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Abstract: This paper presents preliminary results towards the development of digital twin models for Small to Medium
Enterprise (SME) factories in a partially automated and cost-effective manner. In many cases it is desirable to obtain a 3D
model of a factory floor and machinery, that can be used for visualization of Digital Twin models. Current commercial
3D reconstruction solutions involve the use of high-end LiDAR sensors which increase the cost of the 3D scanning
process and suppose a barrier for SME factories on their path towards Industry 4.0. The paper presents a comparison of
3D reconstruction results using low-cost sensors including a Zenfone AR mobile phone, an Intel RealSense ZR300 and a
Kinect v2. The small size and weight of the sensors make it possible to be mounted on small unmanned aerial vehicles and
enable future 3D reconstruction in an autonomous manner. The data was processed using an open source Simultaneous
Localization and Mapping (SLAM) library RTAB-Map. The results were compared with a professional 3D scan using a
GeoSLAM LiDAR. Experimental results from a scanning of a university research lab with a small simulated production
line and two UR3 industrial manipulators is presented. The obtained 3D model was used to generate a simple Digital
Twin model that can be visualized using a VR headset.
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1. INTRODUCTION

One of the central elements of industry 4.0, Cyber-
physical systems, and the digitalization of manufacturing
processes are the concept of digital twin [1–5]. A dig-
ital twin is a virtual copy of a physical system that can
be used for a number of purposes including visualization,
process monitoring, process optimization, and predictive
maintenance. An important characteristic of digital twin
is that it is connected to the real physical system that it
represents.

Digital twin models have been used for many years in
large enterprises, but their application has been very lim-
ited in small to medium enterprise (SME) factories due
to the high cost associated with their development. This
paper presents preliminary results of a research project
DigiFab Automated SME factory digitization and road
map to Industry 4.0 that aims at providing SME facto-
ries with affordable tools to develop digital twin models
and progress towards industry 4.0 [6].

In many cases, it is necessary to obtain a 3D model
of a factory floor and its machinery in order to develop a
digital twin. Current solutions involve the use of LiDAR
scanners, in a process that is costly and cumbersome.
This paper researches the use of drones to perform 3D
scanning in factories in an autonomous manner. The goal
is to explore the use of low-cost sensors such as struc-
tured light depth cameras [7] as found in ZenFone AR
mobile phone, an Intel RealSense ZR300 and Microsoft
Kinect v2 that are small and light enough to be mounted

on a small drone. By using Simultaneous Localization
and Mapping (SLAM) [8] it is possible to envisage a sys-
tem that allows small drones to simultaneously localize
themselves and perform 3D reconstruction in factory en-
vironments in a fully autonomous manner. This could be
accomplished by using readily available open source li-
braries for SLAM such as RTAB-Map [9] [10].

This paper presents results that explore different as-
pects of the road towards automated 3D-reconstruction
and generation of digital twins. In particular, it concen-
trates on three parts: (i) Position control of a drone using
a feedback-loop with a motion capture system; (ii) 3D-
reconstruction using three cost-effective and mobile sen-
sors; and (iii) A demonstration of a simple digital twin
of OsloMet ARIS research lab containing a small pro-
duction line with 2 Universal Robots UR3 industrial ma-
nipulators, and which can be visualized in virtual reality
(VR).

2. EXPERIMENTS WITH DRONE
INDOOR POSITION CONTROL

Outdoor 3D-reconstruction using drones is becoming
standard practice in commercial contexts. It is cheap, effi-
cient and accurate. Techniques like photogrammetry and
LiDAR approaches are widely used. However, they in-
volve large amounts of manual control along the way and
typically use large drones to be able to carry LiDAR pay-
loads. The objective of this paper is to explore the use
of indoor autonomous drone(s) in performing 3D recon-
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Fig. 1 The Intel Aero Ready To Fly drone together with
the Asus Zenfone AR [11].

Fig. 2 A flowchart of the position-control system

struction of SME factories.
In the absence of GPS measurements, this paper ex-

plores the use of SLAM in order to both provide position
information for the closed-loop control of the drone as
well as a 3D point cloud. As a preliminary step towards
this goal, an experimental setup was made in a research
laboratory equipped with an OptiTrack motion capture
system that provides real-time position information. The
goal is to use these external position measurements in the
development and benchmarking of algorithms.

The preconditions for this subtask was the Intel Aero
Ready To Fly drone (Figure 1) and an OptiTrack motion
capture system. The Intel Aero is a UAV development
platform equipped with the Intel Aero Compute Board
running Linux on a Quad-core CPU, an STM32 micro-
controller running PX4 autopilot on NuttX, and the Intel
vision accessory kit. This allowed for use of the Robotic
Operation System (ROS) as a framework which facili-
tates for easy further development in the future.

Figure 2 shows a flowchart of the final implemented
solution which was based on a guide from PX4 [12]. The
OptiTrack system sends the pose data of a defined rigid
body of the Intel Aero drone over the VRPN-protocol.
This is received by the ROS-node vrpn client ros [13].
The desired setpoint is generated by a ROS-node made
of a provided example by PX4 [14]. Both the orientation
data and the desired setpoint is sent to the PX4 autopilot
over the MAVLink protocol using the ROS-node mavros
[15]. The autopilot, in turn, adjusts the position of the
drone based on these two variables.

Fig. 3 The position of the drone during a test-flight.
2500 points during 30s plotted in a cube of 1 m3,
with the setpoint (0, 0, 5) m.

Fig. 4 The position of the drone plotted component-wise
during a test-flight.

While the motion capture system can provide an ac-
curacy of 0.2 mm, an analysis of one of the test flights
showed a mean error in distance of 12.2 cm over 30 sec-
onds of flight, as seen in figures 3 and 4. The same test
flight showed a mean absolute deviation of 4-6 cm in ev-
ery axis.

An approach to the use of position measurements from
a motion capture system has been given. For accurate
benchmarking it is still necessary to improve the system.
The viability of using drones for 3D-reconstruction is
still uncertain and needs further research. While the 3D-
reconstruction would not depend directly on the quality
of the flight, variables as indoor turbulence and limited
space available suggests the necessity of 3D-sensors and
algorithms with high tolerance to sudden movements and
with excellent position tracking.

3. TOWARDS AUTOMATIC
3D-RECONSTRUCTION

LiDAR laser scanners are widely used in 3D scanning
and 3D reconstruction. They provide excellent accuracy



and cloud density, but also very expensive and usually
stationary. One example is the Riegl VZ-400i with a
range up to 800m, accuracy up to 5mm and data acquisi-
tion up to 500,000 measurements per second, but with a
price tag of over 100 000 USD (Table 1).

It was desirable to look at cheaper alternative 3D sen-
sors and to what extent these would be useful in the con-
text of 3D scanning done autonomously with a drone.
Furthermore it was desirable to look into the road from
a point cloud to a 3D model both manually and semi-
automatically.

Three 3D sensors where investigated, the Intel Re-
alsense ZR300, the Asus Zenfone AR and finally the
the Microsoft Kinect v2 (Figure 5). They were com-
pared to the ZEB-REVO hand-held laser scanner from
GeoSLAM.

Fig. 5 From the left: Intel RealSense ZR300, Microsoft
Kinect v2, Asus ZenFone AR, ZEB-REVO. Not in
correct sizes.

3D reconstruction was done for all the three 3D sen-
sors using RTAB-Map (Real-Time Appearance-Based
Mapping), an RGB-D Graph-Based SLAM approach
based on an incremental appearance-based loop closure
detector. The loop closure detector uses a bag-of-words
approach to determinate how likely a new image comes
from a previous location or a new location. When a loop
closure hypothesis is accepted, a new constraint is added
to the maps graph, then a graph optimizer minimizes the
errors in the map. A memory management approach is
used to limit the number of locations used for loop clo-
sure detection and graph optimization, so that real-time
constraints on large-scale environments are always re-
spected. [9] [10].

Intel RealSense ZR300 uses Active Stereo IR Technol-
ogy for 3D sensing. This is in principle a stereo IR vision
technique which also utilizes an IR projector projecting a
known pattern to counter low texture cases [21] [22]. The
ZR300 also have an IMU-sensor integrated and Visual-
Inertial Odometry (VIO) was implemented for this sensor
in RTAB-Map and resulted in very robust 3D scanning;
The sensor did not lose track of its position during the
SLAM-process.

Microsoft Kinect v2 uses the Time Of Flight principle
for 3D sensing and measures the time the light emitted
takes to return and its phase shift. Kinect v2 depends
solely on visual odometry and only with enough com-
puting power was this a workable solution for the initial
problem, autonomous 3D scanning.

Asus ZenFone AR uses three different cameras and

Fig. 6 From the top: Asus Zenfone AR, Intel RealSense
ZR300, Microsoft Kinect v2. The color indicates the
magnitude of error, ranging from 0.05 m - 0.5 m.

has called this for the TriCam system. An HD camera
with 23 megapixels, a camera dedicated to motion track-
ing, and an IR depth sensor [17]. Zenfone also makes
use of Visual Inertial Odometry, but since all computing
is done onboard the phone, it lacks computing power and
robustness to shaking.

Two techniques were considered moving from point
cloud to 3D model. Semi-automatic generation of meshes
and manually drawn 3D models. Semi-automatic mesh
generation was done using multiple filters in RTAB-Map
and Meshlab, such as point cloud filtering, smoothing and
surface reconstruction. Autodesk Revit was used to man-
ually draw 3D models, and the point cloud generated by
ZEB-REVO was used as a template. The final result can
be seen i figure 7.

All three point clouds produced by the sensors was
compared to a point cloud produced by the ZEB-REVO
from GeoSLAM, as seen in figure 6. The figure is the
ZEB-REVO 3D model with the magnitude of the er-
ror in each comparison colorized. The comparison does
not provide sufficient information on which sensor which
provides the best reconstruction, since the result is highly
dependent on optimal implementation, calibration and a
comparable reconstruction process. However, the Intel
RealSense ZR300 showed the greatest potential for fur-
ther work. It was lightweight and featured robust 3D
reconstruction thanks to the possibility of using visual-
inertial odometry. The new Intel Realsense D415 and
D435 should also be considered, featuring, among other
things, greater depth-sensing range.



Table 1 Comparison of 3D sensors

Intel RealSense
ZR300 [16]

ASUS
Zenfone AR [17]

Microsoft
Kinect v2 [18]

GeoSLAM
ZEB-REVO [19]

RIEGL
VZ-400i [20]

Measurement
technique

Active stereo IR
Technology

TriCam system
IR projector

Time of
Flight LiDAR LiDAR

Min. range 0.55 m Not specified 0.5 m Not specified 0.5-1.5 m
Max. range 2.8 m Not specified 4.5 m 15-30 m 120-800 m

Data acquisition
rate

30-60
frames/sec Not specified

30
frames/sec

43 200
meas./sec

42 000-
800 000
meas./sec

Horizontal FoV 59◦ Not specified 70◦ 360◦ 360◦

Vertical FoV 46◦ Not specified 60◦ 270◦ 100◦

Accuracy ±5% of
meas. dist. Not specified ∼1 cm 1-3 cm 5 mm

Price
(as of 27/08/18) ∼400 USD ∼ 700 USD ∼ 100 USD ∼ 70 000 USD ∼ 100 000 USD

Fig. 7 The generated 3D models from Intel Realsense
ZR300, Asus Zenfone AR, ZEB-REVO and the man-
ually drawn model as a comparison

4. TOWARDS DIGITAL TWIN MODEL
GENERATION

A digital twin is an extensive concept. It can be used
to understand how a product performs, through data anal-
ysis, and how the product will perform in the future
through simulations. It can be used to identify potential
errors or troubleshoot situations remotely with visualiza-
tion of real-time data. It might become a key feature in
the training of employees in environments involving risk
or downtime from production.

The purpose of this subtask was to use the produced
3D reconstructions, as described in section 3., in devel-
opment of a simplified digital twin. This would in turn
give insight on how to automate the next step after 3D
reconstruction: Generation of digital twins.

At hand was an Oculus Rift system, two Univer-
sal Robots UR3-robots and an OptiTrack motion cap-
ture system. A real time connection was made with the
UR3-robots using the Real-Time Data-Exchange inter-
face (RTDE-interface) from Universal Robots. This pro-
vided the joint angles of each robot which in turn was
read by Unity and attributed to the two 3D models of the
UR3-robots. The OptiTrack software offers Unity inte-

gration and this was used to get the position of the four
boxes which the UR3-robots moved. The 3D models (See
section 3.) was imported to simulate the environment. Fig-
ure 8 and 9 shows the final result.

Fig. 8 3D models displayed side by side, along with the
robots inside, in Unity.

Fig. 9 Digital Twin model demonstration using Oculus
VR headset.

A working simplified digital twin was developed
where the 3D robot was moving visually indistinguish-
able from the real UR3-robot. It became clear that an
equivalent process, 3D modeling and real-time commu-
nication between interfaces, had to be made for every dif-
ferent robot a digital twin should include.

5. CONCLUSION AND FUTURE WORK
The purpose of this paper has been to investigate and

demonstrate some of the aspects of the road towards au-



tomated 3D reconstruction and Digital Twin model gen-
eration.

For further work, the Intel Aero drone’s built-in 3D-
sensor could be used for SLAM on-board, on-the-go.
This data could further be used for both real-time 3D re-
construction and exploration algorithms for autonomous
3D scanning.

From point clouds, a surface-finding algorithm could
detect walls, ceilings, and floors and generate appropriate
flat surfaces which compared to the 3D-mesh presented
in this paper would be less computational intensive in a
VR environment.

In this project, the RTDE-interface was used only for
a visual representation of robots. For further work, much
more data could be collected and used for real-time mon-
itoring and analysis. The RTDE-interface could also be
used for remote controlling: programming the robots re-
motely in VR.
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