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Abstract 

We study the optimal portfolio allocation when returns, covariances and volatility switch 

between normal and turbulent regimes. We isolated all the high-volatility events in recent 

historic return series and produced covariance-matrices corresponding to normal and bear-

market regimes. Using these covariance-matrices, along with analysis of the probability of 

occurrents from these events, led us to produce Monte Carlo simulations with time series of 

returns used to optimize allocations using investors CRRA-levels, maximizing their utility. Our 

findings support research showing substantially different allocation when the bear market 

regimes are taken into account, with heavier weights in lower risk assets, compared to the full-

sample covariance-matrix simulation producing much heavier weights in high-risk assets. Our 

results show that as returns are decreasing with the more conservative allocation, the risk is 

reduced substantially. Our results also indicate heavy support for the theory of time 

diversification. 
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Introduction 
If investors could predict the future, they would simply invest in the single highest earning 

security, providing them with the highest possible return. There would be no need, nor effect 

in diversification as this would limit future earnings (Markowitz, 1991). We cannot – with 

certainty – predict the future, so we use diversification strategies to limit overall risk, spreading 

it over multiple assets and asset classes, lowering the overall returns, limiting risk, to construct 

efficient portfolios.  

When analyzing historical data, investors often assume that returns are generated by a 

linear process with stable coefficients providing fixed predictive measures. Studies (e.g. Chow, 

Jacquier, Kritzman, and Lowry (1999), Kritzman and Li (2010) and Ang and Bekaert (2002, 

2004)) observing historical data, found several periods where returns and volatility behaved 

irregularly, implying that the market experienced different regimes, or states of return.  

 These periods with irregular behavior has been described by Kritzman and Li (2010) as 

turbulence: “A condition in which asset prices, given their historical patterns of behavior, 

behave in an uncharacteristic fashion, including extreme price moves, decoupling of correlated 

assets, and convergence of uncorrelated assets” (p. 30). In these periods, often referred to as 

“Bear market-periods”, the individual securities will experience higher internal correlations and 

returns will be lower and much more volatile than in normal regime-markets (Ang & Bekaert, 

2004). Addressing these observations, Chow et al. (1999) developed a method for extracting 

outliers, producing separate covariance matrices, corresponding to each regime. The outliers´ 

sample covariance matrix was produced to obtain more accurate descriptions of the turbulent 

markets, and their impact on the overall returns.   

 Through analysis of the historic return from the stock market, Bloom (2009) and 

Kritzman and Li (2010), argued that most turbulent periods are caused by events, both 

economic and non-economic, affecting the entire stock market. The turbulent periods do not 

occur in regularity. This provides no obvious method for us to predict when the next turbulent 

period will occur.  

 Previous research states in little regard the specific effect the regimes will have on 

optimal allocation, nor, how one should deal with these states in terms of simulations. We will 

study the impact of volatility-return regime switching on optimal portfolio allocation, using the 

implications and theories from Kritzman and Li (2010), Chow et al. (1999) and Bloom (2009). 

We will analyze historic time-series of return from two different risky asset-classes, dividing 

the return into two separate return-series, used to generate separate covariance-matrices, 

building on the work of Chow et al. (1999). Our method will differ from these previous studies, 
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as we provide a more practical take on the extraction of outliers´, limited to one asset class, 

labeling all shocks as events. 

Using these covariance-matrices, we will be able to simulate new time-series of return, 

for each regime. Kritzman and Li (2010) used the Markov switching model to reallocate 

dynamically across event-sensitive portfolios. We will use the Markov Switching model as a 

tool to simulate the occurrence of shock, providing a new approach to simulating returns, used 

for the optimal allocation. We will treat the switching between regimes as Markov processes, 

assuming them to randomly appear based on a probability of occurrents, creating a regime-

switching path. Linking the returns from each regime through the probability of occurrents 

chain, we can create events, simulated based on the impact of those found in the historical data. 

In total providing us with a simulated return-series which more accurately represent the overall 

risk coming from these high-volatility regimes.  

Using the randomly generated time-series of return, from the regime-switching model, 

we will run a simulation in order to estimate optimal allocations between risky assets, under the 

impact of high-volatility regime switching. We then analyze optimal portfolio allocations for 

different levels of risk aversion and different investment-horizons. Our portfolio will present 

optimal allocation of assets, adjusted for the impact of high-volatility shocks. Through a static 

approach, we will be able to see the effects of shocks on overall returns, optimizing for an 

investor who does not want to trade actively. 

 The plan of the paper is as follows. In section 1, we will introduce some general 

background theory of asset allocation, market turbulence and utility maximization based on 

CRRA-preferences. Next, we will introduce our methodology used as a basis for our test 

including Monte Carlo simulations and Markov Regime Switching Models. In section 2, we 

will present the data needed in order to conduct these simulations. We need to categorize and 

produce data series of returns from two assets classes in different regimes (Normal and Bear), 

through observation of turbulence in the observation period. The simulations will give us the 

input foundation for our optimization problem, found in section 3. Here we will optimize using 

average levels of CRRA to try and conclude with what is optimal portfolio allocation under 

volatility-return regime switching. Finally, we will conclude on the effects of regime switching 

on optimal allocations, leaving questions for further research. 

 

  



 6 

Portfolio Allocation and Market Turbulence 

We will never fully be able to understand the grand effects of the economic forces, making it 

impossible to predict the future without doubt or error (Markowitz, 1991). This is why risk is 

such a salient feature of security investment. Risk is categorized as systematic and 

unsystematic, so, when diversifying, an investor opts to reduce as much of the unsystematic 

risk as possible.  

Diversification 
 A fundamental principle in finance is the idea of getting paid to take on risk. The higher 

risk, thus, higher returns should follow. When tracking these returns, we observe the correlation 

among securities. When securities do not correlate perfectly, we can reduce risk by investing 

in multiple securities, reducing the overall risk – by diversification –, limiting overall returns. 

A well-diversified portfolio will – in theory – eliminate all the unsystematic risk, leaving 

the systematic risk, which, even if we could understand the consequences of all the economic 

conditions, is undiversifiable, as the non-economic influences could entirely change the course 

of the general prosperity (Markowitz, 1959). The non-economic influences will vary, and can 

be identified as independent events1, affecting the capital gains and dividends linked to – 

virtually – all securities.  

Statman (1987) argued that even a small increase in the number of securities invested 

in will reduce the overall risk substantially, stating that a well-diversified portfolio must include 

30-40 different securities to eliminate all unsystematic risk. This builds on the conclusion of 

Evans and Archer (1968) and Wagner and Lau (1971) who indicated that the power of 

diversification is exhausted when the number of securities surpasses 10-15. However, 

Statman´s observations on individual stock portfolios proved that their portfolios were not well-

diversified.  

A survey done by King and Leape (1998), including more than 6.000 U.S. households, 

indicated that the average U.S. household owned a surprisingly small amount of assets and 

liabilities providing a lack of diversification. From their studies, they found that the 

diversification effect occurs even when the portfolio includes assets other than stocks. 

 Diversified portfolios are observed and measured in terms of efficiency, where an 

efficient portfolio will be the best allocation alternative given all possible investments. Based 

on the work of Harry Markowitz, Treynor (1961, 1962), Sharpe (1964), Lintner (1965) and 

Mossin (1966) introduced the Capital Asset Pricing Model (CAPM). The CAPM – building on 

                                                
1 Examples of events can be natural catastrophes, terror, an assassination of presidents, etc. All, which will provide 
impact to all industries represented in the stock market.  
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unrealistic assumptions – is one of the most central models for pricing risk2. It assumes that all 

investors are rational and seek to maximize utility through each investment. This assumption 

gives investors – who are equally rational – the same weights allocated to all risky assets, 

making this allocation of assets the most rational and efficient portfolio; the market portfolio 

(Markowitz, 1959). CAPM assumes that all data can be summed up as a linear process with 

stable coefficients providing fixed smoothed measures, and the investor will be able to borrow 

at the risk-free rate. This is not so. When using risk measurements as an outlook on returns, the 

investor cannot assume measures to be fixed and opts to optimize based on other preferences. 

 

Utility 
In the analysis of decisions under risk, an important breakthrough was found by the Swiss 

mathematician, Bernoulli in 1738 (1954). He stated that two people facing the same lottery 

might value it differently due to their preferences and psychology. The differences are 

represented by utility, a subject measure of satisfaction for a given individual´s preferences 

(Eeckhoudt, Gollier, & Schlesinger, 2005). Bernoulli argued that individuals do not appreciate 

objects based on value, they appreciate them based on utility. Individuals would be able to 

experience different amounts of utility from the same object used in the analysis of uncertainty, 

called the risk premium. The risk premium can be explained as the amount of wealth an 

individual is willing to give up in order to avoid a zero-mean gamble3 (Eeckhoudt et al., 2005). 

For any risk-averse investor, the risk premium (𝜋) is the value that satisfies: 

 

𝐸[𝑢(𝑤 + 𝑍)] = 𝑢,𝑤 + 𝐸[𝑍] − 𝜋(𝑤, 𝑍)/, [1] 

 

Where 𝐸[𝑍] = 0, 𝑈 = utility, 𝑍 =	a risky payoff related to the gamble, 𝑊 = initial wealth, 𝜋 =  

risk premium. By accepting the risk or by paying the risk premium, the investors will end up 

with equal utility.  

 In more recent history, an axiomatic characterization of Bernoulli´s Expected Utility 

Theory (EUT) was presented by Von-Neumann and Morgenstern (1947). Based on Bernoulli´s 

work they developed several axioms that needed to hold if an individual´s preferences are to be 

represented by expected utility. These axioms assume that the investors are rational individuals 

that seek to maximize their utility. The Von-Neumann-Morgenstern theorem states that an 

                                                
2 CAPM assumes no taxes or transaction costs, that asymmetric information does not exist, and that investors can 
borrow and lend money at a fixed risk-free rate. 
3 A zero-mean gamble is a state where it is neither rational nor irrational to take a gamble, giving the risk-less 
alternative as optimal as the gamble. 
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individual faces a set of lotteries, and a binary preference relation will represent the preferences 

an individual is faced with in respect to different lotteries.  

The Allais Paradox (Allais, 1979), presented criticism against Von-Neumann & 

Morgenstern´s axiomatic utility theory. Gul (1991) presented the paradox as two problems 

criticizing the third axiom4. The axioms were tested by MacCrimmon (1968), who presented 

his test subjects with the possibility to reconsider their choices, which were in violation with 

certain axioms. His findings helped prove that the violation of the axioms where of systematic 

nature, and not response errors.  

 Kahneman and Tversky (1979) attempted to take the inconsistencies from the EUT into 

account, producing the prospect theory as an alternative to the EUT. The prospect theory has 

been referred to as a breakthrough in the study of behavioral economics. The core idea is that 

individuals make assessments based on what they may gain or lose as the result of making a 

choice. Instead of utility depending on the final outcome, the prospect theory depends on gains 

and losses with respect to a reference point or a certain goal. Their research states that an 

individual has an S-shaped and asymmetrical utility function for initial wealth, where the 

function is steeper for losses than gains, suggesting that individuals are loss averse and not only 

risk averse. When individuals make decisions under risk, Kahneman and Tversky presented the 

isolation- and reflection effect, affecting the decision at hand. The isolation effect states that 

people often disregard components that the alternative share, and the reflection effect, which 

refers to people often having opposite preferences for gambling, differing in the sign of the 

outcome, both implying that the decision maker might not be completely rational. 

 Quiggin (1982) found that the theory violated the stochastic dominance, as well as 

admitting to intransitivity for pairwise choice. This lead Kahneman and Tversky to extend their 

work employing cumulative rather than separable decision weights and extending their theory 

in several aspects (Kahneman & Tversky, 1992). Their research – applying to the concept of 

behavioral economics – shows that people are biased when making decisions. Arguing that 

people who try to understand or explain events tend to employ frames. The frames may 

introduce inconsistencies and generate anomalous behavior5. 

                                                
4  Mathematically, this assumption states that the upper and lower contour sets of a preference relation over lotteries 
are closed. Along with the other axioms, continuity is needed to ensure that for any gamble in G, there exists some 
probability such that the decision-maker is indifferent between the “best” and the “worst” outcome. 
5 Studies of the financial markets (Barberis, Shleifer, & Vishny, 1998; De Bondt & Thaler, 1985) found that 
investors tended to overreact to past market performance as they increased their risky allocation after markets had 
gone up and decreasing risky assets after markets had gone down, resulting in substantially reduced overall 
portfolio performance. 
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 On the basis of EUT, Arrow and Pratt (1965; 1964), assuming that investors seek to 

optimize their utility, conducted a measure for Absolute Risk Aversion (ARA). The ARA is a 

measure of the rate at which marginal utility decreases when wealth is increased by one 

monetary unit. The ARA is the basis of Relative Risk Aversion (RRA)6, which see changes 

when wealth is increased by one percent. When keeping the relative wealth constant, we can 

measure an individual’s level of Constant Relative Risk Aversion (CRRA). 

When individuals´ behavior is observed, Riley Jr. and Chow (1992) found that there is 

a difference in how individuals say they want to invest and how they actually invest. They 

concluded that the result on actual investments showed that investors´ risk aversion increased, 

decreased and remained the same as the initial wealth increased. These same indications were 

made through the studies of Chiappori and Paiella (2011), who found no change to optimal 

allocation through changes in wealth, and Sahm (2012) who found no changes in risk aversion 

relative to changes in wealth. This provides indications that the anomalous behavior will not be 

relevant for utility maximization, as wealth will not affect the decision maker. The CRRA is 

presented through the power utility function (Eeckhoudt et al., 2005) – one of the most widely 

used utility functions – given by: 

 

𝑈(𝑥) =
𝑥6

𝛾
, 𝑤ℎ𝑒𝑟𝑒	𝛾 = 1 − 𝜆,			

𝑈(𝑥) =
𝑥<=>

1 − 𝜆 , [2.0]
 

 

Where 𝜆 > 0, but not 𝜆 = 1, in which case the function takes the form of 𝑈(𝑥) = ln 𝑥. The 

(constant) Arrow-Pratt coefficient of relative risk aversion (RRA), if 𝛾 < 0, is equal to 

 

𝑅𝑅𝐴(𝑥) = −
𝑈GG(𝑥)
𝑈G(𝑥)

𝑥 = 1 − 𝛾, [2.1] 

 

From this expected final wealth is given as (see e.g. Vigna (2009) for calculations): 

 

𝐸,𝑋 ∗ (𝑇)/ = 𝑒KL M𝑥N +
𝑐
𝑟 ∗

(1 − 𝑒=PL)Q = 𝑥NRRR𝑒
STL
<=6, [2.2] 

                                                
6 When ARA is multiplied with the wealth, we obtain RRA. This is a measure of how marginal utility changes 
when wealth is increased by one percent. 
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And the variance of the final fund is 

𝑉𝑎𝑟,𝑋 ∗ (𝑇)/ = (𝑒WL − 𝑒XKL) M𝑥N +
𝑐
𝑟
(1 − 𝑒=PL)Q

X

= M𝑒
STL

(<=6)T − 1Q Y𝐸,𝑋 ∗ (𝑇)/Z
X
, [2.3] 

 

Where A and K are given by 

 

𝐴 = 𝑟 + 𝛽X,						𝐾 = 2𝑟 + 3𝛽X. [2.4] 

 

In Samuelson´s work, “The Myth of Time-Diversification” (1963), he introduced a 

utility model without the concept of time-diversification, so that the asset allocation is 

independent for the entire investment horizon.  

 

𝑈L = (𝑅R ∗ 𝑇) − 0.5𝐴,𝜎< ∗ √𝑇/
X
= 𝑇 ∗ 𝑈<, [3] 

 

Samuelson stated that the utility (U) will increase proportionally as time (T) increases, 

where A is a parameter corresponding to the investor´s risk aversion. He believes that investors 

should not change their allocation of risky assets on the basis of their investment horizon. This 

can only be true if: 

i. Investors have Constant Relative Risk Aversion (CRRA) 

ii. Investment returns are independent and normally distributed, indicating that 

returns follow a random walk 

iii. Investors´ future wealth is only dependent on their investment portfolios 

 

Whether risk is defined in terms of variance or standard deviation7 will have an effect 

on whether Samuelson´s assumptions will hold or not. Some studies indicate that decreasing 

risk with investment horizon has something to do with the investors´ demographic or economic 

situation and not the actual attempt to diversify. Kritzman (2015) defined time-diversification 

as “the notion that above average returns tend to offset below average returns over long time 

horizons” (p. 29). Implying that time-diversification will reduce risk as the securities value may 

                                                
7 An investor measuring risk as variance will experience proportionally increasing risk as time increases. An 
investor measuring risk in terms of standard deviation will experience decreasing risk as volatility will increase 
with the square root of time. 
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increase or decrease over a period of time, supported by evidence. For longer investment 

periods an investor should allocate larger weights to higher risk securities.  

 Kritzman and Ritz (1998) refers to three characteristics that return can have: 

i. Random Walk 

ii. Mean-reversion 

iii. Mean-aversion8 

Mean-reversion is understood as the change in market return in the direction of a 

reversion level as a reaction to a previous change in the market return (Hillebrand, 2003). All 

deviations from the mean will cause a reaction and create a return process towards the mean. 

Hillebrand (2003), states that errors in the perception of mean-reversion expectations can cause 

stock market crashes. Both before and after the shock of 1987, there was significantly higher 

mean-reversion, supporting Hillebrand´s theory of a mean-reversion disillusion9 occurring, 

leading to a stock market shock. Studies of the U.S. stock market, implied a mean-reversion 

characterization (Kritzman & Ritz, 1998), supporting the theory of time-diversification. This 

indicates that Samuelson´s theory that utility increases proportionally with time, does not hold. 

 

Optimization 
An investor who wants to invest their savings faces the problem of how to allocate their 

investment. Vigna (2009) presents how an individual would allocate their pension scheme with 

future contributions to the fund. Assume that the financial market available is a Black-Scholes 

model (see e.g. Björk (1998)), consisting of a risk-free and a risky asset. Where the risk-free, 

with the price 𝐵(𝑡), follows the dynamics of: 

 

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡, [4.1]	 

 

where 𝑟 > 0. The risky asset with the price dynamics 𝑆(𝑡), follows a geometric Brownian 

Motion with drifts 𝜆 > 0, and diffusion 𝜎 > 0: 

 

𝑑𝑆(𝑡) = 𝜆𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡), [4.2] 

                                                
8 Mean-aversion means that high returns are followed by high returns, and low returns are followed by low returns. 
Most time-series may not have these characteristics over time, but at certain periods one can imagine that the 
nominal interest rate level constitutes a trend that gives the return for bonds such a characteristic. 
9 A mean-reversion disillusion referring to a situation where the stock-price process followed a path that did not 
properly reflect the true a-priori mean-reversion expectations. The process has to be set into a position as if the 
illusion did not happen. This is a correction in trajectories, not only in the process parameters and hence the switch 
can be of substantial magnitude. This is the stock-market crash” (Hillebrand, 2003). 
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𝑊(𝑡) is a standard Brownian motion defined on a complete filtered probability space 

(Ω, ℱ, {ℱi}, 𝑃), with ℱi = 𝜎{𝑊(𝑠) ∶ 𝑠 ≤ 𝑡}. 

 When the investor puts more money in the investment fund, this is assumed to be at a 

constant rate and are represented with 𝑐 ≥ 0. The proportion allocated to the risky asset at time 

𝑡 is denoted by 𝑦(𝑡). The fund will at time 𝑡, 𝑋(𝑡), grow according to the following Stochastic 

Differential Equation (SDE): 

 

𝑑𝑋(𝑡) = {𝑋(𝑡)[(𝑡)(𝜆 − 𝑟) + 𝑟] + 𝑐}𝑑𝑡 + 𝑋(𝑡)𝑦(𝑡)𝜎𝑑𝑊(𝑡)
𝑋(0) = 𝑥N ≥ 0. , [4.3] 

 

The amount of 𝑥N is the initial wealth being any non-negative number. The investor enters at 

time 0 and contributes for the entire period (T). T is a pre-fixed number, representing the 

investment horizon. 

Investors aim to optimize their investments in terms of lowering risk and return, aiming 

to maximize or minimize based on certain values. A commonly used optimization seeks to 

optimize using the mean-variance approach, often maximizing the Sharpe-ratio10. By 

maximizing the Sharpe-ratio, the individual´s risk preference is not taken into account, making 

the possible investment to be of higher risk than the investor´s risk aversion should indicate, 

giving an uncharacteristic change in the market. In order to achieve optimization that 

corresponds to the risk aversion one can optimize using the following process:  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 Y𝐽,𝑦(∙)/Z ≡ 𝐸x𝑈,𝑋(𝑇)/y, [5.1] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 } 𝑦(∙)	𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒
	𝑋(∙), 𝑦(∙)		𝑆𝑎𝑡𝑖𝑠𝑓𝑦	[4.3]. 

 

This optimization problem can be dealt with using classical control theory as found in Yong 

and Zhou (1999), Øksendal (2013) and Björk (1998). We present a more basic understanding 

corresponding to the process found in Vigna (2009). 

 

𝐽(𝑦(∙); 𝑡, 𝑥) = 𝐸�x𝑈,𝑋(𝑇)/y, [5.2] 

                                                
10 The SHARPE-ratio is given by: 𝑆 = ��=��

��
. Where 𝑅� is the return on the portfolio, 𝑅�is the return of the market 

and 𝜎� is the standard deviation of the portfolio. 
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Where 𝐸� = 𝐸[∙ |𝑋(𝑡) = 𝑥], defines the optimal value function as the supremum of the 

performance criterion among admissible controls. 

 

𝑉(𝑡, 𝑥) ∶= 𝑠𝑢𝑝
�(∙)

𝐽(𝑦(∙); 𝑡, 𝑥). [5.3] 

 

The Hamilton-Jacobi-Bellman (HJB) equation including a fundamental theorem of stochastic 

control theory, which the value associated with the problem must satisfy 

 

sup
�
�
𝜕𝑉
𝜕𝑡 +

(𝑥(𝑦(𝜆 − 𝑟) + 𝑟) + 𝑐)
𝜕𝑉
𝜕𝑥 +

1
2𝑥

X𝜎X𝑦X
𝜕X𝑉
𝜕𝑥X

� = 0, [5.4] 

 

With boundary conditions 

 

𝑉(𝑇, 𝑥) = 𝑈(𝑥). [5.5] 

 

Next, we write the optimal control associated with the problem. This is a function of the partial 

derivatives to the value function 

 

𝑦∗(𝑡, 𝑥) = −
𝜆 − 𝑟
𝜎X𝑥

𝑉�
𝑉��

, [5.6] 

 

Where 𝑉� =
��
��

 and 𝑉�� =
�T�
��T

 plugs formula [5.6] into the HJB-equation. We find the non-linear 

partial derivatives equation (PDE)  

 

𝑉i + (𝑟𝑥 + 𝑐)𝑉� −
1
2𝛽

X 𝑉�
X

𝑉��
= 0, [5.7] 

 

With the boundaries set in equation [5.5], solving the PDE we can retrieve what is the optimal 

control. The most common way to solve a non-linear PDE is guessing the solution by exploiting 

the natural similarity with the utility function selected. 

 This approach provides mostly a practical approach to solving the problem of optimal 

allocations. However, it does not consider the effects of regime-dependent drift and volatility, 
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as this approach assumes these are fixed, nor does it include a “bond asset”. The “bond asset” 

would provide an important second risky asset, which is to be seen as crucial for long-term 

investment. We do not know of any analytical approach to solve the optimization problem under 

regime switching, making simulation the natural approach. 

  
Turbulence 

Turbulent periods – periods with high volatility risk – is described by Kritzman and Li 

(2010) as “… a condition in which asset prices, given their historical patterns of behavior, 

behave in an uncharacteristic fashion, including extreme price movements, decoupling of 

correlating assets, and convergence of uncorrelated assets” (p. 30). As an example they present 

that “when both U.S. and non-U.S. equities produce returns greater than one standard deviation 

above their mean, their correlation equals -17%; when both markets produce returns more 

than one standard deviation below their mean, their correlation rises to +76%” (p. 30)11. This 

gives reason to assume that all periods should not be treated equally when measuring risk. They 

further stated that these findings may explain how many investor’s well-diversified portfolios 

crashed during the financial crisis of 2007-2008, producing massive losses. Just like volatility, 

turbulence and uncertainty shocks are highly persistent, and one can observe that the risk-

reward ratio is substantially lower during turbulent times. These features provide incentives for 

investors to lower their allocation to risky assets during these times in order to maintain the 

risk-return trade-off.  

Periods with increased risk tend to cluster together, as market participants digest it and 

react to its cause (Kritzman & Li, 2010). These turbulent periods are a widely known 

phenomenon known as volatility clustering, described as ARCH-effects: “Non-homogeneity of 

                                                
11 The correlations were based upon monthly returns of the S&P500 Index and MSCI World ex US Index from the 
period starting January 1970 and ending February 2008. 

Figure 1 shows how turbulent periods tend to follow large market events (Kritzman & Li, 2010) 
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volatility with highly significant autocorrelation in all measures of volatility despite the 

insignificant autocorrelation in raw returns” (Lux & Marchesi, 2000, p. 677). The concept of 

volatility clustering has intrigued many researchers and has served as orientation in the 

development of stochastic models in finance. Volatility clustering through agent-based models 

tends to seek explanation through different market participants, described in terms of simple 

rules (Cont, 2007). From the agent-based model, the concept of market “switching” stands out. 

The market will switch between high- and low volatility scenarios as can be seen in Figure 1, 

experiencing mean-reversion as the investor will alter the investment based on the current state 

with different risk preferences, leaving increased periods of risk as an aftermath of the 

occurrents of financial shocks.   

 In their study, Kritzman and Li (2010) showed how one can use statistically derived 

measures of financial turbulence to measure and calculate risk to improve investment 

performances using turbulence as a filter for exposure to risk. Their results showed greater 

returns with lower measures of risk, indicating that the full-sample data series will misrepresent 

a portfolio’s risk attribute during periods of turbulence and financial crisis. Chow et al. (1999) 

found similar results trying to identify the instabilities of risk parameters. To better give 

indications of the risk during turbulent times they introduced a procedure for identifying 

multivariate outliers and used these to estimate a new covariance matrix. They found evidence 

supporting that the multivariate outliers´ covariance matrix better characterized the riskiness of 

a portfolio during market turbulence compared to a regular full-sample covariance matrix. Their 

results showed a more conservative allocation to risky assets, with lower expected return, 

compared to a full-sample covariance matrix.  

Even though the usual trading performances most of the time ends up showing an 

efficient market, sudden transient phases of destabilization tend to lead into high-volatility or 

uncertainty phases, with “outbreaks” of volatility that might occur as agents using different 

techniques surpasses a certain threshold value (Lux & Marchesi, 2000). The agent-based model 

is used in terms to categorize how a cluster of volatility occurs, not why it occurs. This is 

simplified in that some people trade based upon volatility, while others believe that the return 

will follow a fundamental value in the long term. 
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Data 

For the empirical study of historical data, we computed asset prices into total returns for two 

asset classes, stocks and bonds, measured as logarithmic (log) returns. According to Kritzman 

(1992), log returns are better for describing historical returns and the requirements of normality 

are easier to obtain. We measure volatility as a function of the logarithmic return, assuming that 

increased returns both positive and negative are indications of increased volatility.  

Our primary source of data is historical prices measured in USD extracted from monthly 

returns in the period: 31.12.1986 through 01.03.2019, providing a total of 776 observations, 

388 for each asset class. Our data sample is the adjusted close price12 extracted from Yahoo 

Finance (2019), which provided the same foundation for all data sources. The sample period of 

32 years is chosen to give notable insights of stock and bond market behavior and includes 

several high-volatility periods, such as Black Monday (1987), the 9/11 terrorist attacks (2001) 

and the credit crunch (2008).  

 We used 3 different asset classes for the optimal portfolio problem, two risky assets 

(stocks and bonds) and one risk-free investment. 

 Standard & Poor´s 500 Index (S&P 500), is a capitalization-weighted index of the 500 

largest – publicly traded – U.S. companies by market value. The S&P 500 measures the 

performance of the U.S. economy through changes in the aggregated market value. It is 

considered to be one of the most diversified portfolios, widely used as a tracking benchmark 

for many investment funds. Using this index, we opt to eliminate all the unsystematic risk. 

 Vanguard Total Bond Market Index Fund (Vanguard) is an open-ended fund 

incorporated in the United States. Vanguard aims to track the performance of a broad, market-

weighted bond index; the Bloomberg Barclays Index. It invests in bonds represented in this 

index. Reflecting this goal, it allocates approximately 30% in corporate bonds and the 

remaining 70% in government bonds. Vanguard maintains a dollar-weighted average maturity 

of 5 to 10 years. 

 Our Risk-Free rate of return is based on historical data for lending and deposit rates 

from Norwegian banks in the sample period (1987-2019). The data for the risk-free rate 

measure is extracted from Statistisk Sentralbyrå (2018). We used Norwegian rates as we are 

trying to map optimal allocation given the average risk aversion rates for the Norwegian 

population, assuming that Norwegian investors would place their money in Norwegian banks.  

 

                                                
12 The final price traded on the given trading day adjusted for splits and dividends 
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We observed correspondingly with the study of Bloom (2009) how some high-volatility 

scenarios – historically – are caused by certain macro- and non-economic events (shown in 

table 1), causing the stock market returns to move in such degree that it´s referred to as a shock. 

Through our time-series data, we saw indications to how the increase in returns for stocks, 

caused changes in the same periods for bonds, indicating that they were triggered by the same 

events13. When observing high-volatility returns in bonds, we saw no substantial change in 

stock returns, indicating that the events causing increased volatility in the bond market do not 

affect the stock market in a substantial way, indicating degrees of mean-aversion to be present 

in the bond market. These observations led us to use the stock market as a basis for creating an 

outlier´s sample. 

 
Major Stock-Market Volatility Shocks 

Table 1 shows the cause of the major stock-market volatility shocks. Inspired by Bloom (2009) 

 

When determining the outliers, we saw that as the large historic high-volatility- and 

stock market shock events, shown in Table 1, have proven to be caused by – mainly – non-

economic factors. We have no guaranteed way of forecasting the shocks, other than to assume 

them as randomly distributed, based on probability of occurrents, from historic measures. 

Bloom suggested that shocks are periods where returns move more than 1.65 standard 

deviations from the mean – in either direction – selected as the 10% one-tailed significance 

level, over a period of 1 month14. Financial turbulence often coincides with excessive risk 

aversion, illiquidity, and devaluation of risky assets. This gives us a basis to determine two 

                                                
13 Events are not necessarily happenings but referred to as the reasoning for the occurrence of the high-volatility 
periods. 
14 We do not aim to explain the factors causing the volatility or stock market shocks, nor do we separate them. 
Observing the logarithmic returns from the stock market, claiming that all anomalies are caused by events; 
economic or non-economic. 

Event  Max Volatility First Volatility Type 

Black Monday November 1987 October 1987 Economic 

Gulf War I October 1990 September 1990 War 

Asian Crisis  November 1997 November 1997 Economic 

Russian, LTCM default September 1998 September 1998 Economic 

9/11 Terrorist Attack September 2001 September 2001 Terror 

Worldcom and Enron September 2002 July 2002 Economic 

Gulf War II February 2003 February 2003 War 

Credit crunch October 2008 August 2007 Economic 
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separate covariance matrices created from a normal and an outliers sample of returns, to better 

determine the effect of high-volatility periods in correspondence with the theories presented in 

Chow et al. (1999). 

 

 

 
 

We calculated each logarithmic return´s standard deviation from the mean in order to 

identify the volatility shocks, producing a scatter plot (Figure 2) for illustration, to construct 

two different covariance matrices. One for each “state”; Normal and Shock. Where any level 

of 𝑑i above 1.65, would indicate a shock. 

 

𝑑i =
𝑦i − 𝜇
𝜎 , [6] 

 

𝑑i is a measure for the standard deviation of the individual return in period 𝑡. 𝑦i is a measure 

of the independent assets return, 𝜇 represent the mean asset return for the sample period and 𝜎 

is a measure of the overall standard deviation.  

 

Figure 2 showing independent log-returns before divided into states. 
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Figure 3 illustrates a scatter plot of turbulence or shock measures from the full-sample data series of historical returns. 

Showing an ellipse representing the 90% and 95% significance level. 

 

From these calculations, we extracted all observation corresponding to stock market 

shocks, outside of the 90% ellipse, where returns exceeded 1.65 standard deviations from the 

mean, as illustrated in figure 3. We replaced all extracted variables with mean-values from our 

full-sample data series. The remaining data became our Normal state covariance-matrix used 

for the first Monte Carlo simulation. From the removed outliers we gathered daily returns to 

create our shock state data series. We obtained daily data to see the effects in a larger scale than 

the actual event happening. To avoid jumps in the data set we replaced all returns where the 

time period exceeded one day with the full-sample mean return. This data became the 

foundation for our Shock state covariance-matrix used for the second simulation. Table 2 shows 

that the shock-state covariance-matrix differ substantially from the full-sample observations 

suggesting that internal correlation between securities varies in turbulent periods. 
 

 

Variance-Covariance Normal State 

 S&P 500 VanGuard 

S&P 500 8.20E-04 3.7839E-05 

VanGuard 3.7839E-05 1.08E-04 
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Variance-Covariance Shock State 

 S&P 500 VanGuard 

S&P 500 5.21E-04 1.336E-05 

VanGuard 1.336E-05 2.04E-05 

Table 2 showing covariance matrices for both regimes 

 

To perform the Monte Carlo Markov Chain (MCMC) simulation, we created a 

probability matrix used as input measure. On the basis of the 10% one-tailed significance 

measure, we found 26 high-volatility periods in the S&P 500 data series where the preceding 

period was of normal state. This gave us a probability measure of 6.70% of a high-volatility 

state occurring. We further calculated the probability of a shock state occurring for more than 

one period, finding 11 periods of high-volatility preceded by high-volatility, giving a measure 

of 42% for the shocks to be persistent. We observed periods were high-volatility scenarios 

lasted for more than two months, giving implications that the length of a shock, is also at 

random. These final calculations gave us the input data shown in table 3, used in the 

simulation.15 

 
Normal State 

 S&P 500 VanGuard 

Monthly Return -  1.05% 0.46% 

Standard Deviation -  2.87% 1.04% 

Annual Return -13.37% 5.63% 

Annualized SD -  9.93% 3.61% 

Shock State 

 S&P 500 VanGuard 

Monthly Return -  3.02%   1.32% 

Standard Deviation  10.42%   2.06% 

Annual Return -30.81% 17.08% 

Annualized SD -36.10%   7.15% 

 

Correlation Normal State 

 S&P 500 VanGuard 

S&P 500 -1.0000 -0.1269 

VanGuard -0.1269 -1.0000 

 

 

 

                                                
15 We set no upper limit for the overall duration of the simulated shocks. 
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Correlation Shock State 

 S&P 500 VanGuard 

S&P 500 -1.0000 -0.1306 

VanGuard -0.1306 -1.0000 

Table 3 shows input data observed from historical observations, calculated to use in simulation 

 

As mentioned, the studies of Riley Jr. and Chow (1992), Chiappori and Paiella (2011), 

and Sahm (2012), showed that there was no observable change in risk preferences with 

increasing wealth. This supported our theory that CRRA-utility maximization was the best 

measure for our optimization problem. We will assume that the investor opts to statically invest, 

leaving an investment in period 0 and leave the allocation constant for the entire investment 

period. 

Under the assumption of CRRA-preferences (represented by 𝜆), Aarbu and Schroyen 

(2009) found – through a survey of a representative sample of the Norwegian population – that 

the average risk aversion coefficient is 𝜆 = 3.7. This estimate is substantially lower than in 

other, similar, studies of CRRA-preferences. Kimball, Sahm, and Shapiro (2008) found an 

average coefficient of 𝜆 = 8.2. This was measured using a representative sample of the U.S. 

population, based on the work of Barsky, Kimball, Juster, and Shapiro (1997) who found 𝜆 ≈

8.0, as a representative measure of the U.S. population. Using both these studies, Sahm (2012) 

concluded that average risk aversion is more in the area of 𝜆 = 9.6. Aarbu and Schroyen (2009) 

argued that their low average value might be caused by the Norwegian welfare state, causing 

insurance against substantial risk, reducing the background risk. Through a study of Norwegian 

insurance customers, Haga and Rivenæs (2016) indicated that the average Norwegian values 

are more in line with the average U.S. values, presented at 𝜆 = 9.024. The difference might be 

explained by Sahm (2012) who found that worsening macro-economic conditions results in 

increased risk-aversion. Making an argument that Aarbu and Schroyen´s measure is on the 

lower side as the survey was conducted pre-financial crisis. 

 

Simulation Model 

The problem we are faced with contains great uncertainty in terms of forecasting future 

values. We conducted a Monte Carlo simulation as an alternative to replace the uncertain 

variables with average numbers. The problem consists of a large number of generated variables, 

which provides a substantial number of trials and errors, leading us to conclude that our problem 

cannot be solved analytically, but has to be solved using a numerical simulated approach.  
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Based on certain specifications, or limitations, the random numbers in them self, are 

more in the region of pseudo-random, indicating that they are imitating – in many different 

respects – the behavior of independent observations with a specified distribution (McLeish, 

2005). A prerequisite for using a Monte Carlo simulation is that the time series follows a 

stochastic process. A stochastic process indicates that under certain conditions a time series will 

appear randomly as a single number is not determined by the previous one. Though, based on 

historical data we can say that if certain conditions had been different in the past, the outcome 

of the stochastic process would have been different (Wooldridge, 2013).  

In the 1950s a computer was put to analyze economic time series, on the background of 

economists believing that tracing several economic variables’ change over time would clarify 

and help them predict the behavior of the economy through “boom” and “bust” periods (Bodie, 

Kane, & Marcus, 2014). Kendall (1953) found that he could not identify any predictable 

patterns in stock price movements and that prices seemed to follow a random walk. And it 

became apparent that random price movements indicated a well-functioning or efficient market, 

not an irrational one (Bodie et al., 2014). 

The stock market is known to follow a Markov process, indicating that only the current 

value of a variable is relevant for predicting the future (Hull, 2012). The essence of the efficient 

market hypothesis (Fama, 1970), which in its weak form, states that one cannot predict the 

future return by analyzing the past. There are no patterns or dependencies to observe in 

historical prices so that in the long run there cannot be excess return only from the analysis of 

historical data. The history of the variable and the way that the present has emerged from the 

past are irrelevant. Our Monte Carlo simulation is used to determine the end (terminal) value 

of a data series, randomly generated from our calculations based on historical measures of 

expected returns, standard deviations, and correlation among assets.  

 Following the Monte Carlo simulation and the theory of Markov processes, a Markov 

Chain Monte Carlo, or a Markov Regime Switching Model, is a sequence generator of (discrete) 

random variables 𝑋<, 	𝑋X …𝑋�, which will take the integer value between 1,2, …𝑁 referred to 

as “states”. The number of states is pre-arranged, and the model can contain an infinite number 

of states (McLeish, 2005). 
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For our simulation, the number of states is prefixed and presented through a probability 

matrix, which shows a description of the probability of moving between different states, 

illustrated in figure 3. We will produce an ergodic chain, meaning that the state previously 

occupied is irrelevant for the next move: “1 → 2 → 2 → 1 → 1”. Stating that the next move 

will only be dependent on state occupied at the given moment, J. 𝐽�< will – when drawn – forget 

the previous occupied state giving that the probability of the current state is only dependent on 

J. 

For the main test, we performed 100.000 simulations in order to get the most accurate 

measures for our optimization problem.16 We chose the number of simulations in order to 

minimize the variance of the final end result, giving deviations in the 4th decimal. By running 

100.000 simulations we hoped to eliminate all other effects rather than the change of variables 

in our final results. For the optimization we have put no limit on lending, giving that it is likely 

that investors with lower degrees of risk aversion are willing to borrow money, leveraging their 

investment, in order to increase the expected return, presented with the possibility.  

 We used the rng (random number generator) and the portsim function built into 

MATLAB and generated 120 periods of independent returns. This left us with 2 arrays of 120-

by-2-by-100.000 of simulated returns, one for each state. 

 We used our generated probability of occurrents-matrix [6] as input for the MCMC, to 

generate a random path of states 

 

𝑃 = �0.9330 0.0670
0.5800 0.4200� , [6] 

 

                                                
16 The entire code can be seen in Appendix B 

Figure 4 Showing a Discrete-time series Markov Chain, (Source: Own 
production. 
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The MCMC-simulation left us with a matrix of 120-by-100.000 consisting of the numbers 1 

and 2. The number one is representing the Normal state, whilst the number two is representing 

the Shock state.  

 We linked the two 120-by-2-by-100.000 arrays of simulated returns with the 120-by-

100.000 matrix, creating a new 120-by-2-by-100.000 array consisting of a new assembled series 

of returns constructed from both states, based on the probability of occurrents. We summed 

returns gaining terminal values of expected return for stocks and bonds, creating a new matrix 

of 100.000-by-2. This matrix provided us with enough simulated data to perform our 

optimization. The input parameters for the optimization consisted of Initial wealth set to 1 as 

the invested amount will have no real effect of the CRRA preferences of the investor. Compared 

to the practical approach presented by Vigna (2009), we simulate a static investment approach, 

with no contributions other than the initial investment. Number of Simulations matching input 

matrix. Scenario Table, the newly created 120-by-100.000 matrix of terminal returns. Risk-free 

rate of return calculated as historic mean and computed into a 120-period return to match the 

end values of simulated returns. Lending rate calculated as historic mean and computed into a 

120-period return to match the end values of simulated returns. Risk aversion a parameter 

consistent with the findings of Aarbu and Schroyen (2009) and set to 𝜆 = 3.7.17 For the 

simulation we determined all possible outcomes as equally probable, leaving the final value as 

an average of all simulated terminal values.  

 Our final result consists of two values: Allocation to stocks and bonds. Leaving risk-

free investment as a product of: 

 

𝑊P� = 1 − (𝑊  +𝑊¡) [7] 

 

Where 𝑊P� is the weights allocated to risk-free assets, 𝑊  represent the stock allocation 

and 𝑊¡ is the weight allocated to bonds. From these three weights, we can conclude with 

optimal allocation for given values of CRRA and calculate the simulated expected return and 

standard deviation of the portfolio.  

 Our main input data are based on a lot of uncertain assumption leaving it appropriate to 

test our model in light of changes to these parameters. Through our sensitivity analysis, we 

changed one parameter at the time tracking the effect of this parameters on optimal allocation. 

Investment horizon and risk aversion were altered simultaneously. To see the effect of the 

                                                
17 The risk aversion coefficient will be tested for further values, leaving 3.7 as our main value. 
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individual investor´s risk aversion we changed the CRRA-coefficient to coincide with other 

research. We used measures found by Aarbu and Schroyen (2009) 𝜆 = 3.7, testing for +/- one 

standard deviations of 2.2, leaving measures of 𝜆 = 1.5 and 𝜆 = 5.9. Kimball et al. (2008) with 

the parameter 𝜆 = 8.0, as a measure for the U.S. population, 𝜆 ≈ 8.2 found by Barsky et al. 

(1997), 𝜆 = 9.6, from the studies of Sahm (2012), and lastly the study of Haga and Rivenæs 

(2016) – providing a measure of the Norwegian population closer to the U.S. findings – at 𝜆 =

9.024. 

 The deposit and lending rates have – historically – been through the same fluctuating 

periods as the risky assets. To better understand how the risk-free rates, impact the optimal 

allocation we altered the rates by +/- 1% annually giving altered input data as shown in table 4. 

 

 
 Deposit Lending 

Historical 4,29 % 7,60 % 

+1% 5,29 % 8,60 % 

-1% 3,29 % 6,60 % 

Table 4 showing risk-free deposit and lending rates at +/- 1% alterations 

  

We kept the investment horizon at 10 years (120 periods) to test for time diversification, 

as we presumed that shocks would be neutralized after a 10-year period. To see the actual 

effects of time diversification we ran the optimization problem with altering investment 

horizons at 12, 36, and 60 periods. Corresponding to 1, 3, and 5-years. To run these tests, we 

also had to alter the deposit and lending rates as they were computed to match the simulated 

returns of the investment horizon. We used the historic average measure and computed it to 

match the investment horizons. 

 For the last alteration, we changed the input data to coincide with the theory of using 

only one covariance-matrix constructed from the full-sample historical data. providing input 

data as can be seen in table 5 
 

Full-sample covariance-matrix 

 S&P 500 VanGuard 

Monthly Return -  0.64% 0.47% 

Standard Deviation -  4.33% 1.12% 

Annual Return --7.92% 5.64% 

Annualized SD -15.00% 3.87% 

Table 5 Showing input data for the full-sample estimation 
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This simulation allows us to see the grand effects of the separate covariance-matrix approach 

and get a better understanding of high-volatility periods, for all risk aversion parameters and 

investment horizons.18 

 

Results 
An overview of all main results can be found in Appendix A. 

Our main simulation, as found in table 6, using CRRA-levels of 3.7, and an investment 

horizon of 10 years, resulted in allocations of 27.3% in stocks and 72.7% in bonds, leaving the 

allocation to risk-free assets at 0%. In table 7 we show simulated returns for both asset classes, 

for all investment horizons. This main simulation produced a total stock return of 74.31% over 

the course of 10 years, providing annual returns of 5.71%. Bonds returned 66.10% over the 

course of 10 years, with annual returns of 5.21%. The optimal allocation would yield 68.34% 

in returns over the 10-year investment horizon, with an annually compounded return of 5.34%, 

presented in table 8. 

 
  1 year 3 years 5 years 10 years 

CRRA Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds 

1,5 4,9 % 95,1 % 30,5 % 69,5 % 41,5 % 58,5 % 51,9 % 48,1 % 

3,7 7,2 % 92,8 % 18,8 % 81,2 % 21,5 % 78,5 % 27,3 % 72,7 % 

5,9 7,8 % 92,2 % 14,6 % 85,4 % 16,9 % 83,1 % 20,3 % 79,7 % 

8,0 8,0 % 92,0 % 13,1 % 86,9 % 14,7 % 85,3 % 17,2 % 82,8 % 

8,2 8,2 % 91,8 % 13,0 % 87,0 % 14,3 % 85,7 % 17,0 % 83,0 % 

9,024 8,0 % 92,0 % 12,4 % 87,6 % 13,9 % 86,1 % 16,0 % 84,0 % 

9,6 8,1 % 91,9 % 11,9 % 88,1 % 13,4 % 86,6 % 15,5 % 84,5 % 

Table 6 showing optimal allocation for all CRRA-values and investment horizons 

 

All optimizations are static, giving an investment in period 0, with no opportunity for 

alterations of allocations during the investment period. In table 6 we present optimal allocations 

from altering the investment horizon, and the risk aversion coefficients. We simulated optimal 

allocation using investment horizons of 1, 3, 5 and 10-years, corresponding to CRRA-values of 

                                                
18 For this simulation, we experienced some numerical issues with our model. Leaving all terminal values to be 
equal, though the intermediate values were of random characteristics. We changed the normal and shock state 
input data to have equal input. Assuming that all scenarios are equal, we altered the probability matrix to 
 𝑃 = 0 1

1 0, leaving alterations between different states every period. This was done to gain randomly generated 
returns. And to get plausible allocations of assets. 
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1.5, 3.7, 5.9, 8.0, 8.2, 9.024, 9.6. The simulated return from stocks and bonds can be seen in 

table 7. 

 
  1-year 3-year 3-year a 5-year 5-year a 10-year 10-year a 

Stocks 6,64 % 21,80 % 6,79 % 36,88 % 6,48 % 74,31 % 5,71 % 

Bonds 6,78 % 19,95 % 6,25 % 33,15 % 5,89 % 66,10 % 5,21 % 

Table 7 showing returns for all risky asset classes. “a” is annually compounded returns. 

 

The total return from the optimally allocated portfolios is presented in table 8, showing 

returns for all investment horizons and all levels of CRRA. All annual returns are annually 

compounded and do not represent any single year of returns in terms of simulated values. 

 
 CRRA 1-year 3-year 3-year a 5-year 5-year a 10-year 10-year a 

1,5 6,77 % 20,51 % 6,42 % 34,70 % 6,14 % 70,36 % 5,47 % 

3,7 6,77 % 20,30 % 6,35 % 33,95 % 6,02 % 68,34 % 5,34 % 

5,9 6,77 % 20,22 % 6,33 % 33,78 % 5,99 % 67,77 % 5,31 % 

8,0 6,77 % 20,19 % 6,32 % 33,70 % 5,98 % 67,51 % 5,29 % 

8,2 6,77 % 20,19 % 6,32 % 33,68 % 5,98 % 67,49 % 5,29 % 

9,024 6,77 % 20,18 % 6,32 % 33,67 % 5,97 % 67,41 % 5,29 % 

9,6 6,77 % 20,17 % 6,32 % 33,65 % 5,97 % 67,37 % 5,28 % 

Table 8 Showing returns on optimal allocations for all measures of CRRA and investment horizons 

 

 When altering the deposit and lending rates by +/- 1% annually, we simulated keeping 

all initial variables constant gaining results for optimal allocation given CRRA=3.7, and 

investment horizon of 120 periods (10 years). 

 

CRRA=3.7 Stocks Bonds Risk-free 

+1% 14.20% -52.39% 138.19% 

-1% 27.30% 72.70% 0 % 

Table 9 showing optimal allocation after altering in risk-free rates 

 

The results shown in table 9, indicate no change in optimal allocation when decreasing 

the rates by 1% annually. Increasing the annual rates by 1% the results changed indicating an 

optimal allocation of 14.20% in stocks, a short-selling of 52.39% in bonds whilst 138.19% 

should be invested in risk-free assets. As presented in table 10, this allocation would have 
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yielded a return of 69.07% over the course of 10 years, providing an annually compounded 

return of 5.39%.  

 

  10-years 
CRRA 3,7 Regime-allocation  
Risk-free rate Historic +1% 
Annually portfolio return 5,34 % 5,39 % 
Portfolio return 68,34 % 69,07 % 

Table 10 Showing the annual and overall returns for historical and altered risk-free rate 

 

In the final test, we altered the simulation to the use of a single covariance matrix based 

on the full-sample data set. This simulation was conducted for all levels of CRRA and all 

investment horizons. Table 11 shows the allocation for a full-sample covariance matrix 

simulation, stating that 76% should be allocated to stocks and 24% allocated to bonds for the 

10-year period with CRRA of 3.7. 

 
 1 Years  3 Years  5 Years  10 Years  

CRRA Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds 
1,5 123 % -23 % 135 % -35 % 141 % -41 % 129 % -29 % 
3,7 54 % 46 % 59 % 41 % 65 % 35 % 76 % 24 % 
5,9 36 % 64 % 40 % 60 % 43 % 57 % 51 % 49 % 
8 28 % 72 % 30 % 70 % 32 % 68 % 38 % 62 % 

8,2 28 % 72 % 29 % 71 % 32 % 68 % 38 % 62 % 
9,024 25 % 75 % 28 % 72 % 29 % 71 % 34 % 66 % 
9,6 24 % 76 % 26 % 74 % 28 % 72 % 33 % 67 % 

Table 11 shows optimal allocation using a single-covariance matrix based on the full-sample data set. There are no 
constraints on lending 

Table 12 shows the allocated portfolios annual standard deviations calculated using: 

𝜎¢ = £𝑊 X𝜎 X +𝑊¡
X𝜎¡X + 2𝑊 𝑊¡𝐶𝑜𝑣 ,¡ [8] 

Where 𝑊  represents the weight allocated to stocks, 𝑊¡ represents the weight allocated to 

bonds, 𝜎  is the stocks standard deviation, 𝜎¡ is the standard deviation from the bonds, and 

𝐶𝑜𝑣 ,¡ is the covariance between stocks and bonds.  
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 1-year 3-years 5-years 10-years 

CRRA Regime Full-sample Regime Full-sample Regime Full-sample Regime Full-sample 
1,5 4,05 % 18,44 % 5,52 % 20,24 % 6,84 % 21,13 % 8,24 % 19,36 % 
3,7 4,04 % 8,30 % 4,46 % 9,02 % 4,66 % 9,80 % 5,18 % 11,44 % 
5,9 4,04 % 6,00 % 4,22 % 6,41 % 4,34 % 6,77 % 4,57 % 7,84 % 
8 4,04 % 5,07 % 4,16 % 5,25 % 4,22 % 5,52 % 4,36 % 6,20 % 

8,2 4,04 % 5,03 % 4,15 % 5,18 % 4,21 % 5,42 % 4,34 % 6,14 % 
9,024 4,04 % 4,73 % 4,13 % 5,02 % 4,19 % 5,20 % 4,29 % 5,73 % 
9,6 4,04 % 4,65 % 4,11 % 4,80 % 4,17 % 5,00 % 4,26 % 5,54 % 

Table 12 Showing annual standard deviations for portfolios with full-sample and regime covariance matrices 

 

Discussion 

Looking at the optimal allocations, we found substantial differences when isolating 

high-volatility periods, compared to a full sample simulation. The difference can be seen both 

in terms of allocation and returns. We observe through table 13 that for all scenarios there is no 

investment allocated to the risk-free asset. This indicates that the risk-free asset provides subpar 

returns, compared to both risky assets, even when the regime-switching is initiated.  

 
 Separate covariance matrices Full-sample historic mean 

CRRA Stocks Bonds Stocks Bonds 
1,5 51.88 % 48.12 % 129.30 % -29.30 % 
3,7 27.28 % 72.72 % 76.22 % 23.78 % 
5,9 20.30 % 79.70 % 50.80 % 49.20 % 
8 17.16 % 82.84 % 38.16 % 61.84 % 

8,2 16.96 % 83.04 % 37.68 % 62.32 % 
9,024 16.01 % 83.99 % 34.21 % 65.79 % 
9,6 15.49 % 84.51 % 32.62 % 67.38 % 

Table 13 Showing allocations coming from the full-sample matrix and the regime-switching model for a 10-year investment 
horizon 

As we see in table 14, a CRRA-level of 3.7, an investment horizon of 10-years, and a 

full-sample covariance matrix the investor should optimally invest 76.2% in stocks and 23.8% 

in bonds, yielding a portfolio return of 6.25% annually.19 In comparison through isolated 

covariance-matrices, the allocations are much more conservative with 27.3% in stocks and 

72.7% in bonds yielding an annual return of 5.34%. These findings correspond with those of 

Chow et al. (1999) who stated that using separate covariance-matrices would provide much 

more conservative allocations and lower returns. The overall portfolio risk – given these 

                                                
19 All returns, allocations and descriptive results are presented in appendix A 
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allocations – measures 5.18% annually for separate covariance-matrices and 11.44% using a 

full-sample covariance-matrix, as can be seen in table 11. Showing almost a twice as high 

standard deviation with an increase of only .22% in annual returns, presented in table 14.  

 10-years 

CRRA 3,7 Regime-switching Full-sample 
Annually portfolio return 5,34 % 5,56 % 

Table 14 Showing annual returns for the regime- and full-sample covariance matrices 

 

These findings give support to the theory that a covariance-matrix extracted from high-

volatility events better represents the risks associated with turbulent periods compared to a full-

sample covariance matrix, providing portfolios with lower risk, with smaller deviations in terms 

of return.  

 We observed through table 11 that there were 0% allocated to risk-free investments, 

indicating that stocks and bonds outperformed the risk-adjusted return from risk-free assets 

through all simulated scenarios. This made us question whether or not our historical measures 

were correct. We saw that increasing the annual rates by 1%, allocations changed (table 9). Our 

model optimally suggested a short-selling of 52.39% in bonds, a 14.20% investment in stocks, 

and 138.19% allocated to risk-free assets. This allocation (see table 10) would return 0.73% 

more over the course of 10 years. Recent years have provided unusually low returns for deposit 

rates, raising a question of our calculations. When comparing our findings to the studies of Das 

and Uppal (2004), we saw that our results coincided. They found through their study of jump-

diffusion between international equity indexes, that 0% became the optimal allocation to risk-

free assets We can argue that interest rates are forecasted to increase in the foreseeable future, 

moving towards our historical measures. 

 Looking at the results of table 6, we see that allocations to high-risk assets increase as 

investment horizon increases. For an investor with CRRA-levels of 3.7, the investor should 

optimally invest 7.2% in stocks and 92.8% in bonds for the 1-year investment period. As time 

increases, the investor should increase the investment to higher risk assets leaving an allocation 

of 27.3% in higher risk assets with a 10-year horizon. These findings are consistent through all 

simulations20, and are strongly in support of time diversification, presented by Kritzman and 

Ritz (1998), indicating some form of mean-reversion tendencies. Implying that throughout the 

investment period, the assets will both increase and decrease, leaving time to take some of the 

                                                
20 For the full-sample covariance simulations the CRRA-level of 1.5 gave some results where the increase is 
consistent through all increases except for the increase from 5 to 10 years. 
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risk. Showing indications that high-volatility periods have occurred, supporting that time 

diversification is present. 

 We find that through the optimization, the allocation to risky assets seems reasonable. 

Pointing in the direction that the levels of risk aversion found by Aarbu and Schroyen (2009) 

might be consistent with the average Norwegian investor, as our findings show no signs that 

the average investor would take on high levels of risk. These implications follow the findings 

from using a full-sample covariance matrix, where – though riskier – the investor allocates 

within reasonable limits.  

 Some of our simulations showed suggestions for leveraging the investment. When using 

Bernoulli´s utility theory (Bernoulli, 1954) one would assume that all investors are rational and 

utility maximizing, and would be willing to leverage investments. Analyzing in light of the 

prospect theory (Kahneman & Tversky, 1992), investors would be seen as loss averse and not 

only risk-averse – per se. This would most likely have given different results, especially in 

terms of leveraging the investment, and risk preferences, probably leading to more conservative 

investments. 

 A result that for us became somewhat unclear was the allocation for the 1-year horizon 

using separate covariance-matrices, which provided an increase in high-risk assets as CRRA-

levels increased. This indicates increased risk as investors become more risk-averse. The 

rational explanation could be that there is some form of diversification effect as bonds and 

stocks do not correlate perfectly. 

 

 Conclusion 

We analyzed historic abilities of turbulence and used measures of financial risk and volatility 

to create separate covariance-matrices based on volatility-return performance. Using the 

derived data, we performed Monte Carlo simulations producing time-series of returns for 

different risk regimes, isolating the high-volatility scenario impact. Using the derived data, we 

conducted a Markov Regime Switching model generating possibilities of entering high-

volatility scenarios over the course of the investment period. The new simulated time series of 

returns including high-volatility scenarios gave intel used to create optimal allocations of risky 

assets, maximizing expected utility through measures of CRRA. Our results showed portfolios 

heavily weighted in bonds, with heavier weights in stocks as the investment horizon increased. 

These findings showed heavy support for the theory of time diversification stating that over 

time risky assets will both increase and decrease, leaving time to take some of the risk. Further, 
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our findings showed that the implementation of separate covariance-matrices gave vastly 

different investment policies, producing much more conservative investments when isolating 

high-volatility periods, gaining less returns, but with substantially lower risk. 

 Our simulation used a two-regime switching model, based on the analysis that the main 

events affected both assets through the stock market. Our “shock-states” are transitory, making 

the “normal-state” based on regular noise. By increasing the number of “state-variables”, based 

on analysis of e.g. the bond market, risk-free rates, interest-rate curves, one might capture the 

grand effects of events happening in the overall market to an even greater extent.  

Further, analyzing the persistence and duration of shocks might increase the credibility 

linked to the simulation, providing even more accurate analysis of the impact of shocks. When 

enhancing the impact of high-volatility regimes, one might assume higher tail-risk, as volatility 

has a bigger impact on the return-series. Our findings remain premised on our assumptions of 

CRRA-levels in investors. There is a growing acceptance for the notion that investor´s utility-

curve are S-shaped and better represented by this bilinear curve. This notion indicates that 

investors are more in the line of loss averse and not only risk averse. The prospect theory argues 

that investor implements certain “frames” to their decision making, disliking risk, they would 

– during high-volatility periods – alter their investment being more loss averse during some 

periods. We acknowledge these findings as more relevant used with dynamic investments, 

allowing investors to “re-optimize” at each change of regime.  

 Increasing the number of states, analyzing the persistence of shocks and leaving 

investors with the ability to re-optimize allocations as events occur, might provide a more 

accurate model linked to the loss-averse aspect of the prospect theory. We leave this for further 

studies.  
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APPENDIX A – Showing all simulated output data. 
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Appendix B 

Simulation model ~ Code 
 
format long 
  
%% Global values 
  
numberOfDraws           = 120; %Sets number of simulated periods 
numberOfSimulations     = 100000; %Sets number of simulations 
  
  
%% Monte Carlo normal state 
  
expectedReturn          = [1.05  0.46]/100; %Historic input data 
standardDeviations      = [2.87  1.04]/100; %Historic input data 
correlationMatrix       = [1    0.1269      %Historic input data 
                           0.1269    1]; 
  
  
monteCarloNormal = MonteCarloCorrelated (expectedReturn, ... 
standardDeviations, correlationMatrix, numberOfDraws, numberOfSimulations); 
  
expectedReturn          = [-3.02   1.32]/100; %Historic input data 
standardDeviations      = [10.42   2.06]/100; %Historic input data 
correlationMatrix       = [1     -0.1306      %Historic input data 
                           -0.1306     1]; 
  
monteCarloShock = MonteCarloCorrelated (expectedReturn, ... 
standardDeviations, correlationMatrix, numberOfDraws, numberOfSimulations); 
  
  
%% Markov Chain 
  
probabilityMatrix = [... %Historic calculated probability 
    0.9330 0.0670 
    0.5800 0.4200 
   ]; 
%probabilityMatrix = [... %Alternative Probability for sensitivity 
 %   0.0000 1.0000 
  %  1.0000 0.0000 
   % ]; 
  
markovChains = zeros(numberOfSimulations, numberOfDraws); 
for i=1:numberOfSimulations 
    markovChains(i,1:end) = ((MarkovChain(probabilityMatrix, 
numberOfDraws)).'); 
end 
  
%% Link chain to monte carlo 
values = {monteCarloNormal, monteCarloShock}; 
markovValues = CorrelateMarkovToValues(values, markovChains); 
  
%% Find average end value 
  
  
averages  = AverageSimulatedReturn(markovValues); 
assetMean = mean(averages);  
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%% Average standard deviation 
  
stdDeviations = StandardDeviation(markovValues); 
stdDeviationsAverages = AverageSimulatedReturn(stdDeviations); 
assetVar = mean(stdDeviationsAverages); 
  
%% Asset Covariance 
  
assetCovar = AvgAssetCovar(markovValues); 
  
%% CRRA Optimization 
  
sumMarkov       = sum(markovValues, 1); 
sumMarkovValues = squeeze(sumMarkov)'; 
SCENARIOTABELL        = sumMarkovValues; 
RISKAVERSIONPARAMETER = 1.5; % Sets the degree of risk aversion in CRRA 
SCENARIONUMBER        = numberOfSimulations; % Sets the number of scenarios 
%used for bond and stock returns 
RISKFREERATE          = 0.0428; % Sets the return on the risk-free asset  
%for the total period 
LENDINGRATE           = 0.0759; % Sets the ledning rate for the total  
%period 
INITIALWEALTH         = 1; % Sets initial wealth - high value (>>1) will  
%create numerical problems! 
  
[wts,utility,eksit,out] = maxCRRAutility(INITIALWEALTH, SCENARIONUMBER, ... 
sumMarkovValues, RISKFREERATE, LENDINGRATE, RISKAVERSIONPARAMETER) 
  
 
Appendix B1 
Monte Carlo for correlated variables 

 
function [... 
    returnStockBonds... %   
    ] =...  
MonteCarloCorrelated(... 
    expectedReturn,... % Historically estimated 
    standardDeviations,... % Historically estimated 
    correlationMatrix,... % Historically estimated 
    numberOfDraws,... % Pre-determined 
    numberOfSimulations... % Pre-determined 
    ) 
%MONTECARLOCORRELATED Draw random samples based on correlation matrix 
  
returnIntervals = 1; 
  
expectedCovariance  = corr2cov(standardDeviations, correlationMatrix); 
  
rng('shuffle'); % set random number generator, default to get same result  
%every time 
returnStockBonds    = portsim (expectedReturn, expectedCovariance, ... 
numberOfDraws,returnIntervals, numberOfSimulations, 'Exact'); 
  
  
  
end  
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Appendix B2 
Markov Chain Monte Carlo 

 
function [dmarkovChain] = MarkovChain(... 
    probabilityMatrix,... 
    numberOfDraws) 
%MarkovChain Randomly drawn path 
  
  
mc = dtmc(probabilityMatrix); 
dmarkovChain = simulate(mc, numberOfDraws); 
dmarkovChain = dmarkovChain (2:end); 
% mc = dtmc(probabilityMatrix,'StateNames',arrayOfStateNames); 
  
end 
 
Appendix B3 
Correlate Markov Chain to Random values 
function [probabilityChain] = CorrelateMarkovToValues(... 
                                  values, ... % List of data matrices, time 
                                  ...% in rows {normal, shock} 
                                  ...% These must be 3 dimensional...   
                                  ...% 
                                  MarkovChain ... % N possible states 
                              ) 
numberOfMatrixRows = size(values{1}(1:end,1,1), 1); 
numberOfMatrixColumns = size(values{1}(1,:,1), 2); 
numberOfMatrixLayers = size(values{1}(1,1,1:end), 3); % simulations 
numberOfSimulations = numberOfMatrixLayers; 
numberOfDataSets = length(values); 
  
probabilityChain = zeros(numberOfMatrixRows, numberOfMatrixColumns,...  
    numberOfMatrixLayers); 
  
for simulation=1:numberOfSimulations; 
    for timestep=1:numberOfMatrixRows; 
        for dataType=1:numberOfMatrixColumns 
            markovState = MarkovChain(simulation,  timestep); 
            probabilityChain(timestep,dataType,simulation) =... 
                values{markovState}(timestep,dataType,simulation); 
        end 
    end 
end 
  
  
  
end 
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Appendix B4 
Calculate average of simulated values 
 
function [averages] = AverageSimulatedReturn(simulatedValues) 
  
%AverageSimulatedReturn Calculated average return from simulated variables 
% Kolonne 1 og 2 er Stocks og Bonds. Tidsserie fra rader. Data stammer fra 
% normal og sjokktilstand, antall simuleringer langs 3. akse. 
  
matrixSize  = size(simulatedValues); 
summations  = zeros(matrixSize(2), matrixSize(3));  
for simulation = 1:matrixSize(3) 
    for type = 1:matrixSize(2) 
        summations(type, simulation) = sum(simulatedValues(:,type, 
simulation)); 
    end 
end 
  
averages = zeros(matrixSize(2),1); 
  
for type = 1:matrixSize(2) 
    averages(type) = sum(summations(type,:))/ matrixSize(3);  
end 
  
end 
 

Appendix B5 
Calculate asset covariance from average values 
function [covarM] = AvgAssetCovar( ...    
                                                markovValues) 
%UNTITLED3 Summary of this function goes here 
%   Detailed explanation goes here 
  
[rows, cols, numberOfSimulations] = size(markovValues); 
  
assetCov3d = zeros(cols,cols, numberOfSimulations); 
for simulation = 1:numberOfSimulations 
    assetCov3d(:,:, simulation) = cov(markovValues(:,:,simulation)); 
end 
  
covarM = zeros(cols, cols); 
for row = 1:cols 
    for col=1:cols 
        covarM(row, col) = sum(assetCov3d(row, col, 
:))/numberOfSimulations; 
    end 
end 
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Appendix B6 
Optimization function 
function 
[x,fval,exitflag,output]=maxCRRAutility(initialwealth,scenarionumber,scenar
iotable,riskfreereturn,lendingrate,riskaversionparameter) 
fun=@(x) -
CRRAexpectedutility(initialwealth,x(1),x(2),scenariotable,scenarionumber,ri
skfreereturn,lendingrate,riskaversionparameter); 
x0=[0.5,0.5]; 
options = optimset('TolFun',0.0000001,'TolX',0.0000001); 
[x,fval,exitflag,output] = fminsearch(fun,x0,options); 
end 
 
 

 

 


