-case we operate with
the condition that 

(Nu,k -l)pu + Nn,kPR > Nu,1-kPU + NR,1-kPR (26)
NR,k + Nu,k -l Nn, 1-k + Nu, 1-k 

Let us consider an unreliable sensor in Gk. We will show 
that its utility increases by unilaterally changing action to 
G1- k-

u;(ai = k, a_i) 

= (Nu,k - l)(Pb + q't;) + NR,dPuPR + QRQR) (27)
NR,k + Nu,k - l 

This gives 

ui(a; = k, a_i) 
(Nu k - l)pu + NR kPR

= pu ' 
NR,k + Nu,k -l 

+qR(l - (Nu, k -l)pu + NR, kPR
) (28) 

NR, k + Nu, k -l 

Now we consider utility ui(a.; = 1 -k, a_i) when the 
unreliable sensor switches to Gi-k-

·ui(ai = 1 -k, a-i) 
Nu, 1-k(Pb + q't;) + NR, 1-k(PuPR + qR qR) 

Nn,1-k + Nu,1- k 

Nu 1-kPu + NR 1-kPR 
= pu 

, , 
Nn,1-k + Nu,1-k 

+qu (l 
_ Nu, 1- kPu + N R, 1-kPR

) Nn,1-k + Nu,1-k 

(29) 

(30) 

Let us consider the function h(.) defined by 

h(p) = Pu · p + qu · (l - p) (31) 

and investigate the dynamics of h(p) by studying its derivative, 
h'(p) . Since h'(p) = 2pu - 1, and Pu < 1/2, we see that 
2pu -1 < 0 which is equivalent to the conclusion that h' (p) < 
0. Therefore h(.) is a strictly decreasing function. 

Because of inequality (26) and because of the strictly 
decreasing nature of h(.), we have 

h( (Nu,k - l)pu + NR,kPR
) > h(

Nu,I-kPU + NR,l-kPR
) NRk+Nuk-1 Nn1-k+Nu1-k ' ' ' ' (32) 

This gives 

ui(ai = 1 - k, a_;) > u.;(ai = k, a_;) 

□ 

Theorem 5. With a sufficiently small step size A, the proposed 
LA algorithm converges to one of the Nash equilibria of the 
game. 

The result is a consequence of the work of [51] on multi­

person discrete game where the payoff after each play is 
stochastic. The LA game is known to converge in this case 
to one pure Nash equilibrium. As we have proven in Theorem 
4 the game admits only two Nash equilibria which correspond 
to the reliable sensors converge to one group and the unreliable 
sensor converge to the opposite group. We have also shown 
that those Nash equilibria are the optimal and desirable solu­
tions in our sensor identification problem. 

V. EXPERIMENTS 

In this section, we report some experimental results that 
demonstrate the efficiency of our approach. Furthermore, the 
aim of this section is to verify the theoretical findings that we 
have derived in the previous Section. 

a) Convergence speed and accuracy under vmying num­
ber of sensors: In this experiment, we investigate the con­
vergence speed of the algorithm and accuracy by varying the 
total number of sensors from 6 til 1200, i.e. by a factor of 
200. The LA is deemed to have converged if one of its action
probabilities attained the value 1 - c, where the value of E
was set to 0.01. In Table I, we report the average convergence
time for an ensemble of I 000 experiments together with the
95% confidence interval. Please note that the convergence
time for an experiment is recorded as the time required to
reach convergence for the whole pool of sensors, which is 
the time required by the last un-converged LA in the pool to 
converge. We fix (PR, Pu) = (0, 8, 0.1) and vary the number
of sensors by a multiplicative factor (2, 20 and 200). The
learning rate is fixed to 0.01 in all experiments unless specified
differently. Two observations are worth mentioning from Table
I. First, as we increase the number of sensors, the average
convergence time does not increase at the same pace. When 
we increase (NR, Nu) from (5, 1) to (1000, 200), .i.e., by 
an order of magnitude of 200 times, the time required for 
achieving convergence only increased by less than 4 times 



(Nn,Nu) 
(5,1) 
(10,2) 
(100,20) 
(1000,200) 

Convergence time 

2806 (2757, 2856) 
3633 (3573, 3694) 
4982 (4917, 5048) 
13744 (13569, 13920) 
!ABLE I

CONVERUENCE TIME FOR (PR,PU) = (0.8, 0.1) UNDER VARYINU 
NUMBER or SENSORS. THE VALUES IN PARENTHESES REFER TO 95% 

CONFIDENCE INTERVALS. 

from 2806 to 13744. This is a desirable property that shows 
that the convergence time scales with the number of sensors. 

The second remark concerns the accuracy of the scheme. 
In Table 11, we report the accuracy of our scheme under 
the same number of sensors as in Table I. Interestingly, the 
error is negligible which demonstrates the high performance of 
our scheme in differentiating between reliable and unreliable 
sensors. From Table II, we observe that the en-or increases 
as we increase the number of sensors. This is understandable 
as for a larger pool of sensors there is a higher likelihood of 
wrong convergence compared to a smaller one. 

(Nn,Nu) error rate 
(1,5) 0 
(2,10) 2.5 10-4
(20,100) 8.41 10-'1
(200,1000) 0.0122 

'IABLE II 

CONVERGENCE ERROR FOR (PR,PU) = (0, 8, 0.1) UNDER VARYING 
NUMBER OF SENSORS 

In Figure 2, we report the evolution of the actions probabil­
ities of a team of LA. We suppose that the number of sensors 
is 7 where s1, s2 ... , ss are fair while s6, S7 are unfair. We 
fix (PR, Pu) = (0, 8, 0.2) and we also fix the learning rate 
,\ = 0.01. We expect that sensors s6, s7 will converge to the 
same action, either action O or l. In this experiment, we see 
that they converge to action l .  On the other hand, the rest of 
the sensors s1, s2 . . .  , s5 converge to the opposite action. 

b) !11creasi11g the difficulty of the e11viro11me11t: In this
experiment, we increase the difficulty of the environment 
compared to the previous expedment by making it more 
difficult to differentiate between a reliable sensor and an 
unreliable one via decreasing p R from 0.8 to 0. 7 and increasing 
Pu from 0. I to 02. Please note that by making p R decrease 
to a slightly larger value than 0.5 and by increasing Pu to 
a lower value than 0.5, the environment turns to be more 
difficult as it becomes harder to differentiate between reliable 
and unreliable sensors. This is a consequence of the fact that 
the probability that a reliable and an unreliable sensor disagree 
decreases in the latter case. By comparing Table I to Table 
III, we see that the convergence time increased. For example, 
when (N n, Nu) = (5, 1 ), the convergence increased from 
2806 iterations in average to 5311. We observe too that the 
convergence error increased too by comparing Table II to Table 
IV. 

c) Comparing against legacy works: In this experiment,
we report comparisons results of the convergence time of our 
scheme for ,\ = 0.01 against the other two schemes in the 
literature LRI presented in [14] and S-LA [20]. We use a 
large number of sensors namely 400, where the number of 

(Nn,Nu) 
(5,1) 
(10,2) 
(100,20) 
(1000,200) 

Convergence time 

5311 (5030, 5593) 
6607 (6495, 6720) 
10230 (10076, 10384) 
13896 (12903, 14888) 

!ABLE Ill

CONVERGENCE TIME FOR (Pn,Pu) = (0, 7, 0.2) UNDER VARYINU 
NUMBER OF SENSORS. THE VALUES IN PARENTHESES REFER TO 95% 

CONFIDENCE INTERVALS. 

(Nn, Nu) error rate 
(5,1) 0.00116 
(10,2) 5.833 10-4
(100,20) 0.00497 
(1000,200) 0.01187 

!ABLE IV

CONVERGENCE TIME AND ERROR FOR (PR, PU) = (0, 7, 0.2) UNDER 
VARYING NUMBER OF SENSORS 
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fair sensors is equal to the number of unfair sensors. We vary 
the environment (PR,PU ), we observe that our scheme has 
more convergence time than the LRI and S-LA. However, 
our scheme is still comparable to the S-LA in terms of 
convergence speed. For example, according to Table V, for 
(PR,PU) = (0.75, 0.35), our approach converges in 14385 
iterations in average while the S-LA takes 6481 iterations. 

Furthermore, as the distance between p n and Pu decreases, 
we observe a decrease in the convergence speed. When p R 
gets closer and closer to its minimal value 0.5 while Pu in­
creases gradually towards its maximal value 0.5, distinguishing 
between the readings of a reliable sensor and an unreliable 
one becomes harder. For example, consider the case where 
PR = 0.7: as Pu increases from 0.3 to 0.45 coveting the set 
{0.3, 0.35, 0.4, 0.45} we observe that with each increase of Pu 
the convergence time increases too. The same applies when we 
consider fixed PR = 0.8, as pu increases from 0.3 to 0.45 the 
required convergence time increases too. Furthermore, similar 
conclusions emerge if we compare the convergence time for 
PR= 0.8 in one hand and PR= 0.7 in the other hand under 
the same Pu. For example, when Pu = 0.35, the convergence 
time increases from 11504 to 14385 as PR decreases from 
PR = 0.8 to PR = 0.7. 

However, as we have emphasized previously, our scheme 
is more general than the compared approaches. In fact, our 
scheme not only operates under milder conditions compared 
to the state of the a.rt, but also is able to solve the sensor type 
identification problem even under deceptive environment. As 
a future work, it will be interesting to investigate boosting the 
convergence speed of our scheme by adopting for example 
discretized LA design [33], [34]. 

d) Varying the learning rate: We vary the learning rate
in this expedment from ,\ = 0.01 to ,\ = 0.001 and report the 
convergence time along the error rate in Table VI. We observe 
for ,\ = 0.001, it takes almost 10 times more iterations to 
achieve convergence compared to ,\ = 0.01. As seen in Table 
VI, the convergence time increases from 10230 lo 103333. We 
observe that when the learning rate is as low as ,\ = 0.001 
the errnr is O compared to 0.00497 when ,\ = 0.01. This is 
interesting remark as we know according to the theory of LA 
that there is a trade-off between the convergence speed and 
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Evolution of the action probabilities of the team of LA 

50 100 150 200 250 300 350 400 450 

Fig. 2. Evolution of the actions probabilities of a team of LA with 5 fair sensors and 2 unfair sensors with learning rate >- = 0.01. 

(PR,PU) 
(0.75, 0.45) 
(0.75 , 0.4) 
(0.75 , 0.35) 
(0.75 , 0.3) 
(0.8, 0.45) 
(0.8 , 0.4) 
(0.8 , 0.35) 
(0.8, 0.3) 

Game LA 
52224 
23851 
14385 
10069 
42603 
17749 
11504 
8680 
!ABLE v

S-LA
7806 
6437 
6481 
8443 
6976 
5177 
4650 
5198 

2148 
966 
638 
622 
2146 
975 
613 
460 

AVERAGE CONVERGENCE TIME FOR THE CASE WHEN 

(NR,Nu) = (200,200) 

the error rate. In fact, by choosing a low learning rate, the 
convergence speed increases usually in the detriment of the 
convergence accuracy and vice-versa. 

learning rate 
0.01 
0.001 

convergence time (95% conf. int.) 
10230 (10075, 10383) 
103333 (102294, 104372) 

en-or rate 
0.004975 
0 

CONVERGENCE TIME WITH 95% CONl'IDENCE INTERVAL AND ERROR f'OR 

THE CASE WHEN (N R, Nu) = (100, 20) AND (PR, PU) = (0, 7, 0.2) 
UNDER VARYING LEARNING RATE 

e) Working under the case of deceptive e11viro11me11t:

The premises of the legacy work for identifying unreliable 
sensor is that the truth prevails over lies expressed using the 
condition (NR - l)PR + Nupu > (NR + Nu)/2. In this 
experiment, we perform tests where this condition is violated 
and therefore the environment is deemed deceptive [27] as 
opposed to informative. 

In Table VII, we report the average convergence time, 
together with the confidence intervals for 20 expe1iments as 
well as the convergence effor under varying number of sensors 
under a fixed (PR, Pu) = (0, 7, 0.2). Inlereslingly, and as 
expected, Lhe scheme converges with high accuracy even if 
the environment is not informative. Please note that as we 
increase the number of sensors from (NR , Nu) = (1, 5) to 
(NR, Nu) = (200, 1000), i.e., by an order of magnitude of 

200 times, the average convergence time only doubles from 
7279 to 14698. It seems that independently of whether the 
environment is informative or deceptive the scheme exhibits 
similar behavior in terms of convergence speed and error rate. 
In fact, if we replace in Theorem 1, PR by 1 - Pu which 
is larger than 0.5 and Pu by 1 - PR which is less than 0.5, 
and exchange the number of reliable and unreliable sensors, 
the utility function turns out to be identical. In other terms, 
the settings of the informative environment and those of its 
constructed counter-part deceptive environment produce the 
same utility function. Following a similar reasoning, it is 
easy to note that Theorem 1 and Theorem 2 are symmetric. 
We should emphasize that theoretical results obtained for all 
other legacy works [14], [20] operate under the assumption of 
infonnative environment. Therefore, our alg01ithm presented 
in this paper can be considered as the most general solution 
to the sensor identification problem found in the literature. 

(1,5) 
(2,10) 
( 200, 100) 
(200, 1000) 

Convergence time (95% conf. int.) 
7279 (5725, 8833) 
8711 (7626, 9795) 
11011 (10253, 11768) 
14698 (14111, 15285) 

error rate 
0 
0 
0.00125 
0.002374 

CONVERGENCE TIME WITH 95% CONFIDENCE INTERVAL AND ERROR FOR 

(PR,PU) = (0, 7, 0.2) UNDER VARYING NUMBER OF SENSORS FOR THE 

CASE OF DECEPTIVE ENVIRONMENT. 

VI. CONCLUSION

In this paper, we study the problem of sensor type infer­
ence without knowledge of the ground truth in a stochastic 
environment. We present a game-theoretic-based solution lo 
the problem based on the theory of Learning Automata. We 
show that by carefully designing the utility function of the 
game, the optimal solution to our sensor reliability evaluation 
problem corresponds lo the pure Nash equilib1ia of the game. 
The advantage of the current work compared to the literature is 



the fact it does not require the condition used in the literature 

that according to which truth prevails over lies. Thus, our 

solution converges even under deceptive environments. We 

provide sound theoretical results that prove the convergence 

of our scheme. Our experimental results are in concordance 

with our theoretical findings. Our work constitutes some of 

the limited attempts in literature to apply game theory to the 

field of information fusion. Therefore, we hope that this study 

can fuel more research interest in the applications of game 

theory to sensor fusion. As a future work, we would like to 

investigate extending our work by taking into account a static 

reliability as suggested in [ 15) that can be extracted during a 

training phase. 
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