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Abstract

In this paper we present event anticipation and prediction
of sensor data in a smart home environment with a limited
number of sensors. Data is collected from a real home
with one resident. We apply two state-of-the-art Markov-
based prediction algorithms — Active LeZi and SPEED —
and analyse their performance with respect to a number of
parameters, including the size of the training and testing
set, the size of the prediction window, and the number of
sensors. The model is built based on a training dataset and
subsequently tested on a separate test dataset. An accu-
racy of 75% is achieved when using SPEED while 53% is
achieved when using Active LeZi.

Keywords: smart home, prediction models, sensor data,
occupancy modelling, event modelling

1 Introduction

We present results from the Assisted Living project, an
interdisciplinary project that aims to develop assisted liv-
ing technology (ALT) to support older adults with mild
cognitive impairment or dementia (MCI/D) live a safe and
independent life at home. The project is carried out by
experts in the field of nursing and occupational therapy,
ethics, and technology (Zouganeli et al., 2017). MCI and
dementia involve cognitive decline, which can affect at-
tention, concentration, memory, comprehension, reason-
ing, and problem solving. Smart homes can potentially
include a number of intelligent functions that can pro-
vide valuable support to older adults with MCI/D, such
as prompting support e.g. in order to assist or encourage,
diagnosis support tools, as well as prediction, anticipation
and prevention of hazardous situations. Activity recogni-
tion and prediction is a prerequisite and a necessary tool
for achieving the majority of these.

We present our first results on prediction of binary sen-
sor data in a smart home environment. Several algorithms
have been reported in the literature for this purpose. How-
ever, to the extent of our knowledge, such prediction algo-
rithms have not yet been tested in a real home, nor have
they been proven to be accurate enough to be implemented
in real homes. In addition, there is no comprehensive
study comparing the different available algorithms or pro-
viding guidelines as to which application areas they are
best suited for. In this paper we apply two algorithms on
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data from a real home, compare their performance, and
shed some light regarding their application areas.

2 Related Work

Data prediction algorithms have been extensively re-
searched on in the literature (Wu et al., 2017). Event or
activity prediction can for example lead to an improved
operation of automation functions (e.g. turn on the heater
sufficient time prior to the person arriving at home); facili-
tate useful prompting systems (e.g. prompt the resident in
case the predicted next activity is not performed) (Holder
and Cook, 2013); or detect changes/ anomalies in certain
behaviour patterns (e.g. movement, everyday habits, etc.)
and hence assist to indicate the onset or the progress of a
condition (Riboni et al., 2016). The Active LeZi (ALZ)
algorithm has been extensively applied for prediction on
sequential data (Gopalratnam and Cook, 2007). The algo-
rithm was tested on the Mavlab testbed dataset and was
shown to achieve a 47% accuracy. Some of the ideas of
ALZ have been used in the implementation of a new algo-
rithm, the sequence prediction via enhanced episode dis-
covery (SPEED)(Alam et al., 2012). SPEED was tested
on the same dataset as ALZ and achieved an accuracy of
88.3% when the same dataset was used both for training
and for testing. These algorithms are based on Markov
models, where at any given point in time the next state
depends solely on the previous one (Rabiner and Juang,
1986). Hence, the most probable next event can be esti-
mated based on the current state.

Besides probabilistic algorithms, neural networks have
also been used for event prediction. A root square mean
error (RMSE) of 0.05 using Echo State Network (ESN)
and Non-linear Autoregressive Network (NARX) was re-
ported by using a number of input/output configurations
(Lotfi et al., 2012; Mahmoud et al., 2013). Other relevant
research includes prediction of the time when a certain ac-
tivity will happen using decision trees (Minor and Cook,
2016) or time series (Moutacalli et al., 2015). Prediction
of the next activity as well as the time, location, and day it
would occur has also been reported (Nazerfard and Cook,
2015).

In this paper, we use the Active LeZi and SPEED algo-
rithms for the prediction of the next sensor to be activat-
ed/ deactivated in an event sequence obtained from a real
home with one resident.
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3 Field Trial

Our field trial involves ten independent one-bedroom
apartments within a community care facility for people
over 65 years old. Each apartment comprises a bedroom,
a living room, open kitchen area, a bathroom, and an en-
trance hall (Figure 1).

The purpose of the trial and the sensor system to be
deployed have been decided upon in close collaboration
with the residents (Zouganeli et al., 2017). A minimal
number of binary sensors has been deployed in our trial
in order to both minimize surveillance of the residents in
their private homes, and comply with the technical and
economic constraints imposed by the research project this
work is a part of. The set of sensors has subsequently
been chosen so that it can enable the realization of use-
ful functions for older adults with MCI/D as these were
indicated after dialogue cafes with the users (Zouganeli
et al., 2017). We chose to include sensors that indicate
occupancy patterns (movement around the apartment) and
some daily activities like eating/ drinking, dressing, sleep-
ing, and leisure activities (reading, watching TV, listening
to radio). Hence, the system comprises motion, magnetic,
and power sensors. A motion sensor (Pyroelectric/Passive
Infrared — PIR) detects motion through the change of the
infrared radiation in its field of view. It sends a message
‘1’ when a motion is detected. Magnetic sensors indicate
whether doors/ windows/ drawers are open or closed, by
sending messages ‘1’ and ‘0’, respectively. Power sensors
measure the electricity usage of a certain appliance, and
can therefore indicate whether it is turned on or off, and
send messages ‘1’ and ‘0’ respectively. Figure 1 shows
a schematic of the apartment. There are 15 sensors in-
stalled in total: seven motion sensors (one in each area
of the apartment and two over and by the bed to indicate
whether the person is in bed); four magnetic sensors (back
and entrance doors, wardrobe, and cutlery drawer); and
four power sensors on appliances (nightstand lamp, coffee
machine, TV, and living room/ reading lamp).

The sensors are connected wirelessly through Z-Wave
and xComfort protocols to a Raspberry Pi 3, which re-
ceives the data and transfers it for storage in a secure
server (TSD). The data comprises timestamp (date and
time with precision up to seconds), sensor ID, and sensor
message (binary) — see example in Table 1.

Table 1. Binary sensors data.

Timestamp Sensor ID  Sensor message
01.09.2017 17:58:05 4 1
01.09.2017 17:58:40 6 1
01.09.2017 17:59:02 10 1
01.09.2017 17:59:05 10 0
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Figure 1. Sensors system in the field trial apartment.

4 Prediction Algorithms

Both ALZ and SPEED translate the data acquired from
the sensors into a sequence of letters and identify patterns
that occur frequently, so-called contexts. The contexts and
their frequency of occurrence are used to generate a tree,
which is then used to calculate the next most probable
event to occur. This last step is performed by the Predic-
tion Partial Matching algorithm (PPM) (Cleary and Wit-
ten, 1984; Cleary et al., 1997). Table 2 presents a possible
scenario in a smart home of performed actions by the res-
ident and the corresponding sensors being triggered. For
ALZ and SPEED, each sensor is assigned with a letter, as
shown in Table 3.

Table 2. Actions scenario.

Action performed Activated sensor

Wake up PIR bedroom (on)

Go to living room PIR living room (on)

Turn on TV Power TV (on)

Go to kitchen PIR kitchen (on)

Turn on coffee machine Power coffee machine
(on)

Go to living room and
watch TV while coffee
is being made

PIR living room (on)

Go to kitchen PIR kitchen (on)
Turn off coffee machine Power coffee machine
(off)

Go to living room PIR living room (on)

4.1 Active LeZi

ALZ is a sequence prediction algorithm based on a text
compression algorithm (Gopalratnam and Cook, 2007).
The input in ALZ consists of a sequence of lower case let-
ters, where each letter represents event from one sensor.
For example, the sequence corresponding to the scenario
described in Table 2 would be "abcdebdeb". ALZ uses the
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Table 3. Assignment of letters to sensors.

Sensor Letter
PIR bedroom a/A
PIR living room b/B
Power TV c/C
PIR kitchen d/D
Power coffee machine e/E

idea from the LZ78 text compression algorithm to gener-
ate patterns that occur in a sequence and create a tree with
these and their frequencies (Ziv and Lempel, 1978).

A given sequence xi,xp,...,X; is parsed into n; subse-
quences wi,wy,...,wy; such that for all j > O the prefix
of the subsequence w; is equal to some w; for 1 <i < j.
For example, if we have the sequence "abcdebdeb”, the
dictionary would have the following words "a", "b", "c",
"d", "e", "bd", "eb". These words correspond to contexts
derived from the sequence. ALZ generates more contexts
from their suffixes, if possible. For example, "bd" would
also generate "d", and "eb" would generate "b". This ac-
counts for contexts that were not perceived by the LZ78
algorithm and that are possibilities in a smart home envi-
ronment. This increases the convergence rate of the model
(Gopalratnam and Cook, 2007).

When the sequence is parsed completely and the con-
texts are derived from it, their frequency of occurrence is
counted. An order-k-1 Markov tree is then constructed
based on the contexts and their frequencies, where k cor-
responds to the longest word found in a training sequence.
Then PPM is used to calculate the next most probable
event. The generated tree for the example scenario with
sequence "abcdebdeb" is shown in Figure 2.

"ToPs

Figure 2. Tree generated by ALZ from sequence "abcdebdeb".

4.2 SPEED

SPEED is a sequence prediction algorithm that is based
on the occurrence of frequent patterns in home environ-
ments (Alam et al., 2012). It assumes that human activity
is predictable since usually certain patterns are repeated
daily. SPEED defines an episode as the sequence between
an initial and ending point of an activity. For example, the
moment a coffee machine is turned "on" is the initial point
of a coffee making episode, which lasts until the coffee
machine is turned "off". An "off" event cannot happen un-
less an "on" event has happened before. Therefore "off"
events always happen after an "on" event of the same ac-
tivity (or sensor), and vice-versa.
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The data received from the sensors in the smart home
are represented as a sequence of letters, where upper case
letters represent a sensor’s "on" event and lower case let-
ters represent a sensor’s "off" event. For the example
scenario presented in Table 1, the sequence would be
"AaBCbDEdBbDedB".

The main idea of the SPEED algorithm is to extract
episodes from a sequence of data and derive contexts from
them. These contexts are used to generate a decision tree
that keeps track of the learned episodes and their frequen-
cies. The height of the tree is the length of the longest
episode found in the sequence, defined as the maximum
episode length. For every event in a sequence, the algo-
rithm searches for its opposite event in the window and if it
exists, an episode was found. In the previous sequence, the
first episode found is "Aa", the contexts generated from it
would be "A", "a" and "Aa". We keep track of these and
count their occurrences to generate an order-k-1 Markov
model, where k is the maximum episode length. A tree for
the example sequence is presented in Figure 3. Finally, the
PPM algorithm is used for prediction.

4.3 PPM Algorithm

PPM calculates the probability distribution of each possi-
ble event based on a given sequence by taking into consid-
eration the different order Markov models with different
weights (Cleary and Witten, 1984; Cleary et al., 1997).
The weights are given by the escape probability, which
allows the model to go from a higher-order to a lower
one. The advantage of PPM is that it assigns a greater
weight to the probability calculated in higher-order mod-
els if the symbol being predicted is actually found in the
tree (Gopalratnam and Cook, 2007). The predicted sym-
bol is the one with the highest probability.

ALZ and SPEED use slightly different strategies of
PPM. ALZ uses the exclusion strategy, which means the
prediction is performed with the suffixes of the given se-
quence, except the sequence itself. Therefore, in the case
of the sequence "eb", the contexts used to calculate the
probability of each letter being the next would be "e" and
the null context. Suppose we want to calculate the proba-
bility of having an "e" after "eb" using ALZ, based on the
tree in Figure 2. The probability would be given by Equa-
tion 1: in an order-2 model, the probability of having an
"e" after an "e" is 0/2 and we escape to the order-1 with
1/2 probability. In order 1, the probability of having an "e"
after a null context is 2/9.

In the case of SPEED, the contexts used for calculat-
ing probabilities after a certain sequence would be all the
suffixes, including the sequence itself. Suppose we have
the sequence "dB". We would use contexts "dB", "d" and
the null context. The probability of having a "b" after this
sequence based on the tree in Figure 3, would be given by
Equation 2: we start in order 2 model, where the proba-
bility of having a "b" after "dB" is 1/2 and escape to the
lower order with probability 1/2. In order-1, the probabil-
ity of having a "b" after "d" is 0/4 and we escape to the
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Figure 3. Tree generated by ALZ from sequence "AaBCbDEdBbDedB".

lower order with probability 2/4. Finally, in the lowest
order, the probability of "b" after a null context is 4/22.
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5 Results and Discussions

)]

p(b,dB) =

Data has been collected from the apartment described in
section 3 over a period of two weeks. In total, there are
6182 raw sensor events. The data was translated to the for-
mat required by ALZ and SPEED, which resulted in 4629
and 9062 events respectively. In the SPEED sequence,
we performed noise removal such that "on" events only
come after "off" events of the same sensor, or vice-versa.
We ended up with 9044 events. In the SPEED algorithm,
the next event is predicted based on the last sequence of
size equal to the maximum episode length (Alam et al.,
2012). Firstly, we reproduced the results using the same
dataset and method as reported in that paper (Alam et al.,
2012). Subsequently we modified the testing procedure
somewhat by calculating the optimal number of last events
to base the prediction on, i.e. the window that leads to the
maximum overall prediction accuracy, which we refer to
as the optimal window. Window sizes up to the maximum
episode length are considered.

In order to be able to compare our results to the per-
formance of the same algorithms when they are used on
the data from the Mavlab testbed (Alam et al., 2012),
we firstly compute the prediction accuracy that is attained
when using the same dataset for both the training and the
testing, as performed in their work. Figure 4 presents the
results when training and testing using the same sequence
of n events, where n = {100, 200, ..., 2000}.

In this test, SPEED had an optimal window of five and
ALZ of six events, when the training and testing sets con-
sisted of 2000 events. An accuracy of 82% and 73% is
achieved by SPEED and ALZ respectively. Clearly train-
ing and testing with the same dataset leads to overfitting.
As a result, the apparent accuracy may keep increasing
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100 Accuracy vs Size of training set
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Figure 4. SPEED and ALZ prediction accuracy vs. the size of
training set.

when we increase the dataset size. For a dataset size equal
to 700, as in the Mavlab dataset, SPEED and ALZ attain
77% and 73% prediction accuracy respectively when used
on our data.

In order to evaluate the actual prediction accuracy of the
algorithms, our data is split into a training set, a validation
set, and a testing set. The training set is used to construct
the tree, the validation set is used to find the optimal win-
dow, and the testing set is used to calculate the prediction
accuracy.

We first analyse the importance of choosing the opti-
mal window to predict events from. Figure 5 shows the
prediction accuracy for different sizes of the window, and
for four different sizes of the training dataset when using
the SPEED algorithm. Similarly, Figure 6 shows the ef-
fect of the window size in the case of the ALZ algorithm.
The validation set comprised 1000 events in all cases.

We notice that smaller window sizes (1-4 events) pro-
vide better accuracy, for both algorithms. The accuracy
deteriorates very quickly with increasing window size.
This behaviour is as expected in particular for a setup with
a small number of sensors, since long sequences of events
are not bound to be repeated frequently. In the case of
SPEED, for example, bathroom activities would be maxi-
mum two-events long ("on-off" bathroom motion sensor).
These graphs are in addition a manifestation of the fact
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100 Accuracy vs Window Size (SPEED)
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Figure 5. SPEED prediction accuracy vs. the window length,
for several training set sizes.
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Figure 6. ALZ prediction accuracy vs. the window length, for
several training set sizes.

that SPEED creates a tree of much longer height than ALZ
does. The tree height corresponds to the longest episode
in SPEED, whereas in ALZ it corresponds to the longest
context. This is evident from Figures 3 and 2 where the
respective trees are shown for the same example scenario.

Once the optimal window was calculated from a vali-
dation set of 1000 events, we computed the accuracy for
different number of training events. We trained the algo-
rithms with a number of events i = {100, 200, 300, ...,
2000}. The prediction accuracy was computed based on a
testing set of 1500 events. Figure 7 shows the results for
both SPEED and ALZ.

SPEED achieved an accuracy of 75% and ALZ an ac-
curacy of 53%, with optimal windows of two and one
respectively. We observe that this maximum accuracy is
achieved with SPEED for training sets larger than about
800 events, while ALZ reaches a maximum accuracy for a
training set of 300 events or more. Hence, ALZ converges
to its maximum accuracy faster than SPEED, however, it
achieves a much poorer prediction accuracy than SPEED.
Using a larger number of events for the training does not
increase the accuracy significantly for neither of the algo-
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100 Accuracy vs Size of training set
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Figure 7. SPEED and ALZ prediction accuracy vs. the size of
training set.

100 Accuracy vs Size of testing set (SPEED)
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Figure 8. SPEED prediction accuracy vs. the size of testing set.

rithms.

At this point, we can associate some of these results
to the trees generated for both algorithms for the example
scenario in sections 4.1 and 4.2. The height of the tree
is significantly larger in SPEED for the same performed
actions. It can also be noted from Figure 3 that SPEED
collects a significantly higher number of contexts and fre-
quencies, which may be the reason why SPEED leads to
better accuracy.

In the following we examine the dependence of the pre-
diction accuracy on the size of test dataset. Figure 8 shows
the prediction accuracy attained by SPEED as a function
of the size of the testing dataset for different sizes of the
training dataset. Figure 9 shows the same results for ALZ.

In the case of SPEED, the prediction accuracy is quite
variable for a test dataset of up to about 250 events due
to the small number of predicted events. The maximum
accuracy is achieved for test set sizes larger than about
500 events when the training is performed based on a set
with 500, 1000 and 2000 events. This confirms that the al-
gorithm is quite robust. ALZ shows similar behaviour and
achieves its maximum prediction accuracy for test datasets
larger than about 200 events.
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100 Accuracy vs Size of testing set (ALZ)
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Figure 9. ALZ prediction accuracy vs. the size of testing set.

100 Accuracy vs Size of training set (SPEED)
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Figure 10. SPEED prediction accuracy vs. the size of training
set for different sets of sensors.

A last test was performed to reveal the dependence of
the prediction accuracy on the number and type of sensors.
Four alternatives were investigated based on our current
data: all sensors (15), only PIR sensors (7), only PIR and
magnetic sensors (11), and only PIR and power sensors
(11). The last two sets have the same number of sensors,
however, magnetic and power sensors can affect accuracy
differently. The results are shown in Figure 10 for SPEED
and Figure 11 for ALZ.

Both algorithms show relatively good robustness with
respect to the number of sensors. The accuracy is not sig-
nificantly dependent upon the number of sensors in the
dataset, in most of the cases. A clear exception is the case
when only PIRs are used for prediction using SPEED. The
prediction accuracy is very poor in this case. Note that in
this case the longest episode will be two events. For ex-
ample, if the resident would go from the bedroom to the
living room and then to the kitchen, the resulting sequence
would be "AaBbCc". There is no context connecting the
living room to the bedroom, or the kitchen to the living
room. Hence, while the "off" events are easily correctly
predicted, the prediction of the next sensor to be activated
will often be quite inaccurate in this case. Note that in
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100 Accuracy vs Size of training set (ALZ)
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Figure 11. ALZ prediction accuracy vs. the size of training set
for different sets of sensors.

this case the tree created by SPEED will have a maximum
length of two. On the other hand, ALZ is better suited to
such cases where events are not highly interweaved. When
SPEED is used the remaining sensor sets achieved a pre-
diction accuracy that is similar to that achieved by the full
set of sensors. The alternative where the power sensors are
not included provides slightly better results indicating that
events related to appliances are more difficult to predict.

In the case of ALZ, the best accuracy is achieved when
fewer sensors are used. This is a result of the fact that the
average probability of occurrence for each event increases
when the number of possible events decreases. The pre-
diction accuracy of events that involve magnetic sensors
is relatively high as doors and drawers are often closed
right after they have been opened, thus making this a rel-
atively easy pattern to predict. On the other hand, power
sensors can occur somewhat randomly with many other
events happening in between, thus making the prediction
of the associated events more inaccurate.

6 Conclusions and Future Work

Activity recognition and prediction in a smart home envi-
ronment with binary sensors has received a lot of atten-
tion in recent years. Most of the reported work is carried
out in testbeds and lab environments where users are of-
ten asked to execute pre-scripted activities. Such smart-
home testbeds typically include a quite large number of
sensors, e.g. the CASAS testbed utilized around 50 sen-
sors (Gopalratnam and Cook, 2007).

In this paper we have presented preliminary results on
event prediction based on data from a real home collected
using just 15 binary sensors. We have used two prediction
algorithms, ALZ and SPEED, to predict the next sensor
event in a sequence. To the extent of our knowledge, this
is the first time these algorithms are used on a dataset ob-
tained from a real home. We compare the prediction ac-
curacy of the two models and examine the dependence of
their performance on a number of parameters — the size of
the training dataset, the size of the testing dataset, and the
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size of the window used for the prediction. We reached an
accuracy of 75% with SPEED and 53% with ALZ when
training with a dataset of 2000 events and testing on a sep-
arate dataset of 1500 events. Increasing the number of
events in either the training or the testing dataset, did not
improve the attained accuracy. In addition, we examined
the dependence of the prediction accuracy on the num-
ber of sensors for both algorithms. Our results show that
robust prediction accuracy can be attained by a relatively
low number of sensors.

However, a much higher prediction accuracy is required
before such algorithms are applicable to real homes. Fu-
ture work will include the time component in order to im-
prove the accuracy of our models as this has been indi-
cated to lead to a considerable improvement (Marufuzza-
man et al., 2015).
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