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Abstract— Many real-life dynamical systems change rapidly
followed by almost stationary periods. In this paper, we consider
streams of data with such rapidly changing behavior and
investigate the problem of tracking their statistical properties
in an online manner.

The streaming estimator is accompanied with a second
estimator, suitable to adjust to rapid changes in the data
stream. When a statistically significant difference is observed
between the two estimators, the current estimate jumps to a
more suitable value. Such a tracking procedure have previously
been suggested in the literature. However, our contribution lies
in building the estimation procedure based on the difference
between the stationary estimator and a Stochastic Learning
Weak Estimator (SLWE). The SLWE estimator is known to
be the state-of-the art approach to tracking properties of non-
stationary environments and thus should be a better choice to
detect changes in rapidly changing environments than the far
more common sliding window based approaches.

Extensive simulation results demonstrate that our estimation
procedure is easy to tune and performs very well. Further, the
suggested estimator outperforms the popular and state-of-the-
art estimator ADWIM2 with a clear margin.

I. INTRODUCTION

In many real-life applications, the assumption on the
stationarity of the data does not hold and the true underlying
parameter being estimated changes over time. The Stochastic
Learning Weak Estimators (SLWE) are known to be the state-
of-the-art approach for such an estimation problem [17], [27].
The SLWE enjoys a multiplicative update form that makes it
superior to the state-of-the-art estimation approaches which
are mainly of additive flavor. However, the right choice of
the intrinsic parameter of the SLWE, λ, is still an open issue.
The latter parameter controls the forgetting of old data and
controls the ability of the scheme to adapt to changes in the
environments. If the system changes rapidly the parameter
should be chosen to rapidly forget the old stale data. On
the other hand, if the environment is stabilizing, the rate of
forgetting should decrease.

The SLWE has found numerous successful applications
in the literature. Applications of the SLWE include adaptive
classifiers for spam filtering [27], adaptive file encoding with
nonstationary distributions [20], intrusion detection in com-
puter networks [24], tracking shifts of languages in online
discussions [23], learning user preferences under concept-
shift [16], [26], fault-tolerant routing in Ad-hoc networks
[15], digital content forensics for detecting illicit images [8],
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detection and tracking of malicious nodes in both Ad-hoc
networks [18], vehicular mobile WiMAX networks [13], and
optimizing firewall matching time via dynamic rule ordering
[14]– to mention a few.

In many of such practical problems the dynamical system
changes rapidly followed by periods where the system is
almost stationary. Unfortunately, the SLWE is not well suited
for such cases. By choosing a high value of λ, the estimator
will rapidly adjust after an abrupt change, but on the other
hand, it will result in a higher estimation uncertainty when
the system stabilizes. By choosing a low value of λ, the
estimation uncertainty will be low in the stationary parts,
but on the other hand, the estimation procedure will suffer
from adjusting too slowly after a rapid change.

In this paper, we suggest a computationally efficient esti-
mation procedure for a dynamical system that contains both
abrupt changes and stationary parts. The estimator combines
an estimator that is suitable for the stationary parts together
with an event detection procedure. When an abrupt change
is detected, the estimator rapidly jumps to a more suitable
estimate. The far most common event detection approach is
to compare the properties of the data stream on a long term
time window with a more short term time window [7]. In
such window based approaches, each sample in the window
is given an equal weight, but intuitively it is more reasonable
to give more weight to the most recent data which is done
by the SLWE. In this paper we therefore suggest to build
the event detection procedure by comparing the estimate by
the stationary estimator with an SLWE estimator. Through
lightweight and subtle hypothesis testing mechanisms, we
decide, in each iteration, if the stationary estimate should
jump to new value (event detected) or not. Quite surprisingly,
we have found only one other paper in the literature using
the advantages of the SLWE for event detection, namely the
paper by Ross et al. (2012) [19]. However, the focus of [19]
is different from ours. While [19] focus on event detection,
our focus is on tracking of statistical properties of the data
streams with sudden rapid changes. Compared to [19], our
suggested approach is simpler and better founded theoreti-
cally. We present the estimation procedure for the binomial
distribution, but can be applied to other distributions as well.

II. RELATED WORK AND STATE-OF-THE-ART

In this Section we review related work. First, in Section
II-A we will review legacy scheme for estimation under non-
stationary environment. Then, in Section II-B we will review
the different approaches for controlling the parameters of
estimators operating in non-stationary environments.
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A. Estimation in Non-Stationary Environments

Traditionally available methods that cope with non-
stationary distributions resort to the so-called sliding window
approach, which is a limited-time variant of the well-known
maximum likelihood estimator scheme. The latter model is
useful for discounting stale data in data stream observations.
Data samples arrive continuously and only the most recent
observations are used to compute the current estimates. Any
data occurring outside the current window is forgotten and
replaced by the new data. The problem with using sliding
windows is the following: If the time window is too small
the corresponding estimates tend to be poor. As opposed to
this, if time window is too large, the estimates prior to the
change of the parameter have too much influence on the
new estimates. Moreover, the observations during the entire
window width must be maintained and updated during the
process of estimation.

Apart from the sliding window approach, many other
methods have been proposed, which deal with the problem of
detecting change points during estimation. In general, there
are two major competitive sequential change-point detection
algorithms: Page’s cumulative sum (CUSUM) [1] detection
procedure, and the Shiryaev-Roberts-Pollak detection pro-
cedure. In [22], Shiryayev used a Bayesian approach to
detect changes in the parameter’s distribution, where the
change points were assumed to obey a geometric distri-
bution. CUSUM is motivated by a maximum likelihood
ratio test for the hypothesis that a change occurred. Both
approaches utilize the log-likelihood ratio for the hypotheses
that the change occurred at the point, and that there is no
change. Inherent limitations of CUSUM and the Shiryaev-
Roberts-Pollak approaches for on-line implementation are
the demanding computational and memory requirements. In
contrast to the CUSUM and the Shiryaev−Roberts−Pollak
approaches, our SLWE approach avoids the intensive com-
putations of ratios.

B. Estimation using Adjustable parameters

Oommen and Rueda [17] presented a strategy by which
the parameters of a binomial/multinomial distribution can be
estimated when the underlying distribution is non-stationary.
The method has been referred to as the Stochastic Learning
Weak Estimator (SLWE), and is based on the principles of
continuous stochastic Learning Automata (LA).

As opposed to the above-mentioned papers, in the last
decades, a wide range of techniques for estimation in dy-
namically changing environments have appeared. We provide
here a brief overview of representative on-line approaches
particularly relevant to the family of techniques pioneered in
the present paper. For a more detailed and comprehensive
treatment of these, we refer the reader to recent surveys [7],
[12], which include approaches based on adaptive window-
ing, aging factors, instance selection and instance weight-
ing. Additionally, there is a distinction between passive
approaches, which intrinsically adapt to changes, and active
approaches that actively search for changes.

Gama et al. [7] presents a clear distinction between
memory management and forgetting mechanisms. Adaptive
windowing [25] works with the premise of growing the size
the sliding window indefinitely until a change is detected via
a change detection technique. In this situation, the size of the
window is reset whenever a changed is detected.

Another strategy, which avoids windowing, involves using
aging factors. In this approach, while training data spans all
of the data points, each data point is assigned a weight that
reflects its importance. Recent data points are prioritized,
for instance using a fading factor that gradually reduces the
influence of older data points [4]. The decay can be linear
[11] or exponential [10]. By using weights combined with
instance selection, referred to as instance weighting, one can
take advantage of the ability of support vector machines to
process weighted instances [10].

In the same perspective, the estimated error can be used
for re-initializing the estimation as performed in [19]. In all
brevity, changes are detected based on comparing sections
of data, using statistical analysis to detect distributional
changes, i.e., abrupt or gradual changes in the mean of the
data points when compared with a baseline mean with a
random noise component. One option is also to keep a refer-
ence window and compare recent windows with the reference
window to detect changes [6]. This can, for example, be
done based on comparing the probability distributions of the
reference window and the recent window using Kullback-
Leibler divergence [5], [21].

III. STOCHASTIC LEARNING WEAK ESTIMATOR

Let X1, X2, X3, . . . represent a stream of independent
and identically distributed Bernoulli stochastic variables with
parameter p. That is

P (Xn = 0) = 1− p
P (Xn = 1) = p

(1)

for n = 1, 2, 3, . . ..
We now want to estimate the parameter p from the stream

of Bernoulli variables. Using the weak estimator, the estimate
of p is updated by the following recursion

p̂1 = X1

p̂n = λnp̂n−1 if Xn = 0

p̂n = 1− λn(1− p̂n−1) if Xn = 1

(2)

where p̂n represents the estimate of p after the arrival of Xn

and λn, n = 1, 2, . . . are constants between zero and one.
The intuition is that if Xn = 0 we should reduce our current
estimate of p (the probability of one) which is achieved by
multiplying the current estimate of p by λn. On the other
hand, if Xn = 1 we should reduce the estimate of 1−p (the
probability of zero) which gives

1− p̂n = λn(1− p̂n−1)

p̂n = 1− λn(1− p̂n−1)

which is equal to the last equation in (2).



The recursions in (2) can be written as follows

p̂n = Xn(1− λn(1− p̂n−1)) + (1−Xn)λnp̂n−1, n = 1, 2, . . .

with λ1 = 0. Using straight forward calculations this
simplifies to

p̂n = λnp̂n−1 + (1− λn)Xn (3)

which can be recognized as the exponentially weighted
moving average.

We can prove by induction that p̂n is an unbiased estimator
for p for every n as follows

E(p̂1) = E(X1) = p (recall λ1 is set to 0)
E(p̂n) = E(λnp̂n−1 + (1− λn)Xn)

= λnp+ (1− λn)p

= p

The variance depends on the choice of the λ’s. We look at
two special cases.
λ constant: It can be proved that if we set all λn = λ, the
limiting variance is given by [27]

lim
n→∞

Var (p̂n) =
1− λ
1 + λ

p(1− p)

An advantage of the constant λ approach is that if the value
of p is changing with time in the underlying Bernoulli data
stream, the estimator will rapidly adjust to these changes
[27]. A disadvantage is that if p is not changing, the variance
of the estimator will have a lower limit and never reaches
zero.

Sample mean: The sample mean is the maximum likeli-
hood estimator of p and is the natural estimator to use if p is
not changing with time. Let p̄n−1 denote the sample mean
of the first n− 1 Bernoulli variables from the stream

p̄n−1 =
1

n− 1

n−1∑
i=1

Xi

When Xn arrives, the sample mean can be updated as follows

p̄n =
n− 1

n
p̄n−1 +

1

n
Xn (4)

which is equivalent to (3) with λn = (n − 1)/n. This
means that the sample mean is a special case of the general
recursion in (3). It is well known that limn→∞ Var (p̄n) = 0.
A disadvantage of the sample mean is that if p is changing
with time, the sample mean will become very slow at
adjusting to these changes. On the other hand if p is not
changing, the sample mean is the optimal estimator in the
sense that no other unbiased estimators can achieve less
variance.

IV. ESTIMATION IN A SHIFTING ENVIRONMENT

Suppose a situation where p is switching between different
values with time. An example could be a news stream
where the topic of the news stream suddenly changes due
to different real life events. Another example could be a
machine operated by different employees at different time

periods each with its own error rate characterized by p.
We assume that the instants in which p switches value are
unknown.

For such systems a natural strategy would be to use
the sample mean whenever the p is not changing, and a
mechanism to “jump” fast towards a new estimate if the
value of p has changed. In this paper we suggest a method
that combines the sample mean and a weak estimator with
constant λ. Ross et al. (2012) [19] is the only paper we have
found in the literature that uses the same idea. Let p̂λn and p̄n
denote the weak estimator with constant λ and the sample
mean, respectively, after the arrival of Xn. If p switches
value, p̂λn will rapidly adjust to the new value of p, while
minor changes will appear to p̄n. This can be used to build
an efficient method to detect changes in p and “jump” to the
new value of p. The key ingredient will be the distribution of
the difference between the estimators p̂λn− p̄n. If p switches
value we expect that p̂λn− p̄n will be larger in absolute value
than what we would expect if p remains constant. This can
be used to build a statistical test if p has changed value or
not. We start by presenting the expectation and variance of
this distribution.

Theorem 1: Let X1, X2, X3, . . . represent a stream of
independent and identically distributed Bernoulli stochastic
variables with parameter p. Further let p̂λn and p̄n denote
the weak estimator with constant λ and the sample mean,
respectively, after the arrival of Xn. Then

E
(
p̂λn − p̄n

)
= 0 (5)

Var
(
p̂λn − p̄n

)
= p(1− p)×((

1

n
− λn−1

)2

+

n∑
i=2

(
1

n
− (1− λ)λn−i

)2
)

(6)

For the sake of brevity, the proof is omitted.
Please note that Var(p̂λn− p̄n) can be computed recursively

such that all variances up to n can be computed in O(n) time.
The actual recursions are not shown, but are straightforward
to compute from (6). Another appealing property is that the
variance does not depend on the stream of observations and
can be computed before the data streaming starts. This lays
the foundations for building very efficient algorithms.

Theorem 1 stated the expectation and variance of the
distribution of p̂λn− p̄n. Next we investigate other properties
of the distribution. The difference p̂λn− p̄n can be written as
follows

p̂λn − p̄n =

(
1

n
− λn−1

)
X1 +

n∑
i=2

(
1

n
− (1− λ)λn−i

)
Xi

which is a weighted sum of the independent Bernoulli
variables. If the sum satisfies the Lindeberg criterion (and
thus the Lyapunov criterion), the sum will, according to the
Central Limit Theorem, converge to a normal distribution [9].
The sum does not satisfy this criterion. A second option is
to study the distribution of p̂λn− p̄n by stochastic simulation
which documents that p̂λn − p̄n is very close to the normal
distribution. For the sake of brevity, the details are omitted.

We then get the following test.



Theorem 2: Let X1, X2, X3, . . . represent a stream of
independent and identically distributed Bernoulli stochastic
variables with parameter p. Further let zα denote the α
quantile of the standard normal distribution. Define the
hypotheses
H0: The underlying p has not changed value
H1: The underlying p has changed value
Suppose that we decide to reject H0 if

|p̂λn − p̄n|√
Var(p̂λn − p̄n)

> zα/2 (7)

Then the probability of rejecting H0 if H0 is true is ap-
proximately α and the rejection rule (7) controls the type I
error.
For the sake of brevity, the proof is omitted.

From Theorem 1 we see that Var(p̂λn − p̄n) depends on
p which of course is unknown. To perform the test above,
a natural choice is to substitute p with the sample mean p̄n
since this is our best estimate of p under H0.

The basic idea of our method is to estimate p using the
sample mean, but perform occasional jumps if the test in
Theorem 2 brings evidence that p has switched value. In the
next section we describe how to perform the jump.

A. Performing a jump

Let p̃n denote the estimate using the sample mean with
jumps method after the arrival of Xn. Further let λ̃n denote
the value used for λn in the recursions in (3) to compute p̃n.
Assume now that the test in Theorem 2 brings evidence that
p has switched value which means that the current estimate
p̃n is not reliable (since it is based on the sample mean).
Our currently best estimate of p thus is based on the weak
estimator with constant λ. Thus we set p̃n equal to p̂λn.

To continue the update of the estimator p̃n after the jump,
we also need to decide a new value for λ̃n. Recall that by
using λn = (n−1)/n in (3), we get the sample mean. After
the jump we assume that we only have ñ = 1 observation
(we do not trust the previous observations) and thus use λn =
(1− 1)/1 = 0

Before the algorithm can be run, we also need to decide
a value for α in the test proposed in Theorem 2. When we
run the test, the probability of wrongly detecting a change
in p, is approximately α. In practice we may run the test
many times, for example every tenth iteration. If we run the
test many times, the chance of wrongly detecting a change
in p in some of these tests naturally will be larger then α.
This refers to the multiple testing problem in the statistical
literature, see e.g. [2]. A simple and much used approach
is the Bonferroni correction where a significance level of
α/M is used instead of α, where M is the number of tests.
There are two challenges with applying this approach (and
other standard corrections). First, we do not know the number
of tests we need to run. Second, the Bonferroni correction
assumes that all the tests are independent. In our case this
is far from true, since two subsequent tests are based on
almost the same data stream (only a few extra observation
have been added since the last test) and the outcomes are

highly correlated. Using the Bonferroni correction will result
in a too low significance level, and the tests may never
detect that p has changed. In practice, setting α to about
10−3 overall performs well and is, as expected, somewhere
between standard significance levels (0.05) and Bonferroni
corrected levels.

The resulting algorithm is shown in Algorithm 1.

Algorithm 1 The sample mean with jumps algorithm.
Input:
X1, X2, X3, . . . //Stream of Bernoulli variables
λ
α
D //How often to perform the test in Theorem 2
N //Max number of iterations
Method:

1: ñ← 0
2: p̂λ1 ← X1

3: p̃1 ← X1

4: for n ∈ 1, 2, . . . , N do
5: p̂λn ← λp̂λn−1 + (1− λ)Xn

6: ñ← ñ+ 1
7: p̃n ← ñ−1

ñ p̃n−1 + 1
ñXn

8: if n mod D == 0 then
9: if |p̂λn−p̃n|√

Var(p̂λn−p̃n)
> zα/2 then

10: p̃n ← p̂λn
11: ñ← 1
12: end if
13: end if
14: end for

V. EXPERIMENTS

In this Section we evaluate the methodology above. A
myriad of methods exists to detect events in data streams,
however very few apply a detection procedure as part of
tracking statistical properties of a data stream in abruptly
changing environments. A prominent exception is the pop-
ular ADWIN2 algorithm [3]. We thus compare the perfor-
mance of our estimator with ADWIN2 for the binomial data
stream.

We considered two different cases.
• Large changes: p switches between 0.2 and 0.8 every

600 iteration.
• Small changes: p switches between 0.4 and 0.6 every

600 iteration.
As argued in the previous section, a reasonable value for
α = 10−3 and is what is used in the experiments below.

Figure 1 shows the performance of the jump algorithm
(p̃n) and the original SLWE with constant λ (p̂λn) for different
values of the tuning parameter λ. Comparing the black and
blue curves, we see that p̃n outperforms p̂λn for all choices of
the tuning parameters. For the small jumps case in the right
panel, the difference in performance is fairly small for the
optimal value of λ around 0.98. However in reality this value
is unknown and it is far more important with an algorithm



Fig. 1. Estimation error as a function of λ. The left and right panels refer to experiments where the changes in p are large and small, respectively. The
black and blue curves refer to the estimators p̃n and p̂λn, respectively.

Large changes in p Small changes in p
0.143 0.093

TABLE I
MEAN ESTIMATION ERROR IN ABSOLUTE VALUE FOR THE ADWIN2

ALGORITHM WHEN TRACKING p.

where the performance is robust with respect to choice of the
tuning parameter. We see that the suggested jump algorithm
(p̃n) is far more robust than the original SLWE estimator
(p̂λn).

For the large jumps case, we observe that for p̂λn an optimal
value of λ is about 0.96. We also observe that the optimal
value for λ for the jump estimator is about 0.9. Recall that
this is the λ we should choose for the weak estimator with
constant λ that runs in parallel with the sample mean. This
difference may come as a surprise, but remember that the
purpose of the weak estimator with constant λ is different
in these two cases. For p̂λn (original SLWE) we chose λ to
minimize the estimation error. For the jump estimator, we
chose λ to detect changes in p as fast as possible to rapidly
perform a jump.

Table I shows the performance of the popular event
detection and tracking algorithm ADWIN2. By comparing
the black lines of Figure 1 and Table I, we see that our jump
estimator (p̃n) outperforms ADWIN2 for all choices of the
tuning parameter λ and with a clear margin for almost any
choice of the tuning parameter.

VI. CLOSING REMARKS

In this paper we have constructed an estimation procedure
that combines the strengths of a weak estimator with constant

λ and and decreasing λ (sample mean). We have developed
a hypothesis test procedure to rapidly detect a change in the
underlying p. Further we have proposed an efficient proce-
dure to jump to a new estimate when a change is detected.
The experiments show that the procedure efficiently detects
changes in the underlying distribution and outperforms the
original SLWE with constant λ and the ADWIN2 algoritm
with a large margin.

The experiments also showed that the performance of
the jump estimator p̃n is less sensitive to the choice of λ
compared to the SLWE with constant λ. Said in another
way, the jump estimator performs well for a large range of
different choices of λ while the SLWE with constant λ, p̂λn,
performed well only for a small range of choices for λ. This
is a very attractive property of the jump estimator since in
practical situations we do not know what is an optimal value
for λ.

A potential direction for future research is to develop a
procedure to automatically adjust the value of the tuning
parameter λ depending on the properties of the data stream.
A starting point in this direction could be to follow the ideas
on how the ADWIN2 algorithm adjusts the window size [3].
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