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THE PARTHASARATHY FORMULA AND A SPECTRAL TRIPLE FOR
THE QUANTUM LAGRANGIAN GRASSMANNIAN OF RANK TWO

MARCO MATASSA

ABSTRACT. We show that the Dolbeault—Dirac operator on the quantum Lagrangian Grass-
mannian of rank two, an example of a quantum irreducible flag manifold, satisfies an appro-
priate version of the Parthasarathy formula. We use this result to complete the proof that
the candidate spectral triple for this space, as defined by Krdhmer, is a spectral triple.

INTRODUCTION

Let G/K be a symmetric space. The Parthasarathy formula relates the square of a Dirac-
type operator D, defined on a certain bundle over G /K, with the quadratic Casimir of the
Lie algebra g. See [Par72| for the original derivation and [Agr03] for a readable account.

It is well known that compact Lie groups admit g-deformations, that is non-commutative
algebras C,[G] which are deformations of the classical rings and enjoy many similar properties.
Many homogeneous spaces G/K can be also quantized within this setting. For instance
the case of generalized flag manifolds is treated in [StDi99]. When these flag manifolds are
irreducible, they can also be described as symmetric spaces, and coincide with the class of
Hermitian symmetric spaces. This class of quantum homogeneous spaces is particularly well-
behaved: for instance they admit a canonical g-analogue of the de Rham complex, as shown
by Heckenberger and Kolb in [HeKo04, HeKo06|, which has the same graded dimension as in
the classical case. We stress that this is not the case for general quantum spaces.

Dirac operators on quantum irreducible flag manifolds have been defined in [Kria04] and
revisited in [KrTS15]. A natural question is whether these operators admit a quantum ana-
logue of the Parthasarathy formula. One important application of such a formula would be
to obtain spectral triples corresponding to these quantum spaces. Recall that a spectral triple
is the main ingredient in the framework of non-commutative geometry developed by Connes
[Con94]. The Dirac operators defined in [Krd04] can be used to construct candidate spectral
triples, but in general it is not known if they have compact resolvent, which is one of the key
conditions to be satisfied. This is known to be the case for quantum projective spaces, as
originally shown in [DaDA10] and then revisited in [Mat18] within the setting of [KrT'S15].
The strategy in these papers is to show that D? satisfies a formula of Parthasarathy-type.
Hence having such a formula would allow to prove the result in full generality.

In this paper we give the first example of a quantum symmetric space of rank two for
which an appropriate version of the Parthasarathy formula holds. The homogeneous space
we consider here is an example of a Lagrangian Grassmannian. A (complex) Lagrangian
Grassmannian is the smooth manifold of Lagrangian subspaces of a complex symplectic vector
space of dimension 2n. As a homogeneous space it can be identified with Sp(n)/U(n), where
Sp(n) is the compact real form of the complex Lie group Sp(2n, C). The manifold Sp(n)/U(n)
has complex dimension n(n+1)/2 and rank n, see [Hel01]. Hence we are considering the case

n = 2, with corresponding quantum coordinate ring C,[Sp(2)/U(2)].
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We will consider a Dolbeault—Dirac D element which, up to minor modifications, is the one
introduced in [KrT'S15]. This element naturally acts on a certain space I'(€2), which classically
corresponds to the bundle of anti-holomorphic forms on Sp(2)/U(2). The goal is to compare
this element with C® 1, where C is an appropriately defined central element of U, (sp,), which
plays the role of the quadratic Casimir. Our main result is the following.

Theorem (Theorem 9.4). The element D? coincides with C ® 1 as operators on the space
['(2), up to terms in the quantized Levi factor U,(1).

We then use this result to show that D has compact resolvent. This provides the first
complete construction of a spectral triple for a quantum symmetric space of rank two.!

Theorem (Theorem 10.1). The Dolbeault-Dirac operator D has compact resolvent. Hence
we get a spectral triple for the quantum Lagrangian Grassmannian C,[Sp(2)/U(2)].

We close this introduction by comparing these results with those of [Mat17|. In the cited
paper we state a negative result concerning the Parthasarathy formula for C,[Sp(2)/U(2)],
the quantum homogeneous space being investigated here. This apparent contradiction is
resolved by the observation that we are looking at two slightly different versions of the
Parthasarathy formula. In the paper [Mat17] we consider the Dolbeault—Dirac operator from
a purely algebraic point of view, that is as an element of U,(g) ® End(A,(u_)). Then we look
for an identity of the form D? ~ C ® 1, where C' is a central element and ~ means neglecting
terms in the Levi factor, and show that such an identity can not be satisfied. While this
result is technically correct, it does not tell the full story: namely we want to consider D as
acting on an appropriate space, denoted by I'(£2) here. Taking this into account we get more
relations, which algebraically translate into taking a certain quotient of U,(g) ® End(A,(u-)).
The main result of the current paper is that the relation D? ~ C®1 does hold in this quotient,
which we will denote by M, and consequently for D? acting on the vector space I'(2).

The paper is organized as follows. In Section 1 we discuss some preliminary material. In
Section 2 we recall the construction of Dolbeault-Dirac operators on irreducible flag mani-
folds, following the paper [KrTS15| but with some modifications. In Section 3 we provide
various details regarding the quantum Lagrangian Grassmannian under consideration. In
Section 4 we derive the relations for the relevant quantum symmetric and exterior algebras.
In Section 5 we obtain an explicit expression for the square of the Dolbeault—Dirac operator.
In Section 6 we derive a central element playing the role of the quadratic Casimir from the
R-matrix. In Section 7 we rewrite this element in a different manner, to facilitate comparison
with the Dolbeault-Dirac operator. In Section 8 we provide more useful formulae regarding
the exterior algebra. In Section 9 we prove our main result, namely a Parthasarathy formula
for the Dolbeault-Dirac operator considered here. Finally, in Section 10 we use this result to
construct a spectral triple on the Lagrangian Grassmannian.

Acknowledgements. 1 would like to thank Réamonn O Buachalla and Robert Yuncken for many interesting
discussions regarding the topics of this paper.

1. PRELIMINARIES

In this section we review some preliminary material, while also fixing some notation re-
garding Lie algebras, parabolic subalgebras and quantized enveloping algebras.

1 have been told by Réamonn O Buachalla that he and collaborators have obtained similar results for
some low-dimensional spaces by different means, but the details are not available yet.
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1.1. Lie algebras and parabolic subalgebras. Let g be a finite-dimensional complex sim-
ple Lie algebra with a fixed Cartan subalgebra h. We denote by A(g) the root system, by
A™(g) a choice of positive roots and by IT = {ay, - - - , a,.} the corresponding simple roots. We
denote by P the weight lattice. Finally we denote by (-,-) the symmetric bilinear form on h*
induced by the Killing form, normalized as to have («, «) = 2 for short roots.

Next we review parabolic subalgebras of g, following the presentation given in [KrTS15,
Section 2.2]. Let S C II be a subset of the simple roots and define

A() = span(S) N A(g),  Aluy) == A*(g)\A* (D).

In terms of these root spaces we define the subspaces

(=0 D o we= P 020 p:=lDus
)

aceA(l acA(ug)

It follows from the definitions that [ and uy are Lie subalgebras of g. We call p the standard
parabolic subalgebra associated to S (we will omit the dependence on S in the following). The
subalgebra [ is reductive and is called the Levi factor of p, while u, is a nilpotent ideal of p
called the nilradical. We will denote by [, the semisimple part of the Levi factor. Also we
will refer to the roots of A(u) as the radical roots.

We will consider cominuscule parabolics: these have the property that all radical roots
contain a certain simple root «; with multiplicity 1. For these parabolic subalgebras we have
the commutation relations [uy,u_] C [. This follows from the general commutation relations
[Ew, Es] = capFaytps, together with the fact that a; appears with multiplicity 1.

The adjoint action of p on g descends to an action on g/p. The decomposition g =u_ @ p
gives g/p = u_ as [kmodules. With respect to the Killing form of g, both u, and u_ are
isotropic and we have [ = ut, where u = u, ®u_. The pairing u_ ® u, — C coming from the
Killing form is non-degenerate, so that u_ and u, are dual as [-modules.

1.2. Quantum algebras. Let g be a complex Lie algebra. Let 0 < ¢ < 1 and write ¢; :=
q@2)/2 We follow the conventions of [Jan96, Chapter 4]. The quantized enveloping algebra
U,(g) is the algebra with generators K;, E; and F; and with relations

K;— Kt
4% —q '
plus the quantum analogue of the Serre relations. We will also use the "simply-connected"

version, denoted by the same symbol, where we allow the Cartan elements K, with A € P
and similar relations. We have the coproduct A : U,(g) — U,(g) ® U,(g) given by

AK) =K\ @Ky, AE)=E1+K ®E, AF)=FK'+1®F,.

KiE; = ¢ EK;, KF;=q 9 EK;, [E,F)]=06;

9

The corresponding antipode S : U,(g) — U,(g) is given by
Finally we will use the x-structure given by

K=K, Ef=FK,;, F'=K'FE,.

3 K3

We will also use the standard definitions of ¢g-numbers and g-factorials

_4"—qa"

a—q 1 [ng! = [n]q -~ [,

[,
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Next consider a Levi subalgebra [ C g, corresponding to a subset of simple roots S C II.
This can be quantized straightforwardly, as in [StDi99, Section 4]. We define

U,(l) :==(K)\,E;, F;: e P, i€ S)y CU,(g),

where (-) denotes the algebra generated by these elements. It is easy to see that this is a Hopf
x-subalgebra of U,(g). The subalgebra U,(lss) C U,(g) is defined in a similar way.

We will also consider the quantum coordinate rings C,[G], with G the complex Lie group
integrating g. These are defined as the restricted duals of the quantized enveloping algebras
U,(g). By duality they inherit maps making them into Hopf x-algebras. We will be very brief
about these algebras, as they will not play a main role in the following. Let us mention that
we have a canonical U,(g)-bimodule structure, given by

(Xa)(V):=a(YX), (aX)(Y):=a(XY), a€C,G], X,Y €U,g).

Next we consider quantum rings of homogeneous spaces. Suppose we have a Hopf x-subalgebra
U,(¢) C U,(g) (more generally a coideal), which we interpret as the quantization of the Lie
algebra £ of a subgroup K C GG. Then we will write

C,G/K]:={a € CJG]: Xa =¢e(X)a, VX € Uy(¥)}.
Finally, to shorten certain formulae we will use the notation
Q=q-q"

1.3. Quantum root vectors and commutation relations. We now recall the notion of
quantum root vectors, which are the analogue of root vectors inside the quantized enveloping
algebra U,(g). These can be defined in terms of certain automorphisms 7;, which have been
introduced by Lusztig. We will follow the conventions of [Jan96, Section 8.14].

Let wy be the longest word of the Weyl group of g and let wy = s;, - - - s;, be a reduced
decomposition. Then it is well-known that the positive roots A*(g) can be obtained as

B] = Sil"'sij_l(aij)a jzla y .
With this notation in place, we define the positive and negative quantum root vectors as
Eﬁj = nl"'ﬂj,1<EiJ‘>7 Fﬁ] = ﬂ1"'nj,1<Fij)7 .]:17 y T

It is important to notice this definition depends on the choice of the decomposition for wy (in
the classical case the dependence is only through signs). A PBW basis of U,(g) is obtained
from these elements and the Cartan elements K, similarly to the classical case.

We now recall a general result regarding the commutation relations in U, (g), see for instance
[BrGo02, Section 1.6.10] and references therein. With notation as above, for j < k we have

. aq QA
EﬁjEﬁk - q(ﬁjﬂk)EﬁkEﬁj = Z CajJrlv"'vak—lEﬁjii T Eﬁ:—i' (1.1)
a1, ,ak—1

Observe that the weight of the elements on both sides has to match. Hence on the right-hand
side we can only have elements of total weight 3; + .

2. DOLBEAULT-DIRAC OPERATORS

In this section we will introduce Dolbeault—Dirac operators on quantum irreducible flag
manifolds. Our definition essentially follows [KrTS15], with minor modifications.
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2.1. Symmetric and exterior algebras. Let V be a U,(g)-module. Then we have a corre-
sponding quantum symmetric algebra S,(V') and quantum exterior algebra A, (V'), as defined
in [BeZw08]. They are quadratic algebras and U,(g)-module algebras. These symmetric and
exterior algebras are related by quadratic duality: we have S,(V)' = A,(V*), where V* is the
dual of V and A' denotes the quadratic dual (or Koszul dual) of the quadratic algebra A, see
[BeZw08, Proposition 2.11]. We refer to the cited paper for other properties.

In general the algebras S,(V') and A,(V') do not have the same graded dimensions as their
classical counterparts. When the dimensions coincide we speak of flat deformations. It is
known that we have flat deformations for V' = u,, an abelian nilradical corresponding to a
cominuscule parabolic subalgebra p. This was shown in [Zwi09], see also [KrTS15, Proposition
3.2]. We summarize the two main properties holding in this case in the following theorem.

Theorem 2.1. Let u, be an abelian nilradical. Then:
(1) S,(uy) is a flat deformation of S(u.),
(2) S,(uy) is a Koszul algebra.

Let u_ be the U,(l)-module dual to uy (see below). Then it follows from general duality
that also A,j(u_) is a flat deformation and a Koszul algebra, see [KrTS15, Corollary 3.4].

2.2. Canonical element. Let {z;}; C u, and {y;}; C u_ be dual bases, where we consider
u_ = u} as a Uy(l)-module via (Xy)(x) := y(S™'(X)z). Equivalently, the evaluation map
y(x) = (z,y) gives a Uy(l)-invariant pairing (-,-) : uy @ u_ — C, in the sense that

<X(1)I>:L‘,X(2)I>y> :€(X)<l‘,y>, VX € Uq([)

With this notation, we can consider the canonical element

I::inébyi cCurQu_.

The element Z does not depend on the choice of bases. Moreover it is U, ([)-invariant, in the
sense that (X ® X(1y)Z = ¢(X)Z. This condition is equivalent to

(X® DI =1 S(X)I, VX eU,l. (2.1)

Before proceeding, let us make an important remark on the quadratic duality giving
Sy(uy)' = Ay(u_). Since S,(uy) is a U,(I)-module algebra, we also want A,(u_) to be a
U,(l)-module algebra. Then, as pointed out in [KrTS15, Remark 3.3], we want define the
orthogonal complement of the relations of S,(u,) by the pairing

(z@2,yey) = (z,y) ' y), =z cuy, y,y eu_.

On the other hand, in the book [PoPo05, Chapter 1, Section 2| quadratic duality is defined
with respect to the pairing (z ® 2/,y ® /) = (x,y)(2/,y'). Hence the quadratic dual we use
here coincides with the opposite algebra of the one defined in the cited book.

Having dispensed with these details, we can consider the canonical element Z as an element
of Sy(us) ® Ay(u_)°P, where op denotes the opposite algebra.

Lemma 2.2. Let 7 € S,(uy) ® Ay(u_)°P. Then we have I? = 0.

Proof. This is a standard fact related to quadratic duality, see for instance [PoPo05, Chapter
2, Section 3| and also [KrT'S15, Proposition 5.5|. O
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2.3. Embeddings. The quantum symmetric algebra S,(V) is defined in [BeZw08| as a quo-
tient of the tensor algebra T'(V'). In the case of V' = u,, it turns out that we can also identify
Sq(uy) with a certain subalgebra of U,(g), which is convenient for our purposes.

Choose a reduced decomposition of wy such that we have the factorization wy = wg wy,
where wy is the longest word of the Weyl group of [ and wy is reduced. Let us write

Wo,l = Siy ** " Sipgy We= Sipoy " Siggine

Then the set of radical roots A(u,) can be enumerated by
f] = 11}()7[<S’Z'1\/1_H Ce SZ'M_H'—l (OéiM+j)7 ,] = 1’ N ’N_

Consider the corresponding quantum root vectors {Fg, }Y,. Denote by U’(w) C U,(g) the
algebra generated by these elements, called the twisted Schubert cell in [Zwi09].

Theorem 2.3 (|Zwi09, Main Theorem 5.6]). We have the following.
(1) U'(wy) is a quadratic algebra with relations of the form
EfiEﬁj - q(gi{j)Eij& - Z C;‘IJI‘)E&E&’ i<
1<a<b<j
(2) U'(wy) is invariant under the adjoint action of Uy(l).

(3) U'(wy) is isomorphic to S,(uy) as a graded U, (l)-module algebra.

We will denote by ¢y : S,(uy) = U,(g) the map giving the isomorphism in this theorem.
We will also fix the basis {z;}; of u; in such a way that ¢y (z;) = E¢,. We consider U,(g) as
a Ug(I)-module via the adjoint action ad(X)Y = X1)Y S(X(3)) (we will also denote it by ).

Next, let v : A (u_) — End(A,(u-)) be the right regular representation of A,(u_) on itself,
that is v(y)y' ==y’ Ay for y,y' € Ay(u_). We consider End(A,(u-)) as a U,(I)-module via

ad(X)T := X TS 1 (X)), X € Uy(l), T € End(A,(u_)).
Lemma 2.4. The maps ¢y : Sy(uy) = Uy(g) and v : Aj(u_) — End(A,(u_)) are equivariant.

Proof. The equivariance of ¢y follows from the above theorem. To show the equivariance of
7, we use its definition and the fact that A,(u_) is a U,(I)-module algebra. We compute

Xv()y' = X' Ny) = (Xay) A (Xew) =7 Xey)Xay'
From this it immediately follows that
ad(X)v(y) = X27(¥)S™ (X)) = v (X)) XS~ (Xa) =1(Xy),
which shows that the map ~ is equivariant with respect to U,([). U
2.4. Definition of D. We will follow the approach of [KrTS15], with minor modifications.
Let u, be an abelian nilradical and let u_ be its dual. We identify the quantum symmetric

algebra S,(u;) with the algebra generated by the { E¢, };,. We identify the quadratic dual with
the quantum exterior algebra A,(u_) and denote by {y;}; the basis dual to {E¢, }..

Definition 2.5. With the above notation, we define the Dolbeault element 0 € U,(g) ®
End(A4(u_)) by 0 := (¢v ® 7)(Z). More explicitely, we have the expression

0= Z¢U xz ®’7yz ZE&@’sz
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It follows immediately from Lemma 2.2 that we have 9% = 0.
Next we choose a U, ([)-invariant Hermitian inner product on A, (u_), denoted by (-, -). This
means that for any elements y,y" € A (u_) we should have

(Xy,y') = (v, Xy, VX € Uyl),

where on the right-hand side * denotes the *-structure of U,(l). From this inner product we
get an adjoint operation on End(A,(u_)), which we also denote by .

Definition 2.6. We define the Dolbeault-Dirac element by D := 0+0* € U,(g)@End(A,(u_)).

Observe that this definition depends on the choice of the Hermitian inner product on A, (u_).
It will turn out, in the example treated in this paper, that there is an essentially unique choice
which gives a simple expression for D?. A similar situation arises in [Mat18].

Remark 2.7. We compare our definition with the one given in [KrTS15]. In the cited paper
we have Dgrs = Oxrs + Ofrg, where Oxrs = >.. S (Eg,) ® 7-(y;). Here v_(-) are the
analogue of contraction operators in the exterior algebra, and are defined by duality from the
left regular representation v,. The element Okxrg can be identified with the Koszul differential
of S,(uy)? ® A,(u_), and classically reduces to the adjoint of the Dolbeault operator 0.

In our case, the Dolbeault element is identified with the Koszul differential of S, (u;) ®
Ay(u_)°P, which is why we use the right regular representation . Moreover in the classical
case it gives the Dolbeault operator, as opposed to its adjoint.

2.5. Spinor bundle. The Dolbeault-Dirac element D naturally acts on C,[G] ® A,(u_).
However we will consider its action on a proper subspace, defined below.

Definition 2.8. We define T'(Q) := (C,[G] ® A,(u_))Ys("). More explicitly we have
[(Q) = {£ € GGl @ Ag(u-) : XE = e(X)E, VX € U,(},
where the action of U,([) on the tensor product is given by X (a ® y) = X9)a ® Xq)y.

Here we are using the same conventions used in [Krd04, Section 6]. Observe that, for an
element ¢ € C,[G] ® A,(u_), the condition £ € I'(€2) is equivalent to

(X®1)¢=(1®S(X))E VX €Uy, (2.2)

In the classical case, the space I'(€2) can be identified with the sections of the bundle of
anti-holomorphic forms on G/ P, for an appropriate complex structure.
We will now show that the Dolbeault-Dirac element naturally acts on I'(2).

Proposition 2.9. The action of the Dolbeault element O maps I'(Q)) into itself. Hence the
Dolbeault-Dirac element D acts on T'(£2).

Proof. To prove that d maps I'(€2) into itself it suffices to show that (X ®1)3¢ = (1®5(X))dE
for all X € U,(I) and & € I'(2). We start by considering the identity

(X®1)0= (X(l) ® 1)6(S(X(2))X(3) ®1)= (ad(X(l)) & id)(6)(X(2) ®1).
Recall that we have defined 0 = (¢y ® 7)(Z) and that (X ® 1)Z = (1 ® S(X))Z by (2.1).

Since the maps ¢y and 7 are equivariant as in Lemma 2.4, we have
(ad(X) ®id)(0) = (id ® ;a(S(X)))(ﬁ)
Using this identity we can rewrite

(X @ 1)3 = (id ® ad(S(X1))))(3) (X2 @ 1) = (1® S(X(1))(X(3) @ Xz))-
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Finally acting on £ € I'(2) and using the condition (2.2) we obtain
(X ® 13 = (10 9(X1))0(X (S (X)) @ 1)§ = (1© (X))
This shows that 0 maps I'(€2) into itself. The same is true for 9%, since this is the adjoint of

0 with respect to a Uy([)-invariant inner product, and hence for D. O

3. LAGRANGIAN GRASSMANNIAN

In this section we will provide some details regarding the quantum Lagrangian Grassman-
nian C,[Sp(2)/U(2)]. We describe in particular the U,(l)-module u,, corresponding to its
tangent space, and well as its corresponding quantum root vectors.

3.1. Lie algebra (5. Consider the complex simple Lie algebra Cy = sp,. The simple roots
are {a1,as} and we choose the standard convention in which «; is short and «s is long.
Corresponding to this choice, and fixing («ay, a1) = 2, we have

(O(l, Oél) = 27 (O(l, 042) = _27 (042, (){2) =4.
We will consider the fundamental representation V' (w;). This will be used later on to construct

a central element of U,(sp,) playing the role of the quadratic Casimir. The weights are

)\1 =w] = Q1 + 50&2, )\2 = =Wy +wy = 50&2, )\3 = —)\2, )\4 = —>\1.

We fix a weight basis {v;}{_,, where the vector v; has weight ;.
Lemma 3.1. The action of U,(sp,) on V(w1) is given by
Ky =qu, Ky =q vy, Kg=qus, Kg=q vy,
Kyvy = vy, Kovs = ¢*va,  Kovs = q *vs,  Kavg = vy,
Ervy = ql/zvl, Ervy = q1/2113, Esyvz = qua,
Frop =q Py, Flus=q v, Fvy=q v,
and with all the other elements equal to zero.

Proof. Follows from simple computations. O

3.2. Parabolic subalgebra. We consider the cominuscule parabolic subalgebra obtained
from S = {a}, that is by removing the long root ay. The nilradical is then given by

up = Span{6a2> Caq+ags 62041-1-042}'

The Levi factor [ = span{hy, hs, €1, f1} can be identified with gl,. Its semi-simple part l;; =
span{hq, ey, f1} can be identified with sly. Also the nilradical u; can be identified with the
adjoint representation of sly (we will rederive this result later in the quantum case).

Let wqy be the longest word of the Weyl group of sp,. Consider the reduced decomposi-
tion wy = 51525152, which factorizes as wy = wp w;, where wy; = s; is the longest word
corresponding to sly and w; = s95152. With this decomposition we obtain the positive roots

bi=a1, Ba=2+aa, [z=a1+ay, [i=as.
The radical roots corresponding to u, are then given by
§i=02=2a1tay, H=03=a1+az &=01=a.

The corresponding homogeneous space GG/ P is an example of a Lagrangian Grassmannian,
as mentioned in the introduction. In general we have G/P = G,/ Ly, where G is the compact
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real form of G and Ly = G N L, with L the Levi factor. Then Go/Ly = Sp(2)/U(2), where
Sp(n) is the compact real form of the complex Lie group Sp(2n, C).
In the following we will frequently use the general notation

Uy(9) = Uylspa),  Ug() = Ug(ala),  Uy(lss) = Uy(sla),

as it clarifies the role of the different algebras in the various steps.

3.3. Quantum root vectors. We will now obtain explicit expressions for the quantum root
vectors, which are defined using the reduced decomposition wy = s1525155.

Lemma 3.2. 1) The quantum root vectors {Eg, }}_, are given by

1 —2
Es, = B\, Es = WEEE2 BB E + %EQEE,
q q

Es, = E\Ey — ¢ *EyEy, Eg, = Es.

2) The quantum root vectors {Fp,}}_, are given by

1 2
=In, Fg= WFQFIQ — qF Fo by + %
q q

F53 :FQFl—q2F1F2, F54 :FQ.

Fp FIF,

1

Proof. 1) This follows from the computations given in [Jan96, Subsection 8.17|, keeping in
mind our choice for the reduced decomposition of wy.
2) This follows by applying the anti-automorphism 2 : U,(g) — U,(g), which is defined by

UKy =K', QE)=F, Q&F)=E, Qq=q"

Since (2 commutes with the Lusztig automorphisms 7}, we obtain the result. O

4. THE SYMMETRIC AND EXTERIOR ALGEBRAS

In this section we will derive various properties of the algebras S, (u;) and A,(u_), in the
case when u, is the nilradical corresponding to the Lagrangian Grassmannian.

4.1. Relations for S,(u,). Consider the the algebra generated by the quantum root vectors
{E¢,}?_, in Uy(g). Then according to Theorem 2.3 this is a quadratic algebra isomorphic to
Sy(uy). In the following we will make this identification and simply denote the former algebra
by S,(u;). We start by determining these relations. Recall that Q = q — ¢~

Proposition 4.1. The algebra S,(u.) has generators {Eg,}?_, and relations
q
E&E& = q2E§2E§17 E£2E£3 = q2E§3E§27 E§1E§3 = E£3E£1 + QWEEQ
q
Proof. Using the general commutation relations given in (1.1), we immediately obtain the first
two identities. For the third case, we must have Fg¢ Fe, — Fe, By, = cEg2 by weight reasons.
The constant ¢ must be determined by explicit computation. We compute

2]¢Es,Ep, = Eg,Ep, Ep, — Ep, Eg,Ep,
= ¢°Ep, Ep, Eg, — ¢°E5, — ¢ *Ep, Ep, Ep,
= Ep, Es,Es, — ¢°Ej, — Eg,Ep Es, + Ej,
= [2]4Es, Es, — (¢ — ¢ 1)qE3,.
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From this we conclude that

[EEN Efs] = [Eﬁm Eﬁ4] = (q - q_l)ﬁEég, = QﬁEﬁi' U

4.2. Action of U,(I) on u;. Recall that U,(g) acts on itself by the (left) adjoint action, which
here we denote by X >Y = X(1)Y S(X(2)). We restrict this to an action of the quantized Levi
factor U,(I) C U,(g) and compute this action on the nilradical uy C U,(g).

Lemma 4.2. The action of U,(l) on uy is given by
K> Ee, = *Ee,, K\>FEg =FEe, Ki>Eg=q  Eg,
Kyv Ee, = E¢,, Ko Eey = ¢°Ee,, Ky Eey = ¢' E,,
Ei>E, =0, Ei>Ee, =[2|,E,, E1>E=E;,,
Fi>Ee =Eg, Fi>E =[2],B,, Fi>Eg=0.
Proof. The action of the Cartan elements is obtained immediately. Next observe that in our

conventions we have E; > Eg. = FE;Eg. — qlPi )Eﬁj E;. Then it follows from the commutation
relations (1.1) and the expressions given in Lemma 3.2 that we have

Eg > Eg, =0, Eg >Eg = [2]qE527 Eg, > Eg, = Eg,.
Next using F; > E, = [F}, Eg,|K; it is clear that Fy > E, = 0. Then we have
K, — K;!
Fi> E53 =HkEv E54 = _171 > E54 = [2]qE547
qa—q
where we have used that F; > Eg, = 0. Finally we have

1 1
F1 I>E152 = —F1E1 I>E53 = —E1F1 I>E53 = E1 I>E154 = Eﬁ?ﬂ

2] 2]
where we have used (K; — K; ') > Ej, = 0, which follows from (ay, 83) = 0. O
In the case under consideration we have [ = gl, with semi-simple part l;; = slo. We can

identify u, with the U,(sly)-module of highest weight 2w, that is the adjoint representation.

4.3. Relations for A, (u_). Recall that we identify S,(u;) with the algebra generated by
the quantum root vectors { E¢,}?_; in U,(g). Then we will identify A,(u_) with the quadratic
dual of the latter algebra. We denote by {y;}?_; the dual basis to {F,}?_, with respect to
the dual pairing (-,-) : u; ® u_ — C, which is extended to u$? ® u®? by the formula

(z@,yey) = (z,y) ' y), =z cuy, yy eu_.

Proposition 4.3. The algebra A, (u_) has generators {y;}3_, and relations

q
yi ANy =0, wAsz@%Am,mAmZQ
q

YA ==y Ay, Ay = —Ys Ay, Yo Ay = —q'Ys Al
Proof. The algebra S,(u) has the relations R = span{X;, Xo, X3} C uy ® u,, where
X1 =21 ® 29 —QQ$2®$1, Xo =22 ® 23 —QQ$3®$2>

X3:$1®$3—$3®$1—Qﬁ$2®$2-
q
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We need to determine the subspace R+ C u_®u_ such that (R, R*) = 0. Since (z;,y;) = &},
it is clear that 1, ® y; € R* and y3 ® y3 € R*+. On the other hand we claim that

q
Y:y2®y2—Qﬁy1®y3€Rl.
q

It is clear that the only possibly non-zero pairing is (X3,Y"). We have

(X3,Y) = <—Q%IE2 ® T2, Y2 @ Ya2) + (—73 ® 21, —Q%yl ® ya)

q q
= QL +QL =0
2, T2l
By similar computations one shows that the elements y; ® y2 + ¢*yo @Y1, y1 @y3 +y3 @y, and
Yo @ Y3 + ¢*y3 @y all belong to RY. The above elements span R by dimensional reasons. [

4.4. Action of U,(I) on u_. The vector space u_ carries a natural action of U,([), being
defined as the dual of uy in terms of the U,([)-invariant pairing (-,-) : uy @ u_ — C.

Lemma 4.4. The action of U,(l) on u_ is given by

K =q %y, K=y, Kiys = ¢ys,
Koy =1, Koyo = q s, Koys = q "ys,
Eyyr = —[2lgy2,  Ewga = —¢’ys, Eiys =0,
Fuyp =0, Fuyp = -y, Fiys = —[2lgq .

Proof. Since the dual pairing (-,-) : uy @ u_ — C is U,(I)-invariant, we get (Kjx;, Kyy;) =
(xi,y;), which gives the expression for the Cartan elements. For £y and F; we have

(Byzi,y;) + (K, Byyg) =0, (B, K 'yy) + (2, Fry;) = 0.

Using the formulae from Lemma 4.2 we easily get the result. U

5. SQUARE OF THE DOLBEAULT-DIRAC ELEMENT

In this section we will obtain an explicit expression for D?, the square of the Dolbeault—
Dirac element. We will derive this expression up to terms in the quantized Levi factor U,(I).

5.1. Some commutation relations. To simplify D?, we will need commutation relations
between the quantum root vectors Ee, and E¢ . For convenience, we will derive these modulo
elements in the quantized Levi factor U,([), using the following notation.

Definition 5.1. We define an equivalence relation ~ on U,(g) as follows: we will write X ~Y
if X —Y = Z for some Z € U,(I).

Observe that if X ~ Y then X* ~ Y* and also Z> X ~ Zp Y for all Z € Uy(l). These
properties follow from the fact that U,([) is a Hopf *-subalgebra of U,(g).

Lemma 5.2. We have the relations
E&‘lEgl ~ q74Eg1E§1 - Qq72Eg2E§2 + Q2[2]qq73E§3E§37
E§2Egg ~ q_2E22E§2 - Q[z]zq_4Eg3E§37 E§3E23 ~ q_4E23E§37

E&Egg ~ q_QE;E& - Q[Q]qq_QEggEfm E&Eé ~ E;,Efn E&Eé ~ q_2E§3E£z-
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Proof. Since {3 = an, it is easy to show that Eg, Ef, ~ q*(gifS)EgSE&, see for instance [Mat17,
Lemma 2|. To obtain the other relations we use the adjoint action of U,(I). We have

Fir (XY") = (Fe X)(K;»Y) — X(E;pY)",
Fiv (Y*X)=—(E;p V) (K, '> X) + Y*(Fi > X),
where we have used X >Y* = (S(X)*>Y)* and S(F;)* = —E;. From (5.1) we get
Fi> (B, Ef) = q *(Fiv> Ee, ) E, — E EY,
Fio (B Ee) = —q " EL e, + EZ(Fy > E,).

(5.1)

Applying Iy to E¢ B, ~ q (QQ’&)EESE& we get, after some simple manipulations,
E¢ Ef, — q—(éz,&)E;E& ~q P B )E}, — q—(az,&)EgS(Fl > Ee,).
Consider the case i = 1. Since (&;,&;) = 2 we get

Ee Ef) — q PELEe, ~ q *Ee, Ef, — E{ Ee, ~ (¢* — 1) E{, E,.
Observe that ¢~ — 1 = —Q[2],¢ 2. Next consider i = 2. Since (&, &) = 2 we get
E§2Egg _QE* E§2 [2]11(] 2E§3E* - [2] _ZE* E§3 [ ] q 2((] )E§3E§3

We are left with the relation for E¢, Ef . From the formulae in (5.1) we obtain
P> (B, Bf,) = Ee, B¢, — [2|E¢, B,
Fio (B B ) = —[Q]qq’2E§1E§1 + B¢, Ee,,
Fyv (EL Ee,) = —E, B, + 2] B, B,
Using these expressions we compute
0~ Fy > (Be, B, — q 2 Bf, Be, + Q[2),q 2B}, Ee,)
= (B, B, — 6172E52E§2) — [24(Be B, — a7 B¢, Be,) — Q210" E, B, + Q[2J507 B, Be,
~ =Q21q 7 EL B, — [21(E B, — ¢ ' EL Ey) — Q2007 B, Be, + Q21507 B, B,
Finally this can be rewritten as
Ee, Ef, ~ q 'E{ Ee, — Qq *Ef, B, + Q°[2]40 B¢, Ee,. O

5.2. Computing D?. We are now ready to compute the square of the Dolbeault-Dirac el-
ement D = 0 + 0%, as given in Definition 2.6. The result will be an expression of the form
D? ~ Z” | B¢ Ee, @ T'yj, where I';; are some explicit elements of End(A,(u-)).

Proposition 5.3. We have D? ~ Zw B Ee; @ Ty, where

Ti1 = (1) (1) + ¢ (v (),
Tag = 7(y2) " v(y2) + ¢ 7(y2) 7 (¥2)" — Qq >y (y1)v(m1)",
Pag 1= 7(0s) 7 (vs) + "9 (98)7(8)" + Q2lag (1) v()" = QL2501 (3)7(v2)",
while in the case i < j we have
Tig == (1) v (y2) + ¢ > (y2)v(11)",
Lis = v(y) v(ys) + v (ys)v(y1)",

Loz = 7(y2)"v(ys) + a7 (s)7 ()" — QL2lea*y(y2)v(w1)",
and finally in the case i > j we have I';; :=T7,.
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Proof. We have D* = 30* + 90, since 9° = 0 and (9*)? = 0. Then we can write

3 3
=Y EoEL @v(u)v(w)" + Y ELEe, @ (i)™ y(w:)-

ij=1 ij=1

Next we use the commutation relations from Lemma 5.2. We obtain

D? ~ Ef Ee, @ (v(y1)™y(1) + 4y (y)v (1))
E;,Ee, ® (v(yz)* (y2) + ¢ >Y(y2)v(y2)* — Qa*y(y1)v (1))
Ef Ee, @ (v(y3)™v(ys) + ¢y (ys)y(ys)" + Q°[2lqq >y (1) (11)" — Q212 Y (y2)v (1))
+ E§ Ee, © (v(y1)*v(y2) + ¢ 27 (w2)v (1)) + Ef Eey @ (v(y1)*Y(ys) +v(y3)v(11)*)
Ef, Ee, @ (v(y2)"v(ys) + ¢ 27(ys)y(v2)" — Q2laq >y (y2)v (1))
E{ Be, @ (v(y2) (1) + ¢ ()7 (12)") + Ef Ee, © (v(ys) v (y1) + 7 (y1)7v(ys)")
+ B Be, @ (7(ys)™v(y2) + 47 (2)v(ys)" — Q2laa v (y1)7(32)")

Then the claim follows immediately from this expression. O

As mentioned in the introduction, our aim is to obtain a quantum analogue of the Parthasarathy
formula for D?. To proceed we need to an appropriate central element of U,(sp,), which will
play the role of the quadratic Casimir. This will be constructed in the next section. Once
this is done, our next task will be to compare D? with this central element.

6. DERIVATION CASIMIR

In this section we construct a central element of U,(sp,), which will play the role of the
quadratic Casimir. It will be derived from a general construction which uses the R-matrix.

6.1. Central elements. Recall that the R-matrix of U,(g), which we denote by R, is an
element in a completion of U,(g) ® U,(g) which among other properties satisfies the identity
RA(X) = A®(X)R for all X € U,(g). We will now outline a general costruction of central
elements of U,(g), which is based on the properties of the element R.

First recall that the R-matrix can be written in the form R = R - k~, where R is the
quasi-R-matrix and x~ is defined by £~ (v, ® v,) = ¢~ *v, ® v,. An explicit expression for
R is given in [Jan96, Section 8.30] (note that this reference uses opposite conventions for the
R-matrix). Given the reduced expression wg = s;, - - - 8;,, we have

R =R R-U. R R
where RU is the quasi-R-matrix of U, (5[2) given by

S = r —r(r—1)/2 (qzj ql )
r=0 ZJ

We will write schematically R = >, ca(E4 @ FA)k~, where A = (a4, ,a,) and
A . pan a1 A ._ pan a1
E .—Eﬁn"'Eﬁl, F .—Fﬁn"'Fﬁl.

The coefficients ¢4 are defined implicitly by the previous formula. It is also known that
R* = Ra1, where the latter is the flipped R-matrix. Finally consider the map

I:C,G] = U,(g), wr (Id®@w)(R*R).
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Lemma 6.1. Let n, € C,[G] be defined by n,(X) = (v, Xv), with wt(v) = A. Then
I(n,) =Y cacp(Fro, FP0) BV EP K
A,B

where in the sum we must have wt(A) = wt(B).
Proof. Tt follows from the definitions and the observation that £~ (v, ®v,) = K, v, ®v,. O

It is well-known that one can use the map I to obtain central elements of U,(g), see for
instance [LiGo92, Section 3| and [Bau98, Section 1.2|. This construction makes use of the
quantum trace 741, which is defined by 7,(X) = Tr(K,,' X) for a simple U,(g)-module V.
Here the element K;pl is related to the square of the antipode, which in our conventions is

given by S*(X) = K, X K,,. Then I(7,y) turns out to be a central element.
We will now obtain a concrete expression for this element.

Proposition 6.2. Let V' be a simple U,(g)-module with an orthonormal basis {v;};es of
weight wt(v;) = A;. Then we have the central element

I(rav) =D > cacpq ) (Fhoy, FPo)) EM EP K
jeJ A,B

Proof. 1t follows from the fact that 7,v(X) = >_.; g%y, (X). O

J

We will rescale this central element for notational convenience.

Definition 6.3. We define a central element C € U,(g) by
(id ® 7.v)(R*R)
(=g
Upon adding an appropriate multiple of the identity to C, for instance 7,v(1)/(¢ — ¢

it is possible to recover the usual quadratic Casimir in the limit ¢ — 1. However this will not
be very important for us, hence we will omit this constant.

Corollary 6.4. Let V(A) be a simple U,(g)-module of highest weight A. Then C = caid on
V(A), where cx = 32, ¢ 2009 /(g — ¢71)2.

Proof. Since C is central, it suffices to compute its action on a highest weight vector vy. We
have EBvy = 0 unless B = 0, which in turn implies A = 0 by weight reasons. Then

q7(2p7>‘j) q72(>‘j7A+p)

R e N  ITere -

jeJ jeJ

C .=

71)2

)

6.2. Explicit formula. In this subsection we will simplify the general expression given in
Proposition 6.2, in the case where g = sp, and V' is the fundamental representation.
We begin by observing the vanishing of some terms in the given representation.

Lemma 6.5. We have 7(Fj;) =0 fori=1,2,3,4 and
m(Fa, Fp,) = w(Fp, F,) = w(Fp, F,) = w(Fp, F,) = 0,
71-(}715:’,}7152}751) = 71-(}7154}?52}751) = 7T<F54F53F52) =0.
On the other hand w(Fp,Fp,) and w(Fp,Fs,) are non-zero.

Proof. Follows easily from the formulae given in Lemma 3.1. U
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We are now ready to derive the main result of this section.

Proposition 6.6. We have the central element C = C. + C,, where
Co= (g Koy, + 07 Koy, + Koy, +¢'K3)) /(g —a7)°
+ 55, s, (07 Koy, + aKyy,) + (20055, B g Koy,
+ B, ey (47 Koy, + 47 Koy,) + [200E5, Baug ™ Koy,
and the quantum part is given by
Cq = _<q - qil)[Q]qqig)(EElEEgE[b _'_ EEQEBSEﬁl)K;All
— (¢ —a ")[2lea (B}, 5, Eg, + B3, Ep, Ep, ) Ky,
+ (q - q_l)Qq_4EglE;3E53EﬁlK2_)\11
Proof. Consider the general expression given in Proposition 6.2, up to rescaling. Then we can
write C = > Cpnn, where Cp,,, contains terms with m = |A| and n = |B|. To simplify
the expression we consider the inner products (F4v;, FPv;). Tt follows from Lemma 6.5 that

7(F4) = 0 for |A| > 2, hence it suffices to consider 0 < m,n < 2.
Consider the case m =n = 0. We have (v;,v;) =1 and ¢y = 1. Then

Coo = q—(207>\1)K2—>\11 + q—(207>\2)K2—>\12 + q—(zp,xg)KZ)_AlS n q_(2p7A4)K2_)\14.

Next consider m =1 and n = 0. We have (Fj,v;,v;) = 0 by weight reasons. Similarly for the
case m = 0 and n = 1. Hence C; g = Cp1 = 0.

Now consider the case m = n = 1. If i # j then (Fpvg, Fg,vx) = 0 by weight reasons. In
the case i = j we have the non-zero inner products

(Fayvr, Favr) = ¢, (Favs, Favs) = ¢ (Fayor, Fayvn) = 7%
(Fgyv1, Faav1) = ¢ %, (Fpyva, Favo) = q,  (Favg, Favs) = ¢ 2.
Hence we get the terms
Ci1 = 3 E5 B (¢ PPMWg Kl + g7 KG L) + B B Bgq g2 KG)
+ €y B, Bay (a7 q T Koy, + q7 PG + 66, B, B g T G
Next consider m = 2 and n = 1. The only two possibilities for F'4 are Fy, Fj5, and Fp, Fp, .

Then by weight reasons the only possibly non-zero inner products are (Fp,Fp,v;, F3,v;) and
(Fg,Fp,vj, Fayv;). We have in particular

(Fﬁ3F611)1>F621)1) - q_1> (F54F51v17F53v1) = q_3
Therefore we get
6271 = Cﬁl+53652q7(2p7)\1)E21EE3E52Q71K27>\11 + 651+54653q7(2p7>\1)E21E24E53q73K27>\11'

The case m = 1 and n = 2 follows immediately from the fact that (F4v;, FPv;) = (FPuv;, FAv;),
as all the matrix entries are real, as can be seen from Lemma 3.1. Then we get

—(2p\ 11 —(2p,\ 371
6172 = Cp1+83CB24 (2 1>E§2E53E51q K2>\1 T C314+84CB34 (2 1>E§3E54E51q K2>\1'

Finally we have the case m = n = 2. By weight reasons the only possibly non-zero terms are
(Fg, F,vi, F, Fp,v;) and (Fj, Fg,v;, Fg, Fg,v;). The non-zero inner products are

(F53F512}1,F53F511}1) = 1, (F54F512}1,F54F511}1) = q_3.
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Therefore we get the terms
Cop = Ch 1, 05 B3 Eg, Ep g~ ®P KL + 3 g ES B Ep B g Mg KoL
Finally we have to plug the explicit values into the previous formulae. We have
2p. M) =4, (2p.h) =2, (20,X3) =2, (2p, M) = —4
For the coefficients coming from the R-matrix we have
o =cp=—(0—0")=-Q, cap=cs=—(¢"—q7")=-Q[,
Corvpn = 51083 = Q[2g,  corps = cpica, = Q2.

Plugging in all these values and collecting the various terms we obtain the result. O

6.3. The classical limit. We take as a basis of g = sp, the elements H;, H, and the classical
limit of the quantum root vectors Ej, and Fj, given in Lemma 3.2. Then with respect to a
rescaling of the Killing form we have the dual basis

H, = H, +H,, Hy=H, +2H, Ez =Fs, Eg =2F;,

Eg, = Fa, Es =2Fs, Fy=Es, Fg=2Es, Fs=Es, Fs=2E;,
In general the quadratic Casimir is given by C =), X,E(VZ In this case we have
C = H} + 2H,H, + 2Hj + Eg, Fy, + 2Eg, Fj, + Ep, Fg, + 2Eg, Fj,
+ Fp, Eg, + 2F3,Ep, + Fp,Ep, + 2F3,Ep,.

This can be rewritten using the commutation relations

(Es,, Fg,| = Hi, [Es,, Fs,] = Hi + Ha, [Eg,, Fp,) = Hi +2H,, [Es,, Fs,] = Ho.
Therefore we obtain the following expression for the quadratic Casimir

C = H} +2HHy + 2Hjy + 4H, + 6Hy + 2Fp, Eg, + 4F5,Ep, + 2Fp, Ep, + 4F5,Ej, .
Moreover we have E = Fp,. Then it is easy to see that, upon the addition of an appropriate
constant, this coincides with the limit ¢ — 1 of the central element of Proposition 6.6.

7. REWRITING THE CASIMIR

In this section we will obtain a different expression for the Casimir element C, which will
facilitate the comparison with the Dolbeault—Dirac element D. Along the way we introduce
a certain algebra M, which allows to formulate the comparison problem algebraically.

7.1. Commutation relations. We start by deriving commutation relations between the
element E% and the quantum root vectors L. We will use the relations

Eg Eg, — Eg,Ep, = [2)4Ep,, Ep Es, —q *Ep,Ep, = Ej,.
which have been derived in Lemma 4.2.

Lemma 7.1. We have the commutation relations

LK1
q—qV

EglEﬁa = Eﬁ3E§1 + [2]QE547 E§1E64 = q_2E54E;1'

E;l Eﬁl = q2E51E;1 —q E21E52 = q2E52E;1 + q2E53,
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Proof. The relations for Ej Eg,, Ej Eg, and Ej Eg, follow from simple computations that
we omit. We show the more complicated identity for Ej Eg,. We can write

1

E21E52 = W (EglEﬁlEﬁs - E;1E53E51) .
q
Using the other commutation relations we obtain
* 1 2 * 2 K12 - 1 *
EB1E52 = m q E51E51E53 - q q— q*l EﬁS - EﬁSEﬁlEﬁl - [2]qE54E51
1 . K2 -1
= 2— (q2E51E53E61 + [2]qq2E51E54 - q2 i 1E53)
2], q—q
1

. K2-1
+ Tq <_q2E53E51E61 + q2E53ﬁ B [2]qE54E51) :
From EﬁlEﬁg — E53E51 = [Q]qE52 and K1E53 = E53K1 we get

E} Eg, = quBQEEI + ¢*Ep, Ep, — Ep, Ep, = q2Eﬁ2E§1 + ¢*Ep,,

—

where in the last step we have used Eg, FEs, — ¢ *Ep,Es, = Ejs,. 0

Lemma 7.2. We have the following relations
(Es,Ep, ) Es, = ¢*E3, Eg, B + ¢ Ej Eg, — [2],E5, E,,
(Es,B5)" sy = ¢ B}, Eg, B3, + [2]40° B3, Ep, — ¢ Ej, Eg,
(EpsEp,)" Ep, g, = Ej Eg, Ej Ep, + [2)4(Ej, E, Ep, — £, Ep,Ep,),
(Es,Es,)" Eg,Ep, = Ej,Ep, E} Eg, — ¢°E}, Eg,Ep, .
Proof. These follow easily from the commutation relations of Lemma 7.1. O

7.2. Moving Levi terms to the right. Our immediate goal is to rewrite the Casimir C by
bringing the elements Ejs, and Ej all the way to the right. Note that these elements belong
to the quantized Levi factor U,(I). The reason for doing so will be clear once we include the
Clifford algebra part, that is the algebra End(A,(u_)).

Notice that the classical part of the Casimir, namely C. in the notation of Proposition 6.6,
is already of this form. For this reason we will focus on the quantum part C,.

Lemma 7.3. We have the identity
Cq = Q[Q]zqig) (EEQE52 - Q[Q]glqugEﬁs(l - [2];1E21E51) - EE4E54(1 - Qq72EEIE51>) K;>\11
- Q[Z]qq_5 (quggEﬁ?,Eﬁl + 92E§3E62E§1 + E;3EB4E51 + E;4E53E21) K2_>\11
Proof. Let us begin by writing
Cy = —Q[2]44 7 Co K5y, + Q% 'C Koy
which amounts to the definitions
C, = (Ep,Ep,) Eg, + q *(Ep, Ep,) Eg, + E}, Eg, Ep, + q °Ej Eg, Eg,,
C) = (Ep,Es, ) Eg, Eg, + (2297 °(E,Ep,)* Es, Ep,
Using the commutation relations of Lemma 7.2 we obtain
Co = —[214E5, Ep, + QaEj, Ep, + [2],E5, Ej,
+ E},Es,Ep, + ’E}, Es, B +q *E}y, Eg, Eg, + Ej Eg, Ej .
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Similarly for the other term we get
C) = E5 Eg,E} Eg + 22 °E}, E, B Ep,
- [Q]QEEQEﬁsEﬁl - [2]qq72E23E54E51'

Putting all together we obtain
5

q * * *
ﬁcqffle = [2]4E5,E3, — QqE}s, Eg, — [2],E5,Es,
q
— E5, B, Ep, — °Ej Eg, E — q °Ej Ep, Eg, — Ej Eg E}
+ Q[Q]q_lqugEBBEE%Eﬁl + Q[Q]qq_zEE4Eﬁ4E;1Eﬁl
- QqEEQEﬁaEﬁ1 - Qq_1E23E64Eﬁ1~
After some simplifications, this gives the result. O

It is now easy to obtain the expression for C we were looking for.

Proposition 7.4. The central element C can be written as
C = (q Ky, +a Koy, + Koy, + 4" K50) /(g — a7
+ B By (47 Koy, + aKay,) + 5, B 21507 Ky
+B5, B (077 = Qq*) Koy, + a7 Koy, + QP B B Ky
+ B3, Bp 203 (0 Koy, — Qa Ky + QP ES, By Ky
— Q1214 °(*E},Ep, Es, + °E3, Es, B + Ej Eg Eg, + Ej Eg B )KL
Proof. This follows from Proposition 6.6 and Lemma 7.3. O

7.3. Embedding the Casimir. So far we have only considered C as an element of U,(g),
but our goal will be to compare it with D? acting on I'(2). Clearly we can embed C into
U,(g9) ® End(A,(u_)) by C ® 1, but we also want to take into account the relations of I'({2).
This will be done by introducing an appropriate quotient of U,(g) ® End(A,(u_)).

First we fix some notation: let X € U,(g), T € End(A,(u_)) and Y € U,(I). We consider
U,(g) as a right U,(l)-module by right multiplication, which we write as X - Y = XY. On
the other hand we consider End(A,(u-)) as a left U,([)-module by Y - T = T o S(Y'), where
on the right-hand side we have composition of operators.

Definition 7.5. With the above notation, we can form the tensor product of U,(l)-modules
M :=Uy(9) @u,q End(Ag(u-)).

Let us explain the motivation for this definition. With our definition of the actions of U,(I),
the identity X - Y @y, T = X ®u,q Y - T in M reads explicitly

XY Qu, (1) T=X Qu, (1) TS(Y) (7.1)
On the other hand, if we consider ¢ € I'(€2) then we have
(XY ®T)=(XTS(Y)),

due to the defining property of I'(€2). Therefore M provides an algebraic model for operators
on I'(Q2). We will also use the relation ~ from Definition 5.1, naturally extended to M.
In the following we will omit the subscript U,(I) from the tensor product for readability.
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Proposition 7.6. Consider C ® 1 € M. Then we have the identity
C®1~ Ef Ee, ®2]2q Ko,
+ B}, Ee, ® ((7° — Qq ) Koy, + q ' Koy, + Q%q Ko, S(ES EY))
+ E{, Ee, @ [212(q  Kan, — Qq Koy, + Q¢ Koy, S(ETEY))
— Ef Ee, ® Q[2]4q Ko, S(Er) — E Ee, ® Q[2]4q % (Kax, S(EY))*
— B, Ee, @ Q2l4q7 " Kox, S(En) — B¢, Be, ® Q[2]44 7 (Kax, S(E1))"
Proof. Starting from Proposition 7.4 and using the relation ~ we get
C® 1~ [22Ef Eeq 'Kyl @1
+ B B, (q7 Koy, + 07 Koy, — Q21007 Koy + QP BB Ky ) @ 1
+ 2058 Be, (07 Ky, — Q0 Ky, + QP BB K, ) @1

- Q[Q]qq_5(q2E§1 Ee, B + qZE;E&E{ + Ef,E¢, E\ + Ef F, E;‘)K;;l ® 1.

Next we use the defining relation of M, that is (7.1). Then we obtain
C®1~ EfE ®[2]2q *Ka,
+ E§2E£2 ® <q77K2>\1 + q71K2>\2 - Q2 [2]qq74K2)\1 =+ Q2q74K2)\15<EikE1>>
+ B¢, Bey ® [2]2((]74[(2& — Qq  Kox, 4+ Q*q Koy, S(EEY))
- E; E52 ® Q[Q]qqﬂgK?)\lS(El) - EEQE& ® Q[Q]qqisK”\lS(Eik)

— B, Bey @ Q2l4q " Kox, S(En) — B, Eg, ® Q[2]4q" Ko, S(EY).
Finally using the identity Koy, S(E}) = (Ko, S(E1))* we get the result.
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Remark 7.7. As already mentioned in the introduction, the definition of the space M is the
main difference with respect to [Mat17]. Trying to compare D? with C ® 1 within U,(g) ®

End(A4(u_)) does not lead to a positive result, as shown in the cited paper.

8. MORE ABOUT THE EXTERIOR ALGEBRA

In this section we derive explicit formulae for the action of A (u_) on itself, as well as the
action of the Levi factor U, () on A (u_). These formulae will be used in the next section to

derive various identities for the Clifford algebra End(A,(u_)).

We begin by fixing a basis of the exterior algebra A (u_). We have the element 1 in degree

0, the elements {y;}?_, in degree 1 and in higher degrees we take

Yo = Y2 ANYr, Ya = Y3 AY, Y = Y3 AY2, Yz = Yz AYa Ay
Lemma 8.1. The action of U,(I) on A (u_) is given by

1 hn Yo Ys Y21 Y31 Y32 Y321
Ki|1] ¢%n | v Cys | a Py Y1 Cyz2 | ysa
Ko |1 oy || a'ys |a %y | ¢ 'yn | ¢ %ys2 | ¢ %ysmn
Ey| 0| —12lgys | —?ys 0 —y31 | —[2]40%ys2 0 0
Fi 10 0 1 | —[2lg Y| O 2]y | —a %y 0
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Proof. In degree 0 we have the trivial U,(l)-module. In degree 1 we have already computed
the action of U,(l) on u_ in Lemma 4.4. For higher degrees we can compute the action by
using the fact that Ay (u_) is a U,(I)-module algebra, that is X(y A y') = (Xayy) A (X2)y').
The result then follows from simple computations that we omit. O

Corollary 8.2. We have an isomorphism Al(u_) = AZ(u_) of U,(lss)-modules given by

1
Y1 Yo1, Y2 Wyiilu Ys = Y32-
q
Proof. This is an immediate verification using the formulae in Lemma 8.1. U

Remark 8.3. Notice that this is an isomorphism of U, (Iss)-modules but not of U,(l)-modules,
since for instance the action of Ky on the elements y; and y9; is different.

Next we want to introduce a Hermitian inner product on A,(u_), which will allow us to
define adjoints of elements in End(A,(u_)). It can be seen from Lemma 8.1 that the subspaces
Af(u_) are simple U, (l)-modules. Hence in each degree there is a unique (up to a constant)
Hermitian inner product (-,-) : Af(u_) ® Af(u_) — C, while components of different degrees
are orthogonal. We determine these in the next lemma.

Lemma 8.4. The U,(l)-invariant inner products on A,(u_) are given in terms of four non-
zero coefficients {cx}3_, as follows. In degree 0 we have (1,1) = ¢y. In degree 1 we have

C1 _
(yi, ) =c1, (Yo, 42) = | (y3,y3) = c1q>

2,
In degree 2 we have

(y21, y21) = C2, (y317y31) = 02[2]q7 (y32, y32) = 02q72.

Finally in degree 3 we have (yYso1,Yse1) = Cs-

Proof. The statement in degrees 0 and 3 is trivial, since they are one-dimensional. Also observe
that elements of different weights are orthogonal, since we must have (K,y,y') = (y, K, v/').
Now consider degree 1 and write (y1,y1) = ¢1. We will use the formulae for the action of U,([)
given in Lemma 8.1. Then using B} = F1 K, = ¢* K, F, we compute

1 ¢ q —2 !
(Y2,12) = —@(Eﬂ/l,yz) = —m(yl,KlFlyz) = @q (Y1, 1) = m

Similarly we have
(y3,93) = —q¢ 2 (E1ya, y3) = — (2, K1 F1y3) = [2]40 > (y2, y2) = ¢ 2cy.

Finally consider degree 2. Then we can use the isomorphism Al(u_) = AZ(u_) of Uy(Lss)-
modules given in Corollary 8.2 to obtain the result from the degree 1 case. U

Next we will determine explicit formulae for the action of the elements v(y;) and their
adjoints on A,(u_). These results follow from tedious but straightforward computations,
hence we will skip most of the details for the sake of brevity. Also recall that v stands for the
right regular representation, that is v(y)y’ = ' A y.

Lemma 8.5. The action of the y(y;) on Ay(u_) is given by
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1 Y1 Y2 Y3 Ya1 Y31 Y32 | Ys21
(W) | v 0 Yo1 ysi| O 0 ysa1 | O
YW2) | y2 | —Pyn | QR qys [ys2 | 0 | —qPysa | O 0
Y(ys) | ys | —Ya —q*ys2 0 | ¢*ysz 0 010
Proof. Follows from straightforward computations. O

Finally we consider the action of the adjoints y(y;)*. This action only depends on the ratio
of the coefficients {cy}3_,, hence we introduce the notation ry, := cx/cx_1 for k= 1,2, 3.

Lemma 8.6. The action of the y(y;)* on Ay(u_) is given by

Ll wn Y2 Ys Y21 Y31 Y32 Y321
Y(y1)* | 0| kil 0 0 | kal2Jgye | K2l2]40%ys 0 K307 Y32
Y(y2) |0 0 |k [2];11 0 —K2 @Y —2Q[2],qys K2Ys —HR3 [2];1612.@31
Y(ys)* |0 0O 0 k1q %1 0 —ro2qy1 | —k2[2]qy0 K3q Y21

Proof. Let y € Ak~'(u_) and 3 € AF(u_). Then we must have (v(y:)y, ¥ )k = (y, ¥ (¥i) "y Ji-1-
Then the formulae follow from explicit computations using Lemma 8.5. U

9. THE PARTHASARATHY FORMULA

In this section we will compare the Dolbeault-Dirac element D? with the Casimir C ® 1.
What we are after is a relation of the form D? ~ C ® 1, up to a constant. In the first part we
show that essentially fixes the inner product on A,(u_). In the second part we show that we
get such a relation, hence a quantum version of the Parthasarathy formula.

9.1. Vanishing of terms. In the next lemma, we observe that having a relation of the form
D? ~ C ® 1 requires the vanishing of certain terms in the expression for D2

Lemma 9.1. A necessary condition to have D> ~C ® 1 (up to a constant) is that

(Y1) v (ys) +v(ys)y(y)" = 0.

This condition is satisfied if and only if
Ko = /‘61[2];161727 Ky = Kig .

Proof. Consider the expression for C ® 1 given in Proposition 7.6: observe that the term
E¢ E¢, does not appear and that the elements {EgiEfj}z}j are linearly independent. On the
other hand consider the expression for D? given in Proposition 5.3: we see that the term with
B B¢, in the first leg vanishes if and only if I'i3 = 0, that is y(y1)*y(y3) + 7(y3)v(y1)* = 0.

Therefore we have to check when this identity is satisfied. This is the case when acting on
elements of degree 0 and 3 in A,(u_). On the other hand in degree 1 we have

Y(y1)*y(ys)yr + Y(ya)v 1)y = —k2[2],¢%Ys + K1y

-1

. '¢?. Similarly in degree 2 we have

We see that we must have ko = k[2]

7(?/1)*7(?/3)921 + 7(?/3)7(91)*y21 = %3q4y32 — Kg [Q]qq2y32-

Hence we get k3 = k2[2],¢"% = k1¢~*. Similar computations show that the condition is also
satisfied when acting on the remaining basis elements. O
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This condition fixes two of the three free parameters {r;}3_,, where we recall that ) =
¢k/ck—1. The remaining parameter x; is essentially irrelevant in what follows, as it can be
absorbed as a prefactor either in the Dolbeault-Dirac element D or in the Casimir C.

To continue with the comparison of D? and C ® 1, we need to simplify all the elements I';;
defined in Proposition 5.3. We start by considering the case ¢ < j.

Lemma 9.2. We have the relations

—1
[ = _HlQin\lS(El)a I'3=0, T'y= —/ﬁQq—Kz\lS(Eﬁ-
2], 2],
Proof. Follows from tedious but straightforward computations. O

Finally we consider the case ¢ = 7, which is a bit more involved.

Lemma 9.3. We have the relations

' = k1Ko,
R _ *
te = ﬁ (q “Kon + ¢* Koy, — QQ[Q]qszl =+ Q2K2,\15(E1E1)) ;
q
Ty3 = ki (Kox, — Qq ' Koy, + Q%¢ Koy, S(ETEY)) .
Proof. Also follows from tedious computations, where we use S(E}E;) = ¢*K; ' E\ F}. u

9.2. Comparison. At this point we have all the necessary ingredients to compare the square
of the Dolbeault-Dirac element D? with the Casimir C ® 1.

Theorem 9.4. The element D? coincides with C ® 1 as operators on the space T'(2), up to
an overall constant and terms in the quantized Levi factor U, (1).

Proof. We plug the relations from Lemma 9.2 and Lemma 9.3 into the expression for D? given
in Proposition 5.3. Using these we obtain

D2 ~ E;Egl (059 HlKg)\l

K
@ (0 Kox, + ¢°Kan, = Q°[2)g Ko, + Q* Koy, S(ET En))
q

+ Ef,Ee, @ 1y (Kan, — Qq ' Koy, + Q*q Koy, S(ETEY))
— B, Ee, ® mQ[2]; " qKon, S(B1) — Eg, Bey, ® 51Q[2]5 ¢ Kan, S(Er)

2

— B Ee, ® m1Q[2], (Ko, S(Er))* — Ef, Ee, ® 1Q[2], ¢~ (Kox, S(E1))".

2

+ E;E& &

Then comparing with C ® 1 from Proposition 7.6 we see that D? ~ %C ® 1. O
q

Hence, either fixing the constant x; or redefining C, we can write
D*~C®1,

which is the quantum analogue of the Parthasarathy formula we were looking for.

10. APPLICATION TO SPECTRAL TRIPLES

In this section we will show that we get a spectral triple for the Lagrangian Grassmannian
C,[Sp(2)/U(2)]. As mentioned in the introduction, most of the steps necessary to build
spectral triples on quantum flag manifolds are already given in the paper [Krd04]. For this
reason we will be very brief and concentrate on the property of compact resolvent for D.
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We consider the Hilbert space completion of I'(Q2), denoted by the same symbol, where
the inner product is the Haar state on C,[G] and the inner product (-,-) we introduced
for Ayj(u_). The algebra C,[Sp(2)/U(2)] acts by left multiplication. The Dolbeault-Dirac
operator D = 0 + 0" is clearly symmetric and is easily seen to be essentially self-adjoint.

The condition of bounded commutators was proven in general in [Krd04]. It can be proven
in the same fashion also within our setting. Hence the only thing left to prove, in order to
get a spectral triple for C,[Sp(2)/U(2)], is that D has compact resolvent.

Theorem 10.1. The Dolbeault-Dirac operator D has compact resolvent. Hence we get a
spectral triple for the quantum Lagrangian Grassmannian C,[Sp(2)/U(2)].

Proof. As D is self-adjoint, it is equivalent to prove that D*D = D? has compact resolvent.
From Theorem 9.4 we have D? ~ C ® 1 (possibly up to a constant). The elements of U,(I) ®
End(A,(u_)) act as bounded operators on I'(2), that is D? differs from C ® 1 by a bounded
perturbation. Hence it suffices to prove that the latter operator has compact resolvent.

We need to recall some properties of the Hilbert space I'(Q2). From the Peter-Weyl decompo-
sition Cy[G] = @@ e p+ Cy[G]a, it follows that we have a decomposition I'(Q2) = @, . p+ ['(Q2)a.
Next, it follows from the properties of the Haar state that (I'(Q2)x,'(2)a/) = 0 for A £ A
Hence we obtain an orthonormal basis of I'(2) by choosing an orthonormal basis for each
component I'(2),. Finally we have (C ® 1)a = cpa for any a € T'(§2),.

Recall the following criterion to show compactness: 7' € B(H) is compact if we can find
an orthonormal basis {e,},en such that Te, = A\,e, and lim, , A, = 0. To obtain an
indexing by N we order the weights A = njw; + nsws lexicographically: we have (mq,ms) <
(n1,ng) if either my; < ny or my = n; and my < ny. Then, after picking any order for the
orthonormal basis of each subspace I'(£2)5, we obtain an orthonormal basis {e, } ,en of T'(£2).
Since (C ® 1)e, = cpe, for e, € I'(2),, to prove that C ® 1 has compact resolvent it suffices
to show that ¢y — oo for A — oo in the lexicographic order.

Recall that the value of ¢, is given in Corollary 6.4. Since ¢, is given as a sum of positive
terms, it suffices to show that one of them goes to infinity. Considering for instance the term
with (A1, A) = ny + ng, it is immediate to see that ¢y — oo for A — oc. O
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