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ABSTRACT
Virtual Machine (VM) migration is an important feature for ensur-

ing smooth operations during maintenance and disaster recovery

scenarios. The migration might be inter-site and in such a case the

inter-site bandwidth which is typically Wide Area Network (WAN)

might be a bottleneck. In such a case, the bandwidth is affected

by the amount of inter-VM traffic that becomes separated during

the migration process. The amount of separated traffic might not

only cause degradation of the of the Quality of Service (QoS) of

inter-communicating VMs but can also delay the migration process

due to the congestion of the migration link. The state-of-the-art

algorithm due to Yazidi et al. is an affinity aware algorithm that

does not consider the completion time of the migration. The first

stage of our algorithm is identical to Yazidi et al. where we re-

sort to graph partitioning theory in order to partition the VMs

into groups with high intra-group communication. In the second

stage, we devise a greedy algorithm for controlling the order of

the migration groups by considering their inter-group traffic that

greedily selects groups with the lowest impact in terms of volume

of separated traffic which we denominate Minimum-Impact First

(MIF). We also design a latency-aware algorithm that only schedules

the quickest migration first. The latter simple heuristic interest-

ingly outperforms legacy works in the case of migration over a

non-dedicated link. We find that our MIF algorithm consistently

outperforms the state-of-the-art algorithms by a clear margin using

real-traffic traces by a margin larger than 40%. We show that the

MIF algorithm ensures the lowest amount of separated traffic in

both dedicated-link and non-dedicated-link scenarios.

KEYWORDS
Live Migration, Graph Partitioning, Migration Scheduling, Sepa-

rated Traffic.

1 INTRODUCTION
Modern computing infrastructures run on virtual platforms. A

prominent form of virtualization enables a complete and fully usable

operating system (OS) to run in virtualized form. This principle is

commonly referred to as OS virtualization. Most of the state-of-the-

art data centers use virtualization technology to provide flexibility

and simplicity for their customers in terms of provisioning and

managing VMs. This concept is referred to as cloud computing, and

it is expected to be one of the most essential aspects of future com-

puting. Flexibility and scalability are important characteristics of

this form of computing.

Live migration is a unique feature of cloud computing that makes

it possible to move VMs between different physical locations, with-

out having to shut them down. This feature minimizes the Service

Disruption Time (SDT) compared to the case of offline migration,

where the VM is shut down instead, migrated and then powered on

again. SDT refers to the time period where a VM is unavailable due

to being suspended at source, and not yet up and running at the

target destination. The vast majority of virtualization platforms,

such as Xen, VMware (VMotion), and Hyper-V support live migra-

tion. Server consolidation, load balancing and system maintenance

are among the most popular use-case scenarios of live migration

[6, 13]. Load balancing refers to the principle of distributing the

computational load evenly between physical nodes. In a cloud envi-

ronment, roughly speaking, this takes place by live migrating VMs

from overloaded physical nodes to underloaded physical nodes

[15]. In the case of system maintenance, where Physical Machines

(PMs) regularly need hardware upgrades or replacement of failing

components, live migrations can be used to migrate running VMs

from a PM that needs to be powered off.

Live migration can be used for the purpose of server consolida-

tion, where the aim is to use as few PMs as possible by migrating

VMs from lightly loaded PMs in order to power those PMs off and

thus save energy [13, 14]. This would lead to more "tightly packed"

consolidated PMs. Live migration has also been used to enable

greener computing by migrating VMs to data centers powered by

renewable energy based on the intermittent availability of such

green energy. This paradigm is referred to as the follow the wind,
follow the sun paradigm [9].

In order to avoid noticeable service degradation, the process of

migrating VMs should take as little time as possible, preferably in

the order of a few seconds [3].

In this paper, we consider the problem of inter-site migrations

of "chatty" VMs over limited bandwidth. The goal of our research

is to reduce the volume of separated traffic that might arise when

chatty VMs become separated during the migration process. In or-

der to solve the problem, we first use graph-partitioning algorithms

to identify groups of intensively inter-communicating VMs that

should not be separated during the process of live migration. The

deployed graph-partitioning algorithm is based on the theory of



adaptive learning and, more particularly, on Learning Automata

(LA) [10]. VMs within the same group are migrated in parallel.

However, there might still be some amount of traffic between the

different groups of VMs. Thus, in the second phase, we devise a

greedy scheduling algorithm that decides the order of migration of

the different groups using the idea of minimizing the impact of the

separated traffic. Our algorithm denoted as Minimum-Impact First

(MIF) outperforms the state-of-the-art algorithms for the cases of

dedicated migration link and non-dedicated migration link. Fur-

thermore, we devise a latency-aware algorithm that is shown to

outperform legacy algorithms for migration over a non-dedicated

link.

2 RELATEDWORK
In [1], the authors designed a system called CQNCR (reads "se-

quencer"), with the goal of enabling a planned migration to take

place as quickly as possible, given a source and target destination of

the VMs. CQNCR deals with intra-site migrations. The authors state

that their approach is able to significantly increase the migration

speed, reducing the total migration time by up to 35%. They also

introduce the concept of Virtual Data Centers (VDCs) and resid-
ual bandwidth. In practical terms, a VDC is defined as a logically

separated group of VMs and their associated virtual network links.

Since each VM has a virtual link, that link also has to be moved to

the target PM. When this occurs, the bandwidth available to the

migration process changes. The CQNCR-system takes this continu-

ous change into account and provides an algorithm that results in

efficient bandwidth usage.

Another related system, COMMA [16], groups VMs together

and migrates one group at a time. A group consists of VMs that

have a significant amount of internal communication. After the

migration groups are decided, the system performs inter- and intra-

group scheduling. The former is about deciding the order of the

groups, while the latter optimizes the order of VMs within each

group. The main goal of COMMA is to migrate associated VMs at

the same time, in order to minimize the amount of traffic that has to

go through a slow network link. The system is therefore especially

suitable for inter-site migrations. It is structured so that each VM

has a process running, which reports to a centralized controller

that performs the calculations and scheduling.

The COMMA system defines the network impact as the amount

of inter-VM traffic that becomes separated because of migrations.

In a case where a set of VMs, {VM1, ...,VMn }, is to be migrated,

the traffic levels running between them are measured and stored

in matrix whose elements are VM[i, j] denoting traffic between

VMi and VMj . Let the migration completion time for VMi be ti .
Equation 1 gives the network impact that that should be minimized.

impact =
n∑
i=1

n∑
j>i

|ti − tj | ·VM[i, j] (1)

The VMbuddies system [5] also addresses the challenges of mi-

grating VMs that are part of multi-tier applications. The authors

formulate the problem as a correlated VM migration problem in

multi-tier applications. Correlated VMs are machines that work

closely together, and therefore exchange a lot of data. An exam-

ple would be a set of VMs hosting the same application, where

two or three VM subsets perform different roles in different tiers.

The authors propose an algorithm for efficient use of the network

bandwidth during migration, and a mechanism for reducing the

cost of a live migration. The experiments conducted show clear im-

provements compared to current migration techniques, including a

reduction of 36% in migration time, compared to Xen.

A system called Clique Migration [7], also migrates VMs based

on their level of interaction. It is specialized for inter-site migrations.

When Clique migrates a set of VMs, the first operation it performs

is to analyze the traffic patterns between them and try to profile

their mutual traffic affinities. This is similar to the COMMA system.

It then proceeds to create groups of VMs. All VMs within a group

will be scheduled for migration at the same time. The order of the

groups is also calculated to minimize the cost of the process. The

authors define the migration cost as the volume of inter-site traffic

caused by the migration. Because a VM will end up at a different

physical location (a remote site), the VM’s disk is also transferred

along with the RAM.

A Time-bound thread-based Live Migration (TLM) technique was

proposed in [3]. The focus was on handling large migrations of

VMs running RAM-heavy applications by allocating additional

processing power at the hypervisor level to the migration process.

TLM can also slow down the operation of such instances to reduce

their dirty rate, which will help to reduce the total migration time.

The completion of a migration in TLM always takes place within a

given time period that is proportional to the RAM size of the VMs.

The idea behind TLM differs from the other previously mentioned

techniques, in that it actually changes the behavior of running

instances if necessary. Slowing the operations of VMswill, of course,

subsequently decrease the performance of the applications hosted

by them.

All the aforementioned solutions migrate groups of VMs simul-

taneously, in one way or another, hence utilizing parallel migration

to reduce the total migration time. According to [6], it was ob-

served that, when running parallel migrations within data centers,

an optimal sequential approach is preferable. The authors have im-

plemented a migration system called vHaul for this purpose. vHaul

is optimized for migrations within data centers that have dedicated

migration links between physical hosts.

In [4], Deshpande et al. introduce a novel non-standardmigration

method called scatter-gather VM migration. The migration is done

via an intermediate node. The main idea is to push the state of the

memory of the source host to one intermediate node in the network.

At the same time, the destination hosts retrieve the memory state

from the intermediate host by using a modified version of the post-

copy VM migration.

3 OUR SOLUTION: IMPACT-AWARE LIVE
MIGRATIONS OF VIRTUAL MACHINES
USING OMA

In this section, we present our approach to solving the problem.

This section is organized as follows. First, we formally define the

time needed for the migration in Section 3.1. In Section 3.2, we

present our scheduling algorithm.
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3.1 Migration time
In a two separate studies, Bari et al. [1] and Mann et al. [8] use the

following mathematical formulas to calculate the time it takes to

complete the different parts of the migration. Let W be the disk

image size in megabytes (MB), L the bandwidth allocated to the

VM’s migration in MBps and T the predicted time in seconds. X
is the amount of RAM that is transferred in each of the pre-copy

iterations.

The time it takes to copy the image from the source PM to the

destination PM is:

Ti =W /L (2)

Once the VM’s image is copied over, the pre-copy phase is initi-

ated. Its time duration can be calculated as follows:

Tp+s =
M ·

1−(R/L)N
1−(R/L)

L
(3)

The stop-and-copy period is the last phase of a pre-copy live

migration, where a VM is suspended at the source PM and resumes

running at the destination PM. The completion time for this final

phase is given by:

Ts = M/L · (R/L)N (4)

The N in the Equations 3 and 4 is given by:

N = min(⌈logR/L
T · L

M
⌉, ⌈logR/L

X · R

M · (L − R)
⌉) (5)

We provide the following formulas [5] to describe the total

amount og network traffic and the total migration duration, re-

spectively. The number of iterations in the pre-copy phase (N ) is

not defined here, but is calculated based on a given threshold.

Variable Description
V Total network traffic during migration

T Time it takes to complete migration

N Number of pre-copy rounds (iterations)

M Size of VM RAM

d Memory dirty rate during migration

r Transmission rate during migration

Table 1: Variables used in formulas in theVMbuddies system

The expressions for vi and ti are given by:

vi =
M · di

r i
(6)

ti =
M · di

r i+1
(7)

Then the total network traffic during migration is:

V =
N∑
i=0

vi = M ·

n∑
i=0

di
ri

(8)

Table 1 denotes the variables used in Equation 8.

3.2 Subgroup scheduling based on minimum
Impact

In [11], Oommen and Croix proposed a learning algorithm based

on Object Migrating Automata (OMA) for splitting any graph into

equally sized subgroups, where the result is such that the sum of

the edges that go between the subgroups is as small as possible.

In other words, the proposed algorithm ensures that a minimum

cut has been reached between any two resulting subgroups of the

input graph. The first and most important part of the migration

scheduling consists of applying the OMA algorithm in order to

identify groups of VMs performing intensive inter-communication

and thereby to mitigate the split components problem by migrating

those VMs within the same group in parallel . The performance

of a multi-tiered application will deteriorate because of the split
components problem. In other words, the OMA will group VMs

together in a manner that maximizes the intra-group traffic within

each group. The solution proposed in this paper will therefore

migrate VMs from one group at a time.

The order in which the groups of VMs are migrated can affect

the total amount of separated traffic during the migration. In fact,

there might still be some inter-group traffic. We propose a smart

scheduling algorithm that decides which subgroup is to be migrated

next at any time, until all subgroups (and hence all VMs) are running

at the target PM. Coupled with the OMA algorithm, this should

result in an efficient migration scheme, which has a low network

impact.

Let G be subgroups, S and D be source and destination PM,

respectively, and T the amount of inter-traffic between subgroups.

For any two subgroups Gi and G j , the exchanged traffic between

these groups is the sum of the exchanged traffic between the VMs

belonging to these two groups. In formal terms, this is defined as.

T (Gi → G j ) =
∑

VMi ∈Gi ,VMj ∈G j

VMi j (9)

Algorithm 1: MIF algorithm
Data: List of groups to be migrated: S = {G1,G2, ...,GN }

Result: All VMs from each subgroup are migrated

D = ∅

while S , ∅ do
for Gi ∈ S do

T (Gi → D) =
∑
Gk ∈D T (Gi → Gk )

T (Gi → S) =
∑
Gk ∈S T (Gi → Gk )

∆i = T (Gi → S) −T (Gi → D)
δTi=Migration Time of Gi
Vi = ∆iδTi

end
i∗ = argmin

i
Vi

Migrate Gi∗

D = D ∪G∗

S = S \Gi∗

end

Algorithm 1 migrates groups of VMs based on "the volume of

separated traffic". The amount separated traffic resulting from mi-

grating a group Gi from source to destination is given by ∆i . The
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volume is the product of the traffic and completion time of the

migration ofGi given byVi = ∆iδTi . Please note that the notion of

impact is also defined in Equation 1.

The amount of separated traffic in total given a source S and

destination D is given by

∆ =
∑

G j ∈S ,Gk ∈D
T (G j → Gk )

Our algorithm 1 considers the change to the latter quantity as

a result of the separated traffic resulting from migratingGi to the

destination which is given by ∆i = T (Gi → S) −T (Gi → D).
The amount of increase in the separated traffic achieved by

moving a group Gi from a source machine to a destination is the

difference between the traffic of the group to the source server

(T (Gi → S)) due to separatingGi from the VMs at the source S , on
the one hand, and the respective traffic to the destination server

( T (Gi → D)), on the other. In other words, it is the difference

between the the traffic that goes through the network due to other

VMs located at the source site S and communicating with the mi-

grated group, which is expressed as T (Gi → S) and the co-located

traffic resulting from migrating Gi to the destination machine that

goes through the memory. The reason why we deduct T (Gi → D)
is that the traffic between co-located VMs in the same physical

machine goes through memory by default, and thus has no cost.

The algorithm works in the following way. Initially, the list

of already migrated VMs is empty, and all the VMs marked for

migration are in the S list. The algorithm then enters a loop where,

in each iteration, the subgroup yielding the minimum volume of

separated traffic is migrated. The group is then removed from the

list S and appended to list D.
It is worth mentioning that the latter "impact", distinguishes be-

tween the traffic that goes through memory, and which is regarded

as a gain, and the traffic that goes through the shared link and

which is regarded as a loss (negative sign).

This continues until all groups have been migrated, i.e., until S is
empty. Migrating the groupwith the lowest volume separated traffic

to the destination will intuitively reduce the volume of separated

traffic in a greedy manner.

4 EXPERIENCES AND RESULTS
In order to test the proposed algorithms on various kinds of data
sets and to be able to retrieve reliable results, we performed two

sets of experiments. The data is available at

http://pages.cs.wisc.edu/t̃benson/IMC10_Data.html. The traces from

three of the data centers given in the above link are studied in [2].

We randomly selected the set of 500 VMs from the collected traffic

traces, with the expectation that this set of 500 VMs will contain

several VMs which have rather high mutual traffic while most of

the VMs communicate with each other at a significantly lower rate.

Based on the traces, we compute the traffic matrix which describes

the communication rate.

We suppose the available bandwidth is 50 Gb/s and that the

memory size of each VM is set to 1Gb. We run experiments on

dedicated link and non-dedicated link and compare our algorithm

denoted MIF to the following algorithms:

• Tao et al. algorithm found in [7].

• Yazidi et al. algorithm presented in our previous work in

[12].

• Latency-aware algorithm, which migrates the group that has

the Shortest Migration Time First. We denote this algorithm

as SMTF.

4.1 Non-Dedicated Link
In this first experiment, we suppose that the migrations take place

over a non-dedicated link. A typical example can be migrations

that need to be performed between two data centers linked through

WLAN as aforementioned in the introduction. In such a scenario,

the migration traffic on one hand and the separated traffic resulting

from inter-site communication between VMs still at the source and

VMs migrated to the destination on the other hand will co-exist

over the same link and thus both procedures will compete for the

available bandwidth. Intuitively, the more congested the migration

link as a result of the separated traffic, the higher the migration

time of VMs. We shall investigate the effect of varying the group

size of the migrated VMs and the effect of varying the dirty rate on

the performance of the different algorithms.

In this scenario, we choose the dirty rate for each of the 500 VMs

from a uniform distribution in the range of 500mb/s . Therefore,
the excepted dirty rate per VM is 250 mb/s . We apply first the

LA algorithm for partitioning the VMs into groups. We run an

experiment with size 10 VMs per group, which means 50 groups in

total to schedule, and an experiment with size 20 VMs per group

which means 25 groups to schedule.

In Figure 1, we compare the amount of separated traffic for

the four algorithms. We remark that our proposed algorithm MIF

achieves the lowest value of separated traffic. We also remark as we

increase the group size, the amount of separated traffic is reduced

as chatty VM are migrated as a group. Interestingly, the latency-

aware algorithm, which is a simple algorithm outperforms two

sophisticated legacy algorithms Tao et al. [7] and Yazidi et al. [12].

It seems that the group with the shortest migration time is

strongly correlated to the least amount of separated traffic. In fact, a

shorter migration time is a sign that the amount of separated traffic

is low as the residual bandwidth for the migration is the difference

between the link bandwidth and the amount of separated traffic.

For a group size of 10, and taking Yazidi et al. as baseline, we

report in Table 2 the improvement in percentage of the different

algorithms. we observe that the MIF algorithms is the most perfor-

mant algorithm with an improvement of 60.1% while the latency

aware SMTF algorithm has an improvement of 49.3%. The SMTF

algorithm also outperforms the Tao et al. algorithm which is re-

markable.

Yazidi et al. Tao et al. SMTF MIF

Improvement

Group of 10 — -5.3 % 49.3 % 60.1 %

Group of 20 — -27.2 % 41.6 % 45.3%

Table 2: Improvement in percentage (positive or negative)
compared to Yazidi et al. as baseline corresponding to the
experiment in Figure 1.

Now, we reduce the expected dirty rate of each VM to 150mb/s
and the results are very similar and are shown in Figure 2. The
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Figure 1: Non-dedicated link: Average Dirty Rate = 250mb/s
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Figure 2: Non-dedicated link: Average Dirty Rate = 150mb/s

main difference is that the Volume of Separated traffic is slightly

decreased. Additionally the SMTF algorithm performs just as well

as the MIF algorithm for small groups. In all other experiments the

MIF algorithm performs best.

Yazidi et al. Tao et al. SMTF MIF

Improvement

Group of 10 — -6.1 % 60.8 % 60.7%

Group of 20 — -28.2 % 41.3 % 44.8%

Table 3: Improvement in percentage (positive or negative)
compared to Yazidi et al. as baseline corresponding to the
experiment in Figure 2.
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Figure 3: Dedicated link: Average Dirty Rate = 250mb/s

4.2 Dedicated Link
The following experiments have been conducted on a dedicated mi-

gration link. This means that any separated inter-VM traffic would

not affect the migration, since it would not inhabit the migration

link. The excepted dirty rate per VM is 250mb/s . The latency-aware
SMTF algorithm does not yield as good results as in the previous

case of non-dedicated link. In fact, in this case, the migration time

over the dedicated link is not affected by the amount of separated

traffic.

From the plots in Figure 3 If we take Yazidi et al. as baseline,

the SMTF algorithm performs slightly worse with a change in the

performance by −8.2%, while the Tao et al. algorithm gives −16.4%

worse performance. We observe that our MIF algorithm gives an

improvement over Yazidi et al. [12] by as much as 45%.

Yazidi et al. Tao et al. SMTF MIF

Improvement

Group of 10 — -16.4 % -8.2 % 45.3 %

Group of 20 — -21.3 % -2.1 % 40.2 %

Table 4: Improvement in percentage (positive or negative)
compared to Yazidi et al. as baseline corresponding to the
experiment in Figure 3.

Now, we reduce the expected dirty rate of each VM to 150mb/s .
The results are similar. The only difference is that the Volume of Sep-

arated traffic is less. Again, the performance of the MIF algorithm

is superior.

5 CONCLUSION
In this paper, we tackled multiple-virtual machine live migrations,

using a combination of two algorithms, namely minimum cut graph

partitioning in order to identify chatty VMs that should be migrated

as a group and minimum impact-aware scheduling in order to

schedule the migrations in a manner that minimizes the volume

5
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Figure 4: Dedicated link: Average Dirty Rate = 150mb/s

Yazidi et al. Tao et al. SMTF MIF

Improvement

Group of 10 — -16.9 % -8.3 % 46.3 %

Group of 20 — -20 % -6.3 % 40.2 %

Table 5: Improvement in percentage (positive or negative)
compared to Yazidi et al. as baseline corresponding to the
experiment in Figure 4.

of separated traffic. Using the proposed solutions, we were able to

observe a significant reduction in the volume of separated traffic

compared to the state-of-the-art algorithms.
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