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Abstract 
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estimate fair price for 40 convertible bonds in the US market. In contrast to most previous 

studies, we do not find evidence of systematic underpricing in the market. Our results show an 

average overpricing of 1.1 %, while deviations between observed and predicted prices seem 

related to coupon rate and credit rating. Furthermore, we find no evidence of a relation between 

price deviation and moneyness of the conversion option. 
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1. Introduction 
 
Convertible bonds are an important part of the securities markets, with approximately US$500 

billion outstanding worldwide. The US market is the largest and accounts for half of the total 

convertible bond market. Attractive features of these financial instruments have made them 

popular among both institutional investors and issuing companies. The major investors in 

convertible bonds are institutional investors such as convertible arbitrage hedge funds (Xiao, 

2014). Convertible bonds provide a different risk-return profile for the investor compared to 

straight bonds as the option component creates an unlimited upside potential. If the underlying 

stock performs poorly, the convertible bond offers a downside protection with the fixed cash 

flow protection from the bond component. However, the holder risks missing out on the interest 

and principal payment due to potential default of the issuing company. Thus, implementing 

credit spreads is important when pricing convertible bonds (Batten, Khaw and Young, 2014). 

 

In this paper, we investigate whether convertible bonds are systematically mispriced in the US 

market. There is a wide range of pricing methods, but not one specific model stands out as 

superior. Several features need to be considered when calculating fair price, making these 

instruments more comparable to complex derivatives than standardized bonds (Kind and Wilde, 

2005). This paper contains an empirical analysis contribution of the US convertible bond 

market. We analyze a data sample of current plain-vanilla convertible bonds. The purpose is to 

implement a model which considers the complexity of these hybrid instruments. We apply a 

least-squares regression model to price convertible bonds as proposed by Longstaff and 

Schwartz (2011), in combination with Monte Carlo simulation in a stochastic dynamic 

programming framework. We conduct stock price simulations to obtain 4.8 million data points 

and combine these with 1200 regressions to estimate the fair price for 40 convertible bonds. 

 

Few studies have been conducted to price convertible bonds in the past ten years. This paper 

covers a gap in recent literature. It contributes by examining a larger data sample, with more 

homogenous and up-to-date convertible bond data. It is also worth noting that most previous 

studies examine historical convertible bonds, while we investigate current instruments. We 

attain a credible model by obtaining average credit spreads from Moody’s Analytics on the 

explicit pricing date and up-to-date data from Bloomberg Terminal. Furthermore, this paper 

provides support to modern research such as Ammann, Kind and Wilde (2008) who find 

convertible bonds to be slightly overpriced. This contrasts to research prior to 2008, where 
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convertible bonds are found to be systematically underpriced, e.g. King (1986), 

Carayannopoulos (1996), Buchan (1997) and Ammann, Kind and Wilde (2003).  

 

The paper is structured as follows: Section 2 provides a brief overview of the complex structure 

of convertible bonds and convertible arbitrage. Section 3 discusses different theoretical 

approaches to pricing models. Section 4 presents the mathematical pricing procedure and a 

numerical example. Section 5 discusses our data and results, and Section 6 concludes and 

suggest future empirical research.  
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2. Convertible Bonds and Arbitrage Strategies 
 
The holders of convertible bonds are entitled to receive regular fixed coupon payments and a 

repayment of the principal upon maturity, similar to regular bonds. The main difference is the 

added conversion feature, giving the investor the option to exchange the bond into a 

predetermined amount of stocks of the issuing company at certain times in the future. The 

number of shares an investor will obtain for one bond depends on the conversion ratio (Hull, 

2012). If converted, the investor does not have any right to future coupons or redemption value, 

as the convertible bond ceases to exist after conversion. Some convertible bonds have additional 

embedded option features such as call and/or put options. However, we focus solely on plain-

vanilla convertible bonds as we want to examine a homogeneous sample. 

 

When valuing convertible bonds, accounting for credit risk is a vital factor. One obtain poor 

quality results if credit risk is ignored, as bond coupons and principal payments will be 

overvalued. Credit risk plays a major part as the debt holders only get the full refund if the asset 

value exceeds the debt value. If we consider a risk-free world, Figure 1 shows that the value of 

the straight bond is riskless and is therefore not affected by a change in the underlying stock 

price (Batten et al., 2014). The value of conversion, however, moves in line with the growing 

stock price as the value of the conversion equals the conversion ratio multiplied with the new 

stock price. As with standardized options, the option value is higher when the stock price is in-

the-money (ITM). For convertible bonds, the option component is ITM when the value of 

conversion exceeds the value of continuation. There are several components that needs to be 

considered when valuing convertible bonds. Coupon rate, time to maturity, conversion ratio, 

face value, credit risk and the dividend yield of the underlying asset are examples of such. 

 

The risk-free condition model is a simplification of how the straight bond value reacts to 

changes in the underlying stock price. The straight bond is affected by both interest risk and 

credit risk, while the option component is exposed to equity risk. Figure 1 must be adapted to 

these circumstances. If the company approaches default, the value of the convertible bond will 

be reduced to the value of the straight bond, adjusted for a recovery rate on the debt, as the 

value of the conversion option decreases to zero (Batten et al., 2014). The changes in value are 

illustrated in Figure 2. 
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Figure	1	–	Convertible	bonds	moneyness.	
The	figure	illustrates	the	convertible	bond	price	changes	as	the	underlying	stock	price	increases.	It	is	assumed	that	
the	bond	component	is	riskless	and	does	not	change	as	the	underlying	stock	price	moves.	The	conversion	value	is	
dependent	on	the	conversion	ratio	and	the	underlying	stock	price,	which	means	that	it	changes	in	line	with	the	
stock	price.	The	investor	is	protected	from	downside	risk	through	the	straight	bond	component,	and	the	option	
component	gives	the	investor	the	advantage	of	a	possible	increase	in	the	stock	price	of	the	company	(Batten	et	
al.,	2014).		

 
 
	

	

	

	

	

	

	

	

	

	

	

	

			
Figure	2	–	The	value	of	the	option	(Batten	et	al.,	2014).	
The	figure	illustrates	that	the	option	value	makes	the	value	of	the	convertible	bond	higher	than	the	maximum	of	
the	straight	bond	value	or	the	conversion	value.	The	convertible	bond	is	out-of-the-money	(OTM)	when	the	stock	
price	drops	relatively	to	the	conversion	value	of	the	bond.	This	increases	the	probability	of	default	(Batten	et	al.,	
2014).	
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The different components affect the pricing process, which can create uncertainty to what the 

actual price should be. This has led to arbitrage investors constantly searching for mispriced 

instruments. The complexity of convertible bonds creates a scenario where market participants 

can find differences between the market value and theoretical value. Arbitrage investors can 

profit by investing in mispriced instruments, e.g. by using buy-and-hedge strategies or buy-and-

hold strategies (Agarwal, Fung, Loon and Naik, 2011). The buy-and-hedge strategy matches a 

long position in a convertible bond with a short position in the underlying common stock of the 

issuing firm. This is done at a current ratio delta (∆), which is the measure of the sensitivity of 

the price of a convertible relative to the changes in the underlying stock. It is possible to estimate 

∆ by using a technique based on correlation, such as least squares regression. The strategy of 

delta hedging must be rebalanced constantly and is consequently an expensive trading method 

(Clewlow and Hodges, 1998).  

 

To neutralize the convertible bond from equity risk, short selling an amount of the underlying 

stock is necessary. The amount to short sell is decided by multiplying the conversion ratio with 

∆. To be able to lock in a profit, continuous rebalancing is necessary due to constantly changing 

stock prices. If the stock price decreases, ∆ will also decrease. To rebalance this position the 

arbitrageur must buy the stock to cover some of the short position. If the stock price increases, 

the arbitrageur must short sell more of the stock to rebalance this position as ∆ increases (Choi, 

Getmansky and Tookes, 2009). These rebalance actions contribute to an improvement of the 

market liquidity (Chordia, Roll and Subrahmanyam, 2002). 

 

There are additional types of risks involved with hedging strategies, such as volatility risk, 

interest rate risk and credit risk. This would, however, involve buying and selling additional 

financial instruments. Hedging the interest rate risk would involve selling risk-free securities 

or futures. When hedging credit risk, short selling of non-convertible bonds or buying credit 

default swaps are required to hedge possible changes in credit ratings or credit spread. Volatility 

risk can be hedged by short selling stock options.  

 

Hedging equity risk can be easier than hedging credit risk, as obtaining market prices for debt 

components are more difficult than for the equity markets (Asness, Berger and Palazzolo, 

2009). Consequently, arbitrageurs prefer convertible bonds that are equity sensitive or 

convertibles that are in-the-money because these are more correlated with the underlying stock 

price. It is also found that convertible arbitrage activity is more significant for convertibles that 
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are more equity-like than convertibles that are more debt-like, due to equity-like convertibles 

being more underpriced when issued (Loncarski, ter Horst and Veld, 2009). 

 

Gamma trading is an additional way for investors to make money with a convertible arbitrage 

strategy by trading on the implied volatility. Gamma is the change in delta as the stock price 

moves. To make money on the stocks volatility within a convertible arbitrage strategy, the 

investor can implement a delta neutral hedge. This position will offset the money the investor 

make and lose on the bond and stock, and thus this position pursues to profit from the volatility 

of a stock. 

 

A convertible bond with a delta of 0.5 means the convertible will rise and fall at half the rate of 

the underlying stock. If a company issue a convertible with a 2:1 conversion ratio and an 

investor purchase 100 convertibles, the initial delta of 0.5 tells the investor to short sell 100 

shares of the underlying common stock. A move in the stock price means the investor is 

required to adjust the position when the purpose is to maintain a similar hedge. When the stock 

price falls, the gains from the short position should exceed the loss on the depreciation of the 

convertible bond price. The investor must then buy shares to still have a delta neutral hedge 

position. On the other hand, if the stock price rises the loss from the investor´s short position 

should be less than the investor´s gain from the appreciation of the convertible bond price. In 

summary, this means the investor is required to sell high and buy low continuously. High 

volatility provides many opportunities for the investor to sell and buy, as seen in Figure 3. 

 

 
	

	

	

	

	

	

	

	

Figure	3	–	Convertible	Arbitrage	
The	figure	illustrates	a	simplistic	and	theoretical	approach	to	gamma	trading	on	the	stock	price	movement	of	
Tesla	Inc.	The	trading	strategy	can	be	used	by	convertible	arbitrage	investors	to	trade	the	underlying	stock	of	an	
acquired	convertible	bond.	 	
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3. Theoretical Models for Pricing Convertible Bonds  
 
Most research on pricing of convertible bonds is built upon a contingent claim approach, based 

on the work of Black and Scholes (1973) and Merton (1973). In previous literature, several 

different models and arguments have been developed to find the actual market specifications in 

the pricing of convertible bonds. Previous research has generated unreliable conclusions 

regarding applicable valuation processes due to the variation in inputs and different approaches 

of the models. Thus, these models may not reflect actual market behavior. 

 

Theoretical research on convertible bond pricing is divided into three branches (Ammann et al., 

2008). The first approach is the firm-value approach which finds a closed-form solution of the 

valuation equation. The approach is inspired by Black and Scholes (1973) and Merton (1973). 

It is used by Ingersoll (1977a) and Brennan and Schwartz (1977) who treats a convertible bond 

as a contingent claim on firm value. Both papers contribute to the initiation of the theoretical 

research on convertible bonds. 

 

The second approach values convertible bonds numerically with lattice-based methods 

(Ammann et al., 2008). Commercially available models use this approach, e.g. Bloomberg 

Monis, OVCV, and SunGard. Brennan and Schwartz (1977) introduced the first theoretical 

model and later extended it with the use of stochastic interest rates in Brennan and Schwartz 

(1980). McConnell and Schwartz (1986) extend the method further by modelling the underlying 

stock as a stochastic variable. They apply a constant credit spread grossed up by an interest rate 

to account for credit risk. Bardhan et al. (1993) and Tsiveriotis and Fernandes (1998) split the 

convertible bond value into a stock component and a straight bond component. Ammann et al. 

(2003) extend the model by accounting for various trigger conditions in the call feature. Several 

other researchers use tree-based models (e.g. Hung and Wang (2002), Carayannopoulos and 

Kalimipalli (2003), Davis and Lishka (1999), Takahashi, Kobayashi and Nakagawa (2001), 

Andersen and Buffum (2004), Barone-Adesi, Bermudez and Hatgioannides (2003), and 

Ayache, Forsyth and Vetzal, (2003)). These models work well in theory, but have several 

drawbacks in practice. The computing time grows exponentially with a rising number of state 

variables, the flexibility is low modelling the underlying state variable, and it is not easy to 

incorporate path dependencies (Ammann et al., 2008).  
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The solution to these drawbacks is to use the third and final class of convertible bond pricing 

models, the Monte Carlo simulation model. Monte Carlo simulation is suitable to model 

dynamic features and call features that are path-dependent, as well as including realistic 

dynamics of a convertible bonds underlying state variables. The model considers that early 

redemption may be allowed in cases where stock price exceed an agreed level, and for only a 

pre-specified number of days in a pre-specified period (Ammann et al., 2008). Another 

advantage of Monte Carlo simulation is that there is an almost linear relationship between 

number of state variables and computing time, making the model flexible and suitable for future 

changes and extensions (Ammann et al., 2008). 

 

Monte Carlo simulation in combination with dynamic programming has been discussed in 

several papers to address difficulties of pricing options with American features. Bossaerts 

(1989), Li and Zhang (1996), Grant, Vora and Weeks (1997), Andersen (2000), and García 

(2003) use a fixed number of parameters to account for the early exercise rule. They maximize 

the value of the option over the parameter space by finding the optimal exercise strategy and 

thus the price of American options. Carrière (1996), Tsitsiklis and Van Roy (1999), Longstaff 

and Schwartz (2001), and Clément, Lamberton and Protter (2002) use a backward induction 

technique to estimate the continuation value of the option. They identify the continuation value 

by using a linear regression to estimate future payoffs on a set of basic functions of the state 

variables. Tilley (1993), Barraquand and Martineau (1995), and Raymar and Zwecher (1997) 

also apply backward induction where the method satisfies the state space. For each subset of 

state variables, they find the optimal exercise decision. Broadie and Glasserman (1997) and 

Broadie, Glasserman and Jain (1997) use simulated trees to calculate prices of American-style 

options. Avramidis and Hyden (1999), Broadie and Glasserman (2000), and Broadie and 

Glasserman (2004) use a method based on stochastic-mesh for different mesh weights. Broadie 

and Cao (2003), Haugh and Kogan (2004), and Rogers (2002) priced Bermudan options using 

a simulation model with a duality approach. Buchan (1997, 1998) apply the simulation method 

by employing firm value as an underlying state variable as well as allowing senior debt to be 

accounted for. However, the conversion option is assumed to be European-style. Fu, Laprise, 

Madan, Su and Wu (2001) summarize different approaches with a comparison of various Monte 

Carlo approaches.  
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As most convertible bonds are American-style options, the bond value to be exchanged for the 

shares is not known in advanced. A straight call option has a known strike price in advance, 

while a convertible bond includes stochastic strike price in the option component. The strike 

price is a function of both changes in credit spreads and interest rates. Ammann et al. (2003) 

solve this issue by treating the option in the conversion as the option to exchange an asset for 

another. The solution is to treat the convertible bond as sum of a straight bond plus value of the 

option to exchange the bond into stocks. Margrabe (1978) introduced a closed-form solution to 

value exchange options, later named the Margrabe-model. Ammann et al. (2003) argue that the 

geometric Brownian motion used by Margrabe is not considered to be the best process 

specification for bond prices. Furthermore, they point out that the closed form pricing formula 

by Merton (1973), Black and Scholes (1973) and Margrabe (1978) refers to European-style 

options, and that the model fails to include potential embedded call and put features.  

 

Due to these drawbacks, Ammann et al. (2003) implement an alternative approach, the 

binominal-tree model with exogenous credit risk. This model is more precise as it accounts for 

the embedded options and American-style options. They construct a univariate binominal-tree 

with 100 time steps following Cox et al. (1979) and base the nominal tree on the stock price 

described by McConnell and Schwartz (1986). They extend the approach further with numerous 

contract-specific boundary conditions to account for the many complex bonds characteristics 

such as embedded options and triggers in their data sample (Ammann et al., 2003). For each 

node, they calculate the convertible bond value regarding the optimal conversion behavior for 

the holder. Note that their study also includes a call option for the issuer, leading to four 

alterative outcomes: 1) The convertible does not get converted or called, and therefore 

continues to exist. 2) The convertible is called by the issuer. 3) The convertible is converted by 

the holder, or 4) the convertible is called by the issuing company and then converted by the 

holder, known as a forced conversion.  

 

They compare the prices generated by the binominal-tree model with the prices available in the 

French convertible bond market to examine if any systematic underpricing exists. Furthermore, 

they include an exchange-option model and a simple component model as reference models 

and find underpricing of over 3 %. Like King (1986) and Carayannopoulos (1996), they find 

that the degree of underpricing depends on the moneyness of the convertible. ITM convertibles 

are less mispriced than ATM and OTM convertibles. They also find that longer time to maturity 

results in a higher underpricing. 
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In previous research, King (1986) find average underpricing of 3.75 % in a data sample of 103 

American convertible bonds. Carayannopoulos (1996) investigate 30 American convertible 

bonds in a period of one year and finds an average underpricing of 12.9 %. Both authors find 

that deep OTM bonds are underpriced, while ATM and ITM bonds are overpriced. Using a 

firm-value model with a Cox-Ingersoll-Ross (CIR) term structure model, Buchan (1997) finds 

an average underpricing of 1.7 % on Japanese convertible bonds. Ammann et al. (2003) argue 

that drawbacks in these previous studies are too few data points. Finnerty (2015) finds a mean 

pricing error of 0.21 % in their closed-form contingent claim model. While Bunchan (1997) 

only use one calendar day, King (1986) two days, and Carayannopoulos 12 days, Ammann et 

al. (2003) expends the data set with 18 months of daily pricing data. This is the first empirical 

test with direct modelling of stock prices to value convertible bonds (Ammann et al., 2003). To 

account for complex bond characteristics, they implement a binominal-tree model with 

exogenous credit risk.  

 

Ammann et al. (2008) provides a new theoretical and empirical contribution to the pricing 

process by using Monte Carlo simulation with parametric representation of the early exercise 

decisions. They reject the hypothesis of theoretical underpricing found in previous studies. 

They extend previous approaches by creating a model that is better to include and account for 

complex features reflecting real world convertible bonds. By using daily data for 69 months, 

they find theoretical underpricing of just 0.36 % in average for the US convertible bond 

market. In contrast to their previous studies they do not confirm any strong positive 

relationship between moneyness and price deviation. 
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4. Pricing Framework 
The following section presents the mathematical pricing approach applied in this paper. We 

discuss the importance of including credit risk and how to apply the Monte Carlo simulation. 

Furthermore, we account for interest rates, coupons and dividend payments. Finally, we 

provide a numerical example to illustrate our pricing model approach.   

 

4.1 Mathematical approach 

If the convertible bond does not get converted it redeems at maturity T with pre-specified 

amount 𝜅𝑁, where 𝜅 is the final redemption ratio of the face value and N represents the face 

value of the convertible bond with associated coupons. In most cases 𝜅 = 1. If the investors 

convert they receive 𝑛'𝑆', where 𝑛' is the conversion ratio at time t and 𝑆' is the spot price of 

the underlying stock at time t.  

 

The optimal stopping time must be obtained to determine the investor’s cash flows. The optimal 

stopping time is defined as 𝜏∗. This may either be by a regular redemption when the bond 

reaches maturity, or an early conversion. The optimal stopping time is found by calculating 

𝑚𝑎𝑥 𝑛'𝑆'; 𝑁; 𝑉'0 , where 𝑛'𝑆' is the payoff from a conversion in state 𝑋' at time t, N is the 

appropriate discounted value of cash flows received at maturity, consisting of the face value 

and associated coupons, and 𝑉'0 is the value of continuation. Continuation is defined as the 

convertible bond being held for one additional time step. If 𝑛'𝑆' < 𝑉'0 or 𝑛'𝑆' < 𝑁 there will 

be no conversion at the current time step.  

 

The coupon payments occurring prior to 𝜏∗ must be accounted for. We apply the mathematical 

approach used by Ammann (2008), with adjustments to our plain-vanilla sample. We define 

𝑝 𝑋4∗, 𝜏∗  as the payoff at the optimal time of termination 𝜏∗, discounted with risk-free rate 𝑟7 

and	𝑐 𝜏∗  as the accumulated value of all coupons throughout the convertible bonds lifetime, 

i.e. before 𝜏∗, discounted with the appropriate risk adjusted rate 𝑟:;<. The discount rate 𝑟:;< 

reflects the probability of default. The cash flows are discounted in a risk-neutral measure to 

obtain the convertible bond value: 

 

𝑉= = 𝐸ℚ 𝑒A BC DE,'F∗
EGH 𝑝 𝑋4∗, 𝜏∗ + 𝑒A BJKL DE,'F∗

EGH 𝑐 𝜏∗ ,    (1) 
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where 𝑉= is the convertible bond value in each path, 𝜏∗ is the optimal stopping time, expectation 

𝐸ℚ 	∙	  is the equivalent Martingale measure ℚ defined using the riskless security as the 

numeraire (Ammann et al., 2008). We define 𝑟7(𝑋', 𝑡) as the interest rate between time t and  

t + 1. Note that if the investor does not convert but wait for the face value, the first part of the 

equation will also be discounted with the risk adjusted rate 𝑟:;< as the probability of default 

affects the face value.  

 

The next step is to calculate the value of continuation. We apply the following equation as part 

of the regression approach:  

 

𝜔 = 𝐸ℚ 𝑒A BC DE,'ERS
E 𝐶𝐹'VW + 𝑒A BJKL DE,'	ERS

E 𝑐𝑝𝑛'VW	 ,    (2) 

 

where 𝐶𝐹'VW is the expected cash flow received in the next time step, found by backward 

induction, and 𝑐𝑝𝑛'VW is the coupon received for holding the convertible one more time step. 

As the investor does not have perfect knowledge about future stock prices, we use regression 

to estimate the expected value of continuation (𝑉'0), where the Y-value equals 𝜔 and the X-

value is the simulated stock price at time t.   

 

By applying the exercise strategies, we calculate the average discounted payoffs of all paths 

simulated by calculating: 

 

𝑉= =
W
X

𝑒A BC DE,'F∗
EGH 𝑝 𝑋4∗, 𝜏∗ + 𝑒A BJKLF∗

EGH DE,' 𝑐(𝜏∗)X
YZW ,    (3) 

 

where N is the number of paths simulated and 𝑋' are realizations of simulated state variables. 

We provide a numerical example in section 4.5 to illustrate the progress method.  

 

4.2 Accounting for Credit Risk 

Credit risk is the risk that a borrower may default and hence not be able to repay the coupons 

or principal to the lender (Jarrow and Turnbull, 1995). There are two sources of credit risk 

associated with convertible bonds (Carol, 2008). First, convertible bonds are often issued by 

growth firms. Such firms are often expected to receive a high share price in the future but obtain 

low credit ratings today. Issuing convertible bonds is therefore a way to receive funding with 
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relatively lower coupons compared to straight bonds, yet still be attractive to investors due to 

the conversion option. Second, convertible bonds are often classed as subordinated or junior 

debt (Carol, 2008).  

 

Credit risk can be accounted for in different ways in a simulation such as Monte Carlo. Some 

studies apply the approach presented by Tsiveriotis and Fernandes (1998) by discounting cash 

flows separately. Cash flows that are not subject to credit risk are discounted with a different 

discount rate than cash flows subject to credit risk. Coupons and redemption payments are 

discounted with a risk adjusted rate (𝑟:;<) when using a simulation-based approach (Tsiveriotis 

and Fernandes, 1998). It is also possible to implement credit spreads as a subsequent process 

correlated with other state variables, or as a constant. In our model, we implement credit risk 

similar to Tsiveriotis and Fernandes (1998). We apply constant credit spreads by discounting 

the coupons and final redemption with a risk adjusted rate, while we discount stock prices with 

the risk-free rate. 

 

When implementing credit spreads, finding similar straight bonds with the same maturity as the 

convertible bonds can be a challenge. Studies such as Ammann et al. (2008) use constant credit 

spreads by obtaining monthly data from the Yield Book database. There are some drawbacks 

with this method as credit ratings change over time, and constant credit spreads only represent 

the rating at a certain point of time. Additionally, credit spreads data often represent only 

averages of bonds outstanding within a certain rating category. Errors when estimating credit 

spreads are therefore possibly significant when pricing convertibles bonds, given that most 

convertibles are rated relatively low and have high credit spreads. We obtain credit spreads 

from Moody’s Analytics as of March 27, 2018, and apply a similar approach as Ammann et al. 

(2008). 

 

4.3 Monte Carlo Simulation 

An important aspect of pricing convertible bonds and derivatives in general is finding the 

optimal time of exercise. The investor cannot be certain what will happen in the future. 

Consequently, there must be some form of estimated expectation regarding the future value of 

a convertible bond to be able to make an optimal decision. The holder of a convertible bond 

will at any time convert the bond if the expected payoff today exceeds the expected payoff of 

continuation. Thus, the optimal point of exercise is decided by the conditional expectation on a 
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convertible bonds value. To find the conditional expected value of holding the convertible bond 

for one more period we apply a least squares regression method to estimate a continuation value 

by using information from the Monte Carlo simulated paths, as done by Longstaff and Schwartz 

(2001). This provides an unbiased estimate of the expected conditional value of continuation 

from the cross-sectional information in the simulation, and thus helps to estimate the optimal 

stopping time for the convertible. Applying a Monte Carlo simulation and estimating expected 

continuation value on each possible exercise date will provide an optimal exercise strategy 

along all simulated paths. 

 

We apply Monte Carlo simulation where we simulate 4000 paths with 30 time steps for each 

of the 40 convertible bonds in our data sample. Assuming a stochastic process and a discrete 

time model, we apply the following simulation formula:  

 

∆𝑆 = 	𝜇𝑆∆𝑡 + 	𝜎𝑆 ∈ ∆𝑡    (4) 

 

In equation 4, stock price S follows a geometric Brownian motion as explained in Hull (2012), 

where ∆𝑆 is the change in stock price 𝑆 in time interval	∆𝑡, 𝜇 is the expected rate of return,	𝜎 is 

the volatility of the stock price and ∈ is the standard normal distribution. 

 

The drift term 𝜇 and standard deviation are held constant in our model, where 𝜇 equals the risk-

free rate 𝑟7 as we want the simulation of future stock prices to be independent of historical 

performance of the underlying stock. We simulate the stochastic process in a Monte Carlo 

framework. The Monte Carlo approach simulates random numbers between 0 and 1, resulting 

in numerous paths the underlying stock price can follow based on the applied risk-free rate and 

standard deviation. The randomized numbers are then used in an inverse cumulative normal 

distribution model. 

 

We use ten years of adjusted historical stock prices or the maximum data available to calculate 

standard deviation. All historical stock quotes are obtained from Bloomberg Terminal. To 

obtain variance and standard deviation, we use daily logarithmic return. Yearly standard 

deviation is adjusted from calendar days to actual trading days. The risk-free rate is obtained 

from US Treasury Bills and is continuously compounded. As we use 30 time steps for each 

convertible bond, the number of days between each time step vary according to the different 
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days to maturity. The model accounts days in each time step with a unique simulation for every 

convertible bond, where all parameters and inputs are adjusted. We achieve similar average 

values when conducting several simulations, proving that the number of paths and time steps 

in our model are sufficient for a simulation of high quality.  

 

4.4 Coupon, interest rate and dividends 

We adjust coupons to the time to maturity and number of time steps, providing a correct 

estimate of coupon payments in our simulation. When finding the optimal stopping time, we 

account for accrued coupons and risk adjusted value of future coupon payments. 

 

Risk-free rates are obtained from the US Treasury and adjusted for every convertible bond’s 

time to maturity. Obtained interest rates cover maturities from one month to thirty years. The 

convertible bonds have different number of days to maturity. We solve this by interpolating 

interest rates with a linear interpolation, providing accurate estimates down to the number of 

days to maturity. Some previous studies have discussed whether to use stochastic or constant 

interest rates. However, Ammann et al. (2008) find that the benefits of using stochastic interest 

rates are limited. 

 

By using adjusted stock prices to estimate standard deviation we account for historical 

dividends in the simulation of future stock prices. Furthermore, the convertible bonds in our 

data sample are dividend protected meaning that the conversion ratio adjusts to dividend 

payments. Consequently, dividends do not affect the value of the convertible bond in our model.  

 
4.5 Numerical example 
This section provides a numerical example to illustrate our pricing procedure. To identify the 

conditional expected value of continuation, the key is to exercise the convertible bond at 

optimal time (Longstaff and Schwartz, 2001). At any point of time it is optimal to exercise the 

convertible bond if the conversion value exceeds both the expected value of continuation and 

the discounted face value with coupons, hereafter included in the term continuation value.   

 

Consider the convertible bond issued by Tesla Inc., March 22, 2017. The convertible bond has 

a conversion ratio of 3.05, coupon 2.375, face value of US$1000 and maturity March 15, 2022. 

It is exercisable at any time step between t = 1 and t = 30. The paths are simulated as mentioned 

in section 4.3 and summarized in the following matrix:    
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We start our recursive algorithm in the final time step t = 30 and create 29 intermediate matrices. 

For each time step we condition no earlier exercise. Otherwise, there would be no expected 

cash flow in later time steps. The expected cash flows in t = 30 are: 

 

 

 

In the matrix above, conversion value is the stock price 𝑆' at time t multiplied with the 

conversion ratio. The possible cash flows at t = 30 is the maximum of either the conversion 

value or the face value. For path 1, this would be the maximum of US$1483.04 (3.0534 x 485.7) 

or the face value of US$1000.  

 

The next step is to calculate whether the investor should convert at one earlier time step, in this 

case t = 29, or continue holding the convertible for one more time step. We use least squares 

regression to estimate the expected value of continuation from t = 29 to t = 30. X denotes the 

stock prices at t = 29 for each path. Y is the corresponding expected discounted cash flow 

received at t = 30, conditioned on no conversion in t = 29. Note that this also includes accrued 

coupons for holding the convertible bond one more time step. The regression vectors X and Y 

at t = 29 are summarized in the matrix below: 

Timestep t	=	0 t	=	1 t	=	2 ... t	=	29 t	=	30
Path
1 279,2 254,2 247,1 453,8 485,7
2 279,2 236,8 234,0 84,9 93,3
3 279,2 250,9 258,2 192,8 201,2
...

3999 279,2 309,2 334,9 227,3 225,8
4000 279,2 306,8 304,3 200,2 203,2

Simulated	stock	paths

Path Simulated	stock	prices Conversion	value Maturity	value Max
1 485,7 1483,0 1000 1483
2 93,3 285,0 1000 1000
3 201,2 614,2 1000 1000
...

3999 225,8 689,4 1000 1000
4000 203,2 620,6 1000 1000

Cash	flow	matrix	at	t	=	30
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We regress Y on a constant X and X2 to estimate the expected continuation value conditioned 

on the simulated stock price at t = 29, resulting in the coefficients summarized below:   

 

 
 

The coefficients provide the conditional expected function E[Y | X] = 961.41974 – 0.417675X 

+ 0.0027523X2. It is now possible to estimate the conditional expected value of continuation 

by substituting X with the corresponding stock value for each path. In path 1 the estimated 

value of continuation is US$1338.7. This provides a unique expected value of continuation for 

each of the 4000 paths.  

 

In the following table the value of early exercise at t = 29 is compared with the value of 

continuation. If the exercise value exceeds the value of continuation the investor chooses to 

exercise at t = 29.   

 

 
 

Path Y X X^2
1 1481,7 453,8 205947
2 996,6 84,9 7211
3 996,6 192,8 37154
...

3999 996,6 227,3 51661
4000 996,6 200,2 40089

Regression	at	t	=	29

Coefficients
Intercept 961,41974
X-variable	1 -0,417675
X-variable	2 0,0027523

Regression	at	t	=	29

Path Exercise Continuation Exercise	or	continue?
1 1385,7 1338,7 Exercise
2 259,3 945,8 Continue
3 588,6 983,2 Continue
...

3999 694,0 1008,7 Continue
4000 611,4 988,1 Continue

Exercise	decision	at	t	=	29
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For the paths illustrated in the previous table, the only optimal conversion is in path 1. In total, 

the convertible bond is exercised in 664 out of the 4000 paths in time step 29.  

 

We repeat this process for all time steps to examine whether the convertible bond should have 

been exercised at an earlier time step. Remember that if a path is exercised in an earlier time 

step, the convertible ceases to exist and cannot be converted in a later time step. To keep the 

numerical example brief, we jump straight to time step 1.  

 

The expected cash flows received in t = 2 is summarized in the following matrix. Again, the 

cash flows are conditioned on no exercising in t = 1.   

 

 
 

We continue the recursive approach and investigate whether the convertible bond should be 

converted in t = 1. Y again denotes the discounted expected cash flows for the next time step.  

 

 
 

Path Simulated	stock	prices Conversion	value
1 247,1 754,4
2 234,0 714,5
3 258,2 788,3
...
19 371,5 1134,3
...
23 369,6 1128,6
...

3999 334,9 1022,5
4000 304,3 929,1

Cash	flow	matrix	at	t	=	2

Path Y X X^2
1 756,9 254,2 64603,6
2 717,1 236,8 56097,9
3 790,8 250,9 62935,6...
19 1136,5 357,4 127718,3...
23 1130,8 286,9 82291,7...
3999 1024,8 309,2 95599,0
4000 931,4 306,8 94155,3

Regression	at	t	=	1
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We regress Y on a constant X and X2 to estimate the expected continuation value conditioned 

on the simulated stock price at t = 1, resulting in the coefficients summarized below:   

 

 
 

The coefficients provide the conditional expected function E[Y | X] = 60.38910578 + 

2.574124212 + 0.000967214X2. The value of early exercise at t = 1 is compared with the value 

of continuation, and summarized in the following matrix: 

  

 
 

For Tesla, none of the 4000 paths gets converted in time step 1. By completing step 30 to step 

1, we find the optimal stopping time for each path. In the following table, optimal stopping time 

is represented by the numeric value 1: 

 

Coefficients
Intercept 60,38910578
X-variable	1 2,574124212
X-variable	2 0,000967214

Regression	at	t	=	1

Path Exercise Continuation Exercise	or	continue?
1 776,1 777,1 Continue
2 723,2 724,3 Continue
3 766,0 767,0 Continue...
19 1091,2 1103,9 Continue...
23 875,9 878,4 Continue...
3999 944,1 948,7 Continue
4000 936,9 941,3 Continue

Exercise	decision	at	t	=	1

Timestep t	=	1 t	=	2 t	=	3 ... t	=	29 t	=	30
Path
1 0 0 0 1 0
2 0 0 0 0 1
3 0 0 0 0 1...
19 0 1 0 0 0...
23 0 1 0 0 0...

3999 0 0 0 0 1
4000 0 0 0 0 1

Optimal	stopping	time
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When optimal stopping time is found, it is straightforward to find the associated cash flow for 

each path. The following matrix illustrates the corresponding cash flows received at each 

optimal stopping time. Note that for t = 30, the cash flow is the maximum of the conversion 

value or the face value. 

 

 
 

The final step is to determine the value in t = 0 by averaging the discounted cash flows based 

on the optimal stopping rule. Converted paths are discounted with the risk-free rate, while face 

values and coupons are discounted with the risk adjusted rates. In total 1702 of 4000 paths are 

converted for this convertible bond. 

 

 

 

 

 

 

 

 

 

 

 

By conducting this approach, we estimate a theoretical price of Tesla Inc.`s convertible bond 

of US$1052.3. The observed market price is US$1082.0, leading to an estimated overprice in 

the market of 2.82 %. This pricing method is applied to all 40 convertible bonds in our sample. 

 

Timestep t	=	1 t	=	2 t	=	3 ... t	=	29 t	=	30
Path
1 0,0 0,0 0,0 1385,7 0,0
2 0,0 0,0 0,0 0,0 1094,3
3 0,0 0,0 0,0 0,0 1094,3...
19 0,0 1134,3 0,0 0,0 0,0...
23 0,0 1128,6 0,0 0,0 0,0...

3999 0,0 0,0 0,0 0,0 1094,3
4000 0,0 0,0 0,0 0,0 1094,3

Cash	flow	at	optimal	stopping	time

Path Value	at	t	=	0
1 1427,7
2 898,2
3 898,2...
19 1138,6...
23 1132,9...

3999 898,2
4000 898,2

Average 1052,3

Convertible	bond	value
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5. Data and Results   
In this section, we present our data sample and discuss the results. Table 1 summarizes the 

convertible bond characteristics present in our sample and Table 2 provides the results from 

our analyzes.  

 
5.1 Data  

We examine all convertible bonds outstanding in the US domestic market per March 27, 2018. 

The US is the largest and most liquid market for convertible bonds. All convertible bond data 

and daily stock prices are obtained from Bloomberg Terminal and credit spreads are provided 

from Moody`s Analytics. The total number of convertible bonds outstanding in the US market 

is 504 per March 27, 2018, with at an average time to maturity of 1902 days, average coupons 

of 2.81 % and average market capitalization for issuing firms is US$39.7 billion. 

 

Various requirements are made to ensure a quality data sample. We consider only plain-vanilla 

convertible bonds with market cap above US$100 million. We only examine convertible bonds 

rated by Standard & Poor´s Bond Guide as we need credit ratings to implement credit spreads. 

The latter two criteria reduce the sample to 83 convertible bonds. By excluding convertible 

bonds including call or put features, we are left with 49 convertibles. Two of these bonds are 

exchangeable, meaning that the holder can convert to stocks in a different company than the 

issuing firm. These are also excluded. Furthermore, we exclude four companies that have 

merged during the convertibles' lifetime, one company where the convertible bond is listed on 

London Stock Exchange and two convertible bonds with too brief history to compute a precise 

volatility estimate. 

 

The final sample consist of 40 plain-vanilla convertible bonds, summarized in Table 1. This is 

a larger sample compared to previous research such as Ammann et al. (2008), who also include 

convertible bonds with call and put features. We find average coupons of 2.3 %, average time 

to maturity of 3.2 years and average market cap of US$12.23 billion in our sample. The oldest 

convertible bond is E*TRADE Financial Corp issued Match 19, 2009, and the most recent is 

Marriot Vacations Worldwide Corp issued September 25, 2017. Three convertible bonds are 

zero coupon bonds, while the remaining 37 are fixed coupon bonds. The credit ratings vary 

from BBB to CCC. 
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Table	1	–	Data	Sample	of	Issued	Convertible	Bonds	
The	table	provides	a	summary	of	the	features	present	in	our	analyzed	sample.	The	listed	information	is	name	of	issuing	
firm,	date	of	issue,	yearly	coupons,	maturity	date,	market	capitalization	of	the	issuing	firm,	type	of	coupon	for	the	
convertible	bond,	whether	the	bond	is	convertible,	and	credit	ratings	from	Standard	&	Poor’s	Bond	Guide	as	of	March	27,	
2018.	

 
5.2 Results 

We find that market prices are on average 1.12 % higher than model prices, as summarized in 

Table 2. This is in contrast with previous studies using other pricing models and approaches, 

such as King (1986) and Ammann et al. (2003) who find convertible bonds to be underpriced. 

The results are however consistent with Ammann et al. (2008) who use a similar approach 

where they find an overpricing of 0.36 % in their sample of 32 convertible bonds. However, 

the samples in previous research consist of convertible bonds with additional call and put 

features, while our data sample contains only plain-vanilla convertible bonds and may therefore 

Issuer	Name Issue	Date Cpn Maturity Market	Cap	(m) Coupon	Type Is	Convertible S&P	Rating
Altaba	Inc 26-Nov-13 0.00 1-Dec-18 62	607 ZERO	COUPON Y BB
Ares	Capital	Corp 27-Jan-17 3.75 1-Feb-22 6	758 FIXED Y BBB
Cardtronics	Inc 25-Nov-13 1.00 1-Dec-20 1	115 FIXED Y BB
Chart	Industries	Inc 3-Aug-11 2.00 1-Aug-18 1	833 FIXED Y B
Ciena	Corp 28-Jul-17 3.75 15-Oct-18 3	746 FIXED Y B
Citrix	Systems	Inc 30-Apr-14 0.50 15-Apr-19 12	831 FIXED Y BBB
Cypress	Semiconductor	Corp 23-Jun-16 4.50 15-Jan-22 6	395 FIXED Y BB
DISH	Network	Corp 17-Mar-17 2.38 15-Mar-24 17	402 FIXED Y CCC
Dycom	Industries	Inc 15-Sep-15 0.75 15-Sep-21 3	238 FIXED Y BB
E*TRADE	Financial	Corp 19-Aug-09 0.00 31-Aug-19 14	710 ZERO	COUPON Y BBB
Gogo	Inc 9-Mar-15 3.75 1-Mar-20 776 FIXED Y CCC
Goldman	Sachs	BDC	Inc 3-Oct-16 4.50 1-Apr-22 782 FIXED Y BBB
Hercules	Capital	Inc 25-Jan-17 4.38 1-Feb-22 1	026 FIXED Y BBB
Horizon	Global	Corp 1-Feb-17 2.75 1-Jul-22 209 FIXED Y B
Illumina	Inc 11-Jun-14 0.00 15-Jun-19 35	671 ZERO	COUPON Y BBB
Impax	Laboratories	Inc 30-Jun-15 2.00 15-Jun-22 1	449 FIXED Y B
Innoviva	Inc 24-Jan-13 2.13 15-Jan-23 1	680 FIXED Y B
Integrated	Device	Technology	Inc 4-Nov-15 0.88 15-Nov-22 4	222 FIXED Y B
iStar	Inc 20-Sep-17 3.13 15-Sep-22 679 FIXED Y BB
Lam	Research	Corp 11-May-11 1.25 15-May-18 34	709 FIXED Y BBB
Macquarie	Infrastructure	Corp 15-Jul-14 2.88 15-Jul-19 3	128 FIXED Y BBB
Marriott	Vacations	Worldwide	Corp 25-Sep-17 1.50 15-Sep-22 3	618 FIXED Y BB
Microchip	Technology	Inc 15-Feb-17 1.63 15-Feb-27 22	984 FIXED Y B
Nabors	Industries	Inc 13-Jan-17 0.75 15-Jan-24 2	275 FIXED Y BB
Newpark	Resources	Inc 5-Dec-16 4.00 1-Dec-21 749 FIXED Y B
Nuance	Communications	Inc 17-Mar-17 1.25 1-Apr-25 4	698 FIXED Y BB
NVIDIA	Corp 2-Dec-13 1.00 1-Dec-18 148	606 FIXED Y BBB
ON	Semiconductor	Corp 8-Jun-15 1.00 1-Dec-20 11	074 FIXED Y BB
PDC	Energy	Inc 14-Sep-16 1.13 15-Sep-21 3	373 FIXED Y BB
Prospect	Capital	Corp 11-Apr-14 4.75 15-Apr-20 2	382 FIXED Y BBB
Red	Hat	Inc 7-Oct-14 0.25 1-Oct-19 28	393 FIXED Y BBB
Spirit	Realty	Capital	Inc 20-May-14 2.88 15-May-19 3	463 FIXED Y BBB
TCP	Capital	Corp 6-Sep-16 4.63 1-Mar-22 827 FIXED Y BBB
Tesla	Inc 22-Mar-17 2.38 15-Mar-22 50	203 FIXED Y B
TPG	Specialty	Lending	Inc 1-Feb-17 4.50 1-Aug-22 1	123 FIXED Y BBB
TTM	Technologies	Inc 20-Dec-13 1.75 15-Dec-20 1	596 FIXED Y B
Twitter	Inc 17-Sep-14 1.00 15-Sep-21 22	779 FIXED Y BB
Unisys	Corp 15-Mar-16 5.50 1-Mar-21 544 FIXED Y B
Verint	Systems	Inc 18-Jun-14 1.50 1-Jun-21 2	443 FIXED Y B
Whiting	Petroleum	Corp 27-Mar-15 1.25 1-Apr-20 3	123 FIXED Y BB

Data	sample	of	issued	convertible	bonds
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not be directly comparable. In total among all 40 convertible bonds, only two convertibles have 

mispricing exceeding 15 %. If we exclude these outliers, we find that market prices are on 

average 0.02 % lower than model prices. 

 

The following table summarizes the mispricing contribution of each convertible bond:  

 

 
																		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

				Table	2	–	Pricing	Deviation	by	Issued	Convertible	Bond	
				The	table	provides	a	summary	of	price	deviations	between	predicted	model	prices	and	observed		
				market	prices	for	the	40	convertibles	analyzed	in	this	paper.	Pricing	deviation	represent	to	what		
				extent	observed	market	prices	vary	from	the	estimated	model	prices.	

Company Ask	price Model	price Pricing	deviation
Altaba	Inc 1433 1367 0.0483
Ares	Capital	Corp 1024 1150 -0.1099
Cardtronics	Inc 934 969 -0.0366
Chart	Industries 1016 1038 -0.0218
Ciena	Corp 1333 1287 0.0360
Citrix	Systems	Inc 1333 1285 0.0369
Cypress	Semiconductor	Corp 1412 1434 -0.0158
DISH	Network	Corp 877 781 0.1225
Dycom	Industries	Inc 1238 1085 0.1405
Etrade	Financail	Corp 5249 5235 0.0028
GOGO	Inc 903 957 -0.0560
Goldman	Sachs	BDC	Inc 1026 1111 -0.0764
Hercules	Capital	Inc 1011 1127 -0.1026
Horizon	Global	Corp 835 908 -0.0805
Illumina	Inc 1108 1047 0.0581
Impax	Laboratories	Inc 998 890 0.1203
Innoviva	Inc 1057 1043 0.0135
Integrated	Device	Technology	Inc 1146 949 0.2075
iStar 953 1091 -0.1267
Lam	Research	Corp 3562 3393 0.0500
Macquarie	Infrastructure	Corp 993 1020 -0.0268
Marriott	Vacations	Worldwide	Corp 1094 1037 0.0551
Microchip	Technology	Inc 1249 957 0.3051
Nabors	Industries	Inc 759 866 -0.1232
Newpark	Resources	Inc 1177 1162 0.0131
Nuance	Communications	Inc 995 908 0.0965
NVIDIA	Corp 11093 11245 -0.0135
ON	Semiconductor	Corp 1488 1350 0.1029
PDC	Energy	Inc 977 962 0.0151
Prospect	Capital	Corp 1008 1056 -0.0453
Red	Hat	Inc 2112 2109 0.0017
Spirit	Realty	Capital	Inc 997 1000 -0.0024
TCP	Capital	Corp 1014 1107 -0.0848
Tesla	Inc 1082 1052 0.0282
TPG	Specialty	Lending	Inc 1021 1136 -0.1015
TTM	Technologies	Inc 1683 1619 0.0395
Twitter	Inc 940 934 0.0069
Unisys	Corp 1293 1359 -0.0484
Verint	Systems	Inc 953 913 0.0437
Whiting	Petroleum	Corp 946 968 -0.0223

Mean	pricing	deviation 0.0112

Pricing	deviation	by	issued	convertible	bond
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We investigate the relationships between pricing deviation and critical input factors by 

conducting several regressions. First, we examine the relationship between pricing deviations 

and coupons. In our sample, we find that convertible bonds with high coupons tend to be 

relatively more underpriced compared to convertible bonds with low coupons and zero 

coupons. The relationship proves to be statistically significant at 5 %-level. Next, we examine 

the relationship between credit ratings and convertible bond price deviations. The result implies 

that convertible bonds with low credit ratings tend to be more overpriced compared to 

convertible bonds with high credit ratings. This relationship also proves to be statically 

significant at 5 %-level. Note that the results are based on linear regression. It is not necessarily 

the case that investors interpret the relationship between the different credit ratings as linear.  

 

The relationship between days to maturity and pricing deviation is examined, and proves to be 

statistically insignificant. The relationship between market cap size and pricing deviation also 

proves to be statistically insignificant. Furthermore, we find no statistical significant 

relationship between number of paths converted for each convertible bond and pricing 

deviations.  

 

  
			Table	3	–	Regression	table	
			The	table	provides	a	summary	of	coefficients,	p-values	and	R-squared	values	for	the	conducted	
			regressions,	with	the	pricing	deviation	as	the	dependent	variable.	Company	in	Finance	Sector		
			and	Company	in	Tech	Sector	are	regressed	as	dummy	variables.	

 

Previous research, e.g. Ammann et al. (2003) find relationship between the degree of 

moneyness and mispricing, indicating that underpricing decreases when a convertible bond is 

further ITM. When examining for moneyness we find no significant relationship, consistent 

with Ammann et al. (2008). The relationship between coupon rates and price deviation implies 

that higher coupons leads to a higher estimated price in our model, as illustrated in Figure 5. 
However, it is important to note that some of these underpriced companies belong to the same 

sector and have similar credit ratings. If sector is a factor influencing the relationship between 

Test Coefficient p-value R-squared
Coupon -2.1748 0.0319 0.115
Credit	Rating -0.0656 0.0118 0.156
Moneyness 0.0004 0.9589 0.000
Days	to	Maturity 0.0000 0.3541 0.023
Paths	Converted 0.0000 0.8839 0.001
Market	Cap 0.0000 0.4276 0.017
Company	in	Finance	Sector -0.1007 0.0020 0.226
Company	in	Tech	Sector 0.0711 0.0711 0.141
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coupon and predicted prices, it is natural to think that the simulated stock prices in our 

simulation can be affected by sector specific volatility. Given that we use historical volatility 

when predicting stock prices, the historical data from companies within the same sector may 

lead to this relation. This is tested by conducting a dummy regression with the eleven companies 

belonging to financial sector against the rest of the data sample. We find a categorical effect of 

higher underpricing for the finance sector which is highly significant at 1 %-level. Similar 

regression is done for the thirteen tech companies, where we find the sector to be more 

overpriced with a statistically significance at 5 %-level, as shown in Table 3. 

Figure	4	–	Price	Deviation	and	Coupon.	
The	figure	provides	an	illustration	of	the	relationship	between	coupon	rates	and	price	deviation	between	predicted	prices	
and	market	prices	for	the	convertible	bonds	in	our	data	sample.	The	axis	on	the	left	side	represent	percentage	of	price	
deviation	between	estimated	prices	and	actual	market	prices,	while	the	axis	on	the	right	side	represent	the	yearly	coupon	
rate	in	percentage	of	face	value. 
 

Furthermore, the price deviation may also result from comparing estimated price with listed ask 

price for each convertible bond. It is not necessarily the case that all customers buy the 

convertible bonds at the listed ask price. Big financial institutions may purchase convertible 

bonds at a discount compared to smaller investors. Using a mid-price ranging between the bid 

and ask spread, we find an average misprice of 1.01 % compared to the initial price deviation 

of 1.12 %. Our findings may prove that it can be of interest for arbitrage investors to pursue 

mispricing in the US convertible bond market.  
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6. Conclusion 
 
We present a simulation based approach to price convertible bonds where we find an average 

overpricing of 1.12 %. Price deviations seem related to coupon rate and credit ratings. The 

presented results are in line with recent literature such as Ammann et al. (2008), but in contrast 

with previous studies where other pricing approaches are applied. There is no clear consensus 

on one pricing model being far superior to others. However, the simulation based model is 

suitable to account for the dynamic state variables and features of a convertible bond (Ammann 

et al., 2008). 

 

We investigate a relatively large data sample compared to previous studies. However, we 

exclude convertible bonds with additional call and put features from our data sample. For a 

more wide-ranging study, it would be natural to extend the pricing model by including these 

features. The investigated mispricing is conducted for one day only in this paper. It may be of 

interest to extend the investigated period, as done in some previous papers. 

 

There are several model inputs that can be discussed. For instance, the implementation of credit 

risk is vital as minor adjustments impact the price. There are some disadvantages of 

implementing constant credit spreads, as we do in this paper. Studies such as Kind and Wilde 

(2005) model credit risk by finding a company-specific default probability and issue-specific 

recovery rate. These can vary over time, or be held constant as is done in Kind and Wilde 

(2005). This is a different approach to apply credit risk, and can be executed to investigate 

whether it influence prices significantly. Volatility of the underlying stock is another input 

which is implemented different in various studies. Our Monte Carlo simulation bases future 

volatility on historical volatility, and we implement a constant volatility over the entire 

simulation period. Studies such as Ammann et al. (2008) apply GARCH-type specifications to 

account for the stock volatility clustering. There is no consensus on how stock volatility should 

be applied when simulating stock prices, yet it may be of interest to examine how different 

approaches affect the result.  

 

Finally, a potential extension to the literature is to examine additional liquid markets such as 

the French, UK and Japanese. It is of interest to test if the mispricing patterns we find in this 

paper are present in different markets, but we leave this to be investigated by future studies. 
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