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Abstract. We study the twisted Hochschild homology of quantum full �ag manifolds, with
the twist being the modular automorphism of the Haar state. We show that non-trivial 2-
cycles can be constructed from appropriate invariant projections. Moreover we show that
HHθ

2 (Cq[G/T ]) has dimension at least rank(g). We also discuss the case of generalized �ag
manifolds and present the example of the quantum Grassmannians.

Introduction

In this article we will study some aspects of the twisted Hochschild homology of certain
quantized coordinate rings. These rings, which will be denoted by Cq[G/T ], are quantizations
of the coordinate rings of the full �ag manifolds G/T . They will be de�ned starting from
the quantized coordinate rings of the corresponding compact Lie groups, denoted by Cq[G].
Several of the results which we are going to prove will hold in this setting as well. We will
focus on the degree-two part where, as we will show, it is possible to produce many non-trivial
classes from appropriate invariant projections. Below we will discuss some reasons why we
consider the degree-two part to be very interesting. One of our main result is the following,
where we write g for the Lie algebra of G and rank(g) for its rank.

Theorem. Let θ be the modular automorphism of the Haar state of Cq[G]. Then the twisted
Hochschild homology group HHθ

2 (Cq[G/T ]) has dimension at least rank(g).

The case rank(g) = 1, corresponding geometrically to the quantum 2-sphere, was previously
known [Had07]. In this case we have that HHθ

2 (Cq[G/T ]) is 1-dimensional.
Let us brie�y provide some background and motivations for this article. First we need

to recall the well-known Hochschild-Kostant-Rosenberg theorem: given a smooth variety X
and its coordinate ring A, the Hochschild homology HH•(A), which is a graded-commutative
algebra via the shu�e product, can be identi�ed with the algebra of di�erential forms on
X. For non-commutative algebras, which we consider as quantum spaces, this motivates
taking the Hochschild homology as a replacement for the di�erential forms, a point of view
which is advocated in Connes' approach to non-commutative geometry [Con94]. However
the Hochschild homology of quantum spaces tends to be fairly degenerate compared to their
classical counterparts, a phenomenon usually referred to as the "dimension drop".
On the other hand, the situation changes upon introducing some twisting in the coe�cients.

This setting was introduced in [KMT03] for compact quantum groups, with the aim of �nding
a connection with Woronowicz's theory of covariant di�erential calculi [Wor89]. Concrete
computations were performed in [Had07, HaKr05, HaKr06, HaKr10], showing that indeed
appropriate twisting avoids the "dimension drop". A more conceptual understanding of this
phenomenon was given in [BrZh08], where it was connected with a general version of Poincaré
duality for certain non-commutative algebras, known as Van den Bergh duality.
Here we will focus on the study of twisted 2-cycles on quantum full �ag manifolds. As we

have mentioned above, in this case it is possible to produce many non-trivial classes from
1
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appropriate invariant projections. This is interesting because the general results that are
available do not give easy access to the intermediate degrees. Another important motivation
is that among 2-cycles we expect to �nd examples of quantum Kähler forms, since the classical
manifolds we are considering are Kähler. We will come back to this point in the last section,
where we will discuss the concrete example of the quantum Grassmannians.
The paper is organized as follows. In Section 1 we provide some background and �x

notations and conventions. In Section 2 we recall basic facts on Hochschild homology, review
known results on quantized coordinate rings and prove a simple result regarding twisted 2-
cycles. In Section 3 we de�ne projections on quantized coordinate rings using appropriate
matrix units. In Section 4 we show how these projections are connected to quantum �ag
manifolds and equivariant K-theory. In Section 5 we show that these projections can be used
to de�ne twisted 2-cycles. We also introduce some 2-cocycles, in order to prove their non-
triviality. In Section 6 we compute the pairings of the cycles with the cocycles. In Section 7
we discuss non-triviality and linear independence of these classes, as well as proving our main
theorem. Finally in Section 8 we extend some of the previous results to generalized �ag
manifolds. In particular we present the example of the quantum Grassmannians.

1. Notations and conventions

In this section we �x some basic notation and brie�y review some facts about complex
simple Lie algebras, quantized enveloping algebras and quantized coordinate rings.

1.1. Quantized enveloping algebras. Let g be a �nite-dimensional complex simple Lie
algebra with �xed Cartan subalgebra h. We denote by ∆(g) the root system, by ∆+(g)
the positive roots and by Π = {α1, · · · , αr} the simple roots. The Killing form induces an
invariant bilinear form on h∗, normalized so that for every short root αi we have (αi, αi) = 2.
The Cartan matrix (aij) is then de�ned by (αi, αj) = diaij, where di := (αi, αi)/2.
For quantized enveloping algebras we use the conventions of [KlSc97]. Let q ∈ C be non-

zero and de�ne qi := qdi . Suppose that q2
i 6= 1 for all i. The quantized universal enveloping

algebra Uq(g) is generated by {Ei, Fi, Ki, K
−1
i }ri=1, where r is the rank of g, with relations

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,

KiEjK
−1
i = q

aij
i Ej, KiFjK

−1
i = q

−aij
i Fj,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

plus the quantum analogue of the Serre relations. The Hopf algebra structure is de�ned by

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

S(Ki) = K−1
i , S(Ei) = −EiK−1

i , S(Fi) = −KiFi, ε(Ki) = 1, ε(Ei) = ε(Fi) = 0.

For λ =
∑r

i=1 niαi we will write Kλ = Kn1
1 · · ·Knr

r . Let ρ be the half-sum of the positive
roots of g. Then we have S2(X) = K2ρXK

−1
2ρ for any X ∈ Uq(g). For q ∈ R we can de�ne

the compact real form of Uq(g), which makes it into a Hopf ∗-algebra. It is de�ned by

K∗i = Ki, E∗i = KiFi, F ∗i = EiK
−1
i .



TWISTED 2-CYCLES ON QUANTUM FLAG MANIFOLDS 3

1.2. Quantized coordinate rings. Dually to the quantized enveloping algebra Uq(g) we de-
�ne the quantized coordinate ring Cq[G], whose elements should be interpreted as "functions"
on the corresponding compact quantum group. We de�ne Cq[G] as the subspace of the linear
dual Uq(g)∗ spanned by the matrix coe�cients of �nite-dimensional representations of Uq(g).
The Hopf ∗-algebra structure of Uq(g) induces a Hopf ∗-algebra on Cq[G] by the formulae

(φψ)(X) = (φ⊗ ψ)∆(X), 1(X) = ε(X),

∆(φ)(X ⊗ Y ) = φ(XY ), ε(φ) = φ(1),

S(φ)(X) = φ(S(X)), φ∗(X) = φ(S(X)∗).

Here φ, ψ ∈ Cq[G] and X, Y ∈ Uq(g). More precisely, given an irreducible representation
V (Λ) of highest weight Λ, the matrix coe�cients are de�ned by

cΛ
f,v(X) = f(X . v), v ∈ V (Λ), f ∈ V (Λ)∗, X ∈ Uq(g).

The quantized coordinate ring Cq[G] is a Uq(g)-bimodule in a natural way via

(X . φ)(Y ) = φ(Y X), (φ / X)(Y ) = φ(XY ).

It is well known that the �nite-dimensional irreducible representations V (Λ) are unitarizable.
Therefore we are free to choose an orthonormal basis {vi}i of V (Λ). It will be convenient to
do so in the following. We also have a corresponding dual basis {f i}i of V (Λ)∗. With this
setup we will introduce some special notation for the matrix coe�cients, namely

uij = cΛ
f i,vj

(X) = f i(X . vj).

We omit the dependence on the representation V (Λ) to lighten the notation. We will also
denote by λi the weight corresponding to the basis vector vi.

Remark 1.1. Usually the quantized coordinate ring Cq[G] is presented in terms of generators
coming from one particular representation of g. For example, the presentation of the algebra
Cq[SL(N)] in [KlSc97] is given in terms of the generators uij which correspond to the choice of
the fundamental representation. Our general presentation here follows [StDi99], for example.

Later on we will need some explicit formulae for the action of Uq(g) on Cq[G]. Let us write

X . vi =
∑

j π(X)jivj for the representation. Then we obtain the formulae

X . uij =
∑
k

π(X)kju
i
k, X . ui∗j =

∑
k

π(S(X))jku
i∗
k . (1.1)

In obtaining the second one we have used the fact that {vi}i is an orthonormal basis. Similarly
for the right action we obtain the formulae

uij / X =
∑
k

π(X)iku
k
j , ui∗j / X =

∑
k

π(S(X))ki u
k∗
j . (1.2)

2. Hochschild homology, quantum groups and projections

In this section we will give a brief introduction to Hochschild homology, with emphasis on
the twisted setting. We will then recall the results of Brown and Zhang on the Hochschild
homology of certain Hopf algebras. Finally we will discuss a simple method to obtain twisted
2-cycles, valid for any algebra which admits projections satisfying certain properties.
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2.1. Hochschild homology. Hochschild homology is a homology theory for associative al-
gebras, which we consider here to be over C. The main reference for this section is [Lod98].
Let A be an associative algebra and M be an A-bimodule. Write Cn(A,M) := M ⊗ A⊗n.
The Hochschild boundary is the linear map b : Cn(A,M)→ Cn−1(A,M) given by

b(m⊗ a1 ⊗ · · · ⊗ an) := ma1 ⊗ · · · ⊗ an

+
n−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1.

It satis�es b2 = 0, hence we have corresponding homology groups denoted by H•(A,M). We
will also use the notation HH•(A) = H•(A,A). It can also be de�ned in terms of derived
functors as Hn(A,M) = TorA

e

n (A,M), where Ae := A ⊗ Aop. There is a corresponding dual
cohomology theory, whose groups are denoted by Hn(A,M).
A natural choice of bimodules is given by M = A. Similarly we can consider the twisted

bimodules M = σA, which will be our main interest. They are de�ned as follows: as a vector
space M = A, but the bimodule structure is given by a · b · c = σ(a)bc, where σ ∈ Aut(A).
For these we will use the notation HHσ

• (A) := H•(A, σA). We will also use the notation bσ
for the Hochschild boundary in this situation. Notice that we could as well introduce a twist
for the right multiplication, but as bimodules this gives nothing new.
An important case we want to consider is when A is the algebra of functions on some

smooth space X. It turns out that the Hochschild homology of A is related to the di�erential
forms de�ned on X. This is the Hochschild-Kostant-Rosenberg theorem, a proof of which can
be found in [Lod98, Theorem 3.4.4]. We state the theorem for algebras over C for simplicity.
For a commutative unital algebra A, we have the A-module of di�erential forms Ω•A :=

∧•
A Ω1

A

constructed from the module of Kähler di�erentials Ω1
A, see [Lod98, Section 1.1.9].

Theorem 2.1 (Hochschild-Kostant-Rosenberg). Let A be a commutative smooth algebra over
C. Then there is an isomorphism of graded C-algebras Ω•A

∼= HH•(A).

We will not give the de�nition of a smooth algebra, but just mention that the example to
keep in mind is A = C[X] for a smooth a�ne variety X. The algebra structure on HH•(A)
is given by the shu�e product, which strongly relies on commutativity of A.
This result motivates a possible de�nition of di�erential forms for non-commutative alge-

bras. However, as we will see below, in general HH•(A) is very degenerate.

2.2. The case of quantum groups. The Hochschild homology of quantum SU(2) and
of the quantum 2-sphere was computed by Masuda, Nakagami and Watanabe in the pa-
pers [MNW90] and [MNW91]. Among their results we �nd that HH3(Cq[SU(2)]) = 0 and
HH2(Cq[S

2]) = 0. Therefore in this setting we do not have "volume forms". The situation
is di�erent if we allow some twisting, namely by considering twisted bimodules as discussed
above. In this setting the computation for quantum SU(2) was done by Had�eld and Krähmer
in [HaKr05, HaKr10] and for the quantum 2-sphere by Had�eld in [Had07].
Motivated by these computations, Brown and Zhang made a general analysis of this phe-

nomenon in [BrZh08]. The object of their study is the twisted Hochschild homology of a
certain class of Hopf algebras, which includes the quantized coordinate rings Cq[G]. As a
twist they consider a particular automorphism ν, which generalized the classical Nakayama
automorphism for Frobenius algebras, which is unique up to inner automorphisms. One of
their main results is the following [BrZh08, Theorem 3.4 and 5.3].



TWISTED 2-CYCLES ON QUANTUM FLAG MANIFOLDS 5

Theorem 2.2 (Brown, Zhang). Let A be a Noetherian AS-Gorenstein Hopf algebra of �nite
global dimension d, with bijective antipode. Let ν be its Nakayama automorphism. Then we
have Hd(A, ν−1A) 6= 0 and Hd(A, νA) 6= 0.

Moreover there is a twisted Poincaré duality connecting homology and cohomology. This
is a particularly simple instance of the general Van den Bergh duality [Van98].

Theorem 2.3 (Brown, Zhang). Let A be as above. Then for any A-bimodule M and for all
i we have H i(A,M) ∼= Hd−i(A, ν−1M).

These results can be applied to the quantized coordinate rings Cq[G]. In this case it is
known that the �nite global dimension d coincides with the classical dimension. Brown and
Zhang show that ν is given by the modular automorphism in the case of SL(N). This is true in
general by a result of Dolgushev [Dol09], which uses techniques of deformation quantization.

2.3. Twisted 2-cycles. The aim of this paper is to study twisted 2-cycles on the quantized
coordinate rings Cq[G]. Below we discuss two reasons why this should be interesting.
1) The �rst reason is that the results of Brown and Zhang do not give concrete information

about what happens in the intermediate degrees. The bottom degree part H0(A, ν−1A) can
be determined explicitly from its de�nition, while the top degree part Hd(A, ν−1A) can be
obtained using the twisted Poincaré duality mentioned above as

Hd(A, ν−1A) ∼= H0(A,A) ∼= Z(A).

Note that Z(A) 6= 0, since the center always contains the unit. On the other hand we do
not know the groups in the intermediate degrees. For example they could be all zero, which
would be unsatisfactory for their interpretation as di�erential forms.
2) The second reason, which singles out 2-cycles, is the following. At some point during

our analysis we will naturally encounter quantum full �ag manifolds corresponding to Cq[G].
Classically full �ag manifolds are Kähler manifolds, a fact which more generally is true for
any generalized �ag manifold. These admit a 2-form ω, called the Kähler form, which among
other things allows to obtain a volume form as ω∧n, where n is the complex dimension. Hence
among twisted 2-cycles we expect to �nd examples of quantum Kähler forms. Di�erently from
the commutative case, for non-commutative algebras there is no obvious way of multiplying
classes. But, if such a way exists after all, a natural question is whether one can obtain a top
degree form by appropriately multiplying these quantum Kähler forms.
After this discussion, we will present a simple way to obtain twisted Hochschild 2-cycles

from projections satisfying suitable conditions. A similar construction is used in [Wag09,
Proposition 5.3]. Below A will denote a general unital associative algebra. We will make use
of the trace map Tr : Matr(A)⊗n+1 → A⊗n+1, see [Lod98, De�nition 1.2.1]. It is de�ned by

Tr(M0 ⊗M1 ⊗ · · · ⊗Mn) :=
∑
i0,··· ,in

(M0)i0i1 ⊗ (M1)i1i2 ⊗ · · · ⊗ (Mn)ini0 .

Lemma 2.4. Let P ∈ Mat(A) be a projection and σ an automorphism of A. Suppose there
exists an invertible matrix V ∈ Mat(C) such that

σ(P ) = V PV −1, Tr(V P ) = c · 1,
for some c ∈ C. Consider the element C(P ) ∈ A⊗3 given by

C(P ) = Tr (V (2P − Id)⊗ P ⊗ P ) .

Then we have a corresponding class [C(P )] ∈ HHσ
2 (A).
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Proof. Since we are in low dimension we can proceed with a direct computation. Using the
de�nition of the boundary map and of the 2-chain C(P ) we obtain

bσC(P ) =
∑
i,j,k,`

V i
j (2P j

k − δ
j
k)P

k
` ⊗ P `

i −
∑
i,j,k,`

V i
j (2P j

k − δ
j
k)⊗ P

k
` P

`
i

+
∑
i,j,k,`

σ(P `
i )V i

j (2P j
k − δ

j
k)⊗ P

k
` .

Let us write A1 and A2 for the �rst and second line of this expression. Using the projection
relations

∑
k P

i
kP

k
j = P i

j and simplifying we get

A1 = −
∑
i,j,`

V i
j P

j
` ⊗ P

`
i + 1⊗

∑
i,j

V i
j P

j
i .

Since V is assumed to be invertible, the second term can be rewritten as

A2 =
∑

i,j,k,`,m,n

V `
m(V −1)mn σ(P n

i )V i
j (2P j

k − δ
j
k)⊗ P

k
` .

Moreover using the condition V −1σ(P )V = P we �nd

A2 =
∑
j,k,`,m

V `
mP

m
j (2P j

k − δ
j
k)⊗ P

k
` =

∑
k,`,m

V `
mP

m
k ⊗ P k

` .

Finally summing the two terms we have a cancellation and we obtain

bσC(P ) = A1 + A2 = 1⊗
∑
i,j

V i
j P

j
i .

Now recall that the normalized Hochschild complex is de�ned in terms of the chains C̄n(A) =
A ⊗ (A/C)⊗n. Hence using the condition Tr(V P ) = c we conclude that bσC(P ) = 0 in
the normalized Hochschild complex. Since this complex is quasi-isomorphic to the usual
Hochschild complex [Lod98, Proposition 1.1.15], we obtain a class [C(P )] ∈ HHσ

2 (A). �

Remark 2.5. The expression de�ning C(P ) can be seen as a modi�cation of the Chern char-
acter chn : K0(A) 7→ Hλ

2n(A) given by P 7→ Tr(P⊗2n+1). However such a simple modi�cation,
landing in Hochschild homology, seems to be possible only in the case n = 1.

We will use this method to produce non-trivial classes for quantum full �ag manifolds.

3. Projections on quantized coordinate rings

In this section we will de�ne some projections on the quantized coordinate rings Cq[G].
These will be built using some appropriate "matrix units", corresponding to the choice of
an irreducible representation V (Λ). We will consider the action of the modular automor-
phism coming from the Haar state. We will show that this action on the projections can be
implemented by conjugation, provided a certain condition holds.

3.1. Matrix units. For the rest of this section we �x a representation V (Λ) and denote by
uij its matrix coe�cients with respect to an orthonormal basis, as explained before.
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Lemma 3.1. The matrix coe�cients uij satisfy the relations∑
k

uk∗a u
k
b = δab 1 =

∑
k

uaku
b∗
k ,∑

k

q(2ρ,λk−λb)ukbu
k∗
a = δab 1 =

∑
k

q(2ρ,λa−λk)ub∗k u
a
k.

Proof. Recall that in a Hopf algebra we have S(a(1))a(2) = ε(a)1 = a(1)S(a(2)) for all a. We
apply this identity to uab . We have ∆(uab ) =

∑
k u

a
k ⊗ ukb and ε(uab ) = δab . Then∑

k

S(uak)u
k
b = δab 1 =

∑
k

uakS(ukb ).

Using S(uij) = uj∗i it can be rewritten as claimed.
Next we apply the above identity to S(uab ). For the counit and the coproduct we have

ε(S(uab )) = δab and ∆(S(uab )) =
∑

k S(ukb )⊗ S(uak). Then we obtain∑
k

S2(ukb )S(uak) = δab 1 =
∑
k

S(ukb )S
2(uak).

We need to use the identity S2(uij) = q(2ρ,λi−λj)uij. Plugging this in we �nd∑
k

q(2ρ,λk−λb)ukbS(uak) = δab 1 =
∑
k

q(2ρ,λa−λk)S(ukb )u
a
k.

Using S(uij) = uj∗i it can be rewritten as claimed. �

Remark 3.2. We could avoid working with orthonormal bases and express everything in terms
of S(uji ) = ui∗j , but this makes many of the following formulae less clear.

We will now de�ne some "matrix units" in terms of the elements uij and u
i∗
j . For any m,n

corresponding to the basis of V (Λ), we de�ne the matrices Mn
m,N

n
m ∈ Mat(Cq[G]) by

(Mn
m)ij := um∗i unj , (Nnm)ij := uimu

j∗
n .

Proposition 3.3. 1) The matrices {Mn
m}m,n are linearly independent and satisfy

(Mn
m)∗ = Mm

n , Mn
mM

p
o = δnoM

p
m, Tr(π(K−1

2ρ )Mn
m) = δnmq

−(2ρ,λm).

2) The matrices {Nnm}m,n are linearly independent and satisfy

(Nnm)∗ = Nmn , NnmN
p
o = δnoN

p
m, Tr(π(K2ρ)N

n
m) = δnmq

(2ρ,λm).

Proof. 1) First we prove linear independence. Suppose
∑

m,n c
m
nM

n
m = 0. Taking the counit of

the (i, j)-component we get
∑

m,n c
m
n ε(M

n
m)ij = cij, where we have used ε(M

n
m)ij = δimδ

n
j . This

shows that cij = 0 for all i and j, that is the matrices Mn
m are linearly independent. Next it

is immediate that (Mn
m)i∗j = un∗j u

m
i = (Mm

n )ji . For the product relation we compute∑
k

(Mn
m)ik(M

p
o)
k
j = um∗i

(∑
k

unku
o∗
k

)
upj = δnou

m∗
i upj = δno (Mp

m)ij.

Finally for the q-trace relation we have∑
i

q−(2ρ,λi)(Mn
m)ii = q−(2ρ,λn)

∑
i

q(2ρ,λn−λi)um∗i uni = δnmq
−(2ρ,λm).
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2) Linear independence is proven in the case of {Mn
m}m,n. Similarly we have (Nnm)i∗j = (Nmn )ji .

For the product relation we compute∑
k

(Nnm)ik(N
p
o)
k
j = uim

(∑
k

uk∗n u
k
o

)
uj∗p = δnou

i
mu

j∗
p = δno (Npm)ij.

Finally for the q-trace relation we have∑
i

q(2ρ,λi)(Nnm)ii = q(2ρ,λm)
∑
i

q(2ρ,λi−λm)uimu
i∗
n = δnmq

(2ρ,λm). �

Remark 3.4. These relations are essentially those of the matrix units mn
m which are 1 in the

(m,n)-entry and zero elsewhere, that is (mn
m)ij = δimδ

j
n (with respect to an orthonormal basis).

We can build more general matrices in terms of these matrix units. In particular within
this setting it is easy to state when such matrices correspond to projections.

Lemma 3.5. Let P =
∑

m,n c
m
nM

n
m and Q =

∑
m,n c

m
n N

n
m. We have that P and Q are projec-

tions if and only if
∑

` c
m
` c

`
n = cmn . They are orthogonal projections if moreover cmn = cnm.

Proof. For the relation P2 = P we use the product rule for Mn
m and compute∑

k

PikP
k
j =

∑
m,n,o,p

cmn c
o
p

∑
k

(Mn
m)ik(M

p
o)
k
j =

∑
m,n,p

cmn c
n
p (Mp

m)ij.

Since the matrix units Mn
m are linearly independent, we obtain

∑
k P

i
kP

k
j = Pij if and only if∑

n c
m
n c

n
p = cmp . For the orthogonality condition we compute

(P)i∗j =
∑
m,n

cmn (Mn
m)i∗j =

∑
m,n

cmn (Mm
n )ji .

Hence (P)i∗j = (P)ji if and only if cmn = cnm. Finally we observe that we get the same results
for Q, since the matrix units Nnm have the same product rule and action of ∗ as Mn

m. �

We will use the notations P =
∑

m,n c
m
nM

n
m and Q =

∑
m,n c

m
n N

n
m throughout the paper.

3.2. Modular element. A natural twist to consider is themodular automorphism θ : Cq[G]→
Cq[G] (or its inverse) coming from the Haar state. It is given explicitly by

θ(a) = K2ρ . a / K2ρ.

It satis�es the following property: if we denote by h : Cq[G] → C the Haar state, then we
have h(ab) = h(θ(b)a) for all a, b ∈ Cq[G]. It is useful to consider a more general situation.

Notation 3.6. Given two weights λ, λ′ we write σλ,λ′(a) := Kλ . a / Kλ′ .

Therefore σλ,λ′ expresses a general action coming from the Cartan generators. In the next
lemma we compute this action on the entries of the matrices Mn

m and Nnm.

Lemma 3.7. We have the formulae

σλ,λ′(M
n
m)ij = q−(λ,λi−λj)q−(λ′,λm−λn)(Mn

m)ij,

σλ,λ′(N
n
m)ij = q(λ,λm−λn)q(λ′,λi−λj)(Nnm)ij.
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Proof. We immediately compute Kλ . u
a
b / Kλ′ = q(λ,λb)q(λ′,λa)uab . Next recall the identities

X . a∗ = (S(X)∗ . a)∗, a∗ / X = (a / S(X)∗)∗.

Since S(Kλ)
∗ = K−1

λ we have

Kλ . u
a∗
b / Kλ′ = (K−1

λ . uab / K
−1
λ′ )∗ = q−(λ,λb)q−(λ′,λa)ua∗b .

Therefore for (Mn
m)ij = um∗i unj we have

Kλ . (Mn
m)ij / Kλ′ = q−(λ,λi−λj)q−(λ′,λm−λn)(Mn

m)ij.

Similarly for (Nnm)ij = uimu
j∗
n we have

Kλ . (Nnm)ij / Kλ′ = q(λ,λm−λn)q(λ′,λi−λj)(Nnm)ij. �

We now investigate the case of the modular automorphism θ.

Proposition 3.8. Suppose that cmn = 0 if λm 6= λn. Then we have the relations

θ(P) = π(K−1
2ρ )Pπ(K2ρ), θ(Q) = π(K2ρ)Qπ(K−1

2ρ ),

where the automorphism θ is applied entrywise.

Proof. Using the formulae in Lemma 3.7 we compute

θ(Mn
m)ij = q−(2ρ,λi−λj)q−(2ρ,λm−λn)(Mn

m)ij

= q−(2ρ,λm−λn)π(K−1
2ρ )ii(M

n
m)ijπ(K2ρ)

j
j.

Therefore for the matrix P we obtain

θ(Pij) =
∑
m,n

cmn q
−(2ρ,λm−λn)π(K−1

2ρ )ii(M
n
m)ijπ(K2ρ)

j
j.

Under the assumption on the coe�cients cmn we have the identity cmn q
−(2ρ,λm−λn) = cmn , hence

we obtain the result. Similarly, for the matrix Q we compute

θ(Nnm)ij = q(2ρ,λm−λn)q(2ρ,λi−λj)(Nnm)ij

= q(2ρ,λm−λn)π(K2ρ)
i
i(N

n
m)ijπ(K−1

2ρ )jj.

Then the conclusion is immediate. �

Remark 3.9. The condition on the coe�cients cmn is clearly not necessary for P to be an
eigenvector, as can be seen by considering P = Mn

m with λm 6= λn. It is also easy to see that
not all P are eigenvectors. For example consider P = Mn

m + Mm
n . Then

θ(Pij) = q−(2ρ,λi−λj)(q(2ρ,λn−λm)(Mn
m)ij + q−(2ρ,λn−λm)(Mm

n )ij).

This is an eigenvector if and only if (2ρ, λn − λm) = 0.

4. Quantum flag manifolds and equivariant K-theory

In this section we will connect the results obtained in the previous section with quantum
�ag manifolds and equivariant K-theory. First we show that the condition we assumed for
the coe�cients cmn is precisely the condition for the matrices P and Q to descend to the
appropriate quantum full �ag manifolds. Secondly, we show that the projections built from
the matrix units Mn

m and Nnm belong to appropriate equivariant K-theory groups.
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4.1. Connection with full �ag manifolds. Classically the full �ag manifold G/T is de�ned
as the quotient of G by the maximal torus T . Functions on these manifolds are then functions
on G which are invariant under the action of T . Equivalently these are functions which are
invariant under the action of the Cartan subalgebra. In the quantum setting the role of the
Cartan generators is played by the generators Kλ. This discussion naturally leads to de�ne
(functions on) quantum full �ag manifolds as follows

Cq[G/T ] := {a ∈ Cq[G] : Kλ . a = a}, Cq[T\G] := {a ∈ Cq[G] : a / Kλ = a}.
As a reference for these quantum homogeneous spaces see [StDi99], for example. Recall that
we have commuting left and right actions of Uq(g) on the quantized coordinate ring Cq[G].
Hence we get a right action of Uq(g) on Cq[G/T ] and a left action of Uq(g) on Cq[T\G].
We will now show that the condition on the coe�cients cmn appearing in Proposition 3.8

can be interpreted geometrically as follows: it is precisely the condition for the matrices P
and Q to descend to the appropriate quantum full �ag manifolds.

Proposition 4.1. Let P =
∑

m,n c
m
nM

n
m and Q =

∑
m,n c

m
n N

n
m. Then:

1) we have P ∈ Mat(Cq[T\G]) if and only if cmn = 0 for λm 6= λn,
2) we have Q ∈ Mat(Cq[G/T ]) if and only if cmn = 0 for λm 6= λn.

Proof. 1) We have to check when all the entries Pij belong to Cq[T\G]. Recall that from

Lemma 3.7 we have (Mn
m)ij / Kλ = q−(λ,λm−λn)(Mn

m)ij. Then we compute

Pij / Kλ =
∑
m,n

cmn (Mn
m)ij / Kλ =

∑
m,n

q−(λ,λm−λn)cmn (Mn
m)ij.

Now consider the condition Pij /Kλ = Pij. Since the matrices Mn
m are linearly independent we

must have q−(λ,λm−λn)cmn = cmn for all m and n. But (λ, λm − λn) = 0 for all λ holds if and
only if λm = λn, by non-degeneracy. Hence we must have cmn = 0 for λm 6= λn.
2) The proof for Q is completely analogous and we omit it. �

Remark 4.2. It is clear from the result above thatMm
m ∈ Mat(Cq[T\G]) and Nmm ∈ Mat(Cq[G/T ]).

These are N ×N matrices, where N is the dimension of the �xed representation V (Λ).

4.2. Equivariant K-theory. In this subsection we show that the projections built using the
matrix units Mn

m and Nnm belong to appropriate equivariant K-theory groups. The setting we
consider is based on [NeTu04] (see also the references therein for the general case of coactions
of locally compact quantum groups), but we follow the presentation given in [Wag09, Section
3] (without taking into account the ∗-structure, for simplicity).
Let U be a Hopf algebra and B be a right U -module algebra. Let ρ◦ : U◦ → End(CN)

be a representation of the opposite algebra U◦, or equivalently we take ρ◦ to be an anti-
homomorphism. We have an embedding of MatN×N(C) ⊗ B into End(CN ⊗ B) given by
T ⊗ b 7→ T ⊗ Lb, where Lb denotes left multiplication by b ∈ B. Working in this setup, we
can write the action of a matrix in MatN×N(B) ∼= MatN×N(C) ⊗ B on a column vector in
BN ∼= CN ⊗ B in terms of the usual rules of matrix multiplication.
The algebra End(V ⊗ B) becomes a left U◦-module with respect to the left adjoint action

of U◦. It can be shown that, with respect to this action, the algebra MatN×N(B) becomes a
left U◦-module subalgebra of End(V ⊗ B). The explicit action ad◦L of U◦ is given by

ad◦L(X)(M) = ρ◦(X(1))(M /X(2))ρ
◦(S−1(X(3))), X ∈ U , M ∈ MatN×N(B).

HereM /X means the action of X on each entry of the matrixM . Note that we can consider
equivalently MatN×N(B) as a right U -module subalgebra.
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A matrix M ∈ MatN×N(B) is called right U-invariant if there exists a representation
ρ : U◦ → End(CN) such that ad◦L(X)(M) = ε(X)M for all X ∈ U . We can introduce a notion
of (Murray-von Neumann) equivalence on invariant projections, see [Wag09, De�nition 3.1].
The Grothendieck group of equivalence classes of invariant projections is denoted by UK0(B),
which we call the U-equivariant K0-group of B.
The situation is analogous if we consider B to be a left U -module algebra. In this case the

algebra MatN×N(B) becomes a right U◦-module subalgebra and the action is given by

ad◦R(X)(M) = ρ◦(S−1(X(1)))(S
−2(X(2)) . M)ρ◦(X(3)), X ∈ U , M ∈ MatN×N(B).

Equivalently MatN×N(B) is a left U -module subalgebra. The condition for a matrix M ∈
MatN×N(B) to be left U-invariant is then ad◦R(X)(M) = ε(X)M for all X ∈ U . The corre-
sponding U -equivariant K0-group is denoted by K0(B)U .
We are interested in the situation where U = Uq(g) and B = Cq[G], which is naturally a

Uq(g)-bimodule algebra. Taking an N -dimensional representation V (Λ) of Uq(g), we obtain
elements Mn

m,N
n
m ∈ MatN×N(Cq[G]) by Proposition 3.3.

Lemma 4.3. Let X ∈ Uq(g). Then we have

X .Mn
m = π(S(X(1)))M

n
mπ(X(2)), Nnm / X = π(X(1))N

n
mπ(S(X(2))).

Proof. Using the formulae in (1.1) we compute

X . (Mn
m)ij = (X(1) . u

m∗
i )(X(2) . u

n
j =

∑
k,`

π(S(X(1)))
i
ku

m∗
k π(X(2))

`
ju
n
`

=
∑
k,`

π(S(X(1)))
i
k(M

n
m)k`π(X(2))

`
j.

Similarly for the right action, using the formulae in (1.2), we compute

(Nnm)ij / X = (uim / X(1))(u
j∗
n / X(2)) =

∑
k,`

π(X(1))
i
ku

k
mπ(S(X(2)))

`
ju
`∗
n

=
∑
k,`

π(X(1))
i
k(N

n
m)k`π(S(X(2)))

`
j.

Rewriting these identities in matrix notation gives the result. �

We can now easily show that these elements are invariant.

Proposition 4.4. 1) Let ρ◦ : Uq(g)→ End(V ) be the anti-homomorphism de�ned by

ρ◦(X) = π(K−1
2ρ S(X)K2ρ).

Then Mn
m is left Uq(g)-invariant, that is ad◦R(X)(Mn

m) = ε(X)Mn
m for all X ∈ Uq(g).

2) Let ρ◦ : Uq(g)→ End(V ) be the anti-homomorphism de�ned by

ρ◦(X) = π(K2ρS
−1(X)K−1

2ρ ).

Then Nnm is right Uq(g)-invariant, that is ad◦L(X)(Nnm) = ε(X)Nnm for all X ∈ Uq(g).

Proof. 1) It is immediate to check that ρ◦(X) = π(K−1
2ρ S(X)K2ρ) is an anti-homomorphism.

Plugging this expression into the de�nition of ad◦R we get

ad◦R(X)(Mn
m) = π(K−1

2ρ X(1)K2ρ)(S
−2(X(2)) .M

n
m)π(K−1

2ρ S(X(3))K2ρ).

From Lemma 4.3 it follows that S−2(X) .Mn
m = π(S−1(X(1)))M

n
mπ(S−2(X(2))). Then

ad◦R(X)(Mn
m) = π(K−1

2ρ X(1)K2ρS
−1(X(2)))M

n
mπ(S−2(X(3))K

−1
2ρ S(X(4))K2ρ).
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Recall that S2(X) = K2ρXK
−1
2ρ . From this we obtain the relations K2ρS

−1(X) = S(X)K2ρ

and S−2(X) = K−1
2ρ XK2ρ. Plugging them in we get

ad◦R(X)(Mn
m) = π(K−1

2ρ X(1)S(X(2))K2ρ)M
n
mπ(K−1

2ρ X(3)S(X(4))K2ρ)

= π(K−1
2ρ ε(X(1))K2ρ)M

n
mπ(K−1

2ρ ε(X(2))K2ρ)

= ε(X(1))M
n
mε(X(2)) = ε(X)Mn

m.

2) Similarly to the previous case it is easy to check that ρ◦(X) = π(K2ρS
−1(X)K−1

2ρ ) is an
anti-homomorphism. Plugging this expression into the de�nition of ad◦L we get

ad◦L(X)(Nnm) = π(K2ρS
−1(X(1))K

−1
2ρ )(Nnm / X(2))π(K2ρS

−2(X(3))K
−1
2ρ ).

Using Nnm / X = π(X(1))N
n
mπ(S(X(2))) from Lemma 4.3 we get

ad◦L(X)(Nnm) = π(K2ρS
−1(X(1))K

−1
2ρ X(2))N

n
mπ(S(X(3))K2ρS

−2(X(4))K
−1
2ρ ).

We use the identities S−1(X)K−1
2ρ = K−1

2ρ S(X) and S−2(X) = K−1
2ρ XK2ρ. Then

ad◦L(X)(Nnm) = π(S(X(1))X(2))N
n
mπ(S(X(3))X(4))

= ε(X(1))N
n
mε(X(2)) = ε(X)Nnm. �

Corollary 4.5. Let P =
∑

m,n c
m
nM

n
m and Q =

∑
m,n c

m
n N

n
m. Suppose they are projections.

Then P ∈ K0(Cq[G])Uq(g) and Q ∈ Uq(g)K0(Cq[G]).

Proof. By the previous proposition Mn
m is left Uq(g)-invariant and Nnm is right Uq(g)-invariant.

Then the result follows immediately from the de�nitions. �

5. Twisted 2-cycles and 2-cocycles

In this section we will show, using the results of the previous sections, that we obtain
classes in the twisted Hochschild homology of Cq[G]. Moreover these naturally descend to
appropriate quantum full �ag manifolds. In order to prove their non-triviality, we introduce
some appropriate twisted 2-cocycles. The pairings will be computed in the next section.

5.1. Twisted 2-cycles. First we deal with the twisted homology classes. Here the natural
twist to consider is given by θ, the modular automorphism of the Haar state.

Proposition 5.1. Let P,Q be projections and suppose that cmn = 0 if λm 6= λn. De�ne

C(P) := Tr
(
π(K−1

2ρ )(2P− Id)⊗ P⊗ P
)
,

C(Q) := Tr (π(K2ρ)(2Q− Id)⊗ Q⊗ Q) .

Then we obtain classes [C(P)], [C(Q)] ∈ HHθ
2 (Cq[G]).

Proof. To prove this result we will use Lemma 2.4. Recall that this states that, given a
projection P ∈ Mat(A), the 2-chain C(P ) = Tr(V (2P − Id) ⊗ P ⊗ P ) ∈ A⊗3 de�nes a class
in HHσ

2 (A) if there exists an invertible matrix V such that

Tr(V P ) = c · 1, σ(P ) = V PV −1.

The �rst condition is satis�ed, since from Proposition 3.3 we have the q-trace relations

Tr(π(K−1
2ρ )P) = q−(2ρ,λm), Tr(π(K2ρ)Q) = q(2ρ,λm).

The second condition is also satis�ed under the assumption that cmn = 0 if λm 6= λn. Indeed
in this case we have from Proposition 3.8 that the automorphism θ is implemented by

θ(P) = π(K−1
2ρ )Pπ(K2ρ), θ(Q) = π(K2ρ)Qπ(K−1

2ρ ).
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Therefore we can apply Lemma 2.4 by setting V = π(K−1
2ρ ) in the case of P and by setting

V = π(K2ρ) in the case of Q. In both cases the twist is given by θ. �

By construction these classes descend to the appropriate full �ag manifolds.

Corollary 5.2. With P,Q as above we have

[C(P)] ∈ HHθ
2 (Cq[T\G]), [C(Q)] ∈ HHθ

2 (Cq[G/T ]).

Proof. Under our assumptions on the coe�cients cmn , it follows from Proposition 4.1 that
Pij ∈ Cq[T\G] and Qi

j ∈ Cq[G/T ]. The conclusion then follows. �

The rest of the paper will be devoted to proving non-triviality of these classes. The strategy
will be to de�ne some appropriate twisted 2-cocycles and to show that their pairings are non-
zero in most cases. A word of warning before proceeding: we will prove non-triviality of the
class [C(P)] in HHθ

2 (Cq[T\G]) and of the class [C(Q)] in HHθ
2 (Cq[G/T ]), but we will leave

open the question of non-triviality of these classes in HHθ
2 (Cq[G]).

5.2. Twisted 2-cocycles. We now turn to twisted 2-cocycles. We start by recalling some
properties satis�ed by the counit, which will be needed for the de�nition of the cocycles.

Lemma 5.3. The counit ε : Cq[G]→ C satis�es the following properties:
1) for any X ∈ Uq(g) and a ∈ Cq[G] we have ε(X . a) = ε(a / X).
2) the restriction ε : Cq[G/T ]→ C is invariant under σλ,λ′, that is ε ◦ σλ,λ′ = ε,
3) the restriction ε : Cq[T\G]→ C is invariant under σλ,λ′, that is ε ◦ σλ,λ′ = ε.

Proof. 1) Recall that the left and right actions are de�ned by

(Y . φ)(X) = φ(XY ), (φ / Y )(X) = φ(Y X).

The counit is de�ned by ε(φ) = φ(1). Hence we obtain

ε(Y . φ) = (Y . φ)(1) = φ(Y ) = (φ / Y )(1) = ε(φ / Y ).

2) We have to show that ε(σλ,λ′(a)) = ε(a) for all a ∈ Cq[G/T ]. Using 1) we get

ε(σλ,λ′(a)) = ε(Kλ . a / Kλ′) = ε(KλKλ′ . a).

Finally we have KλKλ′ . a = a, since a ∈ Cq[G/T ], which shows the invariance.
3) The proof is completely analogous to that of 2). �

Next we have a simple identity for the action of the generators Ei and Fi under the counit.

Lemma 5.4. Let X = Ei, Fi be one of the generators of Uq(g). Then:
1) we have ε(X . (ab)) = ε(X . a)ε(b) + ε(a)ε(X . b) for all a, b ∈ Cq[G/T ],
2) we have ε(X . (ab)) = ε(X . a)ε(b) + ε(a)ε(X . b) for all a, b ∈ Cq[T\G].

Proof. Recall that in general for all X ∈ Uq(g) and a, b ∈ Cq[G] we have

X . (ab) = (X(1) . a)(X(2) . b), (ab) / X = (a / X(1))(b / X(2)).

1) We will consider X = Ei, the other case being identical. For a, b ∈ Cq[G/T ] we have

Ei . (ab) = (Ei . a)(Ki . b) + a(Ei . b) = (Ei . a)b+ a(Ei . b),

where we have used the fact that Kλ . a = a for all a ∈ Cq[G/T ]. Since the counit is a
homomorphism we obtain the result.
2) For a, b ∈ Cq[T\G] we can proceed as above. Using the fact that a / Kλ = a for all

a ∈ Cq[T\G] we easily obtain the identity

ε((ab) / X) = ε(a / X)ε(b) + ε(a)ε(b / X).
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But from Lemma 5.3 we have ε(a / X) = ε(X . a), hence we obtain the same expression. �

We are now ready to de�ne some twisted 2-cocycles.

Proposition 5.5. Let X = Ei, Fi and Y = Ej, Fj be some of the generators of Uq(g). De�ne
the linear functional ηX,Y : Cq[G]⊗3 → C by the formula

ηX,Y (a0 ⊗ a1 ⊗ a2) := ε(a0)ε(X . a1)ε(Y . a2).

1) The restriction to Cq[G/T ] gives a cohomology class [ηX,Y ] ∈ HH2
σλ,λ′

(Cq[G/T ]).

2) The restriction to Cq[T\G] gives a cohomology class [ηX,Y ] ∈ HH2
σλ,λ′

(Cq[T\G]).

Proof. 1) We have to show that twisted Hochschild di�erential applied to the restriction of
the functional ηX,Y gives zero. Using the de�nition of bσλ,λ′ we get

(bσλ,λ′ηX,Y )(a0 ⊗ a1 ⊗ a2 ⊗ a3) = ε(a0a1)ε(X . a2)ε(Y . a3)− ε(a0)ε(X . (a1a2))ε(Y . a3)

+ ε(a0)ε(X . a1)ε(Y . (a2a3))− ε(σλ,λ′(a3)a0)ε(X . a1)ε(Y . a2).

For a1, a2 ∈ Cq[G/T ] we have the identity ε(X . (a1a2)) = ε(X . a1)ε(a2) + ε(a1)ε(X . a2) by
Lemma 5.4. Similarly for Y . Then this expression simpli�es to

(bσλ,λ′ηX,Y )(a0 ⊗ a1 ⊗ a2 ⊗ a3) = ε(a0)ε(X . a1)ε(Y . a2)ε(a3)

− ε(σλ,λ′(a3))ε(a0)ε(X . a1)ε(Y . a2).

Finally we use the fact that ε ◦ σλ,λ′ = ε on Cq[G/T ], as shown in Lemma 5.3. Then the two
terms cancel out and we conclude that bσλ,λ′ηX,Y = 0.

2) The proof is completely identical to that of 1), thanks to Lemma 5.4. �

Remark 5.6. We do not obtain classes in HH2
σλ,λ′

(Cq[G]) in this way. One of the reasons is

that the counit fails to be invariant under the automorphism σλ,λ′ on Cq[G].

In the following we will also use the notation

ηa(a0 ⊗ a1 ⊗ a2) := ηFa,Ea(a0 ⊗ a1 ⊗ a2) = ε(a0)ε(Fa . a1)ε(Ea . a2).

6. Computation of the pairings

In this section we will compute the pairings ηa(C(P)) and ηa(C(Q)). Since this computation
will be somewhat lengthy, we will split it into several subsections.

6.1. Some simpli�cations. We start by proving some useful lemmata that will be needed
to compute the pairings. First we look at the expression for ηX,Y (C(P)).

Lemma 6.1. We have the formula

ηX,Y (C(P)) =
∑
i,j,k

q−(2ρ,λi)(2cij − δij)ε(X . Pjk)ε(Y . Pki ).

Proof. Recall that C(P) = Tr
(
π(K−1

2ρ )(2P− Id)⊗ P⊗ P
)
. Writing the trace map explicitly

and plugging this expression into ηX,Y we get

ηX,Y (C(P)) =
∑
i,j,k,`

π(K−1
2ρ )ij(2ε(P

j
k)− δ

j
k)ε(X . Pk` )ε(Y . P`i).

From ε(Mn
m)ij = δimδ

n
j we get ε(Pjk) = cjk. Moreover we have π(K−1

2ρ )ij = q−(2ρ,λi)δij. �

For the purpose of computing the pairing ηa(C(Q)), it will be useful to consider a general-
ization of the above expression. This is given in the next de�nition.
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Notation 6.2. For X, Y ∈ Uq(g) and any weight λ we de�ne

ηλX,Y (P) :=
∑
i,j,k

q(λ,λi)(2cij − δij)ε(X . Pjk)ε(Y . Pki ).

We will also write ηλa (P) := ηλFa,Ea(P).

Clearly we have ηX,Y (C(P)) = η−2ρ
X,Y (P). Next we will write explicitly the action of the

elements X and Y on the matrix elements Pjk and Pki .

Lemma 6.3. We have the formula

ηλX,Y (P) =
∑

i,j,k,`,m,n

(2cij − δij)π(S(X(1)))
j
kc
k
`π(X(2)S(Y(1)))

`
mc

m
n π(Y(2)Kλ)

n
i .

Proof. Using (Mn
m)ij = um∗i unj and the formulae in (1.1) we compute

X . (Mn
m)ij = (X(1) . u

m∗
i )(X(2) . u

n
j ) =

∑
k,`

π(S(X(1)))
i
kπ(X(2))

`
ju
m∗
k un` .

Since ε(uij) = ε(ui∗j ) = δij we obtain ε(X . (Mn
m)ij) = π(S(X(1)))

i
mπ(X(2))

n
j . Then∑

k

ε(X . Pjk)ε(Y . Pki ) =
∑

k,m,n,o,p

cmn c
o
pε(X . (Mn

m)jk)ε(Y . (Mp
o)
k
i )

=
∑

k,m,n,o,p

cmn c
o
pπ(S(X(1)))

j
mπ(X(2))

n
kπ(S(Y(1)))

k
oπ(Y(2))

p
i .

The sum over k can be rewritten as a product of matrices, that is∑
k

ε(X . Pjk)ε(Y . Pki ) =
∑
m,n,o,p

π(S(X(1)))
j
mc

m
n π(X(2)S(Y(1)))

n
o c
o
pπ(Y(2))

p
i .

Plugging this back into our expression we obtain

ηλX,Y (P) =
∑
i,j

q(λ,λi)(2cij − δij)
∑
m,n,o,p

π(S(X(1)))
j
mc

m
n π(X(2)S(Y(1)))

n
o c
o
pπ(Y(2))

p
i .

Finally, since q(λ,λi) = π(Kλ)
i
i we obtain the result. �

The next lemma assumes the condition on the coe�cients cmn discussed before. It will be
used to move the Cartan elements Kλ across various matrix coe�cients.

Lemma 6.4. Suppose cmn = 0 if λm 6= λn. Then for any X, Y ∈ Uq(g) we have

π(XKλ)
i
jc
j
kπ(Kλ′Y )k` = π(XKλKλ′)

i
jc
j
kπ(Y )k` = π(X)ijc

j
kπ(KλKλ′Y )k` .

Proof. Since we have π(Kλ)
i
j = δijq

(λ,λi) we can rewrite

π(XKλ)
i
jc
j
kπ(Kλ′Y )k` = π(X)ijπ(Kλ)

j
jc
j
kπ(Kλ′)

k
kπ(Y )k` .

Next we have π(Kλ)
i
i = π(Kλ)

j
j for λi = λj. Since by assumption cjk = 0 if λj 6= λk, we have

the identity cjkπ(Kλ′)
k
k = π(Kλ′)

j
jc
j
k. Then we obtain

π(XKλ)
i
jc
j
kπ(Kλ′Y )k` = π(X)ijπ(KλKλ′)

j
jc
j
kπ(Y )k` = π(XKλKλ′)

i
jc
j
kπ(Y )k` .

Similarly the second equality is obtained by writing π(Kλ)
j
jc
j
k = cjkπ(Kλ)

k
k. �
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6.2. Organization of the computation. Now our aim is to simplify the expression given
in Lemma 6.3 in the case X = Fa and Y = Ea. Since this expression involves coproducts, it
is convenient to introduce the following notation in order to handle the di�erent terms.

Notation 6.5. For X,X ′, Y, Y ′ ∈ Uq(g) we de�ne

Ξλ(X ⊗X ′ ⊗ Y ⊗ Y ′) :=
∑

i,j,m,n,o,p

(2cij − δij)π(X)jmc
m
n π(X ′Y )no c

o
pπ(Y ′Kλ)

p
i .

With this notation we have ηλX,Y (P) = Ξλ(S(X(1))⊗X(2) ⊗ S(Y(1))⊗ Y(2)).

The expression S(X(1))⊗X(2) ⊗ S(Y(1))⊗ Y(2) contains four terms in the case X = Fa and
Y = Ea. In our conventions these are explicitly given by

S(X(1))⊗X(2) ⊗ S(Y(1))⊗ Y(2) = KaFa ⊗ 1⊗ EaK−1
a ⊗Ka −KaFa ⊗ 1⊗ 1⊗ Ea

−Ka ⊗ Fa ⊗ EaK−1
a ⊗Ka +Ka ⊗ Fa ⊗ 1⊗ Ea.

In the next subsection we will compute the value of the functional Ξλ when applied to these
four terms. This will allow us to obtain a simple expression for ηa(C(P)).

6.3. Computation of the four terms. We start by computing the functional Ξλ applied
to the �rst and fourth term in the expansion of S(X(1)) ⊗ X(2) ⊗ S(Y(1)) ⊗ Y(2), in the case
X = Fa and Y = Ea. The next lemma shows that these take the same values.

Lemma 6.6. We have the identities

Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea) = Ξλ(KaFa ⊗ 1⊗ EaK−1
a ⊗Ka)

=
∑
i,j,k,`

cijπ(KaFa)
j
kc
k
`π(EaKλ)

`
i .

Proof. Let us start by considering the fourth term Ka ⊗ Fa ⊗ 1⊗ Ea. We have

Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea) =
∑

i,j,m,n,o,p

(2cij − δij)π(Ka)
j
mc

m
n π(Fa)

n
o c
o
pπ(EaKλ)

p
i .

Using Lemma 6.4 we rewrite this expression as

Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea) =
∑

i,j,n,o,p

(2cij − δij)cjnπ(KaFa)
n
o c
o
pπ(EaKλ)

p
i .

We have
∑

j(2c
i
j − δij)cjn = cin, thanks to the identity

∑
k c

i
kc
k
j = cij. Hence

Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea) =
∑
i,n,o,p

cinπ(KaFa)
n
o c
o
pπ(EaKλ)

p
i .

Now consider the �rst term KaFa ⊗ 1⊗ EaK−1
a ⊗Ka. We have

Ξλ(KaFa ⊗ 1⊗ EaK−1
a ⊗Ka) =

∑
i,j,m,n,o,p

(2cij − δij)π(KaFa)
j
mc

m
n π(EaK

−1
a )no c

o
pπ(KaKλ)

p
i .

Using Lemma 6.4 we rewrite this expression as

Ξλ(KaFa ⊗ 1⊗ EaK−1
a ⊗Ka) =

∑
i,j,m,n,o

(2cij − δij)π(KaFa)
j
mc

m
n π(EaKλ)

n
o c
o
i .

Finally using the identity
∑

k c
i
kc
k
j = cij this can be rewritten as

Ξλ(KaFa ⊗ 1⊗ EaK−1
a ⊗Ka) =

∑
j,m,n,o

cojπ(KaFa)
j
mc

m
n π(EaKλ)

n
o .
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Comparing the two expressions we see that they are identical. �

Next we apply the functional Ξλ to the the second and third term. The next lemma shows
that these take a di�erent form with respect to the previous two terms.

Lemma 6.7. We have the identities

Ξλ(KaFa ⊗ 1⊗ 1⊗ Ea) = 2Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea)−
∑
i,j

cijπ(EaKλKaFa)
j
i ,

Ξλ(Ka ⊗ Fa ⊗ EaK−1
a ⊗Ka) =

∑
i,j

cijπ(KaFaEaKλ)
j
i .

Proof. Consider the second term KaFa ⊗ 1⊗ 1⊗ Ea. We have

Ξλ(KaFa ⊗ 1⊗ 1⊗ Ea) =
∑

i,j,m,n,o,p

(2cij − δij)π(KaFa)
j
mc

m
n π(1)no c

o
pπ(EaKλ)

p
i .

Using the relation
∑

k c
i
kc
k
j = cij this becomes

Ξλ(KaFa ⊗ 1⊗ 1⊗ Ea) =
∑
i,j,m,p

(2cij − δij)π(KaFa)
j
mc

m
p π(EaKλ)

p
i .

Moreover we have the following identity∑
i,j,m,p

δijπ(KaFa)
j
mc

m
p π(EaKλ)

p
i =

∑
m,p

cmp π(EaKλKaFa)
p
m.

Then comparing with Lemma 6.6 we see that

Ξλ(KaFa ⊗ 1⊗ 1⊗ Ea) = 2Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea)−
∑
m,p

cmp π(EaKλKaFa)
p
m.

Next consider the third term Ka ⊗ Fa ⊗ EaK−1
a ⊗Ka. We have

Ξλ(Ka ⊗ Fa ⊗ EaK−1
a ⊗Ka) =

∑
i,j,m,n,o,p

(2cij − δij)π(Ka)
j
mc

m
n π(FaEaK

−1
a )no c

o
pπ(KaKλ)

p
i .

Using Lemma 6.4 this can be rewritten as

Ξλ(Ka ⊗ Fa ⊗ EaK−1
a ⊗Ka) =

∑
i,j,n,o

(2cij − δij)cjnπ(KaFaEaKλ)
n
o c
o
i .

Finally using the identity
∑

k c
i
kc
k
j = cij twice we obtain

Ξλ(Ka ⊗ Fa ⊗ EaK−1
a ⊗Ka) =

∑
n,o

conπ(KaFaEaKλ)
n
o . �

6.4. Computation of ηa(C(P)). Now we are in the position to conclude the computation of
ηa(C(P)). First we put together all the previous results.

Lemma 6.8. We have the identity

ηλa (P) =
∑
i,j

cijπ(EaKλKaFa)
j
i −

∑
i,j

cijπ(KaFaEaKλ)
j
i .
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Proof. Applying Ξλ to S(X(1))⊗X(2) ⊗ S(Y(1))⊗ Y(2) with X = Fa and Y = Ea we get

ηλa (P) = Ξλ(KaFa ⊗ 1⊗ EaK−1
a ⊗Ka)− Ξλ(KaFa ⊗ 1⊗ 1⊗ Ea)

− Ξλ(Ka ⊗ Fa ⊗ EaK−1
a ⊗Ka) + Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea).

Combining Lemma 6.6 and Lemma 6.7 we can write

Ξλ(KaFa ⊗ 1⊗ 1⊗ Ea) = Ξλ(KaFa ⊗ 1⊗ EaK−1
a ⊗Ka) + Ξλ(Ka ⊗ Fa ⊗ 1⊗ Ea)

−
∑
i,j

cijπ(EaKλKaFa)
j
i .

Plugging this into ηλa (P) we see that two terms cancel out. Finally using the explicit expression
for Ξλ(Ka ⊗ Fa ⊗ EaK−1

a ⊗Ka) we conclude that

ηλa (P) =
∑
i,j

cijπ(EaKλKaFa)
j
i −

∑
i,j

cijπ(KaFaEaKλ)
j
i . �

Now we specialize to the case λ = −2ρ, corresponding to the pairing ηa(C(P)). In this
situation we can make a further simpli�cation, which gives a very simple result.

Proposition 6.9. Let P =
∑

m,n c
m
nM

n
m be a projection with cmn = 0 if λm 6= λn. Then

ηa(C(P)) =
∑
i

ciiq
(αa−2ρ,λi)[d−1

a (αa, λi)]qa .

Proof. Recall the commutation relations EaKλ = q−(αa,λ)KλEa and FaKλ = q(αa,λ)KλFa.
From these we immediately derive FaEaK

−1
2ρ = K−1

2ρ FaEa. A less obvious identity is

EaK
−1
2ρ Ka = K−1

2ρ KaEa.

This can be seen as follows. We have EaK
−1
2ρ Ka = q(2ρ−αa,αa)K−1

2ρ KaEa from the commutation
relations. Next we show that (2ρ, αa) = (αa, αa). Recall that ρ can be written as ρ =

∑
i ωi,

where {ωi}i are the fundamental weights. Then we have

(2ρ, αa) = (αa, αa)
∑
i

(ωi, α
∨
a ) = (αa, αa)

∑
i

δia = (αa, αa),

where we have used that the fundamental weights are dual to the coroots α∨a = 2αa/(αa, αa).
Using the commutation relations above we can rewrite Lemma 6.8 in the form

ηa(C(P)) =
∑
i,j

cijπ(K−1
2ρ Ka[Ea, Fa])

j
i .

Now we can use the commutation relations [Ea, Fa] = Ka−K−1
a

qa−q−1
a

. Then

ηa(C(P)) =
∑
i,j

cijπ

(
K−1

2ρ Ka
Ka −K−1

a

qa − q−1
a

)j
i

.

Next we have π(Kλ)
i
j = δijq

(λ,λi), where {λi}i are the weights corresponding to our choice of
basis for V (Λ). Then the above expression can be rewritten as

ηa(C(P)) =
∑
i

ciiq
(αa−2ρ,λi)

q(αa,λi) − q−(αa,λi)

qa − q−1
a

.

Finally since qa = qda we have the identity [d−1
a (αa, λi)]qa = q(αa,λi)−q−(αa,λi)

qa−q−1
a

. �
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6.5. Computation of ηa(C(Q)). The computation of the pairing ηa(C(Q)) can be essentially
reduced to that of ηa(C(P)). To see this we need the following simple lemma.

Lemma 6.10. Suppose λm = λn. Then we have

ε(Ea . (Nnm)ij) = −q−(αa,λj)ε(Ea . (Mn
m)ij),

ε(Fa . (Nnm)ij) = −q−(αa,λi)ε(Fa . (Mn
m)ij).

Proof. We have seen in the proof of Lemma 6.3 that ε(X . (Mn
m)ij) = π(S(X(1)))

i
mπ(X(2))

n
j .

Similarly we obtain the expression ε(X . (Nnm)ij) = π(X(1))
i
mπ(S(X(2)))

n
j .

Now consider the case X = Ea. Then we compute

ε(Ea . (Mn
m)ij) = −π(EaK

−1
a )imπ(Ka)

n
j + π(1)imπ(Ea)

n
j

= −π(Ea)
i
mπ(1)nj + π(1)imπ(Ea)

n
j ,

where in the second line we have used Lemma 6.4, since λm = λn. On the other hand we have

ε(Ea . (Nnm)ij) = π(Ea)
i
mπ(K−1

a )nj − π(1)imπ(EaK
−1
a )nj .

Comparing the two expressions we get ε(Ea . (Nnm)ij) = −q−(αa,λj)ε(Ea . (Mn
m)ij).

Similarly consider the case X = Fa. We have

ε(Fa . (Mn
m)ij) = −π(KaFa)

i
mπ(1)nj + π(Ka)

i
mπ(Fa)

n
j .

On the other hand we compute

ε(Fa . (Nnm)ij) = π(Fa)
i
mπ(1)nj − π(K−1

a )imπ(KaFa)
n
j

= π(Fa)
i
mπ(1)nj − π(1)imπ(Fa)

n
j ,

where we have used Lemma 6.4 again. Comparing the two expressions we get the identity
ε(Fa . (Nnm)ij) = −q−(αa,λi)ε(Fa . (Mn

m)ij), which concludes the proof. �

Now we are in the position to compute the pairing ηa(C(Q)).

Proposition 6.11. Let Q =
∑

m,n c
m
n N

n
m be a projection with cmn = 0 if λm 6= λn. Then

ηa(C(Q)) =
∑
i

ciiq
−(αa−2ρ,λi)[d−1

a (αa, λi)]qa .

Proof. Proceeding as in Lemma 6.1 we obtain the formula

ηa(C(Q)) =
∑
i,j,k

q(2ρ,λi)(2cij − δij)ε(Fa . Q
j
k)ε(Ea . Q

k
i ).

We start by focusing on the expression

ε(Fa . Q
j
k)ε(Ea . Q

k
i ) =

∑
m,n,o,p

cmn c
o
pε(Fa . (Nnm)jk)ε(Ea . (Npo)

k
i ).

We have cmn = 0 for λm 6= λn by assumption, hence we can consider λm = λn and λo = λp in
the above expression without loss of generality. Then we can use Lemma 6.10 to get

ε(Fa . Q
j
k)ε(Ea . Q

k
i ) =

∑
m,n,o,p

cmn c
o
pq
−(αa,λi+λj)ε(Fa . (Mn

m)jk)ε(Ea . (Mp
o)
k
i )

= q−(αa,λi+λj)ε(Fa . P
j
k)ε(Ea . P

k
i ).
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We can also assume λi = λj, since we multiply this expression by 2cij − δij. Then

ηa(C(Q)) =
∑
i,j,k

q(2ρ−2αa,λi)(2cij − δij)ε(Fa . P
j
k)ε(Ea . P

k
i ).

Therefore we have obtained the equality ηa(C(Q)) = ηλa (P) with λ = 2ρ − 2αa. Now we can
use Lemma 6.8 with Kλ = K2ρK

−2
a . We �nd the expression

ηa(C(Q)) =
∑
i,j

cijπ(EaK2ρK
−1
a Fa)

j
i −

∑
i,j

cijπ(KaFaEaK2ρK
−2
a )ji .

To proceed we use the commutation relations. In general we have KλFaEa = FaEaKλ.
Moreover we have seen in a previous computation that EaK2ρK

−1
a = K2ρK

−1
a Ea. Then

ηa(C(Q)) =
∑
i,j

cijπ(K2ρK
−1
a [Ea, Fa])

j
i .

Finally we proceed as for ηa(C(P)) to obtain the expression in the theorem. �

7. Non-triviality and linear independence

In this section we will give some more precise statements regarding non-triviality of the
classes obtained in the previous sections. We will also show that the twisted Hochschild
homology groups HHθ

2 (Cq[G/T ]) and HHθ
2 (Cq[T\G]) are of dimension at least rank(g).

7.1. Non-trivial classes. We begin by summarizing the results of the previous sections in
the theorem below, which gives some su�cient conditions for the non-triviality of the classes
[C(P)] and [C(Q)] de�ned in Proposition 5.1. First we introduce some notation.

Notation 7.1. Given an element P =
∑

m,n c
m
nM

n
m we de�ne

χa(P) :=
∑
i

ciiq
(αa−2ρ,λi)[d−1

a (αa, λi)]qa .

Similarly, given an element Q =
∑

m,n c
m
n N

n
m we de�ne

χ̃a(Q) :=
∑
i

ciiq
−(αa−2ρ,λi)[d−1

a (αa, λi)]qa .

Theorem 7.2. Let P,Q be projections satisfying the condition cmn = 0 if λm 6= λn.
1) Suppose χa(P) 6= 0 for some a. Then [C(P)] ∈ HHθ

2 (Cq[T\G]) is non-trivial.
2) Suppose χ̃a(Q) 6= 0 for some a. Then [C(Q)] ∈ HHθ

2 (Cq[G/T ]) is non-trivial.

Proof. Under the stated assumptions for P and Q we have χa(P) = ηa(C(P)) by Proposition 6.9
and χ̃a(Q) = ηa(C(Q)) by Proposition 6.11. The conclusion follows immediately. �

It is worth pointing out that these conditions are quite explicit and therefore easy to check,
since they only involve representation-theoretic data. We see from the conditions that the
classes will be generically non-trivial if we consider elements of non-zero weight.
As an important example, we can take the basic projections P = Mm

m and Q = Nmm for some
m. This will show that the twisted homology groups are non-zero.

Corollary 7.3. Let λm be a non-zero weight. Then the classes [C(Mm
m)] ∈ HHθ

2 (Cq[T\G])
and [C(Nmm)] ∈ HHθ

2 (Cq[G/T ]) are non-trivial.
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Proof. Let us look at the number χa(M
m
m) = q(αa−2ρ,λm)[d−1

a (αa, λm)]qa . Since λm 6= 0, we can
always �nd a simple root αa such that (αa, λm) 6= 0 by non-degeneracy. Therefore the above
number is non-zero and from Theorem 7.2 we conclude that [C(Mm

m)] is non-trivial.
The argument for the class [C(Nmm)] is identical and we omit it. �

Remark 7.4. We are not able to conclude whether the case λm = 0 is trivial or not.

Observe that, since we can de�ne the projections P = Mm
m and Q = Nmm for any irreducible

representation V (Λ), we obtain in this way in�nitely many non-trivial classes [C(Mm
m)] and

[C(Nmm)]. This naturally leads to the problem of studying their linear independence.

7.2. Linear independence. In this subsection we will partially discuss the linear indepen-
dence of the classes obtained above. The result will be that the twisted homology groups
HHθ

2 (Cq[G/T ]) and HHθ
2 (Cq[T\G]) are of dimension at least rank(g).

First let us see what happens in the case of the quantum 2-sphere.

Example 7.5. Let g = sl(2). The corresponding full �ag manifold is the quantum 2-sphere.
Denote by α the unique simple root and by ω the unique fundamental weight. We have
ω = ρ = 1

2
α. The irreducible representations have highest weight Λ = nω with n ∈ N,

dimension n + 1 and weights given by −n
2
α, · · · , n

2
α. Write λk = k

2
α and denote by Pk the

projection corresponding to weight λk. Then we easily compute

η(C(Pk)) = [(α, λk)]q = [k]q.

Had�eld has shown in [Had07] that the space of twisted 2-cycles is 1-dimensional. Let us
denote by P the projection corresponding to the weight ω = 1

2
α. Then it easily follows from

the previous computation that [C(Pk)] = [k]q[C(P)].

From the previous example, we can expect that the space of twisted 2-cycles will have
dimension larger than one if rank(g) > 1. This is indeed the case, as we now show.

Theorem 7.6. The twisted Hochschild homology groups HHθ
2 (Cq[G/T ]) and HHθ

2 (Cq[T\G])
have dimension at least rank(g).

Proof. Denote by M(ωi)
n
m the matrix units corresponding to the representation V (ωi), where

{ωi}ri=1 are the fundamental weights of g. We set Pi = M(ωi)
1
1 for i = 1, · · · , r, where v1 is the

normalized highest weight vector of V (ωi). By Proposition 4.1 these projections descend to
the quantum full �ag manifold Cq[T\G]. The classes C(P1), · · · , C(Pr) are non-trivial, since

ηa(C(Pi)) = χa(Pi) = q(αa−2ρ,ωi)[d−1
a (αa, ωi)]qa = δiaq

(αa−2ρ,ωa).

Here we have used that (ωi, αj) = δijdj. Hence [C(Pi)] 6= 0, as we observed before.
Now we show that the classes C(P1), · · · , C(Pr) are linearly independent. Suppose that∑r
i=1 biC(Pi) = 0 for some bi's. Then we compute

ηa

(
r∑
i=1

biC(Pi)

)
=

r∑
i=1

biχa(Pi) = baq
(αa−2ρ,ωa).

This implies that ba = 0. Letting a range between 1 and r gives the claim.
The claim for HHθ

2 (Cq[G/T ]) is proven similarly, using Qi = N(ωi)
1
1 for i = 1, · · · , r. �
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8. Generalized flag manifolds

In this section we will extend some of the results we have obtained to the case of quantum
generalized �ag manifolds. This class of spaces contains all the full �ag manifolds. The main
issue to discuss is when the projections P and Q descend to the appropriate generalized �ag
manifolds. We will give a necessary condition for this to happen, but will not discuss the
problem in full generality. On the other hand we will provide an explicit and interesting
example of this setting, namely that of the quantum Grassmannians.

8.1. Equivariant maps. We start with some simple results on the action of Uq(g). Recall
that, given a Uq(g)-module V with action ., we can make V ∗ into a Uq(g)-module by de�ning
(X . f)(v) = f(S(X) . v). It is convenient to de�ne corresponding right actions.

Notation 8.1. Let V be a Uq(g)-module. Then we de�ne right actions of Uq(g) on V and
V ∗ as follows. For v ∈ V , f ∈ V ∗ and X ∈ Uq(g) we set

v / X := S(X) . v, (f / X)(v) := f(X . v).

Recall that Cq[G] has a canonical Uq(g)-bimodule structure. We will look at maps from a
Uq(g)-module V to Cq[G] which are equivariant with respect to these actions.

De�nition 8.2. We say that a map ψ : V → Cq[G] is .-equivariant (respectively /-equivariant)
if X . ψ(v) = ψ(X . v) (respectively ψ(v) / X = ψ(v / X)) for all v ∈ V and X ∈ Uq(g).

With these de�nitions, we have the following easy result on matrix coe�cients.

Proposition 8.3. Let cΛ
f,v denote the matrix coe�cients of a representation V (Λ). Then:

1) the map V (Λ)→ Cq[G] given by v 7→ cΛ
f,v is .-equivariant,

2) the map V (Λ)∗ → Cq[G] given by f 7→ cΛ
f,v is /-equivariant,

3) the map V (Λ)→ Cq[G] given by v 7→ S(cΛ
f,v) is /-equivariant,

4) the map V (Λ)∗ → Cq[G] given by f 7→ S(cΛ
f,v) is .-equivariant.

Proof. First we prove 1) and 2). We have

(Y . cΛ
f,v)(X) = cΛ

f,v(XY ) = f(X . Y . v) = cΛ
f,Y .v(X),

(cΛ
f,v / Y )(X) = cΛ

f,v(Y X) = f(Y . X . v) = cΛ
f/Y,v(X).

To prove 3) we need to use the fact that S is an anti-homomorphism. We have

(S(cΛ
f,v) / Y )(X) = S(cΛ

f,v)(Y X) = cΛ
f,v(S(Y X)) = f(S(X) . S(Y ) . v)

= f(S(X) . (v / Y )) = cΛ
f,v/Y (S(X)) = S(cΛ

f,v/Y )(X).

The proof of 4) is similar to that of 3). We compute

(Y . S(cΛ
f,v))(X) = S(cΛ

f,v)(XY ) = cΛ
f,v(S(XY )) = f(S(Y ) . S(X) . v)

= (Y . f)(S(X) . v) = cΛ
Y .f,v(S(X)) = S(cΛ

Y .f,v)(X). �

These maps can be used to describe the action of Uq(g) on the matrix units Mn
m and Nnm.

Corollary 8.4. Let {vm}m be an orthonormal basis of V (Λ) and {fn}n be the dual basis of

V (Λ)∗. We de�ne the maps γ
(i,j)
L , γ

(i,j)
R : V (Λ)⊗ V (Λ)∗ → Cq[G] by the formulae

γ
(i,j)
L (vm ⊗ fn) := (Nnm)ij, γ

(i,j)
R (vm ⊗ fn) := (Mn

m)ij.

Then γ
(i,j)
L is .-equivariant and γ

(i,j)
R is /-equivariant.
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Proof. The action of Uq(g) on V (Λ) ⊗ V (Λ)∗ is the usual tensor product action, namely
X . (v ⊗ f) = X(1) . v ⊗X(2) . f . On the other hand on Cq[G] we have

X . (Nnm)ij = (X(1) . u
i
m)(X(2) . u

j∗
n ) = (X(1) . u

i
m)(X(2) . S(unj )),

where the last step holds because we are considering orthonormal bases. Since by de�nition
we have uij = cΛ

f i,vj
the result follows from Proposition 8.3.

For the right action we similarly observe that

(Mn
m)ij / X = (um∗i / X(1))(u

n
j / X(2)) = (S(uim) / X(1))(u

n
j / X(2)).

Then the result follows again from Proposition 8.3. �

8.2. Generalized �ag manifolds. We follow the setup of [StDi99]. Let S be a subset of
the simple roots of g. Then the quantized Levi factor is de�ned as

Uq(lS) = algebra generated by {Kλ, Ei, Fi : i ∈ S} ⊂ Uq(g).

It is clear from the de�nition that Uq(lS) is a Hopf ∗-subalgebra of Uq(g). Corresponding to
the choice of S, the quantized coordinate rings of generalized �ag manifolds are de�ned as

Cq[G/LS] = {a ∈ Cq[G] : X . a = ε(X)a, ∀X ∈ Uq(lS)},
Cq[LS\G] = {a ∈ Cq[G] : a / X = ε(X)a, ∀X ∈ Uq(lS)}.

It is easy to see that they are ∗-subalgebras of Cq[G]. The case of full �ag manifolds corre-
sponds to the choice S = ∅. As in that case, we have right and left actions of Uq(g).
The aim is to apply the results of the previous sections to the case of generalized �ag

manifolds. In order to do this we need to de�ne appropriate matrices over Cq[G/LS] and
Cq[LS\G] in terms of the matrix units Nnm and Mn

m. The next result shows that it is equivalent
to having a Uq(lS)-invariant vector in V (Λ)⊗ V (Λ)∗.

Proposition 8.5. Let P =
∑

m,n c
m
nM

n
m and Q =

∑
m,n c

m
n N

n
m. De�ne

w =
∑
m,n

cmn vm ⊗ fn ∈ V (Λ)⊗ V (Λ)∗.

Then Pij ∈ Cq[LS\G] and Qi
j ∈ Cq[G/LS] if and only if w is a Uq(lS)-invariant vector.

Proof. We will spell the proof only for Q, the other case is very similar. Using the map

γ
(i,j)
L : V (Λ) ⊗ V (Λ)∗ → Cq[G] from Corollary 8.4 we have the equality Qi

j = γ
(i,j)
L (w). This

map is .-equivariant. Hence for any X ∈ Uq(lS) we have

X . Qi
j = X . γ

(i,j)
L (w) = γ

(i,j)
L (X . w).

It is clear that if X . w = ε(X)w then X . Qi
j = ε(X)Qi

j.

Conversely suppose that X .Qi
j = ε(X)Qi

j. Then we must have γ
(i,j)
L (X .w− ε(X)w) = 0.

To prove that this implies X . w = ε(X)w, it su�ces to show that if γ
(i,j)
L (z) = 0 for all

i, j then z = 0. Write z =
∑

m,n b
m
n vm ⊗ fn. The condition γ

(i,j)
L (z) = 0 is equivalent to∑

m,n b
m
n (Nnm)ij = 0. Since by Proposition 3.3 we know that the matrices Nnm are linearly

independent we must have bmn = 0, hence z = 0. �

Remark 8.6. The module V (Λ) ⊗ V (Λ)∗ always contains an invariant vector, corresponding
to the trivial subrepresentation. However this is not interesting for our purposes: indeed
this vector is invariant under the whole Uq(g) and, as a consequence, the elements P and Q
constructed in this way are multiples of the identity.
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Remark 8.7. It can be shown that, if w ∈ V (Λ) ⊗ V (Λ)∗ is Uq(lS)-invariant with respect to
the left action, then it also invariant with respect to the right action.

The upshot is that, given a non-trivial invariant vector in V (Λ)⊗ V (Λ)∗, we can construct
appropriate invariant matrices in terms of the matrix units Mn

m and Nnm. However recall that
for the construction of twisted 2-cycles we need invariant projections. This leads to more
complicated conditions on the invariant vector. We will not attempt to discuss this problem
in full generality, but rather present an interesting example in the next subsection.

8.3. Quantum Grassmannians. As an example of the setup discussed above, we will con-
sider the quantum Grassmannians. The quantized coordinate rings Cq[Gr(r,N)] are de�ned
by taking g = sl(N) and S to be the set of simple roots with αr removed.
For our construction of invariant matrices we will pick Λ = ω1, corresponding to the

fundamental representation. This representation can be realized as follows.

Lemma 8.8. The fundamental representation V (ω1) of Uq(sl(N)) is realized on CN by

π(Kk)vi = qδi,k−δi,k+1vi, π(Ek)vi = δk+1
i q−1/2vi−1, π(Fk)vi = δki q

1/2vi+1.

The highest weight vector is given by v1. Moreover this representation is unitary with respect
to the standard Hermitian inner product on CN .

Proof. This follows from simple computations that we omit. �

Now we look for non-trivial Uq(lS)-invariant vectors in the tensor product V (ω1)⊗ V (ω1)∗,
as in Proposition 8.5. We have V (ω1) ⊗ V (ω1)∗ ∼= V (0) ⊕ V (ω1 + ωN−1) and classically the
adjoint representation V (ω1 + ωN−1) contains such an invariant vector.

Lemma 8.9. Let w =
∑r

m=1 vm ⊗ fm ∈ V (ω1)⊗ V (ω1)∗. Then w is Uq(lS)-invariant.

Proof. First of all recall the action on the dual, given by X . f i =
∑

j π(S(X))ijf
j. A simple

computation then shows that Ek . f
i = −δikq1/2f i+1. Then we can compute

Ek . (vm ⊗ fm) = Ek . vm ⊗Kk . f
m + vm ⊗ Ek . fm

= q−δm,k+δm,k+1δk+1
m q−1/2vm−1 ⊗ fm − δkmq1/2vm ⊗ fm+1

= δk+1
m q1/2vm−1 ⊗ fm − δkmq1/2vm ⊗ fm+1.

Now we have to show that Ek . w = 0 for k 6= r. This is clear for k > r, since the sum in w
runs from 1 to r. For k < r on the other hand we have

Ek . w =
r∑

m=1

Ek . (vm ⊗ fm) = q1/2vk ⊗ fk+1 − q1/2vk ⊗ fk+1 = 0.

The computation showing invariance under Fk is very similar and we omit it. Moreover similar
computations also show that w is invariant with respect to the right action /. �

Corresponding to this invariant vector, we get elements P =
∑r

m=1 M
m
m and Q =

∑r
m=1 N

m
m.

It is clear that they are projections. We will only consider P in the following.

Lemma 8.10. We have the relations

P∗ = P, P2 = P, Tr(K−1
2ρ P) = qr−N [r]q.
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Proof. The �rst two relations follow from the general properties of the matrix units Mn
m,

while the last relation requires some extra computations. Recall from Proposition 3.3 that
Tr(K−1

2ρ P) =
∑r

m=1 q
−(2ρ,λm). The weights of the fundamental representation V (ω1) are given

by λi = ωi−ωi−1 with i = 1, · · · , N , where we use the convention ω0 = ωN = 0. We also have
the identity 2ρ =

∑N−1
k=1 k(N − k)αk. Then it is easy to show that (2ρ, λm) = N − 2m + 1.

Finally a simple computation shows that
∑r

m=1 q
−(2ρ,λm) = qr−N [r]q. �

Remark 8.11. The entries of P actually generate the algebra Cq[Gr(r,N)], as shown in [Kol01].
This is reasonable, since for q → 1 the above conditions mean that P is an orthogonal
projection of rank r and classically Gr(r,N) can be identi�ed with the space of such matrices.

Finally we show that the class of the twisted 2-cycle C(P) is non-trivial.

Proposition 8.12. The class [C(P)] ∈ Hθ
2 (Cq[Gr(r,N)]) is non-trivial.

Proof. We will use the �rst criterion in Theorem 7.2. For the projection P =
∑r

m=1 M
m
m we

have χa(P) =
∑r

i=1 q
(αa−2ρ,λi)[(αa, λi)]q. We take a = r, where r is the parameter de�ning the

Grassmannian. Since λi = ωi − ωi−1 we get (αr, λi) = δr,i − δr,i−1 and

χr(P) =
r∑
i=1

q(αr−2ρ,λi)[(αr, λi)]q = q−(2ρ,λr)+1.

This is non-zero and hence the class is non-trivial. �

In the classical limit q → 1 the class [C(P)] can be identi�ed with a di�erential 2-form,
thanks to the Hochschild-Kostant-Rosenberg theorem. In particular we can look at the case
of projective spaces. Then it is possible to show that the class [C(P)] corresponds, up to a
scalar, with the Kähler form coming from the Fubini-Study metric.
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