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Abstract: Shock-wave propagation through obstacles or internal ducts involves complex shock
dynamics, shock-wave shear layer interactions and shock-wave boundary layer interactions arising
from the associated diffraction phenomenon. This work addresses the applicability and effectiveness
of the high-order numerical scheme for such complex viscous compressible flows. An explicit
Discontinuous Spectral Element Method (DSEM) equipped with entropy-generation-based artificial
viscosity method was used to solve compressible Navier–Stokes system of equations for this purpose.
The shock-dynamics and viscous interactions associated with a planar moving shock-wave through
a double-bend duct were resolved by two-dimensional numerical simulations. The shock-wave
diffraction patterns, the large-scale structures of the shock-wave-turbulence interactions, agree very
well with previous experimental findings. For shock-wave Mach number Ms = 1.3466 and reference
Reynolds number Ref = 106, the predicted pressure signal at the exit section of the duct is in
accordance with the literature. The attenuation in terms of overpressure for Ms = 1.53 is found to be
≈0.51. Furthermore, the effect of reference Reynolds number is studied to address the importance of
viscous interactions. The shock-shear layer and shock-boundary layer dynamics strongly depend on
the Ref while the principal shock-wave patterns are generally independent of Ref.

Keywords: shock diffraction; shock attenuation; entropy generation; high-order numerical scheme;
DSEM; artificial viscosity

1. Introduction

Shock/blast wave propagation involves complex wave interactions with the media and
surface boundaries owing to several phenomena such as shock reflection, shock focusing, shock
diffraction and shock-turbulence interaction. Understanding of these phenomena is crucial for a
wide range of engineering applications in bio-medicine, disaster management, detonation, mining,
aviation/transport industry and others. Knowledge of such complex dynamics is integral part of
the design and optimization of devices for shock-wave lithotripsy, shock/blast-wave attenuation,
suppression of tunnel sonic boom, etc. The existence of a wide range of flow scales together with
unsteady flow discontinuities and the coupled shock-turbulence interactions make it a challenging
and active research field. Numerical prediction is a cost effective option compared to its experimental
counterpart accounting for several restrictions. However, resolving these unsteady dynamics by
numerical techniques demands development of high-fidelity numerical tools. The inspiration behind
this work is particularly related to the applicability and effectivity of the high-order numerical tools
resolving flow dynamics associated with shock-wave propagation and attenuation.

The literature shows various approaches to attenuate shock-waves, e.g., foams, textiles, porous
materials, granular filters, metallic grids, perforated plates/walls, rigid barriers, branched/bend duct,
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duct with rough walls, etc., as mentioned in [1]. In this regard, a comprehensive review of various
methods to attenuate shock/blast waves was reported by Igra et al. [2] addressing both experimental
and numerical approaches. Essentially, shock-wave attenuation by geometrical means such as rigid
barriers or sudden changes in the flow geometries is governed by compression, rarefaction regions
arising from shock diffraction and intense shock-turbulence interactions [1–11]. These involve multiple
wave interactions, reflecting from surrounding boundaries and complex shock-shock, shock-vortex
and shock-boundary layer interactions. The dynamics may involve transition between regular
reflection (RR) and Mach reflection (MR) with triple point. However, depending upon the geometrical
complexities and flow conditions, there exists numerous type of irregular reflections [12] and the
evolution may consists of complex shock systems with one or more triple point [13,14].

Owing to the enormous advent of computational power and numerical methodologies in recent
time, detailed flow dynamics can be retrieved via high-resolution numerical approach compared to
experimental measurements. The numerical prediction of complex viscous shocked flow requires
stable, high-order numerical schemes to capture shocks as well wide range of flow scales. Often,
a competing opposing goal is to be optimized by numerical tools to sustain the accuracy and stability
of the scheme. For example, high-order numerical schemes need the addition of dissipation to reduce
inherent oscillatory behavior near discontinuities and at the same time one has to reduce numerical
dissipation for resolving fine turbulent scales. Successful utilization of explicit high-order Weighted
Essentially Non-oscillatory (WENO) has been reported to resolve unsteady shock dynamics related
to shock diffraction, shock-reflection and shock focusing [1,5,13–17] problems. On the other hand,
high-order Discontinuous Galerkin Methods (DGM) or high-order Discontinuous Spectral Element
Methods (DSEM) are comparatively more flexible dealing with complex flow geometries exploiting
unstructured mesh-based formulation. Discontinuous spectral element methods (DSEM) can be
considered as a nodal DG method [18–22], belonging to the class of weighted residual methods having
Dirac delta function as a test function. Spectral element based studies cover a wide range of applications
areas related to smooth, non-smooth and complex fluid flow problems [23–33]. Nevertheless, dealing
with Gibb’s oscillations for non-smooth fluid flow problems requires implantation of suitable slope
limiters or artificial viscosity based approaches. In this regard, Chaudhuri et al. [34] reported the stable
shock capturing capabilities of explicit high-order DSEM in conjunction with entropy-generation-based
artificial viscosity (AV) method. Although inviscid simulations quite accurately predict the shock
wave diffraction wave patterns over different geometrical shapes, it is evident that viscous effects
are important for resolving long-time behavior of shock-vortex evolution, shock-shear layer and
shock-boundary layer interactions [35–41]. These issues are also discussed in the recent works [42,43]
using high-order DSEM with AV method.

In their works, Igra et al. studied shock propagation and diffraction in ducts with cavity [44,45]
and in branched ducts [46]. The effect of attenuation of these configurations compared to uniform
cross-section duct is arising from the multiple shock-wave reflections during the propagation of
the moving shock. Numerical predictions solving inviscid Euler equations of these configurations
agree well with the experimental findings related to general wave patterns and pressure profiles.
Subsequently, Biamino et al. investigated the effect of the length of the branched segment revealing the
fact that it is questionable to achieve any protection at the end of a branched duct [47]. Nevertheless,
favorable shock attenuation by employing abrupt changes in tunnel geometries was reported by
Igra et al. [48], highlighting the shock attenuation associated with smooth-walled, rough-walled
double-bend ducts. In addition, a detailed experimental findings with respect to varying volume of
the double-bend ducts are presented in their work.

The motivation of the present work is to resolve such complex flow dynamics with high-fidelity
viscous simulations, which have not been reported in the literature to the best of our knowledge.
We aim to present an analysis of shock propagation through the double-bend duct addressing flow
behavior with varying reference flow Reynolds number Ref. The Mss (shock-wave Mach numbers) are
chosen similar to those presented in the experimental work of Igra et al. [48]. A high-order artificial
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viscosity based DSEM [34] is used for this purpose. The flow analysis sheds light on numerical
perspective about the robustness and accuracy of the scheme, as well as the shock diffraction and shock
attenuation aspects in double-bend ducts. The paper is organized as follows. A brief description of the
governing equations followed by the numerical procedure is given in Section 2. The problem setup is
illustrated in the Section 3. The flow analysis and the comparison of the results with the experimental
are discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Governing Equations & Numerical Approach

In this section, we briefly present the governing equations and numerical approach. Detail of the
numerical procedure is reported in [34] and is not repeated here for brevity.

2.1. Governing Equations

Gaseous system involving moving shock-wave is governed by the compressible Navier–Stokes
(NS) system of equations. The non-dimensional form of the governing equations with artificial transfer
coefficients is given by,

∂U
∂t

+∇ · F a(U)− 1
Ref
∇ · Fv(U) = 0, (1)

and

U =

 ρ

ρv
ρEt

 , F a(U) =

 ρv
ρvv + pδ

(ρEtv + pδ · v)

 , Fv(U) =

 0
τ

τ · v + κeff
(γ−1)M2

f Prf
∇T

 ,

where U is the conservative solution vector, and F a and Fv are the inviscid and viscous flux,
respectively. ρ is the density, v is the velocity vector, and Et is the total internal energy. p is the
static pressure and T is the temperature. γ is the ratio of specific heats. δ is the Kronecker delta
tensor. Here, Mf, Ref and Prf are the reference Mach number, Reynolds number, and Prandtl number,
respectively.

Assuming Stokes’ hypothesis with zero bulk viscosity, the viscous shear stress tensor can be

written as τ = 2µeffS−
2
3

µeff(∇ · v)δ, where µeff = µhRef + µ is the effective dynamic viscosity and

S =
1
2

[
(∇v)T +∇v

]
is the symmetric part of the velocity gradient tensor. The superscript “T”

designates a transpose. Similarly, κeff = κhRef + κ is the effective thermal conductivity. Note that µh
and κh are yet to be determined artificial transfer coefficients. For NS system of equations, µ = κ = 1.
In this study, γ = 1.4, Mf = 1 and Prf = 0.72 were prescribed. The ideal gas equation of state,
p = ρT/(γM2

f ), closes Equation (1).

2.2. Numerical Approach

We used the staggered Chebyshev collocation method to approximate the compressible
Navier–Stokes system of equations together with the explicit marching algorithm in time.
In three-dimensional nodal collocation formulation of DSEM, the physical domain is subdivided
with hexahedral physical elements. An iso-parametric transformation is then used to map each
physical element to a unit cubic computational element in the computational domain. This reduces
to quadrilateral physical elements and square computational elements in the two-dimensional
formulation. The solution vector is collocated at the Chebyshev–Gauss quadrature points and the fluxes
are collocated at the Chebyshev–Lobatto quadrature points. The detail of the discretization procedure
can be found in [19–22]. Several methodologies can be adopted to suppress the Gibb’s oscillation
near the flow discontinuities. For this, a cost effective approach is the usage of AV compared to slope
limiters. A short review of different AV approaches in conjunction with high-order methods is reported
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in [34]. The basic idea of an AV method is to explicitly add even-order dissipation term to stabilize the
numerical scheme. Nevertheless, this method requires to define and assign arbitrary model constants
as flow-dependent tuning parameters to achieve optimal solution. Additionally, time step restriction
arising from artificial viscous terms should also be taken care of. We used entropy-generation-based
AV coefficients (µh and κh) and set a suitable upper bound of these coefficients to judicially address
these issues. Here, we present, again, a very brief account of the method of calculation of µh and κh to
facilitate the understanding the essential features of the numerical procedure.

We consider the non-negative entropy generation terms of the entropy conservation equation
in-order to scale the AV coefficients. The artificial momentum and thermal conductivity are scaled with
the viscous and conductive, entropy generating terms Φ and Γ, respectively. In non-dimensional form,

this yields the following expression for the artificial viscosity coefficients: µh = Cµ
ρ(∆h)2

||ρ s− ρ s||∞

[
Φ
T

]
,

and κh = Cκ
ρ(∆h)2

||ρ s− ρ s||∞

[
1

Prf(γ− 1)M2
f

Γ
T

]
, where Cµ and Cκ are model parameters, ∆h is the mesh

size, ρ s =
ρ

γ(γ− 1)M2
f

ln
(

p
ργ

)
and ρ s is the spatial average of ρ s. Here, ||ρ s− ρ s||∞ is the globally

computed supremum based on the global average entropy. The artificial viscosity coefficients defined
above ensure the positivity (thus dissipative behavior) and µh and κh scale with the grid spacing and
vanish as ∆h→ 0.

We further used a shock sensor θ [49] to control the artificial viscosity coefficients, so that the
modified coefficients can be expressed as µhθH(−∇ · v), and κhθ. This reduces the artificial dissipation
in rotation-dominated regions of the flow-field. The purpose of the Heaviside functionH(−∇ · v) is to
ensure that the dissipation is small in regions of isentropic expansion fans and contact discontinuities.
The coefficients are kept below an upper bound so that the inviscid time step ∆tinv = CFLinv∆h/(|v|+√

T), is smaller than the viscous time step. From this constraint, the upper bound of the artificial
coefficients becomes µh,m = Cmρ∆h(|v|+

√
T), where Cm ∝ CFLvis/CFLinv represents another model

parameter. Note that κh is also kept bounded by the µh,m. Interested readers are suggested to find the
detailed description of the overall scheme in [34].

3. Problem Setup

The geometry of the double-bend duct configuration is taken similar to that presented in the
experimental and inviscid study of Igra et al. [48]. Figure 1 shows the setup for the non-dimensional
physical domain in the two-dimensional (2D) x− y plane. A shock wave with a suitable Mach number
Ms is allowed to pass through the duct geometry. The initial shock location is at xs = 0.75 and the
conditions are prescribed using the Rankine–Hugoniot relations for stagnant state (1) and shocked gas
state (2). The left and right boundaries are set by the initial states. The top and bottom boundaries are
assigned with no-slip wall conditions. The reference state φf, is taken as the stagnant state conditions
φ1, to satisfy Mf = 1 and the reference length is taken as the height of the entrance of the double-bend
duct in the experiment [48] Lf = H. The length of volume inside the double-bend duct is L and the
chosen geometry satisfies L/H = 16 (see Figure 1). Table 1 summarizes the flow properties of stagnant
state (1) and shocked gas state (2) for respective values of Ms.

In total, 68,000 P3 (fourth order) elements with 1.088× 106 degrees of freedom were considered in
the domain. In the present study, the value of the CFL number was taken as 0.9 and the model constants
for artificial viscosity were set as: (Cµ, Cκ , Cm) = (0.5, 0.25, 0.15), unless stated otherwise. Additionally,
to enhance the stability of the method, we used adaptive spectral filter with filter order of 16 near
the regions where max(µh, κh) attains its local upper bound and a filter order of 64 otherwise [34].
The simulations were performed on Supermicro X9DRT compute nodes (dual Intel E5-2670). A typical
test case utilized 18 nodes consuming about 3000 CPU hours.
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Figure 1. Schematic description of the double-bend duct together with density contours at t = 7.2.
The black vertical line at x = 0.75 shows the initial shock position at the inlet section (top-left) .
Note that the ratio of length-to-height of the volume inside the double-bend duct is L/H = 16.

Table 1. Ratio of the flow properties for different Ms.

Ms P2/P1 ρ2/ρ1 T2/T1 M2

1.3466 1.949 1.597 1.220 0.456
1.53 2.564 1.913 1.340 0.631

4. Results and Discussion

We simulated several cases by setting Ms = 1.3466 and Ms = 1.53 with Ref = 103, 104, 105 and
106. Simulations were performed until non-dimensional time t = 15. We first discuss the basic flow
features for the case (Ms = 1.53, Ref = 106) and then subsequently present the comparison for several
other cases towards the shock attenuation aspect in double-bend ducts.

4.1. General Flow Evolution

The moving shock-wave after the passage through the inlet section gets diffracted over the top
left corner of the domain. It can be realized that the viscous interactions are important to account
the shock-wave diffraction over such 90° convex corners. This issue has been discussed with respect
to DSEM-AV based numerical scheme in [42]. The flow evolution here, in the double-bend duct,
remains similar to that of 90° convex corner until the upward moving reflected shock-wave from
the bottom-wall interacts with the diffracted flow field around the corner (see density contour at
t = 7.2 in Figure 1). In addition, the shear layer interacts with the boundary layer at the top
wall through expansion and secondary shock-wave. The density contours in Figure 2 illustrate
the subsequent complex flow evolution with multiple transverse wave interactions. The shear layer
gets intensely perturbed by the transverse reflected shock-waves, yielding a complex shock-vortex
interaction. The unstable shear layer is associated with vortex shedding and vortices become deformed
and convected forward in the flow-field. This flow dynamics is also illustrated by the numerical
interferograms computed from the density field. The interferograms were computed using the

expression: I = β

[
1 + cos

(
2π

ρ− ρ1

∆ρ

)]
. Here, ∆ρ = (ρmax − ρmin)/N, and N is the number

of interferential fringes. We chose β = 1, as recommended in [50], and N = 10 to estimate I .
The overall shock-wave patterns, shock-boundary layer interaction, shock-shear layer interactions and
the secondary viscous vortex interactions at the left vertical wall interacting at the convex corner are
clearly visible in these interferograms. Note that the simulation resolved the RR→MR transition of
the shock-wave reflection at the bottom wall (see contours at t = 8.4 for RR and at t = 12.4 for MR).
Contours at t = 14 reveal the diffraction at the bottom right corner in the flow domain near the end
of the duct. The corresponding temperature and Mach contours are shown in Figure 3. The shocked
state of the moving shock is associated the subsonic flow with Mach number is ≈ 0.63. The red-yellow
colored patches in the Mach number contours show the supersonic states in the flow-field at these time
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instants. The flow again becomes subsonic owing to the secondary shock interaction with the boundary
layer at the top surface. The expansion region of the domain acts similar to that of a shock-wave
propagation in a nozzle.

Figure 2. Density contours (left column) and numerical interferograms (right column) at t = 8.4, 12.4,
and 14 (from top to bottom).

Figure 3. Temperature contours (left column) and Mach number contours (right column) at t = 8.4, 12.4,
and 14 (from top to bottom).

4.2. Comparison with Experimental Results

We present the time snaps of the flow evolution for the case (Ms = 1.53, Ref = 106), to compare
with the experimental work of Igra et al. [48]. The numerical Schlieren pictures were computed

from the density field using the expression: S = β exp
(
−λ

|∇ρ|
|∇ρ|max

)
. We chose β = 1 and λ = 15,

as recommended in [50], to estimate S . The Schlieren pictures shown in Figure 4 can be compared
with the experimental shadowgraphs [48]. The shock-wave patterns from the present simulation
are in excellent agreement with the experiment. These resemble to the experimental Shadowgraphs
at 220 µs, 260 µs, 300 µs, 380 µs, 400 µs and 420 µs (see Figure 15k,m,o,s,t,u of Igra et al. [48]).
The predicted large scale flow structures in rotational dominated regions, and the shear layer dynamics
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are in very good agreement with the experiment. The global structures of the shock-wave boundary
layer interactions at the top wall is also in accordance with the experimental structures. Note that
the initial location of the shock-wave for the experimental findings are not known. The flow-field
time snaps of the simulation are not exactly at the same instant. The numerical tool equipped with
entropy generation based AV together with adaptive spectral filter clearly provides stable and accurate

prediction of the flow dynamics. The strain-enstrophy angle can be defined as Ψ = tan−1 S · S
A · A .

where, S = 1
2
[
(∇v)T +∇v

]
and A = 1

2
[
∇v− (∇v)T]. The contours of Ψ illustrated in Figure 5 at

the interaction zone of window section (0.8 ≤ x ≤ 9,−2.5 ≤ y ≤ 1). The patches of Ψ contours below
45° signify the rotation dominated regions in the domain. For a 2D flow field, the two eigenvalues
of the velocity gradient tensor (∇v)T can be expressed as λ1 = λr1 + iλi1 and λ2 = λr2 + iλi2, where
i2 = −1. The instantaneous contours of these eigenvalues are shown in Figure 6 at different time
instants. The non-zero high values of λi1 are associated with the vortex core regions of shear layer and
in the boundary layer regions. From the contours of λr1, it can be seen that the high values are adhering
to the outer edges of vortices in the shear layer. In addition, in the boundary layer regions, its values
are lower where λi1 assumes higher values. On the other hand, λr2 shows larger values near high
dilatation shock regions. These characteristics are similar to that reported in [42]. Nevertheless, it can
be realized that three-dimensional (3D) simulations are necessary to further resolve the fine turbulent
scales of the flow evolution. An insightful attempt resolving such 3D structures was presented by
Chaudhuri et al. [17] via large eddy simulation.

(a) t = 7.2 (b) t = 8.4

(c) t = 10 (d) t = 12.4

(e) t = 13.2 (f) t = 14

Figure 4. Numerical Schlieren pictures at different time instants.

Figure 5. Contours of Ψ for (Ms = 1.53, Ref = 106) at t = 8.4, 12.4, and 14 from left to right.
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Figure 6. Contours of real and imaginary part of the eigenvalues of the velocity gradient tensor for
(Ms = 1.53, Ref = 106): (Top row) λi1; (middle row) λr1; and (bottom row) λr2. The contours are at
t = 8.4, 12.4, and 14 from left to right.

4.3. Shock-Wave Attenuation and Effect of Ref

In the review by Igra et al. [2], it is reported that the height of the physical domain is H = 60 mm.
The experimental condition of the stagnant state is P1 = 0.987 bar, T1 = 23.4 °C for Ms = 1.3466
and P1 = 0.982 bar, T1 = 23.7 °C for Ms = 1.53 [48]. These give rise to a reference Reynolds number
in the range of ≈ 106, based on the length parameter H and the speed of sound at stagnant state.
We performed simulations for both Ms = 1.3466 and Ms = 1.53 with varying Ref from 103 to 106.
For Ref = 103, the model constants for artificial viscosity were set as: (Cµ, Cκ , Cm) = (0.2, 0.2, 0.1) and
the model constants for remaining cases were assigned to the values mentioned in Section 3.

Figure 7 shows the numerical Schlieren pictures for various test cases at t = 14. At this time
instant, for Ms = 1.3466, the incident shock-wave reaches near the right bottom corner of the duct
while, for Ms = 1.53, it enters the exit section of the domain, after experiencing the second diffraction
at this corner of the domain. The basic shock-wave patterns remain unaffected with the variation of
Ref. However, the incident shock wave is lagging behind relatively for Ref = 103 compared to the
higher Refs for both Mss. This effect is larger for higher Ms. For each Ms, the shock-wave interaction
with the main vortex and large scale structures of the shear layer are very much identical for Ref = 106

and 105. Evidently, dominant viscous effects on the shear layer structures and vortex shedding can be
clearly seen for lower Refs. The shear layer becomes stable for Ref = 103.
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Figure 7. Comparison of numerical Schlieren pictures at t = 14 for Ms = 1.3466 (left column) and
Ms = 1.53 (right column) with Ref = 103, 104, 105, and 106 (from top to bottom).

The entropy generation based AV methodology used in this study is designed to add optimal
dissipations to get stable solution. Figure 8 depicts the representative contours of µh. Note that the
intense shock regions of wave patterns are highlighted by the non-zero values of µh. The contours of
the ratio µh/µh,m also show that only few small patches of region are associated with values close to

unity. The entropy generation can be expresses as GS = GΦ + GΓ, where GΦ =
1

Ref

[
Φ
T

]
is related to

viscous contribution and GΓ =
1

RefPrf(γ− 1)M2
f

[
Γ
T

]
is related to thermal contribution (see details of

the entropy transport equation in [34]). Figure 9 illustrates the time evolution of area weighted average

(defined as 〈ψ〉 =
∫

ψdA∫
dA

) of these generation terms. This is consistent with the evolution of estimated

〈µh〉 and 〈κh〉. Evidently, the values of 〈µh〉 remain higher than 〈κh〉. In addition, note that Cµ = 0.5, is
set higher than Cκ = 0.25 for these cases. It is interesting to compare the entropy generation (GS,eff),
estimated with effective transport coefficients µeff, κeff (see Section 2.1), and the entropy generation
(GS,h), estimated by artificial coefficients µhRef, κhRef. Figure 10 shows the contours of GS,h/GS,eff. It
is clear from these contours that the higher values of the ratio are associated with the shock dominated
regions and these corroborate with the effectiveness of the shock sensor and the dilatation based
Heaviside function for estimating AV coefficients mentioned in Section 2.2.
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Figure 8. Contours of µh (top row) and µh/µh,m (bottom row) at t = 14 for Ref = 106: (left) Ms =

1.3466; and (right) Ms = 1.53.
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〈GS〉,Ms = 1.53
〈GΦ〉,Ms = 1.53
〈GΓ〉,Ms = 1.53
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〈µh〉,Ms = 1.3466
〈κh〉,Ms = 1.3466
〈µh〉,Ms = 1.53
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(a) (b)

Figure 9. Entropy generation and artificial coefficients for Ref = 106: (a) evolution of GS, GΦ, GΓ; and
(b) evolution of µh and κh.

(a) (b)

Figure 10. Contours of GS,h/GS,eff at t = 14 for Ref = 106: (a) Ms = 1.3466; and (b) Ms = 1.53.

The maximum of µh within the computational domain as a function of time is shown in Figure 11
for different cases. Evidently, the maximum values of κh in these cases remain below µh (not shown).
The range of the values of the AV coefficients lies in a similar range of values found in our previous
studies with various applications.
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t
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(a) (b)

Figure 11. Maximum value of µh within the computational domain for various cases: (a) for Ms =

1.3466; and (b) for Ms = 1.53.

We further analyzed the pressure signals at the bottom wall of the double-bend duct for different
cases to highlight the attenuation aspect of the flow configuration. The pressure profiles at the bottom
wall for both Ms = 1.3466 and 1.53 with Ref = 106 are shown in Figure 12. Note that L/H = 16 for
the double-bend duct considered in this study. For Ms = 1.3466, the value of P/P1 predicted from
the present simulation near the exit section of the domain is ≈ 1.5. This value closely matches with
the findings of Igra et al. [48] for this configuration. On the other hand, we observed P/P1 ≈ 1.8 for

Ms = 1.53. The over pressure can be defined as Π =
P− P1

P2 − P1
. The outcomes yield the over pressure

Π ≈ 0.53 for Ms = 1.3466 and Π ≈ 0.51 for Ms = 1.53. Note that, for Ms = 1.53, the pressure signal
also shows the signature of the diffraction from the right bottom corner of the domain. The reflected
shock-wave from that corner interacts with bottom boundary and this is clearly seen in Figure 12
at t ≈ 15 with a second peak of P/P1 ≈ 2. In Figure 13, the effect of low Ref is clearly visible. For
Ref = 103, we observed a shock-wave retardation apart from attenuation. The attenuation features,
however, remain unaffected with low Ref when compared with the higher Ref. The transverse wave
reflection at upstream locations are also evident in these pressure signals. Note that, there exists an
additional hump in pressure signal for the case of Ms = 1.3466. On the other hand, this is similar for
Ms = 1.53 at the early stage, while at the later stage, one can notice other humps in the pressure signals
(see profiles at t = 14, 15). Evidently, these are in accordance with the contours presented in Figure 7.

2 4 6 8 10 12 14 16 18 20
0.8

1
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1.4

1.6
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7.2 8.4 10 11 12.4

13.2
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2 4 6 8 10 12 14 16 18 20
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1
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7.2 8.4 10 11 12.4 13.2 14
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(a) (b)

Figure 12. Bottom wall pressure profiles for Ref = 106 and (a) Ms = 1.3466 and (b) Ms = 1.53 at
different time instants t = 7.2 to t = 15, as labeled in the curves.
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Figure 13. Bottom wall pressure profiles for Ms = 1.3466 (top row), Ms = 1.53 (bottom row) at
t = 13, 14, and 15 (left to right).

5. Conclusions

In this work, we studied the planar shock-wave propagation through a double-bend duct having
L/H = 16 via numerical simulations. The physics of the flow involves complex shock wave dynamics
with shock-wave diffraction and multiple wave interactions together with the shock-shear layer and
shock-boundary layer interactions. A high-order DSEM equipped with entropy-generation-based AV
method was used to solve Navier–Stokes system of equations for this purpose. The flow evolution
for the case (Ms = 1.53, Ref = 106) was found to be in excellent agreement with the previous
experimental findings of the literature. In addition, for the case (Ms = 1.3466, Ref = 106), the predicted
pressure signal agrees very well with the literature. Additionally, several simulations were performed
for two Mss with varying reference Ref. The principal shock-wave patterns were found to be
generally independent of Ref. On the other hand, the shock-shear layer and shock-boundary layer
dynamics strongly depend on the Ref. At Ref = 103, we observed marginal retardation of the
incident shock-wave, owing to the important role of viscous effects. The results show the applicability
and effectiveness of the AV based methodology in resolving complex flow physics associated with
the shock propagation and attenuation through double-bend ducts. Three dimensional Detached
Eddy Simulation (DES), Delayed Detached Eddy Simulation (DDES) or Large Eddy Simulation (LES)
could be performed in the future to resolve later stage fine turbulent flow scales, observed in the
previous experiments.
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