

Impact of ankle-foot orthoses on gait one year after lower limb surgery in children with bilateral cerebral palsy

Journal:	Prosthetics & Orthotics International
Manuscript ID	TPOI-2017-0207.R1
Manuscript Type:	Original Research Reports
Keywords:	gait analysis < gait, orthopaedic surgery, lower limb orthotics < orthotics
Author-supplied Keywords:	ankle-foot orthoses, cerebral palsy, lower limb surgery, postoperative

Abstract

Background: Different types of ankle-foot orthoses (AFOs) are commonly used following lower limb surgery in children with bilateral spastic cerebral palsy (CP). After 3-dimensional gait analysis one year postoperatively, many children are recommended continued use of AFOs. Our aims were to quantify the impact of AFOs on gait one year postoperatively and evaluate predictors for clinically important improvement.

Study design: Prospective cohort study

Methods: Thirty-four ambulating children with bilateral CP, mean age 11 years (range 6-17), 12 girls and 22 boys, were measured with 3-dimensional gait analysis preoperatively (barefoot) and one year postoperatively (barefoot and with AFOs). Outcome was evaluated using gait profile score (GPS), key kinematic, kinetic and temporal-spatial variables in paired sample comparisons. Logistic regression was used to evaluate predictors for clinically important improvement with orthoses ($\geq 1.6^{\circ}$ change in GPS).

Results: Walking barefoot one year postoperatively, major improvements were seen in GPS and key variables. With AFOs there was significantly improved step length and velocity, additional moderate reduction/improvement in GPS and knee moments, and decreased stance ankle dorsiflexion compared to barefoot. Children using ground reaction AFOs (n=14) decreased stance knee flexion from 13.9° walking barefoot to 8.2° with orthoses. High GPS and more gait dysfunction preoperatively was a significant predictor of clinically important improvement walking with orthoses.

Conclusion: The results indicate improved gait function walking with AFOs versus barefoot one year after lower limb surgery. Stronger impact of AFOs was found in children with more pronounced gait dysfunction preoperatively.

1 Clinical relevance

- 2 The one-year postoperative 3-dimensional gait analysis is a useful method to assess treatment
- 3 outcome after lower limb surgery in children with bilateral CP and could also guide clinicians
- 4 whether further treatment with AFOs is indicated, using clinically important differences as
- 5 thresholds to evaluate their impact on gait.

2
4
5
6
0 7
8
9 10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
50 57
58
58 59
59 60
00

⁶ Background

Ambulating children with bilateral spastic cerebral palsy (CP) often experience a decline in gait function as they grow older, mainly seen as ankle equinus or energy demanding crouched gait.¹³ Severity of the gait impairment and occurrence of contractures may necessitate lower limb surgery.^{2, 4} Ankle foot orthoses (AFOs) are routinely used as part of the postoperative rehabilitation regimen with the objective to maintain the surgical corrections, prevent recurrence of preoperative deformities and improve gait by providing adequate mechanical support.⁴⁶

14 A survey including families where the children underwent multilevel surgery revealed that 15 the use of AFOs was a major challenge during the rehabilitation period.⁷ Many children have 16 expectations that the orthoses could be discontinued following the one year postoperative 17 evaluation with 3 dimensional gait analysis (3DGA). Nevertheless, the postoperative 3DGA frequently leads to recommendations for continued use of orthoses.^{8,9} Due to the risk of 18 19 developing pes calcaneus and crouch gait in children with bilateral CP, particularly after 20 tendo achilles lengthening and with low age at surgery¹⁰ it has been suggested that 21 discontinuation of AFOs should be advised only when gait data confirm satisfactory 22 plantarflexion and knee extension coupling.^{5, 11} 23 Valuable information has previously been provided regarding the effect of orthoses on gait function in children with bilateral CP.¹²⁻¹⁸ However, we are not aware of any studies that have 24 investigated the impact of AFOs and the indication for continued use by comparing walking 25 26 with orthoses versus walking barefoot one year postoperatively.

The main aim of this study was to quantify the impact of AFOs one year after lower limb surgery in children with bilateral spastic CP. A secondary purpose was to identify predictors for clinically important improvement when walking with AFOs. We hypothesized that the use of AFOs provides improvement compared to barefoot.

31		
32	Methods	
33	Participants	
34	We included children with bilateral spastic CP and level I III of the gross motor function	
35	classification system (GMFCS). ¹⁹ All children underwent lower limb surgery and used AFOs	5
36	at the one year postoperative 3DGA. Consecutive sampling during a 4 year inclusion period	
37	resulted in 55 patients who received written information about the study. Thirty four childre	21
38	(62%), 12 girls and 22 boys, gave written consent to participate. Seven children had motor	
39	function categorised as GMFCS level I, 19 level II, and 8 level III. Their mean age at surger	3
40	was 11 years (range 6 17). In total, 146 surgical procedures were performed, 97 in the limbs	
41	that were analysed (Table 1). The most common procedures were hamstrings lengthening	
42	(n=19), rectus femoris transfer (n=16), tendo achilles lengthening (n=15) and gastrocnemius	•
43	recession (n=11). All children were analysed with gait analysis preoperatively (barefoot) and	ł
44	one year postoperatively (barefoot and with orthoses). Kinetics from four children who used	ł
45	ambulatory devices that obstructed the force plate data were removed.	
46	The study was approved by the South-East Regional Ethics Committee (REC; 2013/1242))
47	Orthoses and rehabilitation	
48	Casting for postoperative AFOs was routinely made peroperatively by certified prosthetist	
49	orthotists (CPO) at the hospital. Physiotherapy commenced one day postoperatively and was	5
50	continued during the whole rehabilitation period. Fitting and tuning of the orthoses took	
51	place during one week of in house rehabilitation after protective splints had been removed.	
52	Subsequently, the children spent four weeks in a rehabilitation centre with intensive	
53	stretching, strength and gait training, before receiving community based follow up.	
54	Types of AFOs were guided by each participant's preoperative 3DGA and the treatment	
55	algorithms suggested by Rodda and Graham. ⁵ In children with crouch patterns, AFOs	

2 3	
4	
5	
6 7	
8	
9	
10	
11 12	
12 13	
14	
15	
16 17	
17 18	
19	
20	
21	
22 23	
24	
25	
26	
27 28	
29	
30	
31	
32 33	
34	
35	
36	
37 38	
39	
40	
41	
42 43	
44	
45	
46	
47 48	
49	
50	
51 52	
52 53	
54	
55	
56 57	
57 58	
59	
60	

56	restricted dorsal and plantar flexion and were designed to apply an external knee extension
57	moment during stance, categorised as ground reaction AFO (GRAFO). In cases of equinus,
58	the AFOs were constructed to allow dorsiflexion, restrict plantar flexion and lift the foot in
59	swing, categorised as hinged AFO (HAFO). Pre-fabricated carbon orthoses (ToeOFF®,
60	Allard, USA) were also categorised as HAFO since flexibility in the sole allowed stance ankle
61	dorsiflexion (Figure 1). With shoes, AFOs were aligned using 0-10° anterior shank-to-vertical
62	inclination. The children were advised to use the AFOs all day until the 3DGA one year
63	postoperatively, with control of orthosis function using video-vector analysis six months
64	postoperatively.
65	Gait analysis
66	Data were collected with participants walking at self-selected speed, using a 6-camera
67	MXF40 Vicon system (Oxford, UK) and three force platforms (AMTI OR6-7, Watertown,
68	USA). Markers were placed on anatomical landmarks according to the Plug-in-Gait model. ²⁰
69	Using standardized protocols, two testers reached agreement about marker placement,
70	forefoot markers were placed proximal to minimise effect of foot deformities, and knee
71	varus/valgus curves were used as quality control of thigh coordinate system alignment. ²¹
72	Postoperatively, participants were first measured barefoot, and then with AFOs. With
73	AFOs, markers were placed on the orthoses and shoes, in best possible agreement with
74	segment and motion axes. To account for differences in heel height, we measured the heel to
75	toe drop of the shoe sole. Heel markers were placed accordingly higher from the ground than
76	the forefoot marker using a caliper, and not assumed horizontal with the ground during static
77	processing. Standardised physical examination including joint range of movement, muscle
78	strength and tone took place prior to the walking trials.
79	As part of routine procedure, a multidisciplinary team consisting of orthopaedic surgeons,
80	child neurologists, CPOs and physiotherapists interpreted the 3DGA data. ^{6, 22} Their clinical

1 2
2
4
5
6
/
8 9
10
11
12
13 14
14 15
16
16 17
18 19
20
21
22
23
24 25
25 26
26 27 28
28
29
30 31
32
33
34 35
35 36
30 37
38
39
40
41 42
43
44
45
46 47
47 48
49
50
51 52
52 53
55 54
55
56
57 58
58 59
60

81	advice regarding further care and interventions were specified in the patients' gait reports. We
82	reviewed the postoperative gait reports to assess how many children were recommended
83	continued AFO use and the clinical cause for prescription.

84	The gait profile score (GPS) ²³ was used as a summary measure of gait quality. GPS for
85	right and left legs were derived from nine kinematic gait variable scores (GVS), using root
86	mean square differences between the patient's gait curves and averaged gait curves from our
87	reference database of 24 typically developing children. ²² Reduced GPS score indicate gait
88	closer to normal and improvement. GPS reduction $\geq 1.6^{\circ}$ has been defined as a minimal
89	clinically important difference (MCID). ²⁴ Furthermore, we investigated three kinematic, two
90	kinetic and three temporal-spatial outcome variables considered especially relevant to
91	evaluate the impact of AFOs on gait in bilateral CP. This included ankle angle at initial
92	contact, stance maximum ankle dorsiflexion, stance minimum knee flexion, stance maximum
93	external dorsiflexion moment, late stance maximum external knee moment, gait velocity,
94	cadence and step length. Temporal-spatial outcome variables were normalised by body height
95	to account for growth between pre- and postoperative measurements. ²⁵
96	Statistics
97	Three gait trials in each condition were averaged, using data from one limb per participant in
98	the statistical analyses (SPSS 21 for Windows, IBM corp. Armonk, NY, USA). This implied
99	the most affected side when AFOs were used on one side only $(n=9)$ and the side which
100	underwent most surgery when bilateral orthoses were used. Normal distributions in each
101	outcome variable were tested using Kolmogorov-Smirnov test.
102	Paired samples t-tests were used to assess changes in outcome variables between the
103	baseline preoperative and 1-year postoperative barefoot conditions, and between AFO and
104	barefoot conditions one year postoperatively. Since GRAFOs were thought to differ

1	
2	
3	
4	
3 4 5 6 7 8 9 10	
5	
0	
/	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17 18	
15	
16	
17	
18	
19	
19 20 21 22 23 24 25 26 27	
20 ⊇1	
21	
22	
23	
24	
25	
26	
27	
28	
20	
30 31 32 33 34 35 36 37	
31	
32	
33	
37	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
53	
54	
55	
56	
57	
58	
59	
60	

105	significantly in mechanical properties from HAFOs, paired t-tests were also used to compare
106	kinematic variables in the subgroups (GRAFOs and HAFOs).
107	Children who had GPS reduction ≥1.6° walking with AFOs versus barefoot postoperatively
108	were categorised as "Improved" and children with GPS reduction <1.6° categorised as "Not
109	Improved". Logistic regression was used to evaluate relevant predictors (GMFCS level, sex,
110	age at surgery, preoperative GPS, postoperative GPS) of clinically important improvement
111	walking with AFOs. Factors that were significant in univariable regression analysis were
112	subsequently tested in multivariable analysis. The significance level was set at p < 0.05 .
113	
114	Results
115	Median time from surgery to postoperative 3DGA was 14 months (range 12-24). One year
116	postoperatively, 14 children used GRAFOs and 20 used HAFOs (10 ToeOFF®).
117	The mean GPS was 17.3° (SD 4.6°) preoperatively and 12.3° (SD 2.8°) walking barefoot
118	postoperatively. GVS components of the GPS are displayed in the motion analysis profile
119	(MAP) (Figure 2). When comparing postoperative barefoot walking with preoperative
120	baseline data, the GPS, key kinematic and kinetic variables were significantly improved,
121	whereas non-dimensional velocity and step length decreased following surgery (Table 2).
122	One year postoperatively, the mean GPS was significantly reduced by an average of 0.7°
123	walking with AFOs compared to barefoot (Table 2). Twelve of the 34 participants (35%) had
124	a reduction in GPS $\geq 1.6^{\circ}$ with AFOs, indicating clinically important improvement. The
125	remaining 22 patients had change in GPS <1.6° with AFOs and were categorised as not
126	improved.
127	In univariable logistic regression, sex, preoperative and postoperative barefoot GPS values
128	were significantly associated with clinically important improvement walking with AFOs
129	(Table 3). In multivariable logistic regression, a high preoperative GPS value was the only

Prosthetics & Orthotics International

Page 8 of 20

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
9 10 11 12 13	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24 25	
26	
27	
28	
20 29	
29	
30 31	
31	
32	
33	
34	
35 36	
36	
37	
38	
39	
40	
41	
42	
43	
45 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
50	
59	
60	

1

significant independent predictor of clinically important improvement (p=0.026). This
indicated that children with more severe gait dysfunction preoperatively had better effect of
orthoses one year postoperatively.
Maximum ankle dorsiflexion was in average reduced by 7° walking with AFOs compared

to barefoot (Table 2). Despite increased external knee extension moment with AFOs

135 (p=0.029), minimum knee flexion in stance was only moderately reduced (from 7.3° to 4.8° ,

136 p=0.084). However, separate subgroup analysis of the 14 participants who used GRAFOs,

137 revealed significant improvement in minimum knee flexion (from 13.9° to 8.2°, p=0.016).

138 Analysis of temporal-spatial variables revealed significantly increased velocity and step

139 length when the children walked with AFOs, whereas cadence was lower, indicating a more

140 energy-efficient gait compared to the postoperative barefoot condition (Table 2).

141 Twenty-nine children were recommended continued use of AFOs (the same type in 14 and

142 altered AFO type in 15). The most frequent cause for prescription was to reduce stance knee

143 flexion and prevent recurrence of crouch and/or to improve pre-positioning of the foot before

144 initial contact. Only 10 of the 29 children who were recommended continued use had

145 clinically important improvement (GPS change $\geq 1.6^{\circ}$) walking with AFOs versus barefoot

146 one year postoperatively.

147

148 **Discussion**

149 One year postoperatively the impact of walking with AFOs compared to barefoot was

150 improved GPS, increased step length and velocity, decreased maximum ankle dorsiflexion,

- 151 improved knee extension moment with AFOs, and in children using GRAFOs decreased
- 152 minimum knee flexion. It is difficult to directly relate our findings to similar research
- 153 because, to our knowledge, no studies exist that have compared walking with orthoses versus

Prosthetics & Orthotics International

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

154 barefoot at a defined postoperative period. Previous studies included an unknown proportion of children who underwent lower limb surgery.^{12, 13, 16, 17} 155 156 With AFOs, the GPS was reduced with an average 0.7° (SD 1.3°), indicating an 157 improvement of moderate degree. Previous studies using summary measures to evaluate gait with AFOs versus barefoot reported differing conclusions. Ries et al¹⁶ found significant 158 159 improvement in the gait deviation index, whereas no difference was found in Gillette gait index¹² or GPS^{15} . 160 Clinically important GPS improvement with AFOs versus barefoot was found in 35% of 161 162 the children. The main predictor for such improvement was high GPS preoperatively, which 163 indicated that patients with more severe gait function had better effect of orthoses. This is in 164 accordance with recent studies where patients with low functional level benefit most from AFOs.^{14, 16} GMFCS level was not a predictor of improvement with AFOs in our study, 165 166 possibly due to the limited number of patients in each group. 167 A well-documented effect of AFOs in bilateral CP is reduced dynamic equinus with improved prepositioning in terminal swing and ankle angles at initial contact.^{13, 15, 18} We did 168 169 not find a difference in this variable (Table 2), most likely because 26 of our participants 170 underwent triceps surae lengthening with ankle angles at initial contact within normal ranges 171 (mean, 2SD) in both postoperative conditions. 172 The reduction of stance maximum ankle dorsiflexion was significant in the total cohort and 173 in both AFO subgroups. However, the decrease was greater in children who used GRAFOs. 174 This group had severe crouch preoperatively, which was the initial reason why GRAFOs were 175 prescribed. Many children had residual crouch postoperatively, seen as excessive ankle 176 dorsiflexion (mean 15.8°) and knee flexion (mean 13.9°) in stance. The higher prevalence of 177 excessive dorsiflexion postoperatively may have been caused by surgical overlengthening of 178 the triceps surae. Also, immobilization in rigid GRAFOs could have reduced triceps surae

179	strength and contributed to the plantar flexion, knee extension deficit in this group. Although	1
180	orthoses effectuated a moderate decrease in stance minimum knee flexion, the difference wa	S
181	not statistically significant. This was not unexpected, since the mean barefoot value was 7°	
182	postoperatively and within normal ranges. Children using GRAFOs had more severe gait	
183	dysfunction and thus more potential for improvement ^{14, 16} . Stance knee flexion decreased	
184	significantly, possibly due to ankle dorsiflexion constraint and more efficient force transfer	
185	through longer and stiffer lever arms in this AFO type. Our results are in accordance with	
186	Rogozinski et al ¹⁷ and Bøhm et al ¹⁴ who found that GRAFOs, by restricting stance sagittal	
187	plane ankle motion, are effective to diminish crouched gait patterns in children with CP.	
188	Improved temporal-spatial variables walking with AFOs compared to barefoot confirmed	
189	the results from previous research with respect to increased step or stride length, ^{13, 15, 16, 18}	
190	velocity, ^{15, 16, 18} and reduced cadence. ^{13, 15, 18} The increase in step length by 7.6 cm was above	'e
191	the threshold for a clinically important difference whereas changes in velocity and cadence	
192	were of medium and small clinical importance, respectively. ²⁶ It should be considered	
193	whether temporal-spatial changes with orthoses may be partially due to the addition of shoes	5.
194	Best practice guidelines, published after data collection for this study, recommended shoes to	0
195	be used as the control condition when evaluating AFOs. ²⁷ We prioritised barefoot data since	
196	this was needed for comparison with preoperative data. In able-bodied children stride length	
197	increased significantly with shoes, ²⁸ whereas in children with unilateral CP ²⁹ no unanimous	
198	benefit was found with shoes versus barefoot. Recently, Bøhm et al found no significant	
199	differences between barefoot and shoed conditions and concluded that barefoot walking is	
200	sufficient as control condition when evaluating the impact of orthoses. ¹⁴	
201	Indications for continued use of AFOs after the one-year postoperative 3DGA evaluation	
202	depend on how well gait is corrected by the surgery and postoperative rehabilitation, and	
203	whether residual gait deficits are still present. Comparing pre- and postoperative barefoot	
		9

Page 11 of 20

1 2

2 3	
4	
5	
6 7	
/ 0	
0	
9 10	
10	
12	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
25	
26	
27	
28	
29	
30	
31	
32 33 34 35	
33	
34	
35	
36 37	
3/	
37383940	
39 40	
40 41	
41	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

204	values, the average GPS was reduced by 5° postoperatively, indicating gait patterns closer to
205	normal. Nevertheless, the mean postoperative GPS of 12.3° exceeded the normal range,
206	suggesting that the gait problems had not been completely resolved. This may explain why
207	many children (85%) were recommended continued use of AFOs. If clinically important
208	improvement in GPS had been used as criteria, some of these children would probably have
209	been advised to discontinue using orthoses. However, GPS was calculated for this study and
210	was not available when the team evaluated the postoperative 3DGA. Recommendations were
211	based on gait data and clinical evaluation. This may have caused prescription of AFOs even
212	where they seemed of minor benefit, possibly to prevent relapse of gait problems or for
213	support in cases of foot deformities, which could not be determined by the simplified 3DGA
214	model employed.
215	A recent study questioned whether gait indices such as the GPS are sensitive enough to
216	measure AFO efficiency. ¹⁵ We believe GPS is an appropriate measure of overall gait quality

and it has been found reliable and sensitive to detect clinically important differences.^{24, 30} 217

218 Still, because it is a summary score calculated across several kinematic components,

219 important changes in single components may have been concealed. Therefore, key kinematic 220 variables should also be reported, such as stance maximum ankle dorsiflexion and minimum 221 knee flexion, which are particularly relevant to evaluate crouch gait in children with bilateral 222 CP.

According to the study by Capjon and Bjørk,⁷the use of AFOs was a major challenge 223 224 during the rehabilitation period. Many children hoped that the orthoses could be discontinued 225 after the one year postoperative evaluation, due to discomfort, pain and an overall challenging 226 postoperative regimen. Their findings are consistent with our clinical experience. Therefore, 227 recommendations should be well-founded, preferably based on improved gait function. This 228 could help motivate children and parents and clarify why continued use of AFOs is necessary.

10

229	In future practice, we suggest that the functional purpose of AFOs is specified in each child,
230	using clinically important differences in relevant 3DGA variables as thresholds of efficacy.
231	Special caution should be executed in younger children who could deteriorate when they enter
232	the pubertal growth spurt, ^{1, 10} and in children with severe gait dysfunction preoperatively.
233	Children with bilateral CP and previous surgery have higher incidence of crouch, ³ particularly
234	after tendo-achilles lengthening, ^{10, 11} which also could indicate prolonged use of orthoses.
235	There were some limitations in this study. As reported, we did not include a shoes-only
236	control condition. Inclusion of ToeOFF® orthoses may have biased analyses in the HAFO
237	group. The number of children was rather small, making statistical analyses of subgroups and
238	predictors of improvement less reliable. There was heterogeneity with regards to motor
239	function, type of surgery and type of orthoses. However, repeated measures using each child
240	as his or her own control eliminated some of the variability. Variance in postoperative follow
241	up time added heterogeneity to the sample and future studies should control for this factor to
242	diminish bias. Since the present study mainly included sagittal plane variables, the differences
243	between the compared conditions were less influenced by known limitations of 3DGA, such
244	as marker placement error ³¹ and soft tissue artifacts. ^{32, 33}
245	Further research should include patient-reported outcomes to evaluate function and
246	satisfaction with the orthoses. Furthermore, the role of AFOs in reducing the risk of relapse
247	after surgery might be relevant to investigate in a longitudinal follow-up study.
248	
249	Conclusion
250	Our findings indicate moderately improved gait function walking with AFOs compared to
251	barefoot one year after lower limb surgery. Stronger impact of AFOs was found in children
252	with severe gait dysfunction.
253	
	11

2 3	254	Acknowledgements
4 5	255	We thank all participants in the project and acknowledge the contribution of Merete Aarsland
6 7 8	256	Fosdahl, Ann Britt Huse and Kristin Kvalheim Beyer for taking part in data collection.
9 10	257	Author contribution
11 12	258	All authors contributed to the drafting and editing of this article and approved the final
13 14	259	version.
15 16	260	Declaration of conflicting interests
17 18 10	261	All authors declare no potential conflicts of interest with respect to the research, authorship,
19 20 21	262	and/or publication of this article.
22 23	263	Funding
24 25	264	We acknowledge the PhD grant from Sophies Minde Ortopedi AS. The funding organisation
26 27	265	was not involved in the study.
28 29	266	
30 31 32	267	
33 34	268	
35 36	269	
37 38	270	
39 40	271	
41 42	272	
43 44 45	273	
46 47	274	
48 49	275	
50 51	276	
52 53	277	
54 55 56	278	
50 57 58		10
59 60		12 URL: http:/mc.manuscriptcentral.com/tpoi Email: tim.bach@ispoint.org

1		
2		
3	279	References
4	280	
5		
6	281	1. Bell KJ, Ounpuu S, DeLuca PA and Romness MJ. Natural progression of gait in
7	282	children with cerebral palsy. J Pediatr Orthop. 2002; 22: 677-82.
8	283	2. Gough M, Eve LC, Robinson RO and Shortland AP. Short-term outcome of multilevel
9	284	surgical intervention in spastic diplegic cerebral palsy compared with the natural history. Dev
10	285	<i>Med Child Neurol</i> . 2004; 46: 91-7.
11	286	3. Wren TA, Rethlefsen S and Kay RM. Prevalence of specific gait abnormalities in
12 13	287	children with cerebral palsy: influence of cerebral palsy subtype, age, and previous surgery. J
13	288	Pediatr Orthop. 2005; 25: 79-83.
14	289	4. Gage JR. The treatment of gait problems in cerebral Palsy. Mac Keith Press, 2004.
16	290	5. Rodda J and Graham HK. Classification of gait patterns in spastic hemiplegia and
17	291	spastic diplegia: a basis for a management algorithm. <i>Eur J Neurol</i> . 2001; 8 Suppl 5: 98-108.
18	292	6. Terjesen T, Lofterod B and Skaaret I. Gait improvement surgery in ambulatory
19	293	children with diplegic cerebral palsy. <i>Acta Orthop.</i> 2015: 1-7.
20	294	7. Capjon H and Bjork IT. Rehabilitation after multilevel surgery in ambulant spastic
21	295	children with cerebral palsy: children and parent experiences. <i>Dev Neurorehabil</i> . 2010; 13:
22	296	182-91.
23	297	8. Kay RM, Dennis S, Rethlefsen S, Skaggs DL and Tolo VT. Impact of postoperative
24	297	gait analysis on orthopaedic care. <i>Clin Orthop Relat Res.</i> 2000: 259-64.
25	298	9. Lofterod B and Terjesen T. Local and distant effects of isolated calf muscle
26	300	
27		lengthening in children with cerebral palsy and equinus gait. J Child Orthop. 2008; 2: 55-61.
28	301	10. Borton DC, Walker K, Pirpiris M, Nattrass GR and Graham HK. Isolated calf
29	302	lengthening in cerebral palsy. Outcome analysis of risk factors. <i>J Bone Joint Surg Br.</i> 2001;
30	303	83: 364-70.
31	304	11. Vuillermin C, Rodda J, Rutz E, Shore BJ, Smith K and Graham HK. Severe crouch
32	305	gait in spastic diplegia can be prevented: a population-based study. J Bone Joint Surg Br.
33	306	2011; 93: 1670-5.
34	307	12. Brehm MA, Harlaar J and Schwartz M. Effect of ankle-foot orthoses on walking
35 36	308	efficiency and gait in children with cerebral palsy. J Rehabil Med. 2008; 40: 529-34.
30 37	309	13. Buckon CE, Thomas SS, Jakobson-Huston S, Moor M, Sussman M and Aiona M.
38	310	Comparison of three ankle-foot orthosis configurations for children with spastic diplegia. Dev
39	311	<i>Med Child Neurol</i> . 2004; 46: 590-8.
40	312	14. Böhm H, Matthias H, Braatz F and Döderlein L. Effect of floor reaction ankle–foot
41	313	orthosis on crouch gait in patients with cerebral palsy: What can be expected? Prosthetics and
42	314	Orthotics International. 2017; 0: 0309364617716240.
43	315	15. Danino B, Erel S, Kfir M, et al. Are Gait Indices Sensitive Enough to Reflect the
44	316	Effect of Ankle Foot Orthosis on Gait Impairment in Cerebral Palsy Diplegic Patients? J
45	317	Pediatr Orthop. 2015.
46	318	16. Ries AJ, Novacheck TF and Schwartz MH. The Efficacy of Ankle-Foot Orthoses on
47	319	Improving the Gait of Children With Diplegic Cerebral Palsy: A Multiple Outcome Analysis.
48	320	<i>PM R</i> . 2015; 7: 922-9.
49	321	17. Rogozinski BM, Davids JR, Davis RB, III, Jameson GG and Blackhurst DW. The
50	322	Efficacy of the Floor-Reaction Ankle-Foot Orthosis in Children with Cerebral Palsy. <i>Journal</i>
51	323	of Bone and Joint Surgery. 2009; 91: 2440-7.
52	323	18. Wren TA, Dryden JW, Mueske NM, Dennis SW, Healy BS and Rethlefsen SA.
53	325	Comparison of 2 Orthotic Approaches in Children With Cerebral Palsy. <i>Pediatr Phys Ther</i> .
54	326	2015; 27: 218-26.
55 56	520	2010, 27. 210 20.
56 57		
57 58		
50		13

2		
3	327	19. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E and Galuppi B. Development
4	328	and reliability of a system to classify gross motor function in children with cerebral palsy.
5	329	Dev Med Child Neurol. 1997; 39: 214-23.
6	330	20. Davis RB, Ounpuu S, Tyburski D and Gage JR. A Gait Analysis Data-Collection and
7	331	Reduction Technique. Human Movement Science. 1991; 10: 575-87.
8	332	21. Schwartz MH, Trost JP and Wervey RA. Measurement and management of errors in
9	333	quantitative gait data. Gait Posture. 2004; 20: 196-203.
10	334	22. Lofterod B and Terjesen T. Results of treatment when orthopaedic surgeons follow
11	335	gait-analysis recommendations in children with CP. Dev Med Child Neurol. 2008; 50: 503-9.
12	336	23. Baker R, McGinley JL, Schwartz MH, et al. The gait profile score and movement
13	337	analysis profile. Gait Posture. 2009; 30: 265-9.
14 15	338	24. Baker R, McGinley JL, Schwartz M, Thomason P, Rodda J and Graham HK. The
15	339	minimal clinically important difference for the Gait Profile Score. Gait Posture. 2012.
17	340	25. Stansfield BW, Hillman SJ, Hazlewood ME, et al. Normalisation of gait data in
18	341	children. Gait Posture. 2003; 17: 81-7.
19	342	26. Oeffinger D, Bagley A, Rogers S, et al. Outcome tools used for ambulatory children
20	343	with cerebral palsy: responsiveness and minimum clinically important differences. <i>Dev Med</i>
21	344	Child Neurol. 2008; 50: 918-25.
22	345	27. Ridgewell E, Dobson F, Bach T and Baker R. A systematic review to determine best
23	346	practice reporting guidelines for AFO interventions in studies involving children with cerebral
24	347	palsy. Prosthet Orthot Int. 2010; 34: 129-45.
25	348	28. Oeffinger D, Brauch B, Cranfill S, et al. Comparison of gait with and without shoes in
26	349	children. Gait & Posture. 1999; 9: 95-100.
27	350	29. Desloovere K, Molenaers G, Van GL, et al. How can push-off be preserved during use
28 29	351	of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait
30	352	Posture. 2006; 24: 142-51.
31	353	30. Rasmussen HM, Nielsen DB, Pedersen NW, Overgaard S and Holsgaard-Larsen A.
32	354	Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic
33	355	cerebral palsy: Intra-rater reliability and agreement across two repeated sessions. Gait
34	356	Posture. 2015; 42: 133-7.
35	357	31. McGinley JL, Baker R, Wolfe R and Morris ME. The reliability of three-dimensional
36	358	kinematic gait measurements: a systematic review. Gait Posture. 2009; 29: 360-9.
37	359	32. Leardini A, Chiari L, Croce UD and Cappozzo A. Human movement analysis using
38	360	stereophotogrammetry: Part 3. Soft tissue artifact assessment and compensation. Gait &
39 40	361	Posture. 2005; 21: 212-25.
40 41	362	33. Peters A, Galna B, Sangeux M, Morris M and Baker R. Quantification of soft tissue
42	363	artifact in lower limb human motion analysis: A systematic review. Gait & Posture. 2010; 31:
43	364	1-8.
44	365	
45	266	
46	366 367	
47		
48	368	
49	369 370	
50		
51 52	371 372	
52 53	372	
55 54	373 374	
55	374 375	
56	515	
57		
58		14
59		
60		URL: http:/mc.manuscriptcentral.com/tpoi Email: tim.bach@ispoint.org

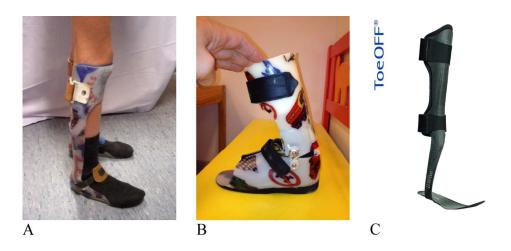
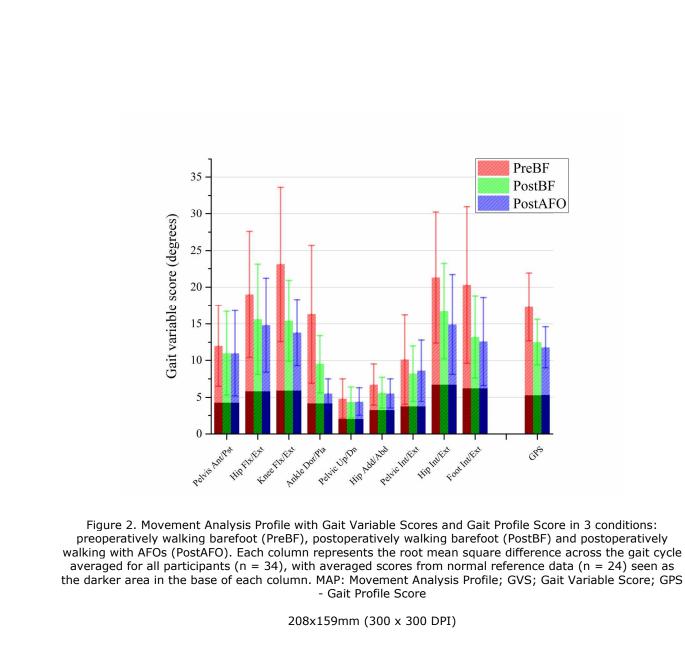


Figure 1. Types of AFOs used at postoperative gait analysis

A. GRAFOs were fabricated in 5-6mm polypropylene, fixing the ankle in neutral position and with a ventral shell extending to mid-patella and stiff sole past the toes. B. HAFOs were made in 2.5 mm polypropylene, dorsal shell and circular, total-contact foot part, integrated joints (Tamarack, Blaine, USA) and trimlines to block plantarflexion and allow free dorsiflexion.

C. Dynamic carbon composite orthoses (ToeOFF®, Allard, USA) with arch-supporting insoles provided flexible resist to plantarflexion, allowed dorsiflexion over flexible sole, and were also categorised as HAFO


132x59mm (300 x 300 DPI)

PreBF

PostBF

CPS

PostAFO

tip Add Abd

- Gait Profile Score

Pelvicupion

Pelvic INEX

HIPINIEN

Foothultat

Table 1.

General table with participant characteristics, type of surgery and type of AFO in the analysed

FCS AFO 1 M II 12 H, GR HAFO/ToeOFF® 1 2 M III 11 RFT, H, GR HAFO/ToeOFF® 1 3 M III 14 5 P, RFT, GR, TibPT, PF HAFO/ToeOFF® 1 4 F II 10.5 FDO, P, RFT, GR, TibPT, PF HAFO/ToeOFF® 1 5 F II 11 P, RFT, H, TAL GRAFO 1 6 M I 9 TAL HAFO 1 6 M I 9 TAL HAFO 1 7 M II 6.5 H, TAL HAFO 1 8 F I 10 P, RFT, H, TAL, TibPT GRAFO 1 10 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 1 14 F II <t< th=""><th>Ν</th><th>Sex</th><th>GM</th><th>Age</th><th>Surgery</th><th>Type AFO</th><th>Recommendation</th></t<>	Ν	Sex	GM	Age	Surgery	Type AFO	Recommendation
2 M III 11 RFT, H, GR HAFO/ToeOFF® 1 3 M III 14.5 P, RFT, H, GR GRAFO 1 4 F II 10.5 FDO, P, RFT, GR, TibPT, PF HAFO/ToeOFF® 1 5 F II 11 P, RFT, H, TAL GRAFO 1 6 M I 9 TAL HAFO 1 7 M II 8.5 FDO, A, TAL GRAFO 1 9 M II 6.5 H, TAL HAFO 1 9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO 0 13 M I 7.5 RFT HAFO 0 15 F II 13.5 FDO, RFT, H, GR GRAFO 1 <t< th=""><th></th><th></th><th>FCS</th><th>8</th><th>8 0</th><th></th><th>AFO</th></t<>			FCS	8	8 0		AFO
3 M III 14.5 P, RFT, H GRAFO 1 4 F II 10.5 FDO, P, RFT, GR, TibPT, PF HAFO/ToeOFF® 1 5 F II 11 P, RFT, H, TAL GRAFO 1 6 M I 9 TAL HAFO 1 6 M I 9. TAL HAFO 1 7 M II 8.5 FDO, A, TAL GRAFO 1 8 F I 10 P, RFT, H, TAL HAFO 1 9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 0 1 14 F II 13.5 FDO, RFT, H, GR GRAFO 1 </td <td>1</td> <td>М</td> <td>II</td> <td>12</td> <td>H, GR</td> <td>HAFO/ToeOFF®</td> <td>1</td>	1	М	II	12	H, GR	HAFO/ToeOFF®	1
3 M III 14.5 P, RFT, H GRAFO 1 4 F II 10.5 FDO, P, RFT, GR, TibPT, PF HAFO/ToeOFF® 1 5 F II 11 P, RFT, H, TAL GRAFO 1 6 M I 9 TAL HAFO 1 6 M I 9. TAL HAFO 1 7 M II 8.5 FDO, A, TAL GRAFO 1 8 F I 10 P, RFT, H, TAL HAFO 1 9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 0 1 14 F II 13.5 FDO, RFT, H, GR GRAFO 1 </td <td>2</td> <td>М</td> <td>III</td> <td>11</td> <td>RFT, H, GR</td> <td>HAFO/ToeOFF®</td> <td>1</td>	2	М	III	11	RFT, H, GR	HAFO/ToeOFF®	1
5 F II 11 P, RFT, H, TAL GRAFO 1 6 M I 9 TAL HAFO 1 7 M II 8.5 FDO, A, TAL GRAFO 1 8 F I 10 P, RFT, H, TAL HAFO 1 9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO/ToeOFF® 1 20		Μ	III	14.5	P, RFT, H	GRAFO	1
6 M I 9 TAL HAFO 1 7 M II 8.5 FDO, A, TAL GRAFO 1 8 F I 10 P, RFT, H, TAL HAFO 1 9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO 0 13 M I 7.5 RFT HAFO 0 13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 20 M I	4	F	II	10.5	FDO, P, RFT, GR, TibPT, PF	HAFO/ToeOFF®	1
7 M II 8.5 FDO, A, TAL GRAFO 1 8 F I 10 P, RFT, H, TAL HAFO 1 9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO 0 13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13. TAL HAFO 1 16 M III 8 RFT, H, GR GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO/ToeOFF® 0 20 M I 13 H, GR HAFO/ToeOFF® 1 22	5	F	II	11	P, RFT, H, TAL	GRAFO	1
8 F I 10 P, RFT, H, TAL HAFO 1 9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13.5 FDO, RFT, H, GR GRAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1	6	Μ	Ι	9	TAL	HAFO	1
9 M II 6.5 H, TAL HAFO 1 10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13.5 FDO, RFT, H, GR GRAFO 1 16 M II 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO/ToeOFF® 0 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FEO, P, A GRAFO 1 22 F III 17 TEO, P, A, GRAFO 1 1	7	Μ	II	8.5	FDO, A, TAL	GRAFO	1
10 F II 9 P, TAL HAFO 1 11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13.5 FDO, RFT, H, GR HAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FEO, P, A GRAFO 1 22	8	F	Ι	10	P, RFT, H, TAL	HAFO	1
11 M II 17 P, RFT, H, TAL, TibPT GRAFO 1 12 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13 TAL HAFO 1 16 M III 8 RFT, H GRAFO 1 16 M III 8 RFT, H, GR GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 18 M I 10 TAL HAFO/ToeOFF® 0 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 11 TibAT, PF HAFO/ToeOFF® 1	9	Μ	II	6.5	H, TAL	HAFO	1
12 F II 9.5 P, A, RFT, H HAFO/ToeOFF® 1 13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13 TAL HAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25	10	F	II	9		HAFO	1
13 M I 7.5 RFT HAFO 0 14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13 TAL HAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 25	11	Μ	II	17	P, RFT, H, TAL, TibPT	GRAFO	1
14 F II 13.5 FDO, RFT, H, GR HAFO 0 15 F II 13 TAL HAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 25 M II 12 FEO, P, RFT, H, TAL GRAFO 1	12	F	II	9.5	P, A, RFT, H	HAFO/ToeOFF®	1
15 F II 13 TAL HAFO 1 16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 26 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0	13	Μ	Ι	7.5	RFT	HAFO	0
16 M III 8 RFT, H GRAFO 1 17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 27 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 </td <td>14</td> <td>F</td> <td>II</td> <td>13.5</td> <td>FDO, RFT, H, GR</td> <td>HAFO</td> <td>0</td>	14	F	II	13.5	FDO, RFT, H, GR	HAFO	0
17 F III 10.5 P, RFT, H, GR GRAFO 1 18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 27 M II 12 FEO, P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO <t< td=""><td>15</td><td>F</td><td>II</td><td>13</td><td>TAL</td><td>HAFO</td><td>1</td></t<>	15	F	II	13	TAL	HAFO	1
18 M I 10 TAL HAFO 1 19 F III 8 H, TAL GRAFO 1 20 M I 13 H, GR HAFO/ToeOFF® 0 21 M II 17 FDO, RFT, H, GR HAFO/ToeOFF® 1 22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1<	16	Μ	III	8	RFT, H	GRAFO	1
19FIII8H, TALGRAFO120MI13H, GRHAFO/ToeOFF®021MII17FDO, RFT, H, GRHAFO/ToeOFF®122FIII17FEO, P, AGRAFO123FI12H, TALGRAFO124FII11TibAT, PFHAFO/ToeOFF®125MII7FDO, H, TAL, TibPTGRAFO126MII12FEO, P, RFT, H, TALGRAFO127MII14P, RFT, H, TAL, CalcHAFO/ToeOFF®028MIII6A, H, GRGRAFO129MII12H, GRHAFO/ToeOFF®130MII10FDO, P, H, RFT, GRGRAFO131MII11.TALHAFO133MII10HHAFO0	17	F	III	10.5	P, RFT, H, GR	GRAFO	1
20MI13H, GRHAFO/ToeOFF®021MII17FDO, RFT, H, GRHAFO/ToeOFF®122FIII17FEO, P, AGRAFO123FI12H, TALGRAFO124FII11TibAT, PFHAFO/ToeOFF®125MII7FDO, H, TAL, TibPTGRAFO126MII12FEO, P, RFT, H, TALGRAFO127MII14P, RFT, H, TAL, CalcHAFO/ToeOFF®028MIII6A, H, GRGRAFO129MII12H, GRHAFO/ToeOFF®130MII10FDO, P, H, RFT, GRGRAFO131MII11.TALHAFO133MII10HHAFO0	18	Μ	Ι	10	TAL	HAFO	1
21MII17FDO, RFT, H, GRHAFO/ToeOFF®122FIII17FEO, P, AGRAFO123FI12H, TALGRAFO124FII11TibAT, PFHAFO/ToeOFF®125MII7FDO, H, TAL, TibPTGRAFO126MII12FEO, P, RFT, H, TALGRAFO127MII14P, RFT, H, TAL, CalcHAFO/ToeOFF®028MIII6A, H, GRGRAFO129MII12H, GRHAFO/ToeOFF®130MII10FDO, P, H, RFT, GRGRAFO131MII11.5RFTGRAFO133MII10HHAFO0	19	F	III	8	H, TAL	GRAFO	1
22 F III 17 FEO, P, A GRAFO 1 23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 27 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0 </td <td>20</td> <td>Μ</td> <td>Ι</td> <td>13</td> <td>H, GR</td> <td>HAFO/ToeOFF®</td> <td>0</td>	20	Μ	Ι	13	H, GR	HAFO/ToeOFF®	0
23 F I 12 H, TAL GRAFO 1 24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 27 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	21	Μ	II	17	FDO, RFT, H, GR	HAFO/ToeOFF®	1
24 F II 11 TibAT, PF HAFO/ToeOFF® 1 25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 27 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	22	F	III	17	FEO, P, A	GRAFO	1
25 M II 7 FDO, H, TAL, TibPT GRAFO 1 26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 27 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	23	F	Ι	12	H, TAL	GRAFO	1
26 M II 12 FEO, P, RFT, H, TAL GRAFO 1 27 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	24	F	II	11	TibAT, PF	HAFO/ToeOFF®	1
27 M II 14 P, RFT, H, TAL, Calc HAFO/ToeOFF® 0 28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	25	Μ	II	7	FDO, H, TAL, TibPT	GRAFO	1
28 M III 6 A, H, GR GRAFO 1 29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	26	Μ	II	12	FEO, P, RFT, H, TAL	GRAFO	1
29 M II 12 H, GR HAFO/ToeOFF® 1 30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	27	Μ	II	14	P, RFT, H, TAL, Calc	HAFO/ToeOFF®	0
30 M II 10 FDO, P, H, RFT, GR GRAFO 1 31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	28	Μ	III	6	A, H, GR	GRAFO	1
31 M II 11.5 RFT GRAFO 1 32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	29	Μ	II	12	H, GR	HAFO/ToeOFF®	1
32 M I 11 TAL HAFO 1 33 M II 10 H HAFO 0	30	Μ	II	10	FDO, P, H, RFT, GR	GRAFO	1
33 M II 10 H HAFO 0	31	Μ	II	11.5	RFT	GRAFO	1
	-	М	Ι	11	TAL	HAFO	1
34 M III 12 H GR CO HAFO/ToeOFF® 1	33	М	II	10	Н	HAFO	0
	34	М	III	12	H, GR, CO	HAFO/ToeOFF®	1

limbs, and recommendations regarding AFO use.

Age: age at surgery (years); GMFCS: Gross Motor Function Classification System; A: adductor tenotomy; CO: calcaneus osteotomy; FEO: femoral extension osteotomy; FDO: femoral derotation osteotomy; GR: gastrocnemius recession; H: hamstrings lengthening; P: psoas lengthening; PF: plantar fasciotomy; RFT: rectus femoris transfer; TAL: tendo- achilles lengthening; TibAT: tibialis anterior transfer; TibPT: tibialis posterior transfer; Type AFO: AFO used at postoperative 3DGA; HAFO: hinged ankle-foot orthosis; ToeOFF®: dynamic carbon ankle-foot orthoses; GRAFO: ground reaction ankle-foot orthosis; Recommendation AFO: 1: continue, 0: discontinue

[Skriv inn tekst]

[Skriv inn tekst]

Table 2.

Comparison of gait kinematic, kinetic and temporal spatial variables.

	Preop BF	Postop BF	Postop AFO	Preop BF vs Postop BF	Postop AFO vs Postop BF	Normal
	Mean (SD)	Mean (SD)	Mean (SD)	p values	p values	Mean (SD)
Velocity (m/sec)	0.95 (.3)	0.92 (.2)	1.01 (.2)		0.001	1.35 (.1)
Step length (m)	0.47 (.1)	0.48 (.1)	0.56 (.1)		<0.001	0.62 (.1)
Cadence (steps/min)	118.5 (22)	111.1 (19)	106.2 (18)		0.004	133 (9)
ND Velocity (vel/√Hg)*	0.262 (.1)	0.242 (.07)	0.264 (.07)	0.050		
ND Cadence (cad√H/g)*	44.2 (8.2)	43 (7.3)	41 (6.9)	0.252		
ND Step length (step1./H)*	0.35 (.1)	0.32 (.05)	0.38 (.06)	0.036		
GPS (°)	17.3(4.6)	12.3 (2.8)	11.6 (2.5)	<0.001	0.007	5.3 (1.9)
Ankle IC (°)	-9.3 (14.1)	-3.1 (6.4)	-3.0 (4.5)	0.002	0.960	-2 (3)
Max DF (°)	-0.5 (16.8)	13.8 (6.3)	6.8 (5.7)	<0.001	<0.001	13 (4)
Min Knee (°)	17.4 (20)	7.3 (12.3)	4.8 (9.6)	<0.001	0.084	2 (4)
Max DF moment (Nm/kg)	0.79 (.2)	1.04 (.2)	1.09 (.2)	<0.001	0.122	1.21 (.2)
Max Knee moment (Nm/kg)	0.28 (.4)	0.005 (.3)	-0.1 (.3)	<0.001	0.029	-0.2 (.13)
Subgroup analysis GRAFO	(n = 14)					
GPS (°)	19 (5.3)	13.3 (3)	12.1 (3)		0.001	
Ankle IC (°)	-7.5 (18)	-1.3 (6.4)	-0.5 (3.1)		0.605	
Max DF (°)	1.8 (21)	15.8 (7.2)	5.8 (4.3)		0.001	
Min Knee (°)	28 (20)	13.9 (13)	8.2 (10)		0.016	
Subgroup analysis HAFO (1	,					
GPS (°)	16 (3.8)	11.6 (2.4)	11.2 (1.9)		0.305	
Ankle IC (°)	-11 (10)	-4.4 (6.3)	-4.9 (4.5)		0.636	
Max DF (°)	-3.1 (13)	12.4 (5.2)	7.5 (6.4)		0.001	
Min Knee (°)	9.7 (17)	2.6 (8.5)	2.4 (8.5)		0.903	

p values are from paired t-test. *T-tests on pre-versus postoperative temporal-spatial variables were performed with ND values. Bold letters indicate significant difference with p < 0.05. AFO: ankle-foot orthoses; Ankle IC: Ankle angle at initial contact; GPS: gait profile score; GRAFO: ground reaction AFO; HAFO: hinged AFO; Max DF: stance maximum ankle dorsiflexion; Min Knee: stance minimum knee flexion; Max DF moment: stance maximum external dorsiflexion moment; Max Knee moment: late stance maximum external knee moment; ND: non-dimensional; Normal: reference data from our laboratory database (n=24); Preop BF: preoperatively walking barefoot; Postop BF: postoperatively walking barefoot; Postop AFO: postoperatively walking with AFOs.

Table 3.

Group characteristics and results of logistic regression analysis for predictors of clinically

important improvement walking with AFOs one year postoperatively

Predictor	Improved (n=12)	Not Improved (n=22)	В	S.E.	<i>p</i> value	CI
Univariable regression	n					
Sex						
Female	7	5	-1.56	0.78	0.044	[0.05,0.96]
Male	5	17				
GMFCS						
Ι	2	5	-0.14	0.97	0.883	[0.13, 5.8]
II	6	13				
III	4	4	0.77	0.86	0.370	[0.4, 11.7]
Age at surgery (years)						
Mean (SD)	11.7 (2.9)	10.7 (2.9)	0.12	0.13	0.351	[0.88, 1.45]
GPS Preop BF (°)						
Mean (SD)	20.7 (3.9)	15.4 (4.1)	0.32	0.12	0.007	[1.09, 1.73]
GPS Postop BF (°)						
Mean (SD)	13.7 (2.7)	11.5 (2.7)	0.31	0.15	0.047	[1.01, 1.84]
Mulitvariable regress	ion					
Sex			-1.12	0.93	0.229	[0.05, 2.03]
GPS Preop BF			0.29	0.13	0.026	[1.04, 1.71]
GPS Postop BF			0.09	0.2	0.653	[0.74, 1.61]

p values are based on Wald test. Improved: GPS change $\geq 1.6^{\circ}$; Not Improved: GPS change $< 1.6^{\circ}$. B: estimated regression coefficient; CI: confidence interval; GMFCS: Gross Motor Function Classification System; GPS: gait profile score; Preop BF: preoperatively walking barefoot; Postop BF: postoperatively walking barefoot; S.E.: standard error.

[Skriv inn tekst]