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ABSTRACT

In future power systems, electrical storage will be the key technology for balancing feed-in �uctuations.With increasing share of renewables and
reduction of system inertia, the focus of research expands toward short-term grid dynamics and collective phenomena. Against this backdrop,
Kuramoto-like power grids have been established as a sound mathematical modeling framework bridging between the simpli�ed models from
nonlinear dynamics and themore detailedmodels used in electrical engineering. However, they have a blind spot concerning grid components,
which cannot be modeled by oscillator equations, and hence do not allow one to investigate storage-related issues from scratch. Our aim here
is twofold: First, we remove this shortcoming by adopting a standard practice in electrical engineering and bring together Kuramoto-like and
algebraic load-�ow equations. This is a substantial extension of the current Kuramoto-like framework with arbitrary grid components. Second,
we use this concept and demonstrate the implementation of a storage unit in a wind power application with realistic feed-in conditions. We
show how to implement basic control strategies from electrical engineering, give insights into their potential with respect to frequency quality
improvement, and point out their limitations by maximum capacity and �nite-time response. With that, we provide a solid starting point for
the integration of �exible storage units into Kuramoto-like gridmodels enabling to address current problems like smart storage control, optimal
siting, and rough cost estimations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099241

The Kuramoto model describes the phase dynamics of coupled
oscillators and is a paradigm for self-organized synchroniza-
tion. Synchronization also plays a crucial role in power sys-
tem operation. Against this backdrop, Kuramoto-like power grid
models are used to investigate grid stability and dynamics. Short-
term feed-in �uctuations by wind and solar plants are known
to induce frequency �uctuations and, therefore, pose a major
challenge to frequency quality. Electrical storage is the key tech-
nology for balancing these �uctuations and ensure power qual-
ity. In order to address this issue with Kuramoto-like grids,
we extend the modeling framework by storage units with arbi-
trary control schemes. With this, Kuramoto-like grids can be
used to investigate di�erent aspects of storage integration like

optimal embedding and smart novel control schemes, which
are able to cope with the turbulentlike nature of wind and
solar.

I. INTRODUCTION

The transition of the electrical energy system toward sustain-
ability is paralleled by grid decentralization and increasing percent-
age of renewables. This development requires novel grid operation
and design concepts. Electrical storage will be a key component
of future energy systems to balance feed-in variations and mitigate
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power quality problems induced by stochastic renewables.1–3 There-
fore, new research issues emerge concerning optimal grid embedding
and sizing of storage facilities as well as smart storage-control strate-
gies, which are customized to the speci�c application purpose and
feed-in properties.

Wind and solar have characteristic non-Gaussian statistics over
a broad range of time scales from seasonal and diurnal imbalances
down to subsecond �uctuations.3,4 Short-term �uctuations on the
second and subsecond scale are a particular challenge for power
system operation, since standard load balancing such as primary
control5 does not operate yet on these time scales. As a consequence,
frequency quality is signi�cantly reduced.1,2,6 This problem is exacer-
bated by a side e�ect: renewables are typically connected to the grid
via inverters. On the one hand, the replacement of conventional gen-
erators leads to a decrease of system inertia, and, therefore, the grid
becomes more sensitive to sudden perturbations in terms of feed-in
�uctuations. On the other hand, inverters have di�erent dynamical
features than synchronous machines, as they are not governed by an
inherent physical relationship to the frequency.7–9

Against this backdrop, there is a growing interest in short-
term dynamics and multidisciplinary approaches including self-
organization and collective phenomena. This requires a profound
mathematical modeling framework mediating between the simple
conceptual models from nonlinear dynamics and the detailed mod-
els used for case studies in electrical engineering. Over the past
decade, the Kuramoto-like modeling framework has been estab-
lished as a suitable instrument for this purpose. It is derived from
the original Kuramoto model, which describes the phase dynam-
ics of coupled oscillators, in particular, the phase transition from
incoherence to self-organized synchronization.10,11 Kuramoto-like
models have been used to address various issues of power sys-
tem dynamics and topology-stability interplay.12–19 In a previous
work,6 it was shown how the turbulentlike character of wind feed-
in, in particular, its intermittency, is directly transferred into fre-
quency and voltage �uctuations. This was con�rmed by real-world
frequency measurements.20,54 Other recent studies on Kuramoto-
like grids with stochastic feed-in investigated the propagation of
frequency quality deterioration21,22 and potential routes to system
instability.23 However, the current Kuramoto-like framework does
not allow implementing grid components, which are not modeled
by oscillator equations. This shortcoming a�ects the integration
of storage units with arbitrary control strategies from scratch and
hence prevents from fundamental investigations of storage-related
issues.

With our study, we �ll this gap. The primary target was to inte-
grate a �exible storage model, which does not imply any restrictive
assumptions on storage features or control strategies beforehand. For
this purpose, we introduce a novel approach by bringing together
Kuramoto-like di�erential and algebraic load-�ow equations, which
are a standard tool in power-�owanalysis. The general idea of embed-
ding grid components bymeans of load-�ow equations has a broader
range of application: it can serve as a starting point to implement arbi-
trary grid components into Kuramoto-like power grids, e.g., power
inverters with various types of control or nodes connecting di�er-
ent grid levels. This broadens the scope of Kuramoto-like models
signi�cantly. At the same time, the modeling framework is still a
reduced approach compared to the detailed models used in electrical

engineering and yet simple enough to address power grid dynamics
from the viewpoint of self-organization and collective dynamics, i.e.,
methods beyond the standard engineering practice.

For demonstration purposes, we consider frequency quality
improvement by means of a storage facility with limited capacity in
a simpli�ed power system subjected to realistic wind feed-in. This
application example has been identi�ed as one of the key issues on
the road to power systems with high percentage of wind and solar
by electrical engineering communities.1,2,24–26 Against this context,
our problem setting refers to a current standard control problem
in electrical engineering and control theory. Jabir et al.25 and Zhao
et al.26 provide an overview on di�erent smoothing approaches for
wind power applications. Jabir et al. identify battery storage as the
most promising candidate for e�ective power quality management,
which, however, still can be improved by new control strategies.
Li et al.27 considered a hybrid battery storage system with a novel
state-of-charge based control strategy for smoothing power output
�uctuations. Lee et al.28 investigated the limitation of ramp rates of
wind power by means of a storage system with stochastic optimal
control. Hamsic et al.29 studied the introduction of a �ywheel stor-
age system into an isolated power system including wind turbines. A
novel control concept for the integration of renewables was proposed
by Hesse et al.30 in the form of a “virtual synchronous machine”,
which is an inverter mimicking the response of a synchronous
machine.

In order to provide a guide to the implementation of stor-
age units into Kuramoto-like grids, which can serve as a starting
point for follow-up research, we demonstrate basic control strate-
gies adopted from electrical engineering and give insights into their
potential and limitations with respect to di�erent aspects of fre-
quency quality improvement. The paper is organized as follows: First,
we brie�y address electrical storage in wind and solar applications
and list the features of real storage units, which should be imple-
mentable into themodel. Then, we outline Kuramoto-like power grid
modeling and describe how to integrate storage units by means of
load-�ow equations. After that, we specify the simpli�ed power sys-
tem with realistic wind power input, which we use in this study. We
close the subsection with an explanation of the frequency quality
assessment we use and how this is related to established electri-
cal engineering practice. Then, we turn to the application example:
We start with a preliminary performance assessment by considering
the ability to ensure stationary operation as a function of max-
imum capacity. Subsequently, we demonstrate how to implement
three basic control strategies, namely, state-of-charge feedback reinter-
preted as storage resourcemanagement, droop control, and ramp-rate
control.We investigate their potential with respect to frequency qual-
ity improvement. It shows that these control concepts have di�erent
advantages according to their underlying main target. It is pointed
out that the ambition in terms of control strength or tolerance range
has to be carefully adjusted to the storage dimension in order to
perform optimally. Finally, we demonstrate that these strategies are
sensitive against �nite-time response and con�rm that short-term
frequency quality applications require storage and control systems
with rapid response. We conclude with a summary of the main
results and give an outlook to storage-related problems, which can
now be addressed within the context of Kuramoto-like power grid
models.
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II. MODEL AND METHODS

A. Electrical storage

Electrical energy storage31 denotes the process of converting
surplus electrical power into a storable form and reserving it, until
it is converted back when required. It is commonly categorized by
the form of energy stored but also in terms of its technical features
like response time or capacity or its function. Electrical storage is
already or considered as a promising candidate for various wind and
solar power applications. The type of storage follows its function
or, to be more precise, the underlying time scale of power vari-
ability. For long-term storage applications like time-shifting, peak-
shaving, seasonal storage, and mid-term frequency control, storage
types with large energy dimensions are used, which do not nec-
essarily feature fast response, e.g., pumped hydro, hydrogen-based,
or compressed air storage. Short-term frequency quality improve-
ment and power output smoothing require rapid response (ranging
from a few seconds to milliseconds), which is usually paralleled by
smaller energy capacity. Candidates for this application are �ywheels,
batteries, superconducting magnetic energy storage, and (super)
capacitors.24,25

The storage model to be developed has to meet two require-
ments: On the one hand, simpli�cations are essential in order to �t
the model into the Kuramoto-like framework. On the other hand,
all relevant characteristics of real storage operation have to be imple-
mentable, namely:24,25,31

• E�ciency
In practice, the energy conversion processes cannot be realized
without losses. The e�ciency factor η gives the ratio of input to
output energy. It depends on the type of storage.

• Maximum energy capacity and power rating
These de�ne the main dimensions of the storage facility. The
energy capacity is the maximum energy the storage unit is able
to deliver and hence serves as an upper limit for the amount of
energy stored. The power rating corresponds to the maximum
instantaneous supply.

• Control strategies
The storage-control strategy determines the storage output at time
t as a function of one or more feedback variables. It can be used to
manage the storage resources or to provide system services like
frequency control and power output smoothing.

• Response time
The storage unit has a �nite response time e�ecting a time
delay between the feedback signal and its reaction. The response
time depends on the type of storage and the underlying control
mechanism.

B. Kuramoto-like power grid models

Kuramoto-like grid models are based on networks of syn-
chronous machines with producers (generators) and consumers
(motors) convertingmechanical power into electrical power and vice
versa. Real and reactive power is transferred among these nodes via
transmission lines. The topology of the underlying network is con-
densed in the nodal admittance matrix, {Yij}i,j=1,...,N

, with N being

the number of nodes. We adopt the common assumption of loss-
less transmission, i.e., neglectable conductancesGij = Re(Yij), which

yields Yij ≈ iIm(Yij) = iBij with susceptance Bij. This assumption
holds for transmission grids but not for the low and medium voltage
level distribution grid or microgrids. (For a Kuramoto-like micro-
gridmodel including losses bymeans of phase shifts in the sinusoidal
coupling term, see Auer et al.21) Each node i ∈ Mgrid of the grid is
associated with a complex nodal voltage Ei = Eie

iδi , with Ei being
the voltage magnitude and δi the phase with respect to a reference
frame rotating with nominal frequency. (Hence, δ̇i = ωi = 0 means
that node i is at nominal frequency.)

The coupled frequency-voltage dynamics of the synchronous
machines are given by32,33

miδ̈i = γiδ̇i + Pi −
N

∑

j=1

BijEiEj sin δij, (1a)

αiĖi = Ci + βi(Ēi − Ei) − Ei + χi

N
∑

j=1

BijEj cos δij. (1b)

The parameters mi and γi denote the total inertia and e�ective
damping and Pi is the mechanical power feed-in or consumption.
Pij = BijEiEj sin δij is the real power transfer between nodes i and j,
and the interaction term in Eq. (1b) is related to reactive power �ows.
αi, Ci, and χ can be calculated from machine parameters. The term
βi(Ēi − Ei) mimics a proportional voltage controller, which pulls the
voltage toward its nominal value.

In electrical engineering, the model given by Eqs. (1a) and (1b)
is called a “one-axis model” or a “3rd order model”, indicating that
three di�erential equations (δ̇, ω̇, Ė) are required. For a comprehen-
sive discussion of the hierarchy of models ranging from 6th to 2nd
order, see Machowski et al.32 When introduced into the Kuramoto-
like framework, Eqs. (1a) and (1b) were interpreted as a Kuramoto
model with additional inertia plus a nontrivial time-dependent cou-
pling term Kij(t) = BijEi(t)Ej(t).33

While inKuramoto-likemodeling the consumer nodes are com-
monly treated as synchronousmotors according to Eqs. (1a) and (1b),
in electrical engineering the loads are often assumed to be constant
admittances, which can be eliminated as passive nodes via Kron
reduction.32,34 Note that the model given by Eqs. (1a) and (1b) was
derived for synchronous machines and does not hold for inverters,
although it was shown that in the case of droop-controlled inverters,
the dynamical equations can be formulated in a similar form.35

C. Integration of storage units by means of load-flow

equations

We now assume a power network consisting of a set of
conventional synchronous machines Msyn modeled according to
Eqs. (1a) and (1b) and a set of storage units with control equip-
mentMSCU. The storage units are also associated with nodal voltages
Ei = Eie

iδi . However, their dynamics di�er from synchronous
machines in that they lack inertia and have no inherent physical rela-
tionship between frequency and electrical power output. The most
direct approach, which does not include any restrictive assumptions
on storage features or control, is to calculate the phase δi, i ∈ MSCU,
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by solving the algebraic load-�ow equation,32,34

Pout
SCU,i =

N
∑

j=1

BijEiEj sin δij, (2)

with the nodal voltage Ei assumed to be constant. Pout
SCU,i is the power

being injected into the grid by the storage-control unit.
Load-�ow analysis is a standard tool in electrical engineering

for power-�ow calculations on power networks. It can be derived
from basic physical relationships given by Kirchho� ’s and Ohm’s
laws. This approach is particularly quali�ed as a starting point for
the investigation of smart control since the power fed into the grid
Pout
SCU,i can be determined by arbitrary control strategies and the

model can �exibly be complemented with the other realistic storage
characteristics listed above.

The algebraic equation (2) and the ordinary di�erential equa-
tions (1a) and (1b) form a system of di�erential-algebraic equa-
tions. The representation of a power system by di�erential-algebraic
equations is standard in engineering, in particular, in so-called tran-
sient stability analysis.32,36 This fact supports the combination of
Kuramoto-like and load-�ow equations as a method for the straight-
forward implementation of arbitrary grid components, e.g., power
inverters and nodes linking di�erent voltage levels or microgrid-
macrogrid connections, into Kuramoto-like networks.

D. Simplified power system with wind feed-in and

storage facility

In this study,we demonstrate the operation of a storage unitwith
control equipment by means of a simpli�ed system consisting of a
generating unit with wind power feed-in and a synchronousmachine
mimicking the response of the grid in terms of frequency ωsys and
voltage Esys in a coarse-grained view (see Fig. 1). This inverter-motor
system likewise represents a system composed of a wind power feed-
in unit, a traditional generator, and ohmic loads, which have been
eliminated bymeans of Kron reduction.We here consider its applica-
tion with respect to frequency quality under �uctuating wind power
feed-in.

The storage unit is assumed to have a �nite maximum capacity
Kmax. The actual capacity K(t), or in more casual terms, the “�lling
level” at time t, corresponds to the state of charge with respect to bat-
teries. Kmax serves as an upper bound: if K(t) = Kmax, surplus energy
cannot be stored and has to be discarded. On the other hand, the stor-
age unit can only provide balancing power, if K(t) is su�cient. For
K(t) = 0, only positive power mismatch can be mitigated, whereas
the system is exposed to negative power de�ciencies.

For the sake of simpli�cation, we neglect e�ciency and limita-
tions due to power rating here. This means that we assume lossless
conversion and that the power to be delivered according to the
speci�c control strategy is provided completely if permitted by the
storage �lling K(t). The storage unit can be equipped with di�erent
control strategies. Three standard strategies adopted from engineer-
ing practice (state-of-charge dependent resource management, droop
control, and ramp-rate control) are speci�ed and investigated below.
Our intention is to demonstrate the general impact of di�erent basic
storage strategies and their limitations due tomaximum capacity and

time-delay on system behavior rather than to model a detailed situ-
ation or derive concrete guidelines. The approach can be applied to
more concrete situations in the course of follow-up research. Com-
plex optimization problems may evolve depending on multiple fac-
tors such as operation conditions and technical system requirements,
cost concerns, legal and economic framework, etc.

E. Wind power feed-in

Due to atmospheric turbulence, wind power has speci�c turbu-
lentlike characteristics:4,37 extreme events, correlations, Kolmogorov
power spectrum, and intermittent increment statistics. We imple-
ment realistic wind feed-in time series taking these basic properties
into account,

PWPP(t) = |Pcons
sys | + x(t), (3)

with the constant part |Pcons
sys | meeting the consumption of the sys-

tem. The �uctuating time series x(t) is generated as follows:6 �rst, a
time series x̃(t) is generated bymeans of the Langevin-type system of
equations,

ẏ = −γ y + 0(t), (4)

˙̃x = x̃

(

g −
x̃

x0

)

+
√
Dx̃2y, (5)

with γ = 1.0, g = 0.5, x0 = 2.0, D = 2.0, and δ-correlated Gaussian
white noise0. Then, the corresponding Fourier spectrum ismodi�ed
so that the �nal power spectrum S(f ) = |F(f )|2 roughly reproduces
real data sets, in particular, the Kolmogorov 5

3
-decay. Transforming

back to real space yields x(t) [see Fig. 1(a) for an exemplary part of
the feed-in time seriesPWPP(t)]. Since 〈x〉 = 0, power balance is given
over time: 〈PWPP〉 = |Pcons

sys |. Due to the generating process, PWWP fea-
tures a smallest frequencymode. Lower frequencies corresponding to
power variations on longer time scales are assumed to be handled by
other mechanisms like standard load balancing. In practice, di�er-
ent time scales can actually be divided up and assigned to di�erent
control mechanisms by low-pass �ltering.26

F. Power quality assessment

Power quality is a wide ranging notion, which includes di�er-
ent aspects of voltage, frequency stability, and supply reliability. In
this study, we focus on short-term frequency quality. We use di�er-
ent criteria for performance assessment, which in combination give
a more detailed picture of frequency quality.38

Frequency quality5,7,39 refers to the systems ability to maintain
nominal frequency ωnom

sys or keep the frequency within a prede�ned
range (the “standard frequency range”) for a large percentage of oper-
ation time. It can be evaluated on di�erent time scales. Short-term
frequency quality is referred to “instantaneous frequency deviations”
in electrical engineering. It is commonly evaluated by means of the
percentage of time the system frequency is outside the standard
frequency range.39 Against this practical backdrop, we de�ne

qω̄ =
{

∫ ∞
ω̄

p(ω)dω for ω̄ > 0,
∫ −ω̄

−∞ p(ω)dω for ω̄ < 0
(6)
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FIG. 1. Simplified model of a power system subjected to wind feed-in with local storage and control. (a) Exemplary part of the feed-in time series PWPP(t) = |Pcons
sys | + x(t)

delivered by a wind power plant or park [with |Pcons
sys | = 0.25 (magenta line), mean value 〈x〉 = 0, and standard deviation σx = 0.084 · |Pcons

sys |]. (b) On the basis of the actual
wind power feed-in PWPP(t), the Storage and Control Unit (SCU) first calculates the desired power output value PSCU(t) according to the specific control strategy and the
mismatch 1P(t) = PWPP(t) − PSCU(t). For 1P(t) < 0, the mismatch is delivered by the storage, if the filling level K(t) is sufficient. Conversely, surplus power 1P(t) > 0
can only be stored with Kmax as an upper bound. The power actually fed into the grid by the storage unit is denoted as P

out
SCU(t) ≤ PSCU(t). The “grid node” is modeled as a

synchronous machine with parameters (following Ref. 6) read: m = 1.0, γ = 0.2, Pcons
sys = −0.25, B12 = B21 = 1.0, B11 = B22 = −0.95, α = 2.0, C = 0.9101, β = 1.0,

χ = 0.5.

with ω̄ denoting the bound given by the standard frequency range
ωnom
sys ± ω̄ and p(ω) being the probability distribution of frequency

deviations ω(t) = ωsys(t) − ωnom
sys . In real power grids, the nominal

frequency is 50Hz or 60Hz. Kuramoto-like power grid models are
usually transformed into a reference frame rotating with nominal
frequency so that here, ωnom

sys = 0. For su�ciently long simulation,
qω̄ corresponds to the percentage of time the system is expected to
operate outside of the frequency range de�ned by ω̄ on average. For
a speci�ed standard frequency range ±ω̄, q|ω̄| := q−ω̄ + qω̄ corre-
sponds to the “exceedance” measure introduced by Auer et al.21 In
this study, we evaluate qω̄ as a function of ω̄ rather than for one spec-
i�ed ω̄ for two reasons: �rstly, this gives amore informative picture of
systemdynamics; secondly, the value of the standard frequency range
is not unequivocally de�ned.40

Frequency quality not only involves deviations from nominal
frequency, but also the time derivative dω/dt, commonly referred as
the “rate of change of frequency.”7,39 The rate of change of frequency
re�ects the sensitivity against sudden perturbations and is inversely
proportional to system inertia.8 In former times, it was of interest
mainly during transient periods after signi�cant imbalances.7Nowa-
days, due to the loss of system inertia and the increasing percentage

of stochastic renewables inducing continuous perturbations, the rate
of frequency change becomes relevant also during normal operation.

The frequency changes can be related to the increments
1ωsys = ωsys(t + 1t) − ωsys(t). It was shown that intermittency of
wind power in terms of heavy-tailed probability density functions
is directly transferred into frequency �uctuations and signi�cantly
contribute to frequency quality decrease.6 Therefore, we here capture
increment statistics not only by their mean value µ|1ω| and stan-
dard deviation σ1ω (as it is standard in electrical engineering) but
also their kurtosis κ1ω = µ4,1ω/σ 4

1ω (with µ4 denoting the fourth
moment of the distribution).41 The kurtosis serves as a measure for
the tailed-ness of the distribution. With κ = 3 being the value of
the Gaussian distribution, κ > 3 means that there are more extreme
events or outliers than in the Gaussian case and vice versa for κ < 3.
Note that κ entails information about the shape of the distribution,
not about the magnitude of the outliers.

As we will see, the extreme events observed in the increment
statistics in this study have two reasons: on the one hand, the system is
exposed to the feed-in �uctuations PWPP(t) during time intervals, in
which the storage facility is not able or supposed to fully compensate
power imbalances. As stated above, these �uctuations are known
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to transfer intermittency into the frequency statistics. On the other
hand, new extreme events can be induced when the storage steps in.
For example, if the system runs out of storage in the course of a longer
time period with power de�ciency or discontinues balancing quite
suddenly due to its control speci�cations, the frequency may face an
instantaneous drop. The following analysis will show that the kurto-
sis serves as a good indicator for an inaccurate adjustment of control
strength.

III. RESULTS

A. Storage control limited by maximum capacity

We assume the storage facility to have a maximum energy
capacity Kmax. The actual power mismatch is 1P(t) = PWPP(t)
− PSCU(t), with PWPP(t) being the available wind power at time t
and PSCU(t) the desired output power, which is supposed to be fed
into the grid according to the underlying control scheme (see Fig. 1).
However, the storage can balance power de�ciencies only if the actual
capacity K(t) is su�cient, so that the power actually fed into the grid
is Pout

SCU(t) ≤ PSCU(t).
In order to provide a �rst insight into the performance of the

storage facility as a function of its maximum capacity, we �rst con-
sider the simpli�ed operation mode, in which the storage unit is
intended to ensure power balance between feed-in and consumption
whenever possible:

For positive power mismatch 1P(t) ≥ 0, Pout
SCU(t) = |Pcons

sys | is fed
into the system. The corresponding energy surplus 1K is stored
with the maximum capacity Kmax being an upper bound.
For 1P(t) < 0, the power mismatch is
• either fully compensated, i.e., Pout

SCU(t) = |Pcons
sys |, if the storage is

su�ciently �lled,
• or the rest capacity is used to provide Pout

SCU(t) with PWPP(t) <

Pout
SCU(t) < |Pcons

sys |.
• While K(t) = 0, no balancing power can be provided.

In this mode of operation, the system dynamics alternate between
stationary operation and time intervals with ωsys < 0, in which
the system either �uctuates in reaction to the stochastic feed-in
or is on its way to return to stationary operation [see Fig. 2(a)].
Figure 2(b) shows how the percentage of nonstationary operation

time qnonstat = q|10−3|
42 decreases to zero with maximum storage

capacity Kmax.43 The behavior for the K → ∞ limit is trivial in quali-
tative respects, as it implies that a su�ciently large storage capacity is
able to continually balance power di�erences and guarantee station-
ary operation. It was to be expected as we restricted our analysis to
a limited time scale; i.e., we assumed the feed-in �uctuations to be
balanced by other load control mechanisms on longer time scales.

However, our analysis so far was only to serve as a �rst stor-
age capacity assessment. In reality, the equipment of wind and PV
(photovoltaic) plants with large storage capacity is expensive. In the
following, we, therefore, consider the more realistic and less trivial
situation of a storage facility with “insu�cient capacity.”

B. Storage-control strategies

We now investigate di�erent basic storage-control strategies
with regard to their potential to improve frequency quality.We set the
maximum storage capacity Kmax = 2.0. This would allow for station-
ary operation in about 90% of time assuming the simpli�ed strategy
considered above. The control strategies refer to acceptedmethods in
engineering practice and rely on di�erent control feedback signals:

• the actual storage level K(t) or the state-of-charge (here used for
the purpose of “storage resource management”),

• system frequency as an indicator for power imbalances (droop
control), and

• power di�erences between certain time steps (ramp-rate control).

These methods cover the elementary strategies for power quality
improvement and, therefore, provide a basic structure for the devel-
opment of smart control techniques by re�ning the conventional
strategies or composing hybrid systems.

1. Storage resource management

In the current technical application, the state-of-charge is
applied as a feedback signal in battery storage systems mainly to
guarantee operation within the proper state-of-charge range and to
prevent shutdown due to overcharge.27 Here, we shift the scope of
application to the grid side and reinterpret the basic idea as a form of
intelligent storage management.

FIG. 2. Storage limited by maximum
capacity Kmax. (a) Exemplary time series
of system frequency ωsys(t) and storage
filling level K(t) for maximum storage
capacity Kmax = 1.0. Empty or insuffi-
cient storage filling is paralleled by fre-
quency fluctuations. (b) qnonstat = q|10−3 |
gives the percentage of nonstationary
operation.
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FIG. 3. Storage resource management for Kmax = 2.0. (a) Different realizations
of storage resource management f(K) denoted as strategies I–VII. “0” corre-
sponds to the simplified storage mechanism with f(K) = 1. (b) qω̄(ω̄) giving
the percentage of time the system frequency is outside the ω̄ boundaries for
realizations 0–VII. [As in the case described above, ωsys(t) ≤ 0 in this mode of
operation.]

Wecomplement the simple storage strategy presented above and
make the balance power at time t dependent on the current capac-
ity K(t). To be speci�c, the power to be delivered by the storage is
the power de�ciency 1P multiplied by a factor f = f (K(t)) ∈ [0, 1]
with f (0) = 0 and f (Kmax) = 1. Here, we consider di�erent realiza-
tions for f (K) depicted in Fig. 3(a): f (K) = −(1 − K/Kmax)

n + 1
for n = 12, 4, 2 (denoted as scenarios I, II, and III) and
f (K) = (K/Kmax)

n for n = 1, 2, 4, 12 (scenarios IV–VII).
Figure 3(b) shows qω̄(ω̄) for di�erent realizations of storage

resource management in comparison with the simpli�ed storage
strategy described in Subsection III A. With proper choice of f (K),
the proposed storage resource management can, in fact, serve to pre-
vent large frequency deviations. Of course, a higher percentage of
small deviations has to be tolerated in exchange. The best option can
only be chosen in knowledge of the operational circumstances and
the speci�c guidelines for ω̄. Furthermore, storage resource manage-
ment can be applied as part of a multipronged control strategy in
combination with other storage-control mechanisms.

2. Droop control

Droop control is based on the relationship between power imbal-
ances and system frequency: a positive power mismatch is paralleled
by frequency increase, whereas negativemismatch leads to frequency
decrease. This fact can also be observed in Kuramoto-like grids.

Droop control has a broad range of application, which includes
frequency control services provided by wind power plants.26 The
standard practice is to use a linear droop control mechanism, whose
slope is given by the control strength kDC. The balancing droop
power is

Pdroop(t) = kDC(ω
nom
sys − ωsys(t)) = −kDCω(t), (7)

as ωnom
sys = 0 here. If ωsys(t) < 0, this is interpreted as an indicator

of negative power balance, and consequently, more power is injected

into the system in order to keep system frequency close to its nominal
value. For ωsys(t) > 0, power feed-in is reduced accordingly.

This adjustment of power input to the actual system frequency
obviously requires storage capacity in the background. A speci�c
type of inverter with linear droop control was shown to behave ana-
log to a synchronous machine44 and was already implemented into
Kuramoto-like grids with stochastic feed-in.21 Our approach here is
di�erent in the sense that we explicitly take into account the limits
of the installed background storage capacity Kmax but do not assume
any further speci�cations on the grid feed-in process. As explained
above, in the case of ωsys(t) < 0, the balancing power Pdroop > 0 can
only be provided to the extent that the storage level K(t) is su�cient,
and for ωsys(t) > 0, surplus power can only be stored with Kmax as an
upper bound.

We �rst investigate system performance under standard droop
control according to Eq. (7) for �xed maximum storage capacity
Kmax = 2.0 and varying control strength kDC. Figure 4(a) shows sys-
tem frequency in response to the same power feed-in PWPP(t) for dif-
ferent kDC. With increasing control strength, the positive frequency
deviations are more and more eliminated, as it is always possible to
feed in less power than available. In contrast, balancing negative fre-
quency deviations requires su�cient storage level. This asymmetry
can also be seen in Fig. 4(b1), which reveals the dilemma of standard
droop control under limited storage capacity: On the one hand, for
su�ciently large control strength kDC, the positive frequency devia-
tions can be more or less eliminated, but in this case, the storage unit
runs out of capacity quickly at the beginning of longer timer peri-
ods with negative power mismatch. Figure 4(a) highlights a concrete
example of a frequency dip not being prevented due to overambitious
control strength. On the other hand, for small control strength, the
storage facility performs better in the sense that it reduces the prob-
ability of large negative frequency deviations. However, at the same
time, the droop control mechanism remains suboptimal with respect
to positive frequency deviations.

To overcome this problem, we propose a nonsymmetric droop
control strategy, which treats positive and negative frequency devia-
tions di�erently,

Pdroop(t) =
{

−kDC
1 ωsys(t) ∀ ωsys ≥ 0,

kDC
2 (ωsys(t))

n ∀ ωsys < 0.
(8)

We choose large control strength kDC
1 in order to counteract

the positive frequency deviations and tested two control schemes for
the negative frequency range: (i) quartic droop control45,55 and (ii)
linear droop control with small control strength kDC

2 . Figure 4(b2)
shows that these alternative strategies combine the best of both small
and large control strength in standard droop control: they e�ectively
mitigate positive deviations and prevent large frequency dips. A non-
linear control term, inter alia, gives the opportunity to focus the onset
of control to a speci�c frequency bound. For example, the drop of
qω̄(ω̄) indicates that the quartic control term actually starts acting
around ωsys ≈ 0.05. For higher n, this would converge to a “dead
band,” i.e., a frequency range, in which the control system does not
intervene.46

With a view to the frequency increment statistics [see Fig. 4(c)],
the mean value µ|1ω| and standard deviation σ1ω decrease with
increasing control strength, �nally converging to a minimum value.
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FIG. 4. Droop control with maximum storage capacity Kmax = 2.0. (a) System frequency response to the same feed-in time series with standard droop control according
to Eq. (7) for different control strengths kDC = 0.0 (no control), kDC = 0.5, and kDC = 10.0. The time interval indicated by the red dotted lines illustrates the drawback
of too ambitious control strength: the frequency dip is prevented for kDC = 0.5 but no longer for kDC = 10.0. (b1) qω̄(ω̄) for standard droop control with different control
strengths kDC. For kDC = 10.0, the curve for positive deviations is not displayed due to its rapid decay [q0.01 has already dropped toO(10−5)]. (b2) qω̄(ω̄) for the alternative
nonsymmetric droop control strategies according to Eq. (8): (i) n = 4, kDC2 = 10.0, kDC2 = 200.0 and (ii) n = 1, kDC2 = 10.0, kDC2 = 0.1. For negative ω̄, (ii) resembles the
standard droop control case. (c) Increment statistics during nonstationary operation (according to the definition given above). For increasing kDC in standard droop control,
the mean value µ|1ω| and standard deviation σω decrease, while the non-Gaussianity of the distribution in terms of the kurtosis κ1ω grows.

However, the non-Gaussianity in terms of kurtosis κ1ω grows, even
whenµ|1ω| and σ1ω have nearly approached their minima and barely
change.47 This is an indicator that the control strength kDC is getting
too ambitious and the storage facility runs out of capacity more fre-
quently. It, therefore, becomes evident that increment statistics are an
essential part of a comprehensive picture of frequency quality.

It should be noted that the control scheme we imple-
mented here is a standard “grid-feeding” droop control strategy.
There are other conceivable variants. For example, “grid-forming”
inverters introduce a novel control algorithm, which is currently

discussed against the background of progressive renewable energy
integration.48,49

3. Ramp-rate control

A power ramp is de�ned as a normalized power change or power
increment,

1Pramp(t) =
Pin(t) − Pref

Pnorm

, (9)
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FIG. 5. Ramp-rate control with Kmax = 2.0. (a) qω̄(ω̄) for different tolerance ramp rates rtol given in percent of the standard deviation of the wind power feed-in σ . (b)
Increment statistics during nonstationary operation: with decreasing ramp tolerance rtol, frequency increments are mitigated in terms of their mean value µ1ω , standard
deviation, and kurtosis κ1ω . For large tolerance ramps, the influence of control diminishes and µ1ω , σ1ω , and κ1ω approach their values of the no-control case (horizontal
lines).

with input power Pin(t) and reference power Pref . Ramp-rate
control50,51 aims at keeping power ramps within speci�ed tolerance
bounds,

|1Pramp| ≤ rtol. (10)

It is utilized in wind and solar power applications. In the
latter case, power ramps play a even major role due to passing
clouds.

The basic idea opens up numerous opportunities for concrete
realization depending on the choice of Pref . For example, it can be
given by prior values P(t − 1t) de�ned by a sampling time 1t or
be calculated as a function of the actual demand. We here demon-
strate a version of ramp-rate control, which mainly targets on short-
term ramps: First, we set Pref = Pout

SCU(t − 1t) with 1t = 0.005. As
long as the ramp condition [Eq. (10)] is satis�ed, no balancing is
necessary, and Pout

SCU(t) = PWPP(t). If the condition is violated, the
storage facility steps in: For 1Pramp > 0 (upward ramps), Pout

SCU is
decreased so that |1Pramp| = rtol and surplus power is stored. For
1Pramp < 0 (downward ramps), the storage is supposed to provide
balance power in order to ful�ll |1Pramp| = rtol. Again, the storage
of surplus power is limited by the maximum capacity Kmax, and bal-
ancing power can only be delivered if the actual storage level K(t)
is su�cient.

The performance of ramp-rate control is usually assessed with
respect to the power feed-in statistics. Here, we consider frequency
statistics instead, for two reasons: �rst, this is the scope of our study
and consistent with the previous analysis. Second, we investigate a
consequential phenomenon, as power �uctuations are directly trans-
ferred into frequency variations. Figures 5(a) and 5(b) show how the
likelihood of tolerance bound violations in terms of qω̄(ω̄) and the
frequency increment statistics evolve as functions of the tolerance
ramp rate rtol. It shows that the ramp-rate control strategy ful�lls its
main purpose with a view to the increment statistics: by suppressing
power ramps, frequency increments can bemitigated signi�cantly. In

parallel, the percentage of operation time beyond certain tolerance
bounds can be decreased.

Again, the ambition of control, here in terms of rtol, has to be
chosen carefully. On the one hand, if rtol is too large, the control does
not achieve its potential. It has no in�uence on qω̄(ω̄) and barely
improves the increment statistics. On the other hand, if rtol is too
small, the storage tends to run out of capacity. This is indicated by a
steep rise of κ1ω and increasing likelihood of large negative frequency
deviations. Compounding the problem in this speci�c version of
ramp-rate control is the fact that if the power inputPout

SCU drops to a low
PWPP during a feed-in de�cit period with empty storage, this value
serves as the new reference Pref . In the following, the input power
and system frequency can return to their nominal values only slowly
due to the tight tolerance range, even if storage capacity is available.
As explained before, running out of storage is paralleled by sudden
frequency drops, which is indicated by the drastic increase of the
non-Gaussianity of the increment distribution.

Note that the dissymmetry between positive and negative fre-
quency deviations [which can be seen in Fig. 5(a)] is not completely
analog to the droop control case. First, ramp-rate control responds
to power input �uctuations (which cause frequency �uctuations)
and not to the deviation from nominal frequency directly. Second,
upward ramps can always be balanced, irrespective of whether the
actual system frequency is below or above its nominal value. In con-
trast, balancing downward ramps requires su�cient storage. This
particularly a�ects power de�cit periods accompanied by ωsys < 0,
during which the storage is depleted.

Comparing droop control and the applied version of ramp-rate
control, the latter has the advantage to be able to mitigate frequency
increments to a certain extent without being paralleled by increas-
ing non-Gaussianity. For example, droop control with kDC = 6.0
and ramp control with rtol = 0.03σ% both reduce the mean value
to µ1ω ≈ 1.6 · 10−5. At the same time, the statistics for the droop
control case contain considerably more extreme events (κ1ω = 13.7)
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FIG. 6. How finite response time undermines frequency quality improvement. (a) Linear storage resource management: qω̄(ω̄) for different response times τ . The curves for
τ < 5.0 almost resemble the instantaneous-response (τ = 0) case. (b) Droop control for the asymmetric control strategy (ii). Again, qω̄(ω̄) is shown for different response
times. For τ < 0.1, the impact of finite-time response on qω̄(ω̄) is negligible. (c) Increment statistics for ramp-rate control as a function of τ . The horizontal lines indicate the
values for the no-control case.

than the system with the ramp rate mechanism (κ1ω = 1.8). On
the other hand, the ramp-rate control does not take into account
the absolute deviation from nominal frequency and hence is not
designed to prevent large frequency excursion as e�ciently as droop
control.

C. Finite response time

Each electrical storage technology is associated with a charac-
teristic response time ranging from minutes (e.g., pumped hydro,
compressed air, liquid air) to milliseconds, e.g., batteries, (super)
capacitors, superconducting magnetic energy storage.26 In combina-
tion with their characteristic capacity, they are suitable for di�erent
storage applications (see Sec. II A). In the following, we investigate
and compare the sensitivity of the three control strategies introduced

in Sec. III B.We implemented �nite-time response assuming that the
control does not react instantaneously but in response to the feedback
signal at time t − τ . (Alternatively, the time delay could be modeled
by ordinary di�erential equations with appropriate time constants;
e.g., see Schi�er et al.35):

• In the case of storage resource management, the balance power
to be delivered by the storage facility is 1P · f (K(t − τ)).52 We
picked the linear storage resource management scenario VI as an
example.

• For droop control, we instance the asymmetric control strategy (ii)
with kDC

1 = 10.0 and kDC
2 = 0.5. The balancing power Pdroop(t) is

calculated on the basis of ωsys(t − τ).
• The ramp-rate control realization we presented above is very
sensitive due to the short sampling rate. In view of �nite-time
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response, we consider another variant of ramp rate control and
de�ne the reference powerPref = |Pcons

sys | ∀t and the tolerance range
rtol = 0.5σ here. The balancing power at time t is calculated as the
response to 1Pramp(t − τ).

Figure 6 shows how time delay limits the possibilities for frequency
quality improvement with focus on the main target of each control
strategy.

Storage resource management was introduced in order to pre-
vent overspending and save capacity to mitigate large frequency
deviations. From Fig. 6(a), one can see that �nite response time
has negligible impact up to τ = 10.0. Then, the deviations from the
instantaneous-response case become more and more apparent. In
particular, the control strategy increasingly misses its main objective
as the probability of large deviations from nominal frequency grows.

Droop control is intended to mitigate deviations from nomi-
nal frequency. Figure 6(b) shows that in this respect, the system is
able to handle a �nite response time up to τ = 0.1 quite well. Then,
qω̄ starts to increase for small ω̄ as the feedback delay causes trou-
ble when the system �uctuates close around nominal frequency. As
the control switches between positive and negative balancing too
late, oscillations around nominal frequency are induced. A nonlinear
droop scheme could mitigate these oscillations as it interferes less for
small deviations.

Ramp-rate control was shown to be a promising candidate for
frequency quality improvement with respect to increment statistics.
The version of ramp-rate control considered here is very sensitive
toward time delay. Figure 6(c) shows that the introduction of �nite
response time leads to a reduction of frequency quality asµ|1ω|, σ1ω ,
and κ1ω immediately increase, even beyond the no-control case.

These results indicate that short-term frequency quality appli-
cations require rapid response times (on the subsecond scale53). It
shows that control strategies targeting the fast �uctuations are sen-
sitive even against “near to instantaneous response”, as the smallest
delays in the order of milliseconds are classi�ed.26 As these systems
are usually expensive, it may be advisable to use hybrid systems and
treat the high-frequency and lower frequency �uctuations separately
with di�erent storage and control systems.

IV. DISCUSSION AND OUTLOOK

We extended the current Kuramoto-like modeling framework
with �exible storage units. With that, the scope of Kuramoto-like
models opens up to one of the most important research topics in
power grid engineering. On the way to this goal, we brought together
Kuramoto-like equations and load-�ow analysis. This is a substan-
tial extension, supported by standard engineering practice, which can
serve as a starting point for the straightforward implementation of
arbitrary grid components into Kuramoto-like grids.

For demonstration purposes, we considered short-term fre-
quency quality improvement by means of storage facility with maxi-
mum capacity in a power system subjected to realistic wind feed-in.
Motivated by recent �ndings, we assessed system performance not
only with respect to frequency range violations, but also took into
account frequency increment statistics.

We demonstrated how to implement three basic control meth-
ods, which cover the elementary strategies for power quality

improvement in engineering practice. First, we adopted state-of-
charge feedback control and reinterpreted it as a form of storage
resource management. It has been proven that this concept can actu-
ally serve to save capacity in order to prevent large frequency devia-
tions. Second, it was shown that droop control can improve frequency
quality not only with a view to deviations from nominal frequency
but also with respect to frequency increment statistics. We pointed
out that, particularly in the case of limited capacity, it is favorable
to handle positive and negative frequency deviations with di�er-
ent droop schemes and consider nonlinear mechanisms. Third, we
implemented a version of “ramp-rate control.” Originally designed
for power-output-smoothing applications, we demonstrated that this
strategy entails frequency quality improvement.

For both droop and ramp-rate control, it became apparent that
the corresponding control strength or ramp tolerance range may
not be too ambitious and have to be carefully proportioned to the
dimensions of the storage facility. Furthermore, it was shown that
the �nite response time of the control mechanism limits the poten-
tial of the storage facility. Short-term frequency quality applications,
in particular, require a rapid response.

With this study, we created a sound starting point for follow-up
research on various aspects of storage implementation from the view-
point of self-organized synchronization and collective phenomena.
This includes stability-topology issues like optimal siting of storage
units as well as comparative studies on global vs local storage loca-
tion or optimal sizing and rough cost-bene�t assessment. Another
current topic is the development and re�nement of smart control
strategies, which are customized to the realistic features of wind and
solar power and, at the same time, take into account the impact of
collective network dynamics. This study has already shown that the
presented basic control strategies have di�erent advantages and dis-
advantages. Against this backdrop, and with a view to the impact of
�nite response times, systems with combined control techniques are
conceivable solutions, and novel smart control strategies should be
developed.
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However, at this point, we want to give a rough idea about the time scale.
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∼ 0.1 s–1 s (cf. Ref. 13), t = O(t) ∼ 0.1 s–1 s, and hence, the response time of the
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