
Affinity Aware-Scheduling of Live Migration of
Virtual Machines Under Maintenance Scenarios

Anis Yazidi, Frederik Ung, Hårek Haugerud and Kyrre Begnum
Oslo Metropolitan University (OsloMet),

Department of Computer Science,
Oslo Norway.

Abstract—During maintenance and disaster recovery scenarios,
Virtual Machine (VM) inter-site migrations usually take place
over limited bandwidth—typically Wide Area Network (WAN)—
which is highly affected by the amount of inter-VM traffic that
becomes separated during the migration process. This causes
both a degradation of the Quality of Service (QoS) of inter-
communicating VMs and an increase in the total migration time
due to congestion of the migration link. We consider the problem
of scheduling VM migration in those scenarios. In the first stage,
we resort to graph partitioning theory in order to partition the
VMs into groups with high intra-group communication. In the
second stage, we devise an affinity-based scheduling algorithm for
controlling the order of the migration groups by considering their
inter-group traffic. Comprehensive real-life experimental results
and simulations show that our approach in some cases is able to
decrease the volume of separated traffic by a factor larger than
60%.

Index Terms—Live Migration, Graph Partitioning, Migration
Scheduling, Separated Traffic.

I. INTRODUCTION

Live migration is a unique feature of cloud computing that
makes it possible to move VMs between different physical
locations, without having to shut them down. This feature
minimizes the Service Disruption Time (SDT) compared to
the case of offline migration, where the VM is shut down
instead, migrated and then powered on again. SDT refers
to the time period where a VM is unavailable due to being
suspended at source, and not yet up and running at the target
destination. The vast majority of virtualization platforms, such
as KVM, VMware and Hyper-V support live migration. Server
consolidation, load balancing, system maintenance and green
computing are among the most popular use-case scenarios of
live migration [1], [2], [3], [4], [5]. In order to avoid noticeable
service degradation, the process of migrating VMs should take
as little time as possible, preferably in the order of a few
seconds [6].

In this paper, we consider the problem of inter-site migrations
of "chatty" VMs over limited bandwidth. The goal of our
research is to reduce the volume of separated traffic that
might arise when chatty VMs become separated during the
migration process. In order to solve the problem, we first use
graph-partitioning algorithms to identify groups of intensively
inter-communicating VMs that should not be separated during
the process of live migration. The deployed graph-partitioning

algorithm is based on the theory of adaptive learning and, more
particularly, on Learning Automata (LA) [7]. VMs within the
same group are migrated in parallel. However, there might
still be some amount of traffic between the different groups
of VMs. Thus, in the second phase, we devise a greedy
scheduling algorithm that decides the order of migration of
the different groups using a novel concept called network
affinity.

II. RELATED WORK

In [8], the authors designed a system called CQNCR (reads
"sequencer"), with the goal of enabling a planned migration to
take place as quickly as possible, given a source and target des-
tination of the VMs. CQNCR deals with intra-site migrations.
The authors state that their approach is able to significantly
increase the migration speed, reducing the total migration time
by up to 35%. Another related system, COMMA [9], groups
VMs together and migrates one group at a time. A group
consists of VMs that have a significant amount of internal
communication. After the migration groups are decided, the
system performs inter- and intra-group scheduling. The former
is about deciding the order of the groups, while the latter
optimizes the order of VMs within each group. The main
goal of COMMA is to migrate associated VMs at the same
time, in order to minimize the amount of traffic that has
to go through a slow network link. The system is therefore
especially suitable for inter-site migrations. It is structured
so that each VM has a process running, which reports to
a centralized controller that performs the calculations and
scheduling. The VMbuddies system [10] also addresses the
challenges of migrating VMs that are part of multi-tier ap-
plications. The authors formulate the problem as a correlated
VM migration problem in multi-tier applications. Correlated
VMs are machines that work closely together, and therefore
exchange a lot of data. The authors propose an algorithm for
efficient use of the network bandwidth during migration, and
a mechanism for reducing the cost of a live migration. The
experiments conducted show clear improvements compared to
current migration techniques, including a reduction of 36%
in migration time. A system called Clique Migration [11],
also migrates VMs based on their level of interaction. It is
specialized for inter-site migrations. A Time-bound thread-
based Live Migration (TLM) technique was proposed in [6].

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
 reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,

or reuse of any copyrighted component of this work in other works.

The focus was on handling large migrations of VMs running
RAM-heavy applications by allocating additional processing
power at the hypervisor level to the migration process. The
idea behind TLM differs from the other previously mentioned
techniques, in that it actually changes the behavior of running
instances if necessary. Slowing the operations of VMs will, of
course, subsequently decrease the performance of the appli-
cations hosted by them. In [12], Deshpande et al. introduce a
novel non-standard migration method called scatter-gather VM
migration. The migration is done via an intermediate node. The
main idea is to push the state of the memory of the source
host to one intermediate node in the network. At the same
time, the destination hosts retrieve the memory state from the
intermediate host by using a modified version of the post-copy
VM migration.

III. OUR SOLUTION: COST-EFFECTIVE AND
AFFINITY-AWARE LIVE MIGRATIONS OF VIRTUAL

MACHINES USING OMA

In [13], Oommen and Croix proposed a learning algorithm
based on Object Migrating Automata (OMA) for splitting any
graph into equally sized subgroups, where the result is such
that the sum of the edges that go between the subgroups is
as small as possible. In other words, the proposed algorithm
ensures that a minimum cut has been reached between any
two resulting subgroups of the input graph. The first and
most important part of the migration scheduling consists of
applying the OMA algorithm in order to identify groups of
VMs performing intensive inter-communication and thereby
to mitigate the split components problem by migrating those
VMs within the same group in parallel . The performance of
a multi-tiered application will deteriorate because of the split
components problem. In other words, the OMA will group
VMs together in a manner that maximizes the intra-group
traffic within each group. The solution proposed in this paper
will therefore migrate VMs from one group at a time. The
order in which the groups of VMs are migrated can affect the
total amount of separated traffic during the migration. In fact,
there might still be some inter-group traffic. We propose a
smart scheduling algorithm that decides which subgroup is to
be migrated next at any time, until all subgroups (and hence
all VMs) are running at the target PM (Physical Machine).
Coupled with the OMA algorithm, this should result in an
efficient migration scheme, which has a low network impact.
Let G be subgroups, S and D be source and destination
PM, respectively, and T the amount of inter-traffic between
subgroups. For any two subgroups Gi and Gj , the exchanged
traffic between these groups is the sum of the exchanged traffic
between the VMs belonging to these two groups. In formal
terms, this is defined as.

T (Gi → Gj) =
∑

VMi∈Gi,V Mj∈Gj

VMij (1)

Algorithm 1 migrates groups of VMs based on "affinity",
which is a term that has been used to some degree by

Algorithm 1: Affinity algorithm
Data: List of groups to be migrated: S = {G1, G2, ..., GN}
Result: All VMs from each subgroup are migrated
D = ∅
while S 6= ∅ do

for Gi ∈ S do
T (Gi → D) =

∑
Gk∈D T (Gi → Gk)

T (Gi → S \Gi) =
∑

Gk∈S\Gi
T (Gi → Gk)

∆i = T (Gi → D)− T (Gi → S \Gi)
end
i0 = First element of list S
imax = i0
∆max = ∆0

for i in S \ i0 do
if ∆i > ∆max then

∆max = ∆i

imax = i
end

end
Migrate Gimax

D = D ∪Gimax

S = S \Gimax

end

other researchers [14], [9]. High affinity between two VMs
reflects the fact that the pair of VMs in question communicate
intensively over the network.

According to our algorithm 1, we measure the amount of "net
gain" in terms of the reduction in separated traffic by resorting
to the concept of affinity, which is a novel and subtle way
of using affinity. The algorithm works in the following way.
Initially, the list of already migrated VMs is empty, and all the
VMs marked for migration are in the S list. The algorithm then
enters a loop where, in each iteration, the subgroup with the
highest affinity to the destination PM is migrated. The group
is then removed from the list S and appended to list D.

The affinity of a VM to a physical machine measures the
amount of inter-communication between a VM and the VMs
located in that physical machine. The amount of gain measured
as the reduction in the separated traffic achieved by moving
a group Gi from a source machine to a destination is the
difference between the affinity of the group to the destination
server (T (Gi → D)), on the one hand, and the respective
affinity to the source server (T (Gi → S\Gi)), on the other. In
other words, it is the difference between the co-located traffic
resulting from migrating Gi to the destination machine that
goes through the memory expressed as T (Gi → D) minus the
traffic that goes through the network due to other VMs located
in the source site S and communicating with the migrated
group, which is expressed as T (Gi → S \Gi).

It is worth mentioning that the latter "net gain", which cor-
responds to a difference of affinities is a novel concept that,
to the best of our knowledge, has not been used before in the

literature and that distinguishes between the traffic that goes
through memory, and which is regarded as a gain, and the
traffic that goes through the shared link and which is regarded
as a loss (negative sign).

This continues until all groups have been migrated, i.e., until
S is empty. Migrating the group with the highest affinity to
the destination will intuitively reduce the amount of separated
traffic. If a group with a high degree of affinity to the destina-
tion is not migrated for a long time, then VMs residing in this
group will congest the network link between the source and
destination PM during this period. As mentioned previously,
according to our algorithm, the affinity here measures the
amount of "gain" in terms of the reduction in separated traffic
that is achieved by moving a group from a source machine to
a destination.

IV. EXPERIENCES AND RESULTS

A physical lab was set up consisting of two small servers
with Intel Core 2 processors, 8 GB RAM, 500 GB HDDs
and Gigabit Ethernet NICs running Ubuntu 14.04, libvirt and
KVM/QEMU version 2.0. Figure 1 shows the interconnection
between the VMs and the hosts. As we can see, the VMs
that are spawned in this habitat are attached to a virtual
bridge, where a physical interface is connected to provide
the migration capabilities. The dotted unidirectional arrows
show the possible migration path of a node VM3 from PM1
to PM2. The non-dedicated migration path is also the path
over which VMs communicate with each other, if they are
located on different PMs.

Figure 1: Physical lab

A small program is responsible for continuously generating
the traffic among the hosts.

We use 0.216 mbit per second as the fastest any VM can
communicate in the test environment, per connection. This is
not a particularly fast data rate compared to today’s standards.
However, the most important thing is that the test environment
can run different traffic levels, and that it is possible to
distinguish them. With multiple VMs in a test, the amount of
consumed network bandwidth will quickly become significant.
The other three levels are 0.1, 0.072, and 0.054 mbit per
second.

a) Non-dedicated link scenario: In these experiments there
are 16 communicating TinyCore VMs running simultaniously.
With this amount of running instances, the CPU consumption
averaged around 80%, after traffic initiation.

Figure 2 shows the avarage of traffic, based on migration data
from 11 tests, when using random subgroups and calculated
subgroups.

Figure 2: Network impact of migration random groups

This result shows that there is a clear benefit, in terms of
separated traffic, of running the minimum-cut algorithm on the
network graph. The random subgroups generated an average of
6.53 MB of inter-site communication during migration, while
our solution yields 2.34 MB. The proposed solution is 64%
more cost-effective in this scenario.

b) Dedicated link scenario: The following experiment was
conducted on a dedicated migration link. This means that any
separated inter-VM traffic would not affect the migration, since
it would not inhabit the migration link.

The experiment investigates the correlation between subgroup
size and migration time, under varying dirty rates. A group
of 16 VMs, each with 200 MB RAM, was migrated using
parallel migration with two different subgroup sizes, 2 and 4,
and four different dirty rate levels. The results are shown in
Figure 3.

Figure 3: Effect of increasing the dirty rate on migration time

These VMs also sent traffic between each other, in addition to
the dirty rate. The result of the experiments is that a subgroup
size of 2 leads to roughly 50% more separated traffic compared
to a subgroup size of 4, for all the tested dirty rates.

A. Simulation results

Since it is time-consuming and impractical to perform physical
tests manually, a simulation script was used to facilitate all the
variables needed to run virtual migrations, and to observe ef-
fects related to separated traffic. The simulation program takes
as input the dirty rate of each VM, the available migration
bandwidth, VM memory size, and the traffic matrix.

For all these simulations, we consider a 16 by 16 VM traffic
matrix with high traffic levels between groups of four VMs.
The simulation will demonstrate the effects of adjusting the
parameters dirty rate and group size. In order to be able to
compare these results with the actual physical migration, the
memory size of each VM is set to 1600 mbit (200 MB)
and the migration link to 100 mbit/s, as in the real test
scenarios.

Figure 4 shows the results when we fixed the dirty rate at 5
mbit/s on each VM. The proposed solution produces the best
result with all the different subgroup sizes. The results are
similar for zero dirty rate.

Figure 4: Volume of separated traffic with a dirty rate of
5 mbit/s. LA means OMA Learning Automata, AF Affinity
based algorithm and RG random subgroups.

Figure 5 shows the impact of doubling the dirty rate to 10
mbit/s.

Figure 5: Volume of separated traffic with a dirty rate of 10
mbit/s

V. CONCLUSION

In this paper, we tackled multiple-virtual machine live mi-
grations, using a combination of two algorithms, namely

minimum cut graph partitioning and affinity-aware schedul-
ing. Using the proposed solution, we were able to observe
a significant reduction in the volume of separated traffic,
as well as a reduction in the total migration time. The
memory- and network-related properties were examined and
understood, and the main obstacle was defined as a "split
components problem". The algorithms were tested on a KVM-
based virtualization platform using Libvirt as the management
tool.

REFERENCES

[1] H. Lu, C. Xu, C. Cheng, R. Kompella, and D. Xu, “vhaul: Towards
optimal scheduling of live multi-vm migration for multi-tier applica-
tions,” in 2015 IEEE 8th International Conference on Cloud Computing
(CLOUD), pp. 453–460, IEEE, 2015.

[2] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live migration of
multiple virtual machines with resource reservation in cloud comput-
ing environments,” in 2011 IEEE International Conference on Cloud
Computing (CLOUD), pp. 267–274, IEEE, 2011.

[3] K. Ye, X. Jiang, D. Ye, and D. Huang, “Two optimization mechanisms
to improve the isolation property of server consolidation in virtualized
multi-core server,” in 2010 IEEE International Conference on High
Performance Computing and Communications (HPCC), pp. 281–288,
IEEE, 2010.

[4] Y. Zhao and W. Huang, “Adaptive distributed load balancing algorithm
based on live migration of virtual machines in cloud,” in 2009 Fifth
International Joint Conference on INC, IMS and IDC, pp. 170–175,
IEEE, 2009.

[5] F. F. Moghaddam, M. Cheriet, and K. K. Nguyen, “Low carbon virtual
private clouds,” in 2011 IEEE International Conference on Cloud
Computing (CLOUD), pp. 259–266, IEEE, 2011.

[6] K. Chanchio and P. Thaenkaew, “Time-bound, thread-based live migra-
tion of virtual machines,” in 2014 IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp. 364–373, IEEE,
2014.

[7] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1989.

[8] M. Bari, M. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “Cqncr:
Optimal vm migration planning in cloud data centers,” in 2014 IFIP
Networking Conference, pp. 1–9, June 2014.

[9] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu, “Comma:
Coordinating the migration of multi-tier applications,” SIGPLAN Not.,
vol. 49, pp. 153–164, Mar. 2014.

[10] H. Liu and B. He, “Vmbuddies: Coordinating live migration of multi-
tier applications in cloud environments,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 4, pp. 1192–1205, 2015.

[11] T. Lu, M. Stuart, K. Tang, and X. He, “Clique migration: Affinity
grouping of virtual machines for inter-cloud live migration,” in 2014
IEEE International Conference on Networking, Architecture, and Stor-
age (NAS), pp. 216–225, IEEE, 2014.

[12] U. Deshpande, D. Chan, S. Chan, K. Gopalan, and N. Bila, “Scatter-
gather live migration of virtual machines,” To appear in IEEE Transac-
tions on Cloud Computing, 2017.

[13] B. J. Oommen and D. S. Croix, “Graph partitioning using learning
automata,” IEEE Transactions on Computers, vol. 45, no. 2, pp. 195–
208, 1996.

[14] J. Chen, K. Chiew, D. Ye, L. Zhu, and W. Chen, “Aaga: Affinity-
aware grouping for allocation of virtual machines,” in 2013 IEEE 27th
International Conference on Advanced Information Networking and
Applications (AINA), pp. 235–242, IEEE, 2013.

