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Common risk factors for psychiatric and other brain disorders likely converge on biological 124 

pathways influencing the development and maintenance of brain structure and function 125 

across life. Using structural magnetic resonance imaging data from 45,615 individuals aged 126 

3 to 96 years, we demonstrate distinct patterns of apparent brain aging in several brain 127 

disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals 128 

and common brain disorders. 129 

Psychiatric disorders and other brain disorders are among the main contributors to morbidity and 130 

disability around the world1. The disease mechanisms are complex, spanning a wide range of 131 

genetic and environmental contributing factors2. The inter-individual variability is large, but on a 132 

group-level, patients with common brain disorders perform worse on cognitive tests, are less 133 

likely to excel professionally, and engage in adverse health behaviours more frequently3. It is 134 

unclear to what extend these characteristics are a cause, consequence or confounder of disease.  135 

Dynamic processes influencing the rate of brain maturation and change throughout the 136 

lifespan play a critical role, as reflected in the wide range of disease onset times from early 137 

childhood to old age4. This suggests that the age at which individual trajectories diverge from the 138 

norm reflects key characteristics of the underlying pathophysiology. Whereas autism spectrum 139 

disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) emerge in childhood5, 140 

schizophrenia (SZ) and bipolar (BD) spectrum disorders likely develop during late childhood and 141 

adolescence, before the characteristic outbreak of severe symptoms in early adulthood6. 142 

Likewise, multiple sclerosis (MS) most often manifests in early adulthood but the disease process 143 

likely starts much earlier7. First episodes in major depressive disorder (MDD) can appear at any 144 

stage from adolescence to old age5, whereas mild cognitive impairment (MCI) and dementia 145 

(DEM) primarily emerge during senescence8. Beyond such differential temporal evolution across 146 
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the lifespan, age-related deviations from the norm may also differ between disorders in terms of 147 

anatomical location, direction, change rate and magnitude, all of which add complexity to the 148 

interpretation of observed effects.  149 

Machine learning techniques enable robust estimation of the biological age of the brain 150 

using information provided by magnetic resonance imaging (MRI)9,10, assessing the similarity of 151 

a given brain scan with scans of a range of individuals to estimate the age of the tissue from a 152 

normative lifespan trajectory. Initial evidence suggested that the deviation between brain age and 153 

chronological age – termed the brain age gap - is a promising marker of brain health11, but 154 

several issues remain to be addressed. First, while advantageous for narrowing the complexity, 155 

reducing a rich set of brain imaging features into a single estimate of brain age inevitably 156 

compromises spatial specificity, thereby neglecting disorder-specific patterns. Second, most 157 

studies so far have been rather small-scale, performed within a limited age range and focusing on 158 

a single disorder, which left them unable to uncover clinical specificity and lifespan dynamics. 159 

Third, the genetic underpinnings of brain age gap are not understood, and it is unknown to what 160 

degree they overlap with the genetic architecture of major clinical traits. To address these critical 161 

knowledge gaps, large imaging genetics samples covering a range of prevalent brain disorders are 162 

necessary. 163 

Here, we employed a centralized and harmonized processing protocol including 164 

automated surface-based morphometry and subcortical segmentation using Freesurfer on raw 165 

structural MRI data from 45,615 individuals aged 3 to 96 years that passed quality control 166 

(Suppl. Fig. 1). The sample included data from healthy controls (HC; n = 39,827; 3-95 years) 167 

and 5,788 individuals with various brain disorders. We included data from individuals with ASD 168 

(n = 925; 5-64 years), ADHD (n = 725; 7-62 years), prodromal SZ or at risk mental state 169 

(SZRISK; n = 94; 16-42 years), SZ (n = 1110; 18-66 years), a heterogeneous group with mixed 170 
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diagnoses in the psychosis spectrum (PSYMIX; n = 300; 18-69 years), BD (n = 459; 18-66 171 

years), MS (n = 254; 19-68 years), MDD (n = 208; 18-71 years), MCI (n = 974; 38-91 years), and 172 

DEM (including Alzheimer’s disease; n = 739; 53-96 years). Suppl. Tables 1-3 provide details 173 

on the sample’s characteristics and scanning protocols.  174 

We used machine learning to estimate individual brain age based on structural brain 175 

imaging features. First, we grouped all subjects into different samples. For each of the ten clinical 176 

groups, we identified a group of healthy individuals of equal size, matched on age, sex and 177 

scanning site from a pool of 4353 healthy control subjects. All remaining individuals were joined 178 

into one independent sample comprising healthy individuals only. The latter constituted a 179 

training sample, used to train and tune the machine learning models for age prediction (n = 180 

35,474 aged 3-89 years; 18,990 females), whereas the ten clinical samples were used as 181 

independent test samples. Figure 1a illustrates the respective age distributions per sex and 182 

diagnosis.  183 

The large sample size and wide age-span of the training sample allowed us to model male 184 

and female brain age separately, thereby accounting for potential sexual dimorphisms in brain 185 

structural lifespan trajectories12. For each sex, we built a machine learning model based on 186 

gradient tree boosting to predict the age of the brain from a set of thickness, area and volume 187 

features extracted using a multi-modal parcellation of the cerebral cortex as well as a set of 188 

cerebellar/subcortical volume features (1,118 features in total, Fig. 1b). Five-fold cross-189 

validations revealed high correlations between chronological age and predicted brain age (r=.93 190 

and r=.94 for the female and male model, respectively; Suppl. Fig. 2). Suppl. Fig. 3-6 provide 191 

further validation of the prediction approach and Suppl. Table 4 provides details on sex 192 

differences in the prediction models. Next, we applied the models to predict age for each 193 

individual in the ten independent test samples (predicting brain age using the female model in 194 
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females and the male model in males) and tested for effects of diagnosis on the brain age gap 195 

using linear models. We used mega-analysis (across-site analysis) as the main statistical 196 

framework and provide results from a meta-analysis framework in the supplement. We included 197 

age, age , sex, scanning site and a proxy of image quality (Euler number) in all statistical models 198 

testing for group differences and clinical associations. To further minimize confounding effects 199 

of data quality, we repeated the main analyses using a more stringent quality control and 200 

exclusion procedure. 201 

Figure 2a illustrates that the estimated brain age gap was increased in several brain 202 

disorders. Strongest effects were observed in SZ (Cohen’s d = 0.56), MS (d = 0.69), MCI (d = 203 

0.41) and DEM (d = 1.02). PSYMIX (d = 0.21) and BD (d = 0.27) showed small effects of 204 

increased brain age gap, whereas other groups showed negligible effects (d<0.2). The meta-205 

analysis converged on the same findings (Suppl. Fig. 7) and the results replicated regardless of 206 

the quality control exclusion criterion applied (Suppl. Fig. 8). The brain age gap in all clinical 207 

groups was positive on average and there were no signs of a negative brain age gap 208 

(developmental delay) in children with ASD or ADHD, and no significant group by age 209 

interaction effect (Suppl. Table 5). 210 

We assessed specificity of the spatial brain age gap patterns across clinical groups. We 211 

trained age prediction models using only occipital, frontal, temporal, parietal, cingulate, insula, or 212 

cerebellar/subcortical features (Fig. 1b). Cross-validation confirmed the predictive performance 213 

of all regional models (Suppl. Fig. 2) which were used to predict regional brain age in the ten 214 

independent test sets. Regional brain age gaps largely corresponded to the full brain level, with 215 

some notable differential spatial patterns (Fig. 2b). For example, increased cerebellar/subcortical 216 

age gap was most prominent in DEM (d = 0.91) and MS (d = 0.82) but was not present in SZ (d 217 

= 0.10). The largest effect in SZ was observed in the frontal lobe (d = 0.72). A brain age gap in 218 
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the temporal lobe was observed in MDD (d = 0.28), whereas there was no evidence (d<0.2) for a 219 

brain age gap in ASD, ADHD or SZRISK in any of the regions. To explore regional differences 220 

in brain age patterns, we tested for group by region interactions on each pairwise combination of 221 

clinical groups and pairwise combination of regional brain age gaps (1260 tests). Figure 2c 222 

illustrates the significant effect sizes, indicating that the rate at which different regions age in 223 

relation to each other oftentimes showed opposite patterns between disorders typically considered 224 

neurodevelopmental (e.g. SZ) and neurodegenerative (e.g. MS/DEM), respectively.  225 

With converging evidence demonstrating largest brain age gaps in SZ, MS, MCI and 226 

DEM, we explored the functional relevance of the regional brain age gaps for these groups by 227 

testing for associations with clinical and cognitive data. Clinical data available from individuals 228 

with SZ included symptom (n = 389) and function (n = 269) scores of the Global Assessment of 229 

Functioning scale (GAF) as well as positive (n = 646) and negative (n = 626) scores of the 230 

Positive and Negative Syndrome Scale (PANSS). For MS, we assessed associations with scores 231 

from the Expanded Disability Status Scale (EDSS, n = 195). In the dementia spectrum, we 232 

assessed associations with Mini Mental State Examination scores (MMSE, n = 907 MCI, n = 686 233 

DEM). Figure 2d depicts association strengths accounted for age, age , sex, scanning site and 234 

Euler number and Suppl. Fig. 11 provides corresponding scatter plots. In SZ, larger brain age 235 

gaps were associated with lower functioning, for example full brain age gap with GAF symptom 236 

(r = -0.17, P = 9 x 10-4) and insula brain age gap with GAF function (r = -0.22, P = 3 x 10-4), and 237 

with more negative symptoms, for example temporal brain age gap with PANSS negative (r = 238 

0.11, P = .005). In MS, larger full brain age gap was associated with higher disability (r = 0.24, P 239 

= .001). Finally, lower cognitive functioning was associated with larger brain age gaps in 240 

MCI/DEM, with strongest effects for full brain (r = -0.29, P = 2 x 10-29) and 241 

cerebellar/subcortical (r = -0.27, P = 1 x 10-26) brain age gaps.  242 
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 Given the substantial genetic contributions to most brain disorders, our results incite the 243 

question to what degree brain age patterns are genetically influenced and if the implicated 244 

polymorphisms overlap with the polygenic architectures of the disorders. We used single 245 

nucleotide polymorphism (SNP) data from the 20,170 adult healthy individuals with European 246 

ancestry available in UK Biobank. We estimated full and regional brain age for these individuals 247 

using 5-fold cross-validation in models trained on all healthy controls (n = 39,827 aged 3-95 248 

years; 20,868 females, models trained per sex).  249 

First, we performed one genome-wide association study (GWAS) per brain age gap using 250 

PLINK, including the first ten population components from multidimensional scaling, age, age , 251 

sex, scanning site and Euler number as covariates. Next, we assessed heritability using LD score 252 

regression on the resulting summary statistics. In line with earlier results from twin studies13, our 253 

SNP-based analysis revealed significant heritability (Fig. 3a), with common SNPs explaining 254 

24% of the variance in brain age gap across all individuals (full brain, h2
SNP = 0.24, SE = 0.03) 255 

and 17-23% of the variance in regional brain age gaps (all SE < 0.03).  256 

Next, we assessed the overlap between the genetic underpinnings of brain age gap and 257 

common brain disorders. We gathered GWAS summary statistics for ASD, ADHD, SZ, BD, MS, 258 

major depression (MD), and Alzheimer’s disease (AD) (see online methods). First, using LD 259 

score regression, we assessed the genetic correlation between these summary statistics and those 260 

from brain age gaps. Correlations were overall weak (Suppl. Fig. 12), with only one surviving 261 

FDR correction for the number of tests (cingulate brain age gap with ADHD). Lack of genetic 262 

correlation does not preclude genetic dependence as traits may have mixed effect directions 263 

across shared genetic variants14. Thus, we next used conjunctional FDR analyses to identify 264 

SNPs that are significantly associated with both brain age gap and disorders. We found 265 

significant independent loci showing pleiotropy between brain age gaps and all included 266 
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disorders (Figure 3b). Most loci were identified for SZ (2 occipital, 4 frontal, 3 temporal, 6 267 

parietal, 5 cingulate, 5 insula, 2 cerebellar/subcortical; 161 SNPs in total). Further, 5 independent 268 

loci for ASD (76 SNPs), 6 for ADHD (80 SNPs), 10 for BD (94 SNPs), 5 for MS (22 SNPs), 1 269 

for MD (14 SNPs), and 6 for AD (15 SNPs). Suppl. Table 6 provides details. Figure 3c depicts 270 

the identified genes coloured by significance and sized by frequency. An intronic variant in 271 

protein coding gene SATB2 at chromosome 2q33.1 was most frequently associated with brain age 272 

gaps and SZ. A missense variant in protein coding gene SLC39A8 was associated with 273 

subcortical brain age gap and SZ and showed the strongest effect in all tested associations (P = 9 274 

x 10-8). 275 

Taken together, our results provide strong evidence that several common brain disorders 276 

are associated with an apparent aging of the brain, with effects observed at the full brain or 277 

regional level in SZ, PSYMIX, BD, MS, MDD, MCI and DEM; but not in ASD, ADHD or 278 

SZRISK. Importantly, our approach revealed differential neuroanatomical distribution of brain 279 

age gaps between several disorders. Associations with clinical and cognitive data in patients 280 

supported the functional relevance of the brain age gaps and genetic analyses in healthy 281 

individuals provided evidence that the brain age gaps are heritable, with overlapping genes 282 

between brain age gaps in healthy adults and common brain disorders.  283 

Our approach of estimating regional brain age was useful to reveal differential spatial 284 

patterns between disorders. Whereas the implicated regions in the spatial brain age profiles of the 285 

disorders largely corresponded with previously reported structural abnormalities (e.g. frontal in 286 

SZ15 and substantial subcortical volume loss in AD16), our regional brain age approach preserved 287 

the well-established benefit of down-sampling a large number of brain imaging features into a 288 

condensed and interpretable score without a total loss of spatial sensitivity. As such, the analysis 289 

revealed substantial differences in spatial aging profiles between disorders typically regarded as 290 



Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

12 
 

neurodegenerative (MS, MCI, DEM) and neurodevelopmental, in particular SZ and PSYMIX. 291 

For example, whereas these disorders were all associated with increased brain age gap on the full 292 

brain level, regional analysis revealed interactions between the frontal brain age patterns 293 

observed in SZ and the cerebellar/subcortical patterns observed in MS and DEM, supporting 294 

spatial differences in apparent brain age. Moreover, significant associations with clinical and 295 

cognitive data, in particular with scores of the GAF and PANSS in SZ, with the EDSS in MS and 296 

with MMSE in the dementia spectrum demonstrated functional relevance of brain age gap 297 

beyond group differences. By gauging the dynamic associations between changes in brain age 298 

and clinical and cognitive function, future longitudinal studies may prove instrumental to dissect 299 

the large individual differences among patients with brain disorders, even within the same 300 

diagnostic category17. Furthermore, incorporating additional imaging modalities, voxel-level data 301 

or different segmentations at various levels of resolution will allow for estimation of tissue-302 

specific brain age gaps or different regional gaps in future studies. Such approaches will also be 303 

useful to further investigate the apparent lack of brain age gap differences in ASD and ADHD. In 304 

contrast to research from other imaging phenotypes18,19, we did not observe case-control 305 

differences in brain age gaps for ASD or ADHD, nor group by age interactions (developmental 306 

delays might be reflected in a negative brain age gap in children). Brain age gaps based on 307 

different imaging modalities may capture different aspects of pathophysiology and will therefore 308 

yield an important contribution in future research.  309 

Conceptually, brain age gaps reflect a prediction error from a machine learning model and 310 

can therefore be attributed to both noise (lack of model accuracy, insufficient data quality) and 311 

physiology (deviations from normal aging trajectories). The large training sample and accurate 312 

model performance, replication of results at different data quality criterions, as well as our 313 

approach of comparing brain age gaps of cases to a group of age-, sex- and scanner-matched 314 
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controls allowed us to reduce the impact of noise and to attribute variation in brain age gaps as 315 

likely related to biologically relevant differences. The physiological underpinnings of the brain 316 

age gaps are likely diverse, much like the polygenic nature of brain disorders and their 317 

profoundly heterogeneous symptomatology. They may reflect differences in disease severity, 318 

effects of comorbid disorders, substance use or other adverse lifestyle factors. Genetic analysis 319 

offers one way of exploring factors that influence phenotypic variation toward an improved 320 

understanding of the multi-faceted sources of lifespan trajectories in the brain. Here, we provided 321 

evidence that full and regional brain age gaps represent genetically influenced traits, and 322 

illustrated that the genetic variants associated with brain age gaps in healthy individuals partly 323 

overlap with those observed in ASD, ADHD, SZ, BD, MS, MD and AD. In line with 324 

accumulating evidence that common brain disorders are highly polygenic and partly 325 

overlapping20 these results suggest shared molecular genetic mechanisms between brain age gaps 326 

and brain disorders. Statistical associations do not necessarily signify causation, and functional 327 

interpretations of the identified genes should be made with caution. Larger imaging genetics 328 

samples, in particular those including individuals with common brain disorders, may in the future 329 

allow the investigation of specificity of the implicated genes, and integrating a wider span of 330 

imaging modalities may increase both sensitivity and specificity.  331 

 In conclusion, we have established that the brain age gap is increased in several common 332 

brain disorders, sensitive to clinical and cognitive phenotypes and genetically influenced. Our 333 

results emphasize the potential of advanced lifespan modelling in the clinical neurosciences, 334 

highlighting the benefit of big data resources that cover a wide age span and conditions. 335 

Delineating dynamic lifespan trajectories within and across individuals will be essential to 336 

disentangle the pathophysiological complexity of brain disorders.  337 
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Simon Lovestone, Bruno Vellas, Patrizia Mecocci, Magda Tsolaki, Iwona Kłoszewska, Hilkka 360 

Soininen. 361 



Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

15 
 

 362 

Author contributions 363 

T.K. and L.T.W. conceived the study; T.K., N.T.D. and L.T.W. pre-processed all data in 364 

Freesurfer; N.T.D., M.J.L., C.L.B, L.B.N., L.T.W. and T.K. performed quality control of the 365 

data; T.K. performed the analysis with contributions from L.T.W. and D.v.d.M.; T.K., L.T.W., 366 

N.T.D., D.v.d.M. and O.A.A. contributed to interpretation of the results. All remaining authors 367 

were involved in data collection at various sites as well as cohort-specific tasks. T.K. and L.T.W. 368 

wrote the first draft of the paper and all authors contributed to and approved the final manuscript. 369 

Competing financial interests 370 

Some authors received educational speaker’s honorarium from Lundbeck (O.A. Andreassen, A. 371 

Bertolino, T. Elvsåshagen, M. Zink, N. I. Landrø), Sunovion (O.A. Andreassen), Shire (B. 372 

Franke), Medice (B. Franke), Otsuka (A. Bertolino, M. Zink) and Jannsen (A. Bertolino), Roche 373 

(M. Zink), Ferrer (M. Zink), Trommsdorff (M. Zink), Servier (M. Zink), all of these unrelated to 374 

this work. A. Bertolino is a stockholder of Hoffmann-La Roche Ltd and has received consultant 375 

fees from Biogen Idec. E. G. Celius and H. F. Harbo have received travel support, honoraria for 376 

advice and lecturing from Almirall (Celius), Biogen Idec (both), Genzyme (both), Merck (both), 377 

Novartis(both), Roche (both), Sanofi-Aventis (both) and Teva (both). They have received 378 

unrestricted research grants from Novartis (Celius, Harbo), Biogen Idec (Celius) and Genzyme 379 

(Celius). G. Pergola has been the academic supervisor of a Roche collaboration grant (years 380 

2015-16) that funds his salary. None of the mentioned external parties had any role in the 381 

analysis, writing or decision to publish this work. Other authors declare no competing financial 382 

interests. 383 

 384 



Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

16 
 

Members of the Karolinska Schizophrenia Project (KaSP) 385 

Farde L4, Flyckt L4, Engberg G70, Erhardt S70, Fatouros-Bergman H4, Cervenka S4, Schwieler 386 

L70, Piehl F71, Agartz I1,3,4, Collste K4, Victorsson P4, Malmqvist A70, Hedberg M70, Orhan F70 387 

70Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 388 

71Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 389 

Sweden 390 

References 391 

1 WHO. World Health Statistics 2016.  (2016). 392 
2 Insel, T. R. & Cuthbert, B. N. Brain disorders? Precisely. Science 348, 499-500, 393 

doi:10.1126/science.aab2358 (2015). 394 
3 Prince, M. et al. No health without mental health. Lancet 370, 859-877, 395 

doi:10.1016/S0140-6736(07)61238-0 (2007). 396 
4 Parikshak, N. N., Gandal, M. J. & Geschwind, D. H. Systems biology and gene networks 397 

in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet 16, 441-458, 398 
doi:10.1038/nrg3934 (2015). 399 

5 Marin, O. Developmental timing and critical windows for the treatment of psychiatric 400 
disorders. Nat Med 22, 1229-1238, doi:10.1038/nm.4225 (2016). 401 

6 Insel, T. R. Rethinking schizophrenia. Nature 468, 187-193, doi:Doi 402 
10.1038/Nature09552 (2010). 403 

7 Aubert-Broche, B. et al. Onset of multiple sclerosis before adulthood leads to failure of 404 
age-expected brain growth. Neurology 83, 2140-2146, 405 
doi:10.1212/WNL.0000000000001045 (2014). 406 

8 Masters, C. L. et al. Alzheimer's disease. Nat Rev Dis Primers 1, 15056, 407 
doi:10.1038/nrdp.2015.56 (2015). 408 

9 Dosenbach, N. U. et al. Prediction of individual brain maturity using fMRI. Science 329, 409 
1358-1361, doi:10.1126/science.1194144 (2010). 410 

10 Franke, K., Ziegler, G., Kloppel, S., Gaser, C. & Alzheimer's Disease Neuroimaging, I. 411 
Estimating the age of healthy subjects from T1-weighted MRI scans using kernel 412 
methods: exploring the influence of various parameters. Neuroimage 50, 883-892, 413 
doi:10.1016/j.neuroimage.2010.01.005 (2010). 414 

11 Cole, J. H. & Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing 415 
Biomarkers. Trends Neurosci 40, 681-690, doi:10.1016/j.tins.2017.10.001 (2017). 416 

12 Ritchie, S. J. et al. Sex Differences in the Adult Human Brain: Evidence from 5216 UK 417 
Biobank Participants. Cereb Cortex 28, 2959-2975, doi:10.1093/cercor/bhy109 (2018). 418 

13 Cole, J. H. et al. Predicting brain age with deep learning from raw imaging data results in 419 
a reliable and heritable biomarker. Neuroimage 163, 115-124, 420 
doi:10.1016/j.neuroimage.2017.07.059 (2017). 421 

14 Bansal, V. et al. Genome-wide association study results for educational attainment aid in 422 
identifying genetic heterogeneity of schizophrenia. Nature Communications 9, 3078, 423 
doi:10.1038/s41467-018-05510-z (2018). 424 



Kaufmann et al., Genetics of brain age suggest an overlap with common brain disorders 

17 
 

15 Ellison-Wright, I. & Bullmore, E. Anatomy of bipolar disorder and schizophrenia: a meta-425 
analysis. Schizophrenia research 117, 1-12, doi:10.1016/j.schres.2009.12.022 (2010). 426 

16 Jernigan, T. L., Salmon, D. P., Butters, N. & Hesselink, J. R. Cerebral structure on MRI, 427 
Part II: Specific changes in Alzheimer's and Huntington's diseases. Biological psychiatry 428 
29, 68-81 (1991). 429 

17 Wolfers, T. et al. Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar 430 
Disorder Using Normative Models. Jama Psychiat 75, 1146-1155, 431 
doi:10.1001/jamapsychiatry.2018.2467 (2018). 432 

18 Ecker, C., Bookheimer, S. Y. & Murphy, D. G. Neuroimaging in autism spectrum 433 
disorder: brain structure and function across the lifespan. Lancet Neurol 14, 1121-1134, 434 
doi:10.1016/S1474-4422(15)00050-2 (2015). 435 

19 Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nature Reviews Disease 436 
Primers 1, 15020, doi:10.1038/nrdp.2015.20 (2015). 437 

20 Andreassen, O. A. et al. Genetic pleiotropy between multiple sclerosis and schizophrenia 438 
but not bipolar disorder: differential involvement of immune-related gene loci. Molecular 439 
psychiatry 20, 207 (2015). 440 

 441 
 442 
Figure legends 443 
 444 
Figure 1: Sample distributions and imaging features used for brain age prediction. a, Age 445 

distributions of the training (left) and the ten test samples (right) per sex and diagnosis. The grey 446 

shades behind each clinical group reflect its age-, sex- and site-matched control group. b, Cortical 447 

features from the Human Connectome Project (HCP) atlas as well as cerebellar/subcortical 448 

features used for brain age prediction. Colours were assigned randomly to each feature. All 449 

features were used in the full brain feature set (left), whereas only those from specific regions 450 

(occipital, frontal, temporal, parietal, cingulate, insula, cerebellar/subcortical) were included in 451 

the regional feature set (right). For illustration purpose, the left hemisphere is shown. 452 

 453 

Figure 2: Apparent brain aging is common in several brain disorders and sensitive to 454 

clinical and cognitive measures. a, The gap between chronological age and brain age was 455 

increased in several disorders. The grey shades behind each clinical group reflect its age-, sex- 456 

and site-matched controls. The test samples comprised n=925 ASD / n=925 HC, n=725 ADHD / 457 
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n=725 HC, n=94 SZRISK / n=94 HC, n=1110 SZ / n=1110 HC, n=300 PSYMIX / n=300 HC, 458 

n=459 BD / n=459 HC, n=254 MS / n=254 HC, n=208 MDD / n=208 HC, n=974 MCI / n=974 459 

HC, n=739 DEM / n=739 HC; in total n=10,141 independent subjects. Cohen’s d effect sizes 460 

(pooled standard deviation units) and two-sided P-values are provided. b, Several disorders 461 

showed specific patterns in regional brain age gaps. Colours indicate Cohen’s d effect sizes for 462 

group comparisons. Sample size as specified in panel a. Corresponding correlation matrix of the 463 

effect sizes is depicted in Suppl. Fig. 9. c, Effect sizes of significant region by group interactions 464 

from repeated measures ANOVAs run for each combination of regions and groups (1260 tests in 465 

total). Sample size as specified in panel a yet excluding HC; n=5788 independent subjects. Only 466 

significant (p<FDR; Benjamini-Hochberg) effects are shown. Suppl. Fig. 10 depicts effect sizes 467 

for all 1260 tests. d, Correlation coefficients for linear associations between brain age gaps and 468 

cognitive and clinical scores. Sample size comprised n=389 SZ for GAFsymptom, n=269 SZ for 469 

GAFfunction, n=646 SZ for PANSSpositive, n=626 SZ for PANSSnegative, n=195 MS for EDSS, n=907 470 

MCI and n=686 DEM for MMSE.  Associations were computed using linear models accounting 471 

for age, age , sex, scanning site and Euler number, and the resulting t-statistics were transformed 472 

to r. Significant (P<FDR; Benjamini-Hochberg; two-sided) associations are marked with a black 473 

box. Corresponding scatter plots are depicted in Suppl. Fig 11. 474 

 475 

Figure 3: The brain age gaps are heritable, and the genetic underpinnings overlap with 476 

those observed for several disorders. Genetic analyses were performed using data from 477 

n=20,170 healthy adult individuals with European ancestry a, Heritability (h2) estimated using 478 

LD Score regression. Error bars reflect standard error. b, Significantly (P<FDR) overlapping loci 479 

between brain age gaps and disorders, identified using conjunctional FDR. c, Corresponding to 480 
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panel b, the overlapping genes across all disorders, coloured by significance and sized by 481 

frequency of detection. 482 
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Online methods 483 

Additional information is available in the Life Sciences Reporting Summary. 484 

Samples 485 

We have included data collected through collaborations, data sharing platforms, consortia as well 486 

as available in-house cohorts. No statistical methods were used to pre-determine sample sizes. 487 

We included as much data as we could gather (brain scans from N=45,615 individuals) and 488 

sample size of individual clinical groups is thus based on data availability. Suppl. Tables 1 - 3 489 

provide detailed information on the individual cohorts. All included cohorts have been published 490 

on, and we refer to a list of publications that can be consulted for a more detailed overview of 491 

cohort characteristics. Data collection in each cohort was performed with participants’ written 492 

informed consent and with approval by the respective local Institutional Review Boards. 493 

Image pre-processing and quality control 494 

Raw T1 data for all study participants were stored and analysed locally at University of Oslo, 495 

following a harmonized analysis protocol applied to each individual subject data (Suppl. Fig. 1). 496 

We performed automated surface-based morphometry and subcortical segmentation using 497 

Freesurfer 5.321. We deployed an automated quality control protocol executed within each of the 498 

contributing cohorts that excluded potential outliers based on the Euler number22 of the respective 499 

Freesurfer segmentations. Euler number captures the topological complexity of the uncorrected 500 

Freesurfer surfaces and thus comprises a proxy of data quality22. In brief, for each scanning site 501 

we regressed age, age  and sex from the Euler number of the left and right hemispheres and 502 

identified scans that deceeded 3 standard deviations (SD) on either of the residualized Euler 503 

numbers. Suppl. Fig. 13 provides a validation of the approach against manual quality control. 504 

Data from a total of 977 individuals was excluded in this step, yielding 45,615 subjects for the 505 
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main analysis. To further minimize confounding effects of data quality23, we performed 506 

supplementary analyses using a subset of data, where a more stringent threshold was used for 507 

exclusion (1 SD on Euler numbers). Thus, supplemental analysis provides a sanity check with 508 

those subjects excluded (sample size: n = 40,301). 509 

Brain age prediction  510 

We utilized a recent multi-modal cortical parcellation scheme24 to extract cortical thickness, area 511 

and volume for 180 regions of interest (ROI) per hemisphere. In addition, we extracted the classic 512 

set of cerebellar/subcortical and cortical summary statistics21. This yielded a total set of 1118 513 

structural brain imaging features (360/360/360/38 for cortical thickness/area/volume as well as 514 

cerebellar/subcortical and cortical summary statistics, respectively).  515 

We used machine learning on this feature set to predict the age of each individual’s brain. 516 

First, we split the available data into a training sample and ten independent test samples (Fig. 1a). 517 

The test samples in total comprised 5788 individuals with brain disorders and 4353 healthy 518 

controls. For each of the ten clinical groups, we selected a set of healthy controls from the pool of 519 

4353 individuals, matched for age, sex and scanning site using propensity score matching25. 520 

Thus, data from some healthy individuals acted as control data in several test samples, yet each 521 

test sample had the same number of patients and controls and all subjects in the test samples were 522 

independent of the subjects in the training sample. The remaining datasets (45,615 – 523 

(5788+4353) = 35,474) went into the training set. For each sex, we trained machine learning 524 

models based on gradient tree boosting26 utilizing the xgboost package in R27, chosen due to its 525 

resource efficiency and demonstrated superior performance in previous machine learning 526 

competitions26, to predict the age of the brain using data available in the training set. First, model 527 

parameters were tuned using a 5-fold cross-validation of the training data. This step identified the 528 
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optimal number of model training iterations by assessing the prediction error for 1500 rounds and 529 

implementing an early stopping if the performance did not improve for 20 rounds. Based on 530 

previous experience, the learning rate was pre-set to eta=0.01 and all other parameters were set to 531 

default27 for linear xgboost tree models. After determining the optimal number of training 532 

iterations, the full set of training data was used to train the final models with the adjusted nrounds 533 

parameter. These models were used to predict brain age in the test samples, and the brain age gap 534 

(deviation between brain and chronological age) was computed. In line with a recent 535 

recommendation28, all statistical analyses on the brain age gap accounted for age, age , sex, 536 

scanning site and Euler number. In addition, to assess overall model performance, prediction 537 

models were cross-validated within the training set using a 5-fold cross validation, each fold 538 

implementing the above described training procedure and testing on the hold-out part of the 539 

training set. Brain age predictions on the level of individual brain regions followed the same 540 

procedures as those described for the full brain level, except that the feature set was reduced to 541 

cover only those features that overlapped more than 50% with a given lobe. Regions were 542 

defined following the Freesurfer lobesStrict segmentation as occipital, frontal, temporal, parietal, 543 

cingulate and insula. In addition, given the limited number of cerebellar features available in the 544 

Freesurfer summary statistics, cerebellar and subcortical features were grouped into a 545 

cerebellar/subcortical region (Fig. 1b). For additional validation, we compared our xgboost 546 

approach against two other approaches (Suppl. Fig. 3). One approach implemented a different 547 

machine learning algorithm on the same set of features (slm from the care package29), whereas 548 

the other approach made use of a fully independent processing pipeline, feature set and algorithm 549 

(github.com/james-cole/brainageR13,30). Furthermore, we assessed the impact of sample size on 550 

model performance by creating random subsets of data with sample sizes of 100, 500, 1000, 551 
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2000, 5000, 10,000, and 20,000 individuals (40 random subsets per sample size). For each subset 552 

and sample size we assessed model performance using cross-validation (Suppl. Fig. 5).  553 

The genetic analysis was performed in UK Biobank data, which was part of the training 554 

set in the main analysis. We thus trained different brain age models for the genetic analysis. We 555 

selected all healthy subjects and estimated their brain age using a 5-fold cross-validation 556 

approach, like the one performed when validating performance of the training set. The resulting 557 

unbiased estimates of brain age gaps for all UK Biobank individuals with genetic data available 558 

went into the genome-wide association analysis, LD score regression and conjunctional FDR. 559 

Main statistical analysis framework 560 

We performed both mega- (across cohorts) and meta- (within cohort) analyses. To estimate group 561 

effects on a given measure in a mega-analysis framework, we computed the effect of diagnosis in 562 

relation to the healthy controls for each of the ten test samples in a linear model accounting for 563 

age, age , sex, scanning site and Euler number. Cohen’s d effect sizes were estimated based on 564 

contrast t-statistics31 following Formula 1: 565 

𝑑 =  
𝑡(𝑛1  +  𝑛2)

√𝑛1𝑛2√𝑑𝑓
 

 (1) 

For the meta-analysis, similar models were computed within cohorts. In addition to estimating 566 

Cohen’s d (Formula 1), we estimated the variance of d following Formula 2.  567 

Cumulative effects across cohorts were then estimated using a variance-weighted random-effects 568 

model as implemented in the metafor package in R32. 569 

Data distributions were assumed to be normal, but this was not formally tested. Data collection 570 

and analysis were not performed blind to the conditions of the experiments. 571 

𝑣 =  (
𝑛1  +  𝑛2

𝑛1𝑛2
+ 

𝑑2

2(𝑛1 + 𝑛2 −  2)) (
𝑛1  + 𝑛2

𝑛1  +  𝑛2 −  2
) 

 (2) 
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Assessment of regional specificity 572 

In Suppl. Fig 9, we performed clustering of effect sizes from Figure 2b using heatmap.2 from the 573 

gplots package33 in R. A Spearman correlation matrix was computed based on the case-control 574 

effect sizes obtained from each test sample and region and hierarchical clustering was performed 575 

using the default settings. To further explore regional specificity, we performed an analysis that 576 

involved only the clinical groups. We regressed age, age , sex, scanning site and Euler number 577 

from the brain age gaps in each test sample. Next, we joined data from each pair of clinical 578 

groups and each pair of regions for repeated measures analysis of variance and estimated the 579 

effect sizes of region x group interactions (1260 ANOVAs in total). The significant interaction 580 

effects were visualized in Figure 2c using the circlize package34 in R. 581 

Genetic analyses 582 

We restricted all genetic analyses to individuals from the UK Biobank with European ancestry, as 583 

determined by the UK Biobank study team35. We applied standard quality control procedures to 584 

the UK Biobank v3 imputed genetic data. In brief, we removed SNPs with an imputation quality 585 

score below 0.5, with a minor allele frequency less than .05, missing in more than 5% of 586 

individuals, and failing the Hardy Weinberg equilibrium tests at a p<1x10-6, yielding SNP data 587 

from 20,170 adult healthy individuals. We performed a genome-wide association analysis using 588 

PLINK v1.936, accounting the analysis for 10 genetic principal components, age, age , sex, 589 

scanning site and Euler number. We used LD Score regression37 to estimate narrow sense 590 

heritability.  591 

Furthermore, we used cross-trait LD Score regression37,38 to calculate genetic correlations, 592 

and conjunctional FDR analyses39,40 to assess genetic overlap between two complex traits. We 593 

gathered genome-wide association analysis (GWAS) summary statistics for ASD41, ADHD42, 594 
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SZ43, BD44, MS45, MD46, and AD47; and assessed genetic overlap with brain age gap genetics. 595 

The MHC region was excluded from all analysis. Conjunctional FDR was run for each pair of 596 

full brain / regional brain age gap and group, using conjunctional FDR threshold of 0.05. SNPs 597 

were annotated using the Ensembl Variant Effect Predictor48. 598 

Cognitive and clinical associations 599 

Cognitive and clinical associations were tested in subsets based on data availability and were 600 

performed in clinical groups only (excluding controls) as described in the main text. Using linear 601 

models accounting for age, age , sex, scanning site and Euler number we associated brain age 602 

gaps with scores of the Global Assessment of Functioning scale49 (GAF), the Positive and 603 

Negative Syndrome Scale50 (PANSS), the Expanded Disability Status Scale51 (EDSS) and Mini 604 

Mental State Examination scores52 (MMSE). The t-statistics of the linear models were 605 

transformed to r, thus the correlation coefficients depicted in Fig 2d essentially reflect a partial 606 

correlation between full brain / regional brain age gaps and clinical/cognitive scores, controlling 607 

for confounding effects of age, sex, site and image quality. 608 

Code availability.  609 

Code needed to run brain age prediction models is available at github.com/tobias-kaufmann (see 610 

Data availability). Additional R statistics53 code is available from the authors upon request. 611 

Data availability 612 

The raw data incorporated in this work were gathered from various resources. Material requests 613 

will need to be placed with individual PIs. A detailed overview of the included cohorts is 614 

provided in Suppl. Table 1. GWAS summary statistics for the brain age gaps as well as the 615 

models needed to predict brain age in independent cohorts are available at github.com/tobias-616 

kaufmann. 617 
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