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Abstract—In this paper we focus on the estimation of
quantiles when samples arrive sequentially. With time, the
amount of data will become large and classical quantile
estimators that require storing the whole history of the data
(or stream) cannot be deployed. A plausible alternative is
to rely on incremental estimators. An incremental estimator
utilizes the previously-computed estimates and only resorts
to the last sample for updating these estimates.

The state-of-the-art work on obtaining incremental
quantile estimators is due to Tierney [1], and is based on
the theory of stochastic approximation. The estimator is
constructed to efficiently estimate quantiles in a system in
which the underlying distribution of the samples does not
vary with time. However, from a practical point of view
this is rarely the case and variants of the Tierney’s estimator
have been suggested to cope with dynamic environments, see
[2]–[5]. A primary shortcoming of all of these estimators is
the requirement to incrementally build local approximations
of the distribution function in the neighborhood of the
quantiles. This requirement, unfortunately, increases the
complexity of these algorithms significantly and additionally
renders them vulnerable to numerical issues.

We present two novel lightweight incremental quantile
estimators which possess far less complexity than the Tier-
ney [1] estimator and its extensions [2]–[5]. Notably, our
algorithms rely only on tuning one single parameter which
is a plausible property which we could only find in the
discretized quantile estimator Frugal [6]. This makes our
algorithms easy tune to perform well. Furthermore, our
algorithms are multiplicative which makes them highly
suitable to handle quantile estimation in systems in which
the underlying distribution varies with time.

The convergence of the two proposed estimators is proven
using the theory of stochastic learning. Extensive experi-
mental results show that while our first estimator yields
comparable performance to the legacy estimators, our second
estimator clearly outperforms the state-of-the-art incremental
estimators.

Index Terms—Quantiles estimation, Time Varying Distri-
butions, Multiplicative Updates.

I. INTRODUCTION

An incremental estimator, by definition, resorts to the
last observation(s) in order to update its estimate [7]–
[9]. Surprisingly enough, the research on developing
incremental quantile estimators is sparse. Probably, one
of the outstanding early and unique examples of incre-
mental quantile estimators is due to Tierney, proposed in

1983 [1], and which resorted to the theory of stochastic
approximation. Some extensions of the seminal work
of Tierney [1] can be found in [2]–[4]. Applications
of Tierney’s algorithm to network monitoring can be
found in [5]. In order to appreciate the qualities of
our estimator, we will present the estimator scheme
proposed by Tierney [1]. Let x(n) denote a realization
of a stochastic variable X at time ‘n’. We assume that X
is distributed according to the distribution fX(x). The
intention of the exercise is to estimate the q-th quantile,
the number Qq , such that FX(Qq) = q. Tierney [1]
achieved this by maintaining a running estimate Q̂q(n)
at time ’n’

Q̂q(n+ 1) = Q̂q(n) +
dn
n+ 1

(q − I(x(n) ≤ Q̂q(n)))(1)

where dn = min( 1
̂fn(Qq)

, d0n
a). Here 0 < a < 1/2, do > 0,

and f̂n(Qq) is an estimator of f(Qq) defined in [1]. The
reason for invoking the min operation in the above
expression of dn is the fact that the estimated density
must be bounded to prevent the correction factor from
”exploding”. In other words, fn is the current estimate
of the density of X at the q-th quantile. This is usu-
ally done based on maintaining a histogram structure.
However, requiring the incremental constructions of lo-
cal approximations of the distribution function in the
neighborhood of the quantiles increases the complexity
of the algorithm. Our goal is to present a new family
of incremental quantile estimators that does not involve
any local approximations of the distribution function.

Another intriguing algorithm is called Frugal [6] that
achieves estimation using exactly the same complexity
as our two algorithms presented in this paper. Frugal
bears similarity to our first algorithm presented here
and that we reckoned RUMIQE in the sense that it
performs randomized updates. However there are major
difference between Frugal and DUMIQE:(1) First, Frugal
operates in a discretized space while DUMIQE operates
in a continuous-space of values. (2) Second, Frugal has
an additive increase-decrease update form in contrast to
DUMIQE which has a multiplicative increase-decrease
flavor.
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We shall first review some of the related work on
estimating quantiles from data streams. However, as
we will explain later, these related works require some
memory restrictions which renders our work to be rad-
ically distinct from them. In fact, our approach requires
storing only one sample value in order to update the
estimate. The most representative work for this type of
”streaming” quantile estimator is due to the seminal
work of Munro and Paterson [10]. In [10], Munro and
Paterson described a p-pass algorithm for selection using
O(n1/(2p)) space for any p ≥ 2. Cormode and Muthukr-
ishnan [11] proposed a more space-efficient data struc-
ture, called the Count-Min sketch, which is inspired
by Bloom filters, where one estimates the quantiles of
a stream as the quantiles of a random sample of the
input. The key idea is to maintain a random sample of
an appropriate size to estimate the quantile, where the
premise is to select a subset of elements whose quantile
approximates the true quantile. From this perspective,
the latter body of research requires a certain amount of
memory that increases as the required accuracy of the
estimator increases [12]. Examples of these works are
[10], [12]–[15]. Guha and McGregor [15] advocate the use
of random-order data models in contrast to adversarial-
order models. They show that computing the median
requires exponential number of passes in adversarial
model while requiring O(log logn) in random order
model.

In [2], the authors proposed a modification of the
stochastic approximation algorithm [1] in order to al-
low an update similar to the well-known Exponen-
tially Weighted Moving Averages form for updates. This
modification is particularly helpful in the case of non-
stationary environments in order to cope with non-
stationary data. Thus, the quantile estimate is a weighted
combination of the new data that has arrived and the
previously-computed estimate. Indeed, a ”weighted”
update scheme is applied to incrementally build local
approximations of the distribution function in the neigh-
borhood of the quantiles.

In many network monitoring applications, quantiles
are key indicators for monitoring the performance of
the system. For instance, system administrators are in-
terested in monitoring the 95% response time of a web-
server so that to hold it under a certain threshold.
Quantile tracking is also useful for detecting abnormal
events and in intrusion detection systems in general.
However, the immense traffic volume of high speed
networks impose some computational challenges: little
storage and the fact that the computation needs to be
”one pass” on the data. It is worth mentioning that
the seminal paper of Robbins and Monro [16] which
established the field of research called ”stochastic ap-
proximation” [17] have included an incremental quantile
estimator as a proof of concept of the vast applications
of the theory of stochastic approximation. An extension
of the latter quantile estimator which first appeared as
example in [16] was further developed in [18] in order

to handle the case of ”extreme quantiles”. Moreover, the
estimator provided by Tierney [1] falls under the same
umbrella of the example given in [16], and thus can be
seen as an extension of it.

As Arandjelovic remarks [19], most quantile estima-
tion algorithms are not single-pass algorithms and thus
are not applicable for streaming data. On the other hand,
the single pass algorithms are concerned with the exact
computation of the quantile and thus require a storage
space of the order of the size of the data which is clearly
an unfeasible condition in the context of big data stream.

Thus, we submit that all work on quantile estimation
using more than one pass, or storage of the same order
of the size of the observations seen so far is not relevant
in the context of this paper.

When it comes to memory efficient methods that re-
quire a small storage footprint, histogram based methods
form an important class. A representative work in this
perspective is due to Schmeiser and Deutsch [20]. In
fact, they proposed to use equidistant bins where the
boundaries are adjusted online. Arandjelovic et al . [19]
use a different idea than equidistant bins by attempting
to maintain bins in a manner that maximizes the entropy
of the corresponding estimate of the historical data dis-
tribution. Thus, the bin boundaries are adjusted in an
online manner.

In [21], the authors propose a memory efficient
method for simultaneous estimation of several quantiles
using interpolation methods and a grid structure where
each internal grid point is updated upon receiving an
observation. The application of this approach is limited
for stationary data. An approximation relies on using
linear and parabolic interpolations, while the tails of the
distribution are approximated using exponential curves.
It is worth mentioning that the latter algorithm is based
on the P 2 algorithm [22].

A notable work treating simultaneous estimation of
the quantiles using elements from the theory of stochas-
tic approximation is due to Cao et al . [4]. The authors re-
sorted to interpolation by defining some type of distance
between the interpolated quantiles so that to ensure no
”crossing” between the monotonic quantile estimates.
Nevertheless, the interpolation uses ”the density” esti-
mate as in [1] and in [2], which is an operation that
increases the complexity.

In [22], Jain et al. resort to five markers so that to track
the quantile, where the markers correspond to different
quantiles and the min and max of the observations. Their
concept is similar to the notion of histograms, where
each marker has two measurements, its height and its
position. By definition, each marker has some ideal po-
sition, where some adjustments are made so that to keep
it in its ideal position by counting number of samples
exceeding the marker. In simple terms, for example, if
the marker corresponds to the 80% quantile, its ideal
position will be around the point corresponding to 80%
of the data points below the marker. However, such
approach does not handle the case of non-stationary
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quantile estimation as the position of the markers will be
affected by stale data points. Then based on the position
of the markers, quantiles are computed by supposing
that the curve passing through three adjacent markers
is parabolic and using piecewise parabolic prediction
function.

Finally, it is worth mentioning that an important
research direction that has received little attention in
the literature revolves around updating the quantile
estimates under the assumption that portions of the data
are deleted. Such assumption is realistic in many real
life settings where data needs to be deleted due to the
occurrence of errors, or because it is merely out-of-date
and thus should be replaced. The deletion triggers a re-
computation of the quantile [4], which is considered a
complex operation. Note that the case of deleted data is
more challenging than the case of insertion of new data.
In fact, the insertion can be handled easily using either
sequential or batch updates, while quantile update upon
deletion requires more complex forms of updates.

A. Contributions
We catalogue the contributions of the paper as follows:
• We present two lightweight incremental quantile

estimation schemes: the first scheme resorts to ran-
domized updates while the second scheme is based
on deterministic updates. Both algorithms are much
simpler than the state-of-the-art algorithms [1]–[5]
which require locally approximating the distribution
function in the neighborhood of the quantile which
results in an increased complexity.

• To the best of our knowledge, our randomized
and deterministic estimators are the first reported
incremental multiplicative increase-decrease quantile
estimator in the literature as opposed to the legacy
additive increase-decrease algorithms [1]–[5]. By
virtue of the multiplicative updates, the quantile
estimate can be adjusted in a ”geometric” manner
yielding fast convergence speed.

• Since the algorithms are multiplicative, in the base
versions of our two schemes (randomized and deter-
ministic update), the quantile estimate stays positive
(negative) if it initially is positive (negative). In
order to cope with the case of changing the sign
of the estimate while performing the estimation1,
we extend both estimators using two different ap-
proaches:

– We merge the update operations designed for
positive quantiles together with the counter-
part operations for updating negative quantile
so that to build an estimator that is able to
estimate any quantile, and most importantly, a
one that is able to change the sign of the quantile
estimate in an online-manner.

1The case of changing the sign of the estimate might occur in
dynamic environment where the true quantile might drift from positive
values to negative values and vice-versa.

– The second approach exploits a different idea
in which we reckon with so-called phantom
quantiles. The idea is based on the concept
inspired by simple observation that Prob(X ≤
a) = Prob(X + b ≤ a+ b) for any real numbers
a and b.

• Experimental results show the performance of the
schemes and their comparable performance to the
state-of-the-art.

B. Paper Organization
In Section I, we both presented the motivation behind

our study on incremental quantile estimation, and sur-
veyed the relevant state-of-the-art. In Sections II and III,
we give the details of our randomized and deterministic
update schemes, respectively. In Section IV we present
the two approaches to be able to estimate any quantile
(both positive and negative). Finally in Section V we
compared the algorithms with state-of-the-art quantile
estimators.

II. RANDOMIZED UPDATE BASED MULTIPLICATIVE
INCREMENTAL QUANTILE ESTIMATOR (RUMIQE)

We start by presenting the incremental quantile
estimator which is based on randomization. Let X de-
note a stochastic variable with distribution fX(x) and
further let x(n) be a concrete realization of X at time
’n’. The intention of the exercise is to estimate the q-
th quantile, which is the number Qq such that P (X <
Qq) = FX(Qq) = q. We achieve this by maintaining a
running estimate Q̂q(n) at time ’n’. We omit the reference
to time ’n’ in Q̂q(n) whenever there is no confusion. Q̂q
is initialized to Q̂q(0) such that Q̂q(0) > 0.
Q̂q(n) is updated as per the following simple rule:

Q̂q(n+ 1) ← (1 + λ)Q̂q(n)

if Q̂q(n) < x(n) and rand() ≤ q
(2)

Q̂q(n+ 1) ← (1− λ)Q̂q(n)

if Q̂q(n) ≥ x(n) and rand() ≤ (1− q)
(3)

Q̂q(n+ 1) ← Q̂q(n)

else (4)

where rand() is a random number in [0, 1] and 0 < λ <
1. Note that since the update scheme is multiplicative
and Q̂q(0) > 0, the estimator will stay positive. In Section
IV we present modifications of the scheme such that the
estimator can take both positive and negative values.

Now we will present a theorem that catalogues the
properties of the estimator for Qq > 0. A sufficient
condition to obtain Qq > 0 is that the random variable X
only takes positive values The proofs of the theoretical
results in this paper is based on the theory of stochastic
learning due to Norman [23].
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Theorem 1. Let Qq = FX
−1(q) be the true quantile to be

estimated and suppose that Qq > 0. In addition, we suppose
that Q̂q(0) > 0. Applying the updating rules (2) to (4), we
obtain

lim
nλ→∞,λ→0

Q̂q(n) = Qq

We will first present a theorem due to Norman [23]
that will be used for our proof. Norman [23] studied dis-
tance ”diminishing models”. The convergence of Q̂q(n)
to Qq is a consequence of this theorem.

Theorem 2. Let x(t) be a stationary Markov process depen-
dent on a constant parameter θ ∈ [0, 1]. Each x(t) ∈ I , where
I is a subset of the real line. Let δx(t) = x(t+ 1)−x(t). The
following are assumed to hold:

1) I is compact.
2) E[δx(t)|x(t) = y] = θw(y) +O(θ2)
3) V ar[δx(t)|x(t) = y] = θ2s(y) + o(θ2)

4) E[δx(t)3|x(t) = y] = O(θ3) where supy∈I
O(θk)
θk

< ∞
for K = 2, 3 and supy∈I

o(θ2)
θ2 → 0 as θ → 0.

5) w(y) has a Lipschitz derivative in I .
6) s(y) is Lipschitz I .
If Assumptions (1)-(6) hold, w(y) has a unique root y∗ in

I and dw
dy

∣∣∣∣
y=y∗

≤ 0 then

1) var[δx(t)|x(0) = x] = 0(θ) uniformly for all x ∈ I
and t ≥ 0. For any x ∈ I , the differential equation
dy(τ)
dτ = w(y(t)) has a unique solution y(τ) = y(τ, x)

with y(0) = x and E[δx(t)|x(0) = x] = y(tθ) + O(θ)
uniformly for all x ∈ I and t ≥ 0.

2) x(t)−y(tθ)√
θ

has a normal distribution with zero mean and
finite variance as θ → 0 and tθ →∞.

Having presented Theorem 2, now we are ready to
proof Theorem 1 which is the main result of this paper
by resorting to Theorem 2.

Proof. Let δQ̂q(n) = Q̂q(n+ 1)− Q̂q(n).

E[δQ̂q(n)|Q̂q = Q̂q(n)] = λQ̂q(n)qProb(Q̂q(n) < X)

− λQ̂q(n)(1− q)
Prob(Q̂q(n) ≥ X)

= λQ̂q(n)q(1− Prob(X ≤ Q̂q(n))

− λQ̂q(n)(1− q)
Prob(X ≤ Q̂q(n))

= λQ̂q(n)(q(1− FX(Q̂q(n))

− (1− q)FX(Q̂q(n))

= λQ̂q(n)(q − FX(Q̂q(n)) (5)

Let w(Q̂q(n)) = Q̂q(n)(q− FX(Q̂q(n)) and ∆Q̂q(n+ 1) =

E[δQq(n)|Q̂q = Q̂q(n)]
We then get

V ar[δQ̂q(n)|Q̂q = Q̂q(n)] = E[δQ̂q(n)2|Q̂q = Q̂q(n)]

−∆Q̂q(n)2

or

E[δQ̂q(n)2|Q̂q = Q̂q(n)] = λ2Q̂q(n)2qProb(Q̂q(n) < X)

− λ2Q̂q(n)2(1− q)
Prob(Q̂q(n) ≥ X)

= λ2Q̂q(n)2(q − FX(Q̂q(n)) (6)

Therefore, we can obtain

V ar[δQ̂q(n)|Q̂q = Q̂q(n)] = λ2Q̂q(n)2(q − FX(Q̂q(n))

− (λQ̂q(n)(q − FX(Q̂q(n)))2

= λ2Q̂q(n)2(q − FX(Q̂q(n))

(1− q + FX(Q̂q(n)) (7)

Let s(Q̂q(n)) = Q̂q(n)2(q−FX(Q̂q(n))(1− q+FX(Q̂q(n)).
We then get

E[Q̂q(n)3|Q̂q = Q̂q(n)] = λ3Q̂q(n)3q(1− FX(Q̂q(n)))

− λ3Q̂q(n)3(1− q)FX(Q̂q(n))

= λ3Q̂q(n)3(q − FX(Q̂q(n)) (8)

We will use the results of Norman to prove the conver-
gence.

w(Q̂q(n)) = Q̂q(n)(q − FX(Q̂q(n))) (9)

It is easy to see that w(Q̂q(n)) admits a to roots Qq =
FX
−1(q) and Qq = 0. By introducing an arbitrarily small

lower bound Qmin > 0 on estimate Q̂q(n), we can avoid
the Qq = 0. This is easily implemented by modifying
the update rules and adding Qmin to the right term of
equations (2) and (3). Therefore the unique root becomes
Qq = FX

−1(q).
Let us consider dw(Q̂q)

dQ̂q

dw(Q̂q)

dQ̂q
= q − FX(Q̂q)− Q̂qfx(Q̂q) (10)

We replace Q̂q by Qq and get

w(Q̂q)

dQ̂q

∣∣∣∣
Q̂q=Qq

= q − FX(Qq)−Qqfx(Qq) (11)

= 0−Qqfx(Qq) < 0. (12)

This gives limnλ→∞,λ→0E(Q̂q) = Qq + O(λ) and
V ar(Q̂q) = o(λ). Consequently limnλ→∞,λ→0 Q̂q = Qq .

A. Estimating Negative Quantiles for the case of the RU-
MIQE algorithm

Now we will present a scheme for the randomized
estimator (RUMIQE) when Qq < 0. A sufficient condition
to obtain Qq < 0 is that the random variable X takes only
negative values. To do this, we merely ”invert” the sign
of the update equation in the case of negative quantiles.
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Then, the value of Q̂q(n) is updated as per the following
simple rule:

Q̂q(n+ 1) ← (1− λ)Q̂q(n)

if Q̂q(n) < x(n) and rand() ≤ q
(13)

Q̂q(n+ 1) ← (1 + λ)Q̂q(n)

if Q̂q(n) ≥ x(n) and rand() ≤ (1− q)
(14)

Q̂q(n+ 1) ← Q̂q(n)

else (15)

The convergence of the estimator to the true quantile
based on this rule can be proven in exactly in the same
way as Theorem 1 and thus the proof is omitted for the
sake of brevity.

III. DETERMINISTIC UPDATE BASED MULTIPLICATIVE
INCREMENTAL QUANTILE ESTIMATOR (DUMIQE)

In this section, we present our second estimation
algorithm which is the deterministic counter-part to the
algorithm proposed in Section II in the sense that it does
not involve the concept of randomization and rather
implements deterministic updates.

Recall that we let x(n) denote a realization of a
stochastic variable X ∼ fX(x) at time ‘n’. We still like to
estimate the q-th quantile, Qq . Instead of the update rules
(2) to (4) we now suggest the following update rules:

Q̂q(n+ 1) ← (1 + λq)Q̂q(n)

if Q̂q(n) < x(n) (16)

Q̂q(n+ 1) ← (1− λ(1− q))Q̂q(n)

if Q̂q(n) ≥ x(n) (17)

where 0 < λ < 1. The intuitive behind this update rule
compared to RUMIQUE is that instead of updating the
estimator probabilistically q and 1 − q portions of the
times when new sample arrives, we rather update the
quantile every time and appropriately adjust how much
we update the estimator. The estimator based on this
rule also converges to the true quantile according to the
following theorem:

Theorem 3. Let Qq = FX
−1(q) be the true quantile to be

estimated and suppose that Qq > 0. In addition, we suppose
that Q̂q(0) > 0. Applying the updating rules (16) and (17),
we obtain

lim
nλ→∞,λ→0

Q̂q(n) = Qq

The proof of Theorem 3 is straightforward by following
the same steps as the proof of theorem 1 and therefore
is omitted here.

In the same manner as in Section II-A, negative quan-
tiles can be estimated by simply ”inverting” the sign of
the updates:

Q̂q(n+ 1) ← (1− λq)Q̂q(n)

if Q̂q(n) < x(n) (18)

Q̂q(n+ 1) ← (1 + λ(1− q))Q̂q(n)

if Q̂q(n) ≥ x(n) (19)

A. Remark regarding Frugal [6]

RUMIQE bears similarity to Frugal [6] in the sense
that it uses randomization as inherent part of the update
procedure [6].

According to Frugal [6], Q̂q(n) is updated as per the
following simple rule:

Q̂q(n+ 1) ← Q̂q(n) + 1

if Q̂q(n) < x(n) and rand() ≤ q
(20)

Q̂q(n+ 1) ← Q̂q(n)− 1

if Q̂q(n) ≥ x(n) and rand() ≤ (1− q)
(21)

Q̂q(n+ 1) ← Q̂q(n)

else (22)

In the experimental section, we will use a slightly
more generalized version of Frugal by replacing 1 with
a positive constant ∆.

Please note that DUMIQE possesses deterministic up-
dates in contrasts to RUMIQE and Frugal.

IV. GETTING ”AROUND ZERO” IN THE CASE OF THE
RUMIQE AND DUMIQE ALGORITHMS

The update equations for the randomized or the
deterministic update schemes are such that whenever
Q̂q(0) is initialized to a positive value, then Q̂q(n) will
remain positive for all subsequent time instants n. The
parameter λ is chosen on the interval (0, 1) which yields
that (1− λ) < 1 and (1− λ(1− q)) < 1 while (1 + λ) > 1
and (1 + λq) > 1. Thus the rational of our schemes is
to increase the estimate by multiplying with a number
larger than 1, or to decrease by multiplying with a
number smaller than 1.

A consequence of the multiplicative updating rules,
our presented estimators are unable to handle the case
when the quantile changes sign during the estimation
process. This case might emerge in dynamic environ-
ments where the true quantile might drift from positive
values to negative values and vice-versa. In addition,
even in a stationary environments, usually the sign of
the true quantile is unknown and thus a wrong initial-
ization of the quantile estimate will hinder convergence.
This can happen for instance in the case where the
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true unknown quantile is positive and we initialize our
incremental estimator to a negative value and vice-versa.

In order to cope with the case of changing the sign of
the estimate while performing the estimation, we extend
both estimators using two different approaches:
• The first approach exploits a subtle idea in which we

reckon with so-called phantom quantiles. The idea is
based on the concept inspired by simple observation
that Prob(X ≤ a) = Prob(X+b ≤ a+b) for any real
numbers a and b.

• We merge the update operations designed for pos-
itive quantiles together with the counter-part op-
erations for updating negative quantile so that to
build an estimator that is able to estimate any
quantile, and most importantly, a one that is able
to change the sign of the quantile estimate in an
online-manner.

A. Getting ”around zero”: Introducing Phantom Quantile
In this section, we introduce our first idea for getting

around zero and allowing our schemes (RUMIQE and
DUMIQE) to be able to estimate any quantile without
any prior knowledge of its sign.

1) Introducing Phantom Quantiles with a Fixed Shift: Let
a be a positive real number. We suppose that we are
dealing with estimating the quantile of a distribution
fX(n) defined over [−a,∞], where X is known to be
in [−a,∞]. Thus, fX admits positive and negative quan-
tiles. The question that we try to address in this section
is how to allow to estimate the negative quantiles of fX .
Our solution is based on the simple property that

Prob(Q̂q(n) < X) = Prob(Q̂q(n) + a < X + a)

Thus, by making a subtle modification, we can estimate
any quantile of the the distribution fX , whether it is pos-
itive or negative, by resorting to what we call phantom
quantile estimate, which is merely a shifted quantile.

We introduce a phantom quantile estimator, Q̂′q(n+1),
that gets updated by considering the phantom sam-
ple x(n) + a and using the afore-mentioned equations,
equations (2) to (4) for the case of randomized update
(RUMQE), and equations (16) and (17) for the case of de-
terministic update (DUMQE). Now the true quantile can
be estimated by shifting the phantom quantile estimator
Q̂′q(n+ 1), i.e.

Q̂q(n+ 1) = Q̂′q(n+ 1)− a

It is easy to note that Q̂q converges to the true quantile
Qq on the interval [−a,∞]. Thus, we call Q̂′q as a phan-
tom quantile estimator with a fixed shift. In the next
section, we will generalize the latter result for estimating
the quantile of any distribution.

2) Generalizing Phantom Quantile: Algorithms 1 and 2
describe the operations needed for updating the quantile
estimate Q̂q using the phantom quantile estimate, Q̂′q
for the updating rules RUMIQUE and DUMIQUE, re-
spectively. This permits us to generalize the process

of estimating the positive or negative quantile of any
distribution. The basic idea is to make sure that the
phantom estimate always is above some positive value
Qmin.

Algorithm 1 Phantom Based Algorithm for RUMIQE
∆← 0
Q̂q(0)← Qmin
while Stream of Data do

Get sample x(n)
x′(n)← x(n) + ∆

if Q̂′q(n) < x′(n) and q ≤ rand() then
Q̂′q(n+ 1)← (1 + λ)Q̂′q(n)

else if Q̂′q(n) ≥ x′(n) and rand() ≤ (1− q) then
Q̂′q(n+ 1)← (1− λ)Q̂′q(n)

else
Q̂′q(n+ 1)← Q̂′q(n)

end if
if Q̂′q(n+ 1) < Qmin then

∆← ∆ + (Qmin − Q̂′q(n+ 1))

Q̂′q(n+ 1)← Qmin
end if
Q̂q(n+ 1)← Q̂′q(n+ 1)−∆

end while

Upon receiving a sample x(n), we consider a phantom
sample x′(n) = x(n) + ∆. We then update Q̂′q(n + 1)
using the phantom sample x′(n), as per equations (2) to
(4) or (16) and (17). As a consequence of the update, we
might violate the constraint that Q̂′q(n+ 1) ≥ Qmin. We,
therefore, add a shift to Q̂′q(n+1), i.e., a positive quantity
Qmin − Q̂′q(n), so as to ensure that Q̂′q(n + 1) ≥ Qmin.
Note that we sum up all the shifts obtained so far (up
to instant n) whenever a violation takes place. The non-
phantom quantile (target quantile estimate) is obtained
from the phantom quantile by subtracting the total shift,
∆, so far. Note that the phantom quantile Q̂′q(n) will
always lie in [Qmin,∞), while the estimate Q̂q(n) will
converge to the true estimate.

B. Getting Around Zero: ”Creating a bridge”
We explain this idea based on the RUMIQUE scheme,

but it extends naturally also to the DUMIQUE scheme.
The idea is to use the update equation for the posi-
tive quantile whenever the quantile is positive. As the
quantile approaches 0, we can introduce an artificial
”jump” over zero in order to make a transition to
negative values, and then use the update equations for
negative quantiles given by (13) to (15). In simple terms,
let Qmin be a positive value. We use the positive update
form (rules in equations (2) to (4)) whenever Q̂q(n) > 0

and the negative update form whenever Q̂q(n) < 0 (rules
in equations (13) to (15)).

If Q̂q(n) > 0 and Q̂q(n + 1) falls in the interval
[−Qmin, Qmin], we operate a ”jump” over zero and as-
sign −Qmin to Q̂q(n+ 1). Similarly, whenever Q̂q(n) < 0
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Algorithm 2 Phantom Based Algorithm for DUMIQE
∆← 0
Q̂q(0)← Qmin
while Stream of Data do

Get sample x(n)
x′(n)← x(n) + ∆

if Q̂′q(n) < x′(n) then
Q̂′q(n+ 1)← (1 + λq)Q̂′q(n)

else
Q̂′q(n+ 1)← (1− λ(1− q))Q̂′q(n)

end if
if Q̂′q(n+ 1) < Qmin then

∆← ∆ + (Qmin − Q̂′q(n+ 1))

Q̂′q(n+ 1)← Qmin
end if
Q̂q(n+ 1)← Q̂′q(n+ 1)−∆

end while

and Q̂q(n + 1) falls in the interval [−Qmin, Qmin], we
”jump” over zero and assign Qmin to Q̂q(n + 1). The
schemes for enhancing the RUMIQE and DUMIQE with
the bridge idea is described in Algorithm 3 and Algo-
rithm 4, respectively.

Algorithm 3 Enhancing RUMIQE with a Bridge
∆← 0
Q̂q(0)← Qmin
while Stream of Data do

Get sample x(n)

S ← sign(Q̂q(n))

if Q̂q(n) < x(n) and q ≤ rand() then
Q̂q(n+ 1)← (1 + Sλ)Q̂q(n)

else if Q̂q(n) ≥ x(n) and rand() ≤ (1− q) then
Q̂q(n+ 1)← (1− Sλ)Q̂q(n)

else
Q̂q(n+ 1)← Q̂q(n)

end if
if Q̂q(n+ 1) ∈ [−Qmin, Qmin] then
Q̂q(n+ 1)← −SQmin

end if
end while

V. EXPERIMENTS

In this section we compare our proposed family of
multiplicative incremental quantile algorithms, namely,
RUMIQE and DUMIQE to four of the state-of-the-art
incremental quantile estimators, namely, the Stochastic
Approximation (SA)-based quantile estimator due to
Tierney [1], the exponential Weighted Stochastic Approx-
imation proposed by Chen et al. [2], the estimator due
to Cao et al. [3] and the Frugal approach by Ma et
al. [6]. To tackle both negative and positive quantiles
we present results for the phantom variable approach
in Section IV-A. The other approach, creating a bridge

Algorithm 4 Enhancing DUMIQE with a Bridge
∆← 0
Q̂q(0)← Qmin
while Stream of Data do

Get sample x(n)

S ← sign(Q̂q(n))

if Q̂q(n) < x(n) then
Q̂q(n+ 1)← (1 + Sλq)Q̂q(n)

else
Q̂q(n+ 1)← (1− Sλ(1− q))Q̂q(n)

end if
if Q̂q(n+ 1) ∈ [−Qmin, Qmin] then
Q̂q(n+ 1)← −SQmin

end if
end while

(Section IV-B), was also evaluated and resulted in very
similar results as the phantom approach and thus is not
shown.

We focus on four different cases in which the quantiles
changes with time. In the first two cases we assume
that x(n), n = 1, 2, 3, . . . are independent outcomes from
a normal distribution with expectation µn (varies with
time n) and standard deviation σ. In order to simulate
a dynamic environment, we assume that the expectation
varies periodically with n

µn = a sin

(
2π

T
n

)
which is the sinus function with period T . In the first and
the second case we estimate the 0.7 and 0.95 quantiles,
respectively. We denote the two cases NORM 0.7 and
NORM 0.95. For the third and the forth cases we as-
sume that x(n), n = 1, 2, 3, . . . are independent outcomes
from a χ2 distribution where the number of degrees of
freedom, νn, varies periodically with n

νn = a sin

(
2π

T
n

)
+ b

where b > a such that νn > 0 for all n. In the third and
the fourth case we estimate the 0.7 and 0.95 quantiles,
respectively, and denote the two cases CHI 0.7 and
CHI 0.95. Figures 1 − 4 show the estimation of the true
quantile at every time step for the four cases described
above using the different estimation methods presented
in this paper. To generate the results in the figures we
used σ = 1, Qmin = 2, a = 2, b = 5 and T = 2000.
For the method in Chen et al we sat M = 10. Using
lower values of M resulted in numerical issues. We
see that for all of the cases Tierney performs poorly,
which is as expected since the estimator is constructed
for a stationary system. Chen et al. performs better than
Tierney, but due the batches, the estimator is lagging
behind the true estimator. We observe that all the four
estimators: Cao et al., Ma et al., RUMIQE and DUMIQE
yield high performance. This is quite an impressive due
to the simplicity of the estimators presented in this



8

Fig. 1. Case: NORM 0.7. In each panel the gray and the black curves represent the true quantile as a function of iteration and the estimate
respectively.

Fig. 2. Case: NORM 0.95. In each panel the gray and the black curves represent the true quantile as a function of iteration and the estimate
respectively.
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Fig. 3. Case: CHI 0.7. In each panel the gray and the black curves represent the true quantile as a function of iteration and the estimate
respectively.

Fig. 4. Case: CHI 0.95. In each panel the gray and the black curves represent the true quantile as a function of iteration and the estimate
respectively.
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paper compared to the Cao et al. estimator. We also
observe that RUMIQE and DUMIQE have no problem
switching between a positive and a negative estimate of
the quantile using the phantom approach (Section IV-A).

Next we do a more systematic comparison of the
most promising estimators above, namely Cao et al.,
Ma et al., RUMIQE and DUMIQE. Ma et al. in fact has
two algorithms, which we call Frugal 1 and Frugal 2
in the rest of the example. We started by generating
106 samples from both the time varying normal and χ2

distribution using σ = 1, a = 2, b = 5 and two values of
T , namely T = 800 (rapid variations) and T = 8000 (slow
variations). For each of the four generated data sets we
estimated both the 0.7 and 0.95 quantile in each iteration.
We computed the estimation error using the root mean
squared difference (RMSE) between the true quantile
and the estimate for every iteration. We computed the
estimation error for a large set of different values of the
tuning parameters λ and c. Figures 5 and 6 show the
results. The black, blue and red curves refer to RUMIQE,
DUMIQUE and Ma et al. (Frugal 1 and 2), respectively
and the gray curves refer to Cao et al. for different
choices of c. The x-axis below the curves refers to the
value of λ in the algorithms RUMIQUE, DUMIQUE and
Cao et al. while the x-axis above the curves refers to
the resolution used in Frugal 1 and 2. We see that for
all the estimators the estimation error increases when
the period, T , decreases or when estimating a quantile
further into the tail of the distribution. We also see that
the estimation error depends on the choice of the tuning
parameters λ, ∆ and c. For Cao et al. the estimation error
seems to decrease using a lower value of c (except for the
lower panels in Figure 6), but by using lower values of c
than 2 we struggled with numerical issues. In fact, also
for c = 2, 5 and 10 we got some numerical issues and
typically by choosing a low value of c combined with
a high value of λ for the χ2 distribution cases. This is
shown by the incomplete curves in Figures 5 and 6 were
the missing results are due to the numerical issues.

Comparing RUMIQE and DUMIQE we see that DU-
MIQE systematically performs better than RUMIQE. For
the case NORM 0.7 (upper panels in Figure 5) we see
that DUMIQE performs about equally well as Cao et al.
with c = 2 and about the same value of λ gives the
optimal results. We see that Frugal 1 and 2 perform a
little better than RUMIQUE, but poorer than DUMIQUE.
Also for NORM 0.95 (lower panels in Figure 5) Cao et
al. and DUMIQE perform about equally well, but that
different choices of λ result in the best results (λ ≈ 0.05
for Cao et al. and λ ≈ 0.1 for DUMIQUE for T = 800).
Further we see that Frugal 1 and 2 and RUMIQUE
perform about equally well, but poorer than DUMIQUE.

For the case CHI 0.7 (upper panels in Figure 6) we
see that c = 2 and DUMIQE perform about equally well
using the optimal values of λ. For the case CHI 0.95
(lower panels in Figure 6) DUMIQE outperforms Cao et
al. for all choices of c. We also see that DUMIQE seems
to be more robust against estimation error when using a

suboptimal value of λ (the curves changes less rapidly
with λ). In a practical situation with a dynamical system,
it is often hard to use an optimal value of λ so that
a robustness vis-a-vis choice of the update parameter
λ, is a great advantage. Further we see that c = 10
outperforms c = 2 and c = 5 which is in contrast with
the other cases where c = 2 gave the best results. An
other substantial disadvantage of Cao et al. compared
to DUMIQE and RUMIQE is therefore the fact that we
need to tune two parameters (λ and c) in contrast to
only one for DUMIQUE and RUMIQE (λ). Finally we
see that for both CHI 0.7 and CHI 0.95, RUMIQUE and
Frugal 1 and 2 perform about equally well and poorer
than DUMIQUE and Cao et al.

We also tested the Selection algorithm presented in
[15]. The Selection algorithm operates without knowl-
edge of the length of the data stream which is also the
same underlying assumption as the family of Frugal
algorithms [6] as well as our devised estimators DU-
MIQE and RUMIQE. The Selection algorithm returns the
quantile of a data stream with at least 1− δ probability.
We use the same parameter δ = 0.99 as in [6] for the Se-
lection algorithm. Apart from δ, the Selection algorithm
does not have any tuning parameter. It resulted in root
mean squared estimation errors as given by Tables I and
II. We see that the algorithm performs poorer than the
algorithms evaluated in Figures 5 and 6.

VI. CONCLUSION

In this paper, we have designed two novel incremental
quantile estimators based on the theory of stochastic
learning. The DUMIQE estimator is shown to outper-
form the state-of-the-art of incremental estimators in
terms of convergence speed and accuracy. We emphasize
that our estimators can be easily implemented and are
far simpler than the Tierney family of estimators [1]–[5]
as RUMIQUE and DUMIQUE do not require estimation
of the density at the quantile.

We have shown how to extend the new estimators in
order to handle negative quantiles by using two different
methods. The first method is based on the idea of using
phantom quantiles and simultaneously using the update
equation designed for the positive quantile case. The
second idea relies on modifying the update equation
originally devised for estimating a positive quantile in
order to accommodate the case of negative quantiles by
exploiting the symmetry of the update equation for the
positive quantile.

There are different extensions that can be envisaged
for future work:

• Our algorithms for quantile estimation is designed
for data elements that are added one by one. A
possible extension is to generalize our schemes,
namely, RUMIQE and DUMIQE to handle not only
data insertions, but also dynamic data operations
such as deletions and updates such as in [3].
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Fig. 5. Root mean squared estimation error for the case with outcomes from the normal distribution.

Fig. 6. Root mean squared estimation error for the case with outcomes from the χ2 distribution.

q = 0.7, T = 800 q = 0.7, T = 8000 q = 0.95, T = 800 q = 0.95, T = 8000
1.545 1.606 1.746 1.724

TABLE I
NORMAL DISTRIBUTION CASE: ROOT MEAN SQUARED ESTIMATION ERROR FOR THE SELECTION ALGORITHM [15]
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q = 0.7, T = 800 q = 0.7, T = 8000 q = 0.95, T = 800 q = 0.95, T = 8000
1.759 1.729 3.201 3.288

TABLE II
χ2 DISTRIBUTION CASE: ROOT MEAN SQUARED ESTIMATION ERROR FOR THE SELECTION ALGORITHM [15]

• We are currently investigating how to extend our
estimators in order to handle data arriving in a batch
mode.

• An interesting research direction is to simultane-
ously estimate more than a single quantile value.
To achieve this, our present schemes will have to
be modified so as to guarantee the monotonicity
property of the quantiles, i.e, maintaining multiple
quantile estimates while simultaneously ensuring
that the estimates do not violate the monotonicity
property.

• An intriguing characteristic of our estimators is
their multiplicative update form which is radically
different from previous incremental estimators that
resort to the additive update forms. We believe that
this form of multiplicative update can be extended
to other types of estimators such as binomial esti-
mators.

• We submit that multiplicative increase-decrease
estimator are faster than additive increase-decrease
estimator, however at the cost of slightly higher
variance 2. There is a possibility to combine both
schemes, i.e, multiplicative increase-decrease for ap-
proaching the optimal quantile and then additive
increase decrease (similar to Tierney) for converging
with less fluctuations to the optimal value. By virtue
of the multiplicative updates, the quantile estimate
can be adjusted in a ”geometric” manner.
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