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Abstract

We introduce an agent-based model describing a susceptible-infectious-susceptible (SIS) system of humans and mosquitoes to
predict malaria epidemiological scenarios in realistic biological conditions. Emphasis is given to the transition from endemic
behavior to eradication of malaria transmission induced by combined drug therapies acting on both the gametocytemia reduction and
on the selective mosquito mortality during parasite development in the mosquito. Our mathematical framework enables to uncover
the critical values of the parameters characterizing the effect of each drug therapy. Moreover, our results provide quantitative
evidence of what was up to now only partially assumed with empirical support: interventions combining gametocytemia reduction
through the use of gametocidal drugs, with the selective action of ivermectin during parasite development in the mosquito, may
actively promote disease eradication in the long run. In the agent model, the main properties of human-mosquito interactions are
implemented as parameters and the model is validated by comparing simulations with real data of malaria incidence collected in
the endemic malaria region of Chimoio in Mozambique. Finally, we discuss our findings in light of current drug administration
strategies for malaria prevention, which may interfere with human-to-mosquito transmission process.

Keywords: Malaria spreading, Agent models, Gametocytemia, Transmission control and mitigation, Primaquine, Methylene blue,
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1. Introduction

Malaria is a parasitic disease, caused by the Plasmodium par-
asite, which is still responsible for the death of nearly half a
million individuals every year worldwide [1]. Plasmodium fal-
ciparum (Pf) is the most prevalent form of the malaria parasite
in Africa, accounting for 99.7% of all estimated malaria cases
in 2017 [1].

While some countries have had reasonable success in rolling
back malaria through a well-planned preventive strategy, dis-
ease resurgence remains unpredictable. Two types of factors
may contribute to such unpredictability. First, ”hidden” factors,
such as the asymptomatic presence of gametocytes in human
systemic circulation, which are the precursors of male and fe-
male gametes of the parasite. Migration of just a few asymp-
tomatic human, gametocyte carriers, into particular African re-
gions where the disease is controlled, may act as a potential
trigger in malaria outbreaks [2, 3]. The presence of gameto-
cytes may be mitigated through the application of gametocidal
drugs, such as primaquine or methylene blue.

Second, malaria transmission can be promoted due to the in-
trinsic heterogeneity in human demography and mosquito be-
havior [4]. For example, in a potential outbreak, human fatal-
ity rate may rise out of proportion due to the weaker immu-
nity of local populations from reduced exposure to the parasite

[5]. Or, in regions under anti-malaria massive drug adminis-
tration, drug-resistant parasite strains can develop and conse-
quently, through human migratory phenomena, they may be
imported into areas of near eradication, locally strengthening
malaria transmission [2, 3, 6].

Although the decisive role these factors can play on malaria
transmission mechanisms is well established, the impact on
malaria transmission resulting from the combined effect of dif-
ferent drug therapies in heterogeneous populations is still not
fully understood.

The life cycle of Pf may be summarized as follows. The
malaria vector, the mosquito, Anopheles spp., usually lives,
mates and feeds within a few miles distance from its birthplace
[7]. To become infectious to humans, the mosquito needs to sur-
vive 10 or more days after feeding on a Pf gametocyte carrier.
This time period is required to complete parasite sporogonic
development inside the mosquito [8], after which, mosquito-
to-human transmission becomes possible. Therefore, strict ga-
metocidal drugs may not only block human-mosquito trans-
mission, but can also have a strong impact on it. Other drug
agents, such as ivermectin, have become a promising antimalar-
ial interventions due to its anophelocide properties, prevent-
ing parasite’s maturation inside the mosquito [9, 10, 11]. It
is known that mosquitoes, feeding on human hosts under iver-
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mectin treatment, have a considerably lower life expectancy,
with a large fraction of mosquito deaths within 4 days after the
blood meal [9, 10, 12].

Moreover, interventions including mass administration of
ivermectin in prevention of several other African endemic par-
asites have resulted in a significant reduction of malaria inci-
dence on those regions [13, 14, 15].
To tackle the specific problem related with malaria transmis-
sion in a human community, several mathematical models have
been proposed. Early models, such as those by Ross and Mc-
donald, were deterministic [16, 17], having nonetheless a sig-
nificant relevance in malaria epidemiology [18, 19, 20, 21, 22,
23, 24] and being since then refined. More recent variants
have been developed with the help of modern satellite imag-
ing, precise weather and geographical information, computa-
tional agent-based modeling, and advanced statistics, such as
hidden Markov processes, time-series analysis and big-data ap-
proaches [8, 22, 25, 26, 27, 28, 29, 30]. In particular, agent-
based models strengthen the importance of malaria simula-
tion for disease prevention [8, 31, 32]. Based on the classical
susceptible-infected (SI) model by Kermack and McKendrick,
stochastic modeling approaches were also proposed, with the
aim of better implementing the uncertainties inherent to the dis-
ease dynamics [33].

Epidemiological field data of malaria transmission is com-
monly presented as human monthly or weekly disease inci-
dence [33, 34], while mosquito infection rates are obtained
from data collected through the use of mosquito trapping de-
vices [35]. However, since both are important to understand the
transmission dynamics, one should account for the combined
effect of human and mosquito infection prevalence.

In this paper, we introduce an agent-based model of
Pf malaria endemic/epidemic behavior , incorporating both
human-to-mosquito and mosquito-to-human transmission pro-
cesses. We parameterize some of the most important biological
aspects of disease transmission, focusing mainly in the param-
eters describing the reduction of gametocytemia prevalence in
the human host and the extension of ivermectin administration
in the population. The model assumes a typical isolated African
village with limited access to drug therapy and is based on dis-
crete Markov processes describing the succession of human-
mosquito encounters, which are implemented through a Monte
Carlo algorithm. Tuning the parameter defining gametocytemia
inside the human host, or the parameter controlling the frac-
tion of the human population under ivermectin treatment, we
uncover a phase transition between disease eradication and epi-
demic prevalence. In both cases, the transition is sensitive to
minor changes in the parameters, and through mathematical
analysis, we are able to predict critical values separating the
two phases, eradication and endemic prevalence.

We start in Section 2 by describing the agent model and
the main parameters driving Pf gametocytemia and human-
mosquito infection dynamics. In Sections 3 and 4 we present
respectively the main results and describe the validation pro-
cedure using data sets from the endemic region of Chimoio in
Mozambique. In Section 5 we discuss the impact of our results
on possible clinical and medical strategies, and conclude the

paper.

2. Agent model for human-to-mosquito and mosquito-to-
human transmission

We consider a system of M = 4000 mosquitoes and H =

2000 human individuals, where each population is divided
into a number of healthy and another of infected individu-
als, represented by H0 and M0 and by Hi and Mi respec-
tively: H = H0 + Hi and M = M0 + Mi. Although in real-
ity, the density of mosquitoes is much higher, we model the
amount of mosquitoes as the effective fraction of the overall
mosquito mass, imposing an average of two bites per day for
each mosquito.

The chosen values of each parameter are given in Tab. 1, and
the algorithm keeps track of all attributes for each agent, hu-
man or mosquito, in a particular age, time since infection, and
immunity status. Notice that only two parameters are modu-
lated, namely the fraction piv of the human population subjected
to ivermectin treatment and the effectiveness of gametocidal
drugs, measured as the number τg of days of positive game-
tocytemia. All other parameters are kept at constant values and
their values were chosen according to previous studies.

The flowchart describing the computer implementation of the
agent model is sketched in Fig. 1 and is described as follows.
The algorithm simulates a total time interval of 30 years and
it starts by evaluating each individual, to ascertain if it became
cured or not. In the case of human individuals the recovered rate
qh is a fixed value, dependent on the average time τc it takes for
one individual to be cured,

qh =
1
τc
. (1)

In the case of mosquitoes, there is no explicit recovery rate.
Every dead mosquito is replaced by a new healthy mosquito.
As such, the mosquito recovery rate equals its mortality rate
qm. The mosquitoes’ mortality is determined by its natural
life expectancy, τm, the fraction piv of human with whom the
mosquito interacts that is under ivermectin treatment and the
life expectancy τ(iv)

m of a mosquito with exposure to ivermectin:

qm = (1 − piv)
1
τm

+ piv
1

τ(iv)
m

. (2)

The two rates, qh and qm, are not directly implemented in the
agent model. Instead, we impose a maximum time of human
infection of τd = 150 days and a minimum time of 25 days, uni-
formly distributed, yielding an average human infectious period
of τc = 87.5 days, a maximum mosquito life time of 40 days
and a minimum life time of 0 days, uniformly distributed, yield-
ing an average life expectancy of one mosquito τm = 10 days,
as well as a probability giv = 0.5 of one mosquito to die from
feeding on a human host under ivermectin treatment. In case
of an infectious mosquito bite in an infected human host, a hu-
man reinfection or super-infection occurs1 and the disease time

1Persistent reinfection is defined as a new contact between an infected hu-
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Tunable parameters Symbol Value References
Probability of ivermectin treatment piv 0.00-0.10 -
Duration of positive gametocytemia τg 58-90 (days) [17, 27, 36]
Fixed parameters Symbol Value
Number of human individuals H 2000 [21, 22, 27]
Number of (female) mosquitoes M 4000 [21, 22, 27]
Average number of bites from one mosquito nb 2 (per day) [17, 21, 27, 36]

[37]
Total simulation time – 30 (years) -
Maximum time of human infection (including time of parasite development) τd 150 (days) [17, 21, 38, 39]
Minimum time of human infection (including time of parasite development) τ0 25 (days) [17, 21, 38, 39]
Average human infectious period, cf. Eq. (1) τc 87.5 (days) [17, 21, 38, 39]
Maximum life time of one mosquito τmax 40 (days) [17, 21]
Minimum life time of one mosquito τmin 0 (days) [17, 21]
Mosquito death probability from feeding in human with ivermectin giv 0.5 [9, 10, 12, 13]
Time needed to acquire immunity due to persistent reinfection – 5 (years) [17, 27, 40, 41]

[42, 43, 44, 45]
Time needed for losing immunity (in the absence of infection) – 2 (years) [17, 27, 40, 41]

[42, 43, 44, 45]
Probability of protection from LLIN, ITN and IRS barriers u 0.25 [36, 46, 41, 47]
Single episode mosquito mortality of LLIN/ITN/IRS protection girs 0.50 [8, 36, 46, 41]
Probability of a mosquito bite in the low season pls 0.5 [33, 48]
Probability of a mosquito bite in the high season phs 1 [33, 48]
Fraction of humans among all animals bitten (anthropophilic factor) pQ 0.9 [49, 50]
Duration of the gonotrophic reproductive cycle τs 4 (days) [8, 46]
Duration of the high transmission season δs 150 (days) [33, 48]
Probability of human infection after infectious mosquito bite kh 0.20 [36, 41, 45, 51]

[52, 53, 54]
Probability of mosquito infection after bite in infectious human km 0.20 [36, 41, 45, 51]

[52, 53, 54]
Time for parasite development in the mosquito τlm 10 (days) [21, 22]
Time for parasite development to gametocyte stage inside human host τlh 10 (days) [21, 36]
Probability of full protection due to acquired immunity vmax 0.3 [17, 42, 43, 44]
Fraction of children (age < 5 years) in the population – 0.12 [27, 42, 43]
Probability of positive gametocytemia in children – 0.70 [27, 38]
Average number of humans that die, per year (global causes) µh 0.015 [1, 21, 48]
Seasonality overall bite probability s 0.7055 [33, 48]
Initial protection probability from acquired immunity ν0 0.1 [17, 40, 42, 43]
Probability of mosquito bite from surviving mosquitoes past latency πlm 0.686 [8, 17, 22, 27]

[36]
Probability of daily mosquito mortality (general causes) qm 0.10 [8, 17, 22, 27]

[36, 46]
Probability of human disease daily recovery (= 1

τc
) qh 0.011 [17, 21, 36]

Table 1: Parameters of the agent-based model for malaria spreading within two interacting communities of human individuals and mosquitoes. The values chosen
for the simulations are taken, based in previous studies.

of that human individual is reset to half of the present disease
time. Beyond 5 years of persistent human reinfections, the hu-
man host acquires maximum immunity and after 2 years with

man host and an infected mosquito, during the time period of active infection.
In practice, since the average time of infection in one human is 87.5 days, one
human host may reacquire a new malaria infection within three months after
the initial infection episode, thus perpetuating disease transmission as well as
immunity individual acquisition.

no infection events, the host loses immunity completely.
In case the mosquito succeeds in overcoming the barrier pro-

tection, the algorithm starts to ascertain if transmission will take
place or not. This is done by computing the probability r for one
mosquito and one human individual or other animal to contact
through one bite, which is given by

r =
(
(1 − s)pls + sphs

) pQ

τs
, (3)
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Figure 1: Flowchart of the agent-based model for human-mosquito interaction to reproduce scenarios of malaria spreading. Probabilities qh and qm are given in
Eqs. (1) and (2) respectively. The other probabilities are given in Tab. 1. The probability for infecting a human or a mosquito depends on ph and pm, given in
Eqs. (4) and (5) respectively, and also on additional details concerning the dynamics of immunity acquisition of each human individual and the fraction of the
human population composed by children (see text).

where s is the fraction of time in the year with high disease
transmission (percentage of time in rainy season), pls and phs

represent the fractions of the year covered by the low and high
seasons respectively, pQ is the fraction of humans among all an-
imals able to be bitten by one mosquito within the geographical
region covered by the mosquito community, and τs is the dura-
tion of the gonotrophic reproductive cycle. In the agent model,
we use values provided in previous studies, namely pls = 0.5,
phs = 1, pQ = 0.9 and τs = 4 days. In our model a high value of
human blood index was assumed, corresponding to a strong an-
thropophilic mosquito feeding, more typical of Anopheles gam-
biae sensu stricto (s.s.) or An. funestus, and different from
An. arabiensis. Moreover, inspired in Mozambique seasonal-
ity [33, 48], we consider 150 days for the duration of the high
transmission season, i.e. s = 150/365. Notice that during trans-
mission season, one considers a non-zero probability of trans-

mission; in this way, disease transmission may occur during
the whole year, although with higher intensity during the high-
transmission season.

Upon updating the number of healthy humans individu-
als and mosquitoes, the algorithm proceeds to generate one
mosquito bite attempt. Here one introduces the probability
u = 0.25 that long lasting insecticide-impregnated nets (LLIN),
insecticide-impregnated nets (ITN) or indoor residual spraying
(IRS) may protect human hosts from mosquito bites. This pa-
rameter represents the degree of human population protection
resulting from LLIN, ITN or IRS preventive measures, and sim-
ulates the probability of mosquito bite failure due to protective
barrier, assuming the form (1 − u) to be included in the final
mosquito bite probability defined as r(1− u) - see figure 1. Ad-
ditionally, we also introduce the effect of barriers in killing the
mosquito during the bite attempt. In the model, the probability
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of mosquito mortality induced by protective barriers is 0.5.
In the case one of the above factors succeeds, malaria trans-

mission fails. In case all barriers fail, the algorithm finds one
mosquito-human interaction through one bite. If the two inter-
acting agents are infected or none of them is, both populations
remain unchanged and the algorithm starts the next iteration. If
only one individual (either human or mosquito) is infected, the
algorithm ascertains if malaria transmission is successful.

The probability ph for such single bite to effectively transmit
the parasite from an infected mosquito to a healthy human de-
pends on four factors, namely (i) the fraction Mi/M of infected
mosquitoes, the probability kh to get infected from one single
mosquito bite2, the probability wm that the mosquito is ready to
transmit the parasite, and the probability ν of human individual
immunity protection, yielding

ph =
Mi

M
khwm(1 − ν) (4)

and similarly, the probability for one single bite to effectively
transmit the parasite from an infected human to a healthy
mosquito is

pm =
Hi

H
kmwh. (5)

The probability wm is obtained from the fraction of surviving
mosquitoes past the period of parasite development, i.e.

wm = e−qmτlm , (6)

where the parameter τlm is the period of parasite development in
the mosquito. As for wh it measures the fraction of time of the
duration of positive gametocytemia from the maximal period of
human infection,

wh =
τg

τd
, (7)

where τd is the maximal period of human infection and τg is the
duration of positive gametocytemia.

In the agent model we fix km = kh = 0.2, τlm = τlh = 10 days
and τd = 150 days. Notice that the duration of positive gameto-
cytemia is a tunable parameter used for varying wh, which will
be one of the important parameters below. Since τd takes values
between 58 and 90 days (see Tab. 1), the probability wh varies
between 0.387 and 0.7333, a range that includes a phase transi-
tion from malaria eradication to malaria endemic behavior.

Notice that a higher gametocyte density will result in higher
human-to-mosquito transmission efficiency. Consequently, the
concept of gametocytemia reduction is considered equivalent

2The value of the probability to get infected from one single bite, either for
humans as for mosquitoes, is given by the inverse of the number of infected
mosquito bites necessary to infect one human or one mosquito and it estimated
from controlled malaria infection, in laboratory settings [53, 54].

3Gametocyte detection threshold by light microscopy usually retrieves mea-
surements between 5 and 10 gametocytes per µL. But with current molecular
detection methods, that threshold may be as low as 0.1 per µL [36]. It is as-
sumed that during the period of human disease, gametocytemia will occur ac-
cording to a random stochastic process, with a predefined probability of human-
to-mosquito transmission at every mosquito bite in the range of admissible val-
ues [36, 55].

to the effects of treatment with gametocidal agents such as pri-
maquine or methylene blue.

The agent model implements three additional ingredients that
are not usually taken into account in simulation of malaria
transmission dynamics.

First, in the present model we simulate the use of ivermectin
in a fraction of the human population (piv), assuming a global
ivermectin-related mosquito fatality rate (giv) of 0.5. Ivermectin
inhibits sporogony in the mosquito having a partial blocker ef-
fect on human-to-mosquito transmission. We used this mecha-
nism for defining ivermectin biodynamic in our computational
model.

Second, to consider the effect of acquired immunity to
malaria infection. Acquired immunity v against malaria
changes according to the history of infection and the genetic
traits of a particular human individual. The value of v can in-
crease in the case of repeated reinfections, or decrease, in case
no infection is observed during a certain time. The time to ac-
quire protective immunity after every infection episode is typ-
ically longer than that of the immunity loss. We consider that
if the human host does not contact with the parasite during two
years, he/she loses the acquired immunity against the parasite,
while maximal immunity is gained after 5 years with persistent
reinfection. Moreover, maximum protective immunity is differ-
ent from complete protective immunity, as a human cannot be
more than 30% immune, vmax = 0.3. Notice that, the acquired
immunity, parameterized through ν, is incorporated in parame-
ter ph - see Eq.(4) - which is indicated in one of the boxes in the
flowchart of Fig. 1.

Third, the extreme vulnerability to malaria infection of chil-
dren under 5 years of age is a well-known critical factor in
the disease morbidity and mortality. We therefore consider
additional effects for the subgroup of children in the human
population. A simplified age effect is considered: the frac-
tion of children under 5 years of age represents 12% of the
total human population, and for those children immunity is
considered to be absent, with a higher gametocytemia preva-
lence during disease duration, namely during 70% of the time
[27, 39, 40, 42, 43, 44].

Malaria unrelated human mortality, is also considered in our
model. However, its magnitude is considered low, namely
0.015 cases per year, i.e. it has negligible effects in disease
transmission. The system is always initialized with a fraction of
infected mosquitoes of 1%, a fraction of infected humans of 5%
and an initial acquired immunity of v0 = 0.1 for every human
individual4.

Our model has its limitations. Some variables can be mod-
elled with distributions which are derived from standard math-
ematical derivations, such as the time for human disease recov-
ering, treated here as a stochastic variable exponentially dis-
tributed. Other random variables, however, not necessarily re-
lated with exponentially decaying processes were taken as uni-
formly random variables, e.g. variables related to mosquito bit-

4Except children under 5 years of age, who are assumed to have an acquired
immunity of 0.0
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Figure 2: Illustration of the three scenarios tuned by gametocytemia parameter wh: (a) Scenario A, disease epidemic prevalence (wh = 0.453), (b) Scenario B,
disease eradication (wh = 0.387), and (c) Scenario C, transition between prevalence and eradication (wh = 0.420). In all cases piv = 0.

ing behavior, human disease duration or gametocytemia occur-
rence, since no other forms of statistical distribution have been
firmly established. Notice that the risk of using other distri-
butions such as Gaussian, Poisson or Gamma distribution, can
lead to scenarios and transition features different from those re-
ported below, but such assumptions need further investigations
and are out of the scope of the present work. Another sim-
plification is the parameterization of ivermectin. It is known
that, ivermectin is an anti-mosquito measure with a fast decay-
ing rate: mosquitoes taking a blood meal containing this drug
have an enhanced mortality rate that is directly related to the
ivermectin concentration present in the blood. This fact is not
incorporated in the present model, similarly to other studies in
this topic [10, 12].

3. Assessing the effect of drug therapies

In this section, we address separately the effect of gametoci-
dal drugs and of ivermectin, choosing proper values for gener-
ating each of three possible scenarios:

• Scenario A: Disease endemic/epidemic prevalence (Hi > 0
and Mi > 0).

• Scenario B: Disease eradication (Hi = 0 and Mi = 0).

• Scenario C: Critical phase transition between endemic
disease and eradication, where some of the simulations
evolve to disease eradication, while other to epidemic
prevalence.

3.1. The role of gametocytemia in disease dynamics

We define the effect of ivermectin as null at piv = 0 and gen-
erate illustrative examples of each scenario. For Scenario A,
we consider τg = 68 days of gametocytemia yielding a value of
wh = 68/150 = 0.453, for Scenario B we consider τg = 58 days
of gametocytemia, i.e. wh = 0.387, and for Scenario C τg = 63
days (wh = 0.420). Results are shown in Fig. 2.

Figure 2a illustrates Scenario A, where both human and
mosquito communities evolve in periodic cycles, reflecting the
seasonal character of malaria incidence, changing between low
and high transmission seasons. Here, none of the infected com-
munities converges to eradication. In Fig. 2b one observes the
opposite: both communities eventually get cured with no cases
of infection. In the plotted example this occurs after one sea-
sonal cycle (1 year). For the Scenario A, we obtained 12%±4%
of infected humans and 1.5% ± 0.7% of infected mosquitoes,
while for the Scenario B, we obtained 1% ± 3% of infected hu-
mans and 0.2% ± 0.4% of infected mosquitoes.

In Fig. 2c we observe the intermediate situation, between en-
demic prevalence and eradication. Two different outcomes oc-
cur at identical gametocytemia levels: in black dashed lines we
plot the evolution of human community in a simulation where
the disease persists for more than 30 years and in red solid lines,
one observes the resulting community evolution towards a state
of eradication, after around 20 years. This intermediate sce-
nario occurs for wh ∼ 0.42.

For the eradication case of Scenario C we obtained 3%± 3%
of infected humans and 0.3%±0.4% of infected mosquitos, and
for the prevalence situation, 6% ± 3% of infected humans and
0.7% ± 0.4% of infected mosquitos.

Two important features must be addressed at this point. First,
the time span needed for eradication at the transition value is
considerably larger than for values below the transition. This is
a common feature in critical phase transitions [56].

Second, the different outcomes from Scenarios A, B and
C result from small changes in the time of gametocytemia
prevalence: the differences between scenarios A, B and C are
not greater than 5 days, which represents gametocytemia dif-
ferences of ±3.3%. Consequently, small changes in gameto-
cytemia status may result in significant changes on the level of
epidemic outcome, a feature that shows the importance of ga-
metocytemia in controlling malaria transmission.

To better uncover the transition from endemic prevalence to
eradication due to gametocytemia control, we generate 10 dif-
ferent realizations for a set of different wh values within a range
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Figure 3: (a) Probability of epidemic outcome with changing gametocytemia
duration at phase transition. The three scenarios illustrated in Fig. 2 are indi-
cated with arrows. The function in Eq. (8) is plotted with dashed line. The
fraction of infected humans is averaged over 10 realizations for each value of
wh. (b) Annual malaria incidence per 100 habitants and its correlation with the
positive gametocytemia wh. Correlations were computed by averaging over 10
realizations for each value of wh.

covering all three scenarios. Results are shown in Fig. 3a. As
one sees, while for Scenarios A and B, all realizations con-
verged to the same state, prevalence or eradication respectively,
for Scenario C one fraction of the realizations ended in endemic
prevalence while the rest converged to eradication. Therefore,
we argue that there is a critical value of gametocytemia days
that guarantees full recovery of the community.

A quantitative approach for estimating this transition game-
tocytemia value is to approximate the transition curve in Fig. 3a
by a step function of the form

Fg(wh) =
1

1 +

(
w(t)

h
wh

)αg
, (8)

yielding an estimate for the transition gametocytemia value of
w(t)

h = 0.42 and for the exponent αg = 32. The functional form
in Eq. (8), is a kind of Fermi-function, which, in this case, en-
ables to parameterize the transition from eradication to preva-
lence with two single parameters, a critical value w(t)

h for which

Fg(w(t)
h ) = 1/2, and a transition “length” αg which controls how

sensitive the transition is with respect to variations of gameto-
cytemia around the critical value.

In real situations of malaria epidemics, there are several dif-
ficulties in properly determining the annual malaria incidence5,
which is an adequate measure for evaluating the gravity and
extension of the epidemic. Through simulations, the annual
malaria incidence can not only be more easily calculated, but it
is also possible to investigate how it relates with other variables.
As shown in Fig. 3b, we observe a clear linear relation between
the average malaria incidence I and the gametocytemia parame-
ter wh. In the plot, for each value of positive gametocytemia wh

we obtained the average of the annual malaria incidence over
10 different simulations. A linear regression of the simulation
results yields

I = −202 + 508wh , (9)

with a coefficient of determination of r2 = 0.9983 and a p-value
of P < 0.001. Notice that for wh < 202/508 . w(t)

h , close to ob-
tained transition value of gametocytemia, the annual incidence
is negative, meaning that the system converges to a scenario of
disease eradication. Only for values above the transition value
one observes a positive malaria incidence.

3.2. The role of ivermectin in transmission prevention
To investigate the role of ivermectin we fix the value for

the time of positive gametocytemia, since it appears to be in-
dependent from human-to-mosquito transmission efficiency.
We choose a stable epidemic background with 90 days of ga-
metocytemia, corresponding to wh = 0.6. To investigate the
mosquito mortality due to ivermectin, we first focus on three
different values of the fraction of human population under iver-
mectin treatment, namely piv = 0, 0.05, 0.1. Each of these three
values illustrates one of three different regimes, respectively (i)
absence of ivermectin treatment, (ii) weak ivermectin adminis-
tration and (iii) moderate ivermectin administration.

Our results show that, while in the absence of ivermectin
administration the mosquito mortality during parasite develop-
ment is 79.6%, for piv = 0.05 the mortality increases to 84.4%
and for piv = 0.1 to 88.1%. In the case of bite failure due to bar-
rier protection, the mosquito mortality is considered relevant,
and set at girs = 0.56.

We have also observed that, in the case of ivermectin random
usage in 5% of the population, disease eradication may occur
roughly 20 years later. But if ivermectin is administered to 10%
of the human population, a disease eradication outcome may be
possible much earlier (less than 4 years). Moreover, the admin-
istration of ivermectin induces a reduction in the frequency of
healthy mosquito bites in an infected human (not shown).

5Annual malaria incidence represents the instant expected average of
malaria incidence per 100 inhabitants during one full year, if transmission con-
ditions remain unchanged.

6There is no precise knowledge concerning the probability for the mosquito
to die due to ITN, IRS or LLIN barriers. We assumed a value of 0.5, which
together with a coverage of ITN of 25%, results in a global mortality due to
ITN barriers of 0.25× 0.5 = 0.125. This value is probably below the real value,
since in several African countries the LLIN/ITN/IRS coverage may be as high
as 80%.
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Figure 4: (a) Probability of epidemic outcome with probability of ivermectin
treatment at phase transition, and approximate fit function. Here we run 10
trials for each value of piv. (b) Annual malaria incidence per 100 habitants and
correlation with ivermectin treatment probability (piv). Positive gametocytemia
is fixed at wh = 0.6.

Varying the fraction piv uncovers also a continuous phase
transition from prevalence to eradication. See Fig. 4a. Differ-
ently from the transition by gametocytemia variation, here the
phase transition is only visible for high gametocytemia levels,
typically wh = 0.6 or larger. A possible explanation for this is
the strong inhibitory effect of ivermectin on human-to-mosquito
disease transmission.

In Fig. 4a, a phase transition from epidemic prevalence to dis-
ease eradication can be observed. Here, the critical value of the
human fraction with ivermectin is approximately piv = 0.058.
Higher piv values induce faster disease eradication scenarios.
Similarly to Eq. (8), the step function can be modelled through
the function

Fiv(piv) = 1 −
1

1 +

(
p(t)

iv
piv

)αiv
. (10)

The fitting parameters here are piv = 0.058 and αiv = 15.
Comparison of Figs. 3a and 4a, indicates that a more inten-

sive use of ivermectin in the human population is qualitatively
equivalent to a shorter gametocytemia time needed to mantain
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Figure 5: (a) The evolution of the number of infected humans in an epidemic
status with wh = 0.6 with piv = 0. (b) Application of ivermectin treatment
with piv = 0.05 to the situation shown in (a), keeping positive gametocytemia
at wh = 0.6. (c) Application of gametocytemia reduction with primaquine from
wh = 0.6 to wh = 0.467, without ivermectin (piv = 0). (d) Combined ga-
metocytemia reduction with primaquine and ivermectin treatment in epidemic
status, with wh = 0.467 with piv = 0.05.

disease prevalence. The outcome of massive administration of
ivermectin in a fraction of the human population reveals strong
correlation with an effective reduction on the duration of posi-
tive gametocytemia. Consequently, both the probability of iver-
mecting treatment piv and annual malaria incidence are anticor-
related, as shown in Fig. 4b. Here, we run 10 simulations for
each value of piv ranging from 0.020 to the value 0.058, which
corresponds to the obtained critical value at the phase transition
in Fig. 4a. The linear regression in Fig. 4b yields

Imalpiv = 97 − 1509piv (11)

with a Pearson correlation of r2 = 0.9499 and a p-value of
P < 0.001. Similarly as what we discussed above for Eq. (9),
here we observe positive incidence only for values of ivermectin
piv . 97/1509 . p(t)

iv .

3.3. Combined use of gametocidal agents and ivermectin: a
copula approach for predicting optimal administration in-
tensities

As shown in the previous Sec. 3.2, in a stable epidemic sta-
tus, with 90 days of positive gametocytemia (wh = 0.60), af-
ter the use of ivermectin in 5% of the human population, there
is a reduction in the fraction of infected human hosts. Com-
pare Fig. 5a with Fig. 5b. However, this reduction is not robust
enough to achieve complete disease eradication. Similarly, after
a reduction in the days of positive gametocytemia, namely from
90 to 70 days, with no ivermectin treatment, there is a weaken-
ing in disease transmission, although also not robust enough to
achieve eradication (see Fig. 5c). But combining both effects,
namely with a gametocytemia reduction from 90 to 70 days and
ivermectin preventive treatment in 5% of the population, dis-
ease eradication is rapidly attained (Fig. 5d).

Apparently, the combination of these separate strategies may
lead to a stronger action in suppressing malaria infection in
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the human population. Our quantitative analysis however pro-
vides a framework for deriving an estimation of how strong
these strategies should be, when used in combination, in or-
der to achieve full disease eradication. Assuming both fac-
tors to be independent from each other, a first order approx-
imation to estimate the number of infected humans would be
Ĥ = Fg(wh)Fiv(piv)H and eradication would be the region in
parameter space (wh, piv) satisfying

Fg(wh)Fiv(piv) <
1
H
. (12)

The fact that the time period of the parasite development in
the mosquito is generally longer than 10 days (see Tab. 1), may
explain the reason for the effectiveness of ivermectin in preven-
tive campaigns directed to other endemic parasites in Africa.
However, this effect may not be only related to an overall reduc-
tion in the number of mosquitoes, but also to a selective inter-
ference in the process of parasite development towards sporo-
zoite inside the mosquito, and a preferential killing of infected
mosquitoes. Therefore, both factors are correlated and the pre-
diction presented above is biased towards a worst-case scenario.

4. Model validation and consistency tests: comparison with
malaria transmission in Chimoio

In this section, we validate the agent model simulations
against empirical data, namely time series at weekly inter-
vals collected at Chimoio region in Mozambique [33]. In this
African region, malaria is endemic revealing a trend, which in-
creases during the four to five months of the wet season (high
transmission season) and decreases during the rest of the year
(low transmission season). The empirical time series includes a
total of 490 561 malaria cases in a population of H = 324816
human individuals, recorded from January 1st 2006 to Decem-
ber 31st 2014. During these 9 years, weekly malaria incidence
Iw was analyzed in both the empirical set of data and in simu-
lated data generated by the agent model. Figure 6a shows both
time series during 9 years (468 weeks).

From the total time of 30 years covered by the simulation,
we discarded the first 14 weeks in order to weaken the influ-
ence of the initial conditions and to synchronize seasonality
with Mozambique empirical data. Considering total simula-
tion time, we have used three partial 468 weeks’ time series
(from weeks 15 to 482, 483 to 950 and 951 to 1418) which were
very similar in global behavior (data not shown). For presenta-
tion purposes we have used the last one of these 3 time-series
(from week 951 to 1418), revealing good correlation between
our model and Mozambique empirical data, as in the horizontal
axis label of Fig. 6a. The reason for excluding so many years of
data was related to the necessity of using a time gap identical to
the one of Mozambique empirical series (468 weeks). Since we
scaled both populations to a maximum number of individuals,
we neglect here demographic effects, which stand as a good ap-
proximation, as long as the human population density thus not

exceed the radius of activity of individual mosquitoes. 7

The simulation uses 64 days of positive gametocytemia
(wh = 0.427), which relates to a marginally higher human-
to-mosquito disease transmission efficiency, than that found at
phase transition (cf. Fig. 3a). This validation procedure only
relates to the transmission model, not including therapeutic in-
terventions with ivermectin or primaquine.

In Fig. 6b we plot the auto-correlation functions of the empir-
ical data and of the simulation. The autocorrelation is defined
as

γ(τ) =
〈(Iw(t + τ) − Īw)(Iw(t) − Īw)〉

σ2
Iw

, (13)

where Īw and σ2
Iw

are respectively the mean and variance of
the incidence series and 〈·〉 represents the average over time
t. Apart from a deviation of the local extremes, the periodicity
of the simulated scenario matches rather well with the real sea-
sonal oscillation period (∼ 1 year). To quantify the similarity
between real data and agent model simulation with computed
the usual performance metrics, namely the mean absolute error
(MAE)

MAE =
1
n

n∑
t=1

∣∣∣Îw(t) − Iw(t)
∣∣∣ (14)

with Îw(t) and Iw(t) representing the simulated and real inci-
dence value and n = 468 (weeks), the mean absolute percentual
error (MAPE)

MAPE =
1
n

n∑
t=1

∣∣∣∣∣∣ Îw(t) − Iw(t)
Iw(t)

∣∣∣∣∣∣ (15)

and the root mean square error

RMSE =

1
n

n∑
t=1

(Îw(t) − Iw(t))2

1/2

. (16)

The computation yields MAE= 0.00152, MAPE= 0.558 and
RMSE= 9.54 × 10−5. The simulation is within fluctuations of
50% of real incidence values.

We also compare the distribution of simulated and real in-
cidence values, as plotted in Fig. 6c: the cumulative distri-
butions match rather well, with a small Kolmogorov-Smirnov
score (0.22) having a p-value smaller than 0.001.

Importantly, in all simulations, mosquito and human infec-
tion is strongly related, showing a similar oscillatory pattern.
Moreover, only a small fraction of the mosquito population
survived beyond the parasite development in the mosquito (10
days), which leads to a strong correlation between endemic
prevalence in humans and mosquitoes in all endemic scenarios
[26].

7In realistic conditions, mosquito population size is usually an unknown pa-
rameter, with spatial heterogeneous distribution according to topography, veg-
etation and water conditions for larval breeding. Consequently, it can only be
guessed as an approximation, resulting from data obtained with the help of
mosquito traps and larval water count in water reservoirs, or indirectly from
counting mosquito bites.
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Figure 6: (a) Time series of weekly malaria incidence Iw, comparing empirical data from Ref. [33] (top) against data from one realization of the agent model
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line), compared with the auto-correlation from the agent model simulation. (c) Cumulative density functions (CDF) of the malaria incidence for both empirical and
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Description Theory Model
Basic reproductive number (R0) 1.619 0.973
Annual entom. inoculation rate (EIR) 0.961 0.965
Fraction of infected mosquitoes (m) 2 2
Human feeding rate (a) 0.238 0.239
Sporozoite rate (Z) — 0.006
Force of infection (λ) 0.47 0.284
Mosquito-to-Human transmission (b) 0.18 0.108
Human-to-Mosquito transmission (c) 0.091 0.090
Human recovery rate (qh) 0.011 0.011
Mosquito daily mortality (qm) 0.1 0.1

Table 2: Classical Ross parameters from theory and model simulation for en-
demic scenario A, close to phase transition, i.e. with 68 days of gametocytemia
(wh = 0.453). The two main quantities, reproductive number R0 and the annual
entomological inoculation rate EIR, are within the classical theoretical values.

Our model assumes rules based on classical and neoclassical
assumptions, including several parameters from the classical
Ross-MacDonald model [16, 17, 57]. The two main quantities
in this classical model are the annual entomological inoculation
rate EIR, which is defined as the number of bites per year on a
human host from an infectious mosquito, and the reproductive
number R0, which represents the number of infected humans
generated from one single infectious mosquito in a population
of susceptible and non-immune individuals.

For evaluation of our model, we compare the values obtained
in our simulations with the expected theoretical ones, which
are given in Refs. [16, 57]. Results are given in Tab. 2. For
estimating the annual entomological inoculation rate we use the
definition

EIR = 365 m a Z, (17)

where m is the mosquito density (number of mosquitoes per
human individual, m = Nm

Nh
), a is the human feeding rate given

by (see Tab. 1 and Sec. 2), a = (pQnb(1 − u)s)/τs, and Z is
the sporozoite rate (fraction of infectious mosquitoes). For es-
timating the reproductive number, we use the Ross definition
[16]

R0 =
ma2bc
qhqm

, (18)

where b is the mosquito-to-human transmission efficiency, b =

kh(1 − v̄), c is the human-to-mosquito transmission efficiency,
c = kmwh, and qh and qm are given by Eqs. (1) and (2) respec-
tively. As indicated in Tab. 2, the expected theoretical values
of both these quantities are well reproduced by the simulations.
The lower value of R0 in the simulation, when compared with
Ross theory is due to the fact that the b value in the simulation
only takes into account bites from infectious mosquitoes.

5. Discussion and conclusion: towards medical strategies

We introduce an agent model for assessing the effect of ga-
metocytemia and drug administration in epidemiological sce-
narios of malaria. Our model was calibrated by consider-
ing various aspects of the disease dynamics and supported by
field data. We uncover the existence of a phase transition be-
tween an absorption state with disease eradication and an en-
demic/epidemic regime.

Because several parameters from our model were based
on the Mozambique epidemic environment, validation of the
model implementation took place by the comparison with field
collected data series for malaria incidence in the typical sea-
sonal endemic malaria region of Chimoio, Mozambique. Im-
portantly, this field data time-series covered a long time period
of malaria incidence, namely 9 years [33]. Although the pa-
rameter values in Tab. 1 are case-dependent, they are within the
range of typical values described in the literature.

In complex models, phase transition stands as a critical con-
cept of stochastic simulation. Its precise definition is useful
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to identify the occurrence of state transition between disease
eradication and endemic stability, which can be used for bet-
ter preventive planning. At critical equilibrium points, malaria
transmission dynamics was defined taking into account the pre-
dicted rational use of anti-malarial strategies in the near future.

Special attention was given to the role of gametocytemia in
human-to-mosquito transmission. All our model simulations
assumed the duration of positive gametocytemia to be in the
range of 0.387 to 0.733 of total infection time. With a small
variation in gametocytemia prevalence it was possible to define
all tested transition phases. These small changes in gameto-
cytemia were considered as a model for effective gametocidal
treatment, such as the administration of primaquine or methy-
lene blue [36, 55, 58, 59, 60, 61, 62]. Transition phases were
clearly defined, promoting a better understanding of the disease
dynamics, as well as of the points of sudden stochastic transi-
tion from epidemic prevalence to disease eradication.

In the present model, we also analyzed preventive interven-
tion with ivermectin, a well-known agent with capability of
interfering with human-to-mosquito transmission. An inter-
vention with ivermectin may be highly selective in targeting
recently infected mosquitoes, killing the mosquito before the
complete development of the parasite in the mosquito. This as-
pect bears no relation to gametocytemia prevalence [9, 10, 12].
Apparently, the role of mosquito mortality from ivermectin in
disease transmission does not significantly overlap with the ef-
fect of gametocidal drug intervention.

However, notice that, in this model, the action of primaquine
is based on its general properties as a gametocydal agent. For
simplicity, we have assumed gametocytemia duration reduction
in Plasmodium falciparum as the main drug effect, neglecting
its action on other forms of Plasmodium. Methylene blue can be
taken as an alternative and as a potential gametocydal agent, but
our model intends to catch general spreading regimes and there-
fore, we did not focus on any other major drug characteristics.
Moreover, while the results may be encouraging, showing that
ivermectin coverage as low as 5-10% can have a high impact, a
next step should be in the direction of considering the pharma-
cokinetics of this drug which could afterwards provide insight
on how this prolonged coverage could be achieved with the cur-
rent formulations. The detailed biochemical mechanisms that
trigger gametocytogenesis in Plasmodium are not well known.
However, this process may be influenced by host immunity and
anti-malaria therapy [36, 55]. For human-to-mosquito trans-
mission to be effective, male and female stage V gametocytes
must be present in the blood during mosquito feeding. Once in-
side mosquito midgut, gametocytes will mature to gametes pro-
moting fertilization and maturation to zygote stage, ookinete,
oocyst, and finally to the sporozoite, the infectious form of the
parasite present in mosquito salivary glands. Common gameto-
cidal drug agents (primaquine, artemisinin and methylene blue
[58, 59, 60, 61, 62, 63, 64]) usually fail to act in the early stages
of gametocyte maturation. But their inhibitory action on Game-
tocytes in stage V may be very effective in reducing the time of
gametocytemia duration [55].

Vector control, by itself, is not enough to eradicate disease
transmission. Long standing cyclic positive gametocytemia in

a few human individuals may perpetuate transmission for a long
time and more attention should be directed towards human dis-
ease reservoirs as possible hot-spots for chronic mosquito in-
fection. Preventing mosquito infection from these hot-spot hu-
man reservoirs by reducing the time of positive gametocytemia
with the help of a selective mosquito-killing-after-bite preven-
tive drug strategy with ivermectin, may turn out to be a more
effective strategy in the fight against malaria.

The combined intervention of gametocidal agents and iver-
mectin may also be useful in reducing pressure in areas where
drug resistance is becoming a major problem as a result of
new mutations in the background of mass drug administration
[65, 66]. Our results seem to indicate that such a theoretical
possibility may deserve serious consideration in future malaria
prevention campaigns.

Dynamical aspects of human therapy with drug agents such
as artemisinin or quinine (with specific intervention in disease
status and gametocytemia probability), population heterogene-
ity and human migration were not included in the present anal-
ysis. Model simulations assumed the existence of a typical and
isolated African village with limited drug availability.

Our computational model allowed us to test the combined use
of different preventive interventions with antimalarial agents
like ivermectin (killing mosquitoes during parasite’s develop-
ment) or primaquine (gametocytemia reduction) that could sig-
nificantly influence disease outcome, and therefore contribute
to a better knowledge of disease transmission dynamics in dif-
ferent endemic scenarios. With the present model, it is possible
to recreate simulations for different disease regions with spe-
cific seasonality conditions, and to anticipate events as a result
of selective interventions in certain human subgroups in all sim-
ulations.

From the main findings of this work, a set of valuable in-
sights are possible. First, in endemic locations, small differ-
ences in gametocytemia prevalence in human populations, ob-
tained from preventive intervention in a small fraction of the
population with gametocidal drugs [58, 59, 60, 61, 62, 63], may
result in very different outcomes, despite the relative stability of
classical human-to-mosquito infectiousness parameter c.

Second, the demonstrated mosquitocidal properties of iver-
mectin in the first days after a mosquito feed, may potentiate the
effect of gametocidal agents with drastic interference in human-
to-mosquito transmission efficiency. This preventive action
may also benefit from its combined use with LLIN/ITN/IRS.

Third, our model indicates that with a combined ivermectin
and primaquine scissor-like intervention, malaria eradication
may be possible in a small African village after a short period
of time.
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[12] A. Ouédraogo, G. Bastiaens, A. Tiono, et al., Efficacy and safety of the
mosquitocidal drug ivermectin to prevent malaria transmission after treat-
ment: A double-blind, randomized, clinical trial, Clin. Infect. Dis. 60 (3)
(2015) 357–365.

[13] H. Alout, B. Krajacich, J. Meyers, et al., Evaluation of ivermectin mass
drug administration for malaria transmission control across different West
African environments, Malar. J. 13 (1) (2014) 1–10.

[14] A. Mendes, I. Albuquerque, M. Machado, J. Pissarra, P. Meireles,
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