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ABSTRACT
The Stochastic Point Location (SPL) problem introduced by Oom-
men [7] can be summarized as searching for an unknown point
in the interval under a possibly faulty feedback. The search is per-
formed via a Learning Mechanism (LM) (algorithm) that interacts
with a stochastic environment which in turn informs it about the
direction of the search. Since the environment is stochastic, the
guidance for directions could be faulty. The first solution to the
SPL problem which was pioneered by Oommen [7] two decades
ago relies on discretizing the search interval and performing a con-
trolled random walk on it. The state of the random walk at each
step is considered to be the estimation of the point location. The
convergence of the latter simplistic estimation strategy is proved
for an infinite resolution. However, the latter strategy yields rather
poor accuracy for low resolutions. In this paper, we present sophisti-
cated tracking methods that outperform Oommen strategy [7]. Our
methods revolve around tracking some key statistical properties of
the underlying random walk using the family of weak estimators.
Furthermore, we address the settings where the point location is
non-stationary, i.e. LM is searching with uncertainty for a (possibly
moving) point in an interval. In such settings, asymptotic results
are no longer applicable. Simulation results show that the proposed
methods outperformOommenmethod for estimating point location
by reducing the estimated error up to 75%.

CCS CONCEPTS
•Mathematics of computing→Markov processes;Optimiza-
tion with randomized search heuristics; • Theory of compu-
tation → Streaming models; • Computing methodologies →
Reinforcement learning; • Applied computing→ Psychology;
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1 INTRODUCTION
Stochastic Point Location (SPL) is a fundamental optimization prob-
lem that was pioneered by Oommen [7] and ever since it has re-
ceived increasing research interest [4, 11]. A Learning Mechanism
(LM) attempts to locate a unique point λ∗ in an interval whilst the
only assistance are the information from a random environment
(E) which informs it, possibly erroneously, whether the location is
to the left or to the right of the point. A large class of optimization
problems could be also modeled as the instantiation of the SPL
problem [11].

Interestingly, the SPL problem deals with dynamic environments
since the assumption that the parameter or point location in SPL
does not change over time is not valid in many real-life settings such
as web-based applications [3]. Sliding window [5] is a traditional
strategy for estimation in non-stationary environments. However,
choosing the appropriate width of the window is crucial; too small
width results in a poor estimate, whereas if one increases the width,
the stale values prior to the change might degrade the whole estima-
tion process. The Stochastic Learning Weak Estimator (SLWE) [10]
figures among the most prominent estimators for non-stationary
distributions. In this article, we propose to integrate the SLWE as
the inherent part of a more sophisticated and accurate solution for
the SPL. The recursive update form of the SLWE makes it a viable
strategy in our problem, since the tracked distribution in question
is updated at each time step. Therefore, our strategy for estimation
of point location revolves around tracking the distribution at each
time step and estimating the point based upon it.

It is worth mentioning that Continuous Point Location with
Adaptive Tertiary Search (CPL-ATS) strategy [8] is another method
of solving SPL which systematically and recursively searches for
sub-intervals that λ∗ is guaranteed to locate in, with an arbitrarily
high probability. A series of guessing which starts with the mid-
point of the given interval, estimates the point location and repeats
until the requested resolution is achieved. The given interval is par-
titioned into three sub-intervals where three LA work in parallel in
each sub-interval and at least one of them will be eliminated from
further search. So it is crucial in CPL-ATS to construct the partition
and elimination process. This method is further developed into the
CPL with Adaptive d-ary Search (CPL-AdS) Strategy [9] where the
current interval is partitioned into d sub-intervals instead of three.
The larger d results in faster convergence but the decision table
of elimination process gets more complicated. An extension of the
CPL-AdS scheme which could also operate in non-stationary envi-
ronments is presented in [4]. The decision formula is proposed to
modify the decision table in [9] to resolve certain issues of original
CPL-AdS scheme.

There is a wide range of scientific and real-life problems that can
be modeled as the instances of SPL problem, such as adaptive data
encoding, web-based applications, etc. [3]. SPL can be also used to
find the appropriate dose in clinical practices and experiments [6].

A possible interesting application which we focus on in our
ongoing research is to determine the difficulty level of a cognitive
training method by SPL. One of the key challenges faced by many
learning methods is to find the level of the participant in order to
provide suitable level of training. To the best of our knowledge, in



most legacy methods, alternating between different training levels
and scenarios is simply done by increasing the difficulty if the task
is managed (once or in a fraction of repeated times) or by decreasing
(or fixing) the difficulty level if it is not managed. We believe that
this problem could be modeled by SPL with certain conditions; such
as non-stationary point location (since the manageable difficulty
level will change as time advances for trained participant).

Spaced retrieval training (SRT) [2] for instance, is a method of
learning and retaining target information by recalling that informa-
tion over increasingly longer intervals which is especially used for
people with dementia [1]. For progressive diseases like dementia, it
is so important to estimate the ability level (point location in SPL)
as soon as possible, as the ability usually rapidly changes during
time (affected by training, disease and patient’s condition).

The rest of paper is organized as follows. In Section 2, the SPL
problem is defined formally. Section 3 is devoted to SLWE method
and the way we use it to estimate the point location. Sections 3.1
and 3.2 focus in more details on the design and update of the two
probability vectors and the three estimations based upon them
which are compared in Section 3.3. Simulation results and a compar-
ison with Oommenmethod are presented and discussed in Section 4.
Finally, we conclude in Section 5.

2 STOCHASTIC POINT LOCATION PROBLEM
IN A DYNAMIC SETTING

This problem considers a learning mechanism (LM) that is moving
within [0, 1] interval and which attempts to locate a point ( 0 ≤
λ∗(n) ≤ 1) that may change over time n. The environment E is
considered informative whenever it informs the LM correctly about
the right direction of the unknown point with probability p > 0.5.
This probability of receiving a correct response, which reflects the
“effectiveness” of the environment is known by LM and assumed to
be constant.

As aforementioned, we would like to estimate λ∗(n) as soon as
possible. We follow the model presented on [7] and discretize the
interval and perform a controlled random walk on it, characterized
by λ(n) which is a quantity related to the current position of the
random walker. More precisely, we subdivide the unit interval into
N + 1 discrete points

{0, 1/N , 2/N , · · · , (N − 1)/N , 1},

where N is called the resolution of the learning scheme. Let λ(n)
be the current location at time step n:
• If the environment E suggests increasing λ(n) and 0 ≤ λ(n) <

1 then
λ(n + 1) = λ(n) + 1/N
• If E suggests decreasing λ(n) and 0 < λ(n) ≤ 1 then
λ(n + 1) = λ(n) − 1/N
• If (λ(n) = 1 and E suggests increasing λ(n)) OR (λ(n) = 0 and
E suggests decreasing λ(n)) then:
λ(n + 1) = λ(n)

Hereafter the binary function E(n) stands for the environment an-
swer at step n where E(n) = 1 refers to the environment suggestion
to increase λ(n) and E(n) = 0 refers to the environment suggestion
to decrease λ(n).

Based on results presented in [7], in the stationary case in which
λ∗(n) = λ∗, this random walk will converge into a value arbitrarily
close to λ∗ when N →∞& n →∞. However the above asymptotic
results are not valid for the non-stationary SPL. Practically we
might experience some constraints both on time n ≤ T and on the
resolution N ≤ R. Throughout the rest of this paper we pursue
better estimates for λ∗(n) than λ(n).

3 ESTIMATION STRATEGIES
In this section for finding an estimation of λ∗(n) based on the ran-
dom walk, two multinomially distributed random variables are
considered. We track their probability distribution with SLWE
method [10] and estimate the λ∗(n) from the estimated distribu-
tions.

3.1 Probability vector for states
Let X (n) be a multinomially distributed random variable which
takes its values from set {xi |xi = i/N for i = 0, 1, . . . ,N } and
suppose xz ≤ λ∗ < xz+1 for a specific z. Further let P(X (n) = xi ) =
si (n), i = 0, 1, . . . ,N . Further let x(n) be the concrete realization
of X (n) at time step n. From the definitions of Section 2, we have
x(n) = λ(n)

The SLWE method estimates the probabilities
S(n) = [s0(n), s1(n), . . . , sN (n)]T by maintaining a running esti-
mate P(n) = [p0(n),p1(n), · · · ,pN (n)]T of S(n) where pi (n) is the
estimate of si (n) at time n. The updating rule is (the rules for other
values of pj (n), j , i , are similar):

pi (n + 1) ← αpi (n) + (1 − α) when x(n) = xi

← αpi (n) when x(n) , xi
(1)

α is a user-defined parameter, 0 < α < 1 for updating the probability
distribution. The intuition behind the updating rule is that if x(n) ,
xi we should decrease our estimate pi which is given by the second
part of the updating rule. Similarly, if x(n) = xi we should increase
our estimate which is given by the first part of the updating rule.

It is worthmentioning that in [10],X (n) = X , i.e. it is notmodeled
as a function of time and as a result S(n) = [s0, s1, · · · , sN ]T is time-
invariant. The theorems and results also proved in the asymptotic
case whenn →∞which is in contradiction with the non-stationary
assumption for environment. It is discussed that in practice the
convergence takes place after a relatively small value of n. For
instance if the environment switches its multinomial probability
vector after 50 steps, the SLWE could track this change. However,
we prefer to use the notation in a way that the point location and
thereafter the multinomially probability vector clearly shown to be
non-stationary. SLWE converges weakly, independent of α value,
however the rate of convergence is a function of α .

Now that we obtained the estimate of probability vector at each
time step, P(n), the next step will be to consider three statistical
parameters of this distribution to estimate λ∗(n).

(1) The first estimation methodology is to choose the state with
maximum probability as the estimate:

z = arg max
i
(pi (n))

λ̂max(n) = xz
(2)
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where λ̂max(n) is the estimate and for non-unique z, the last
visited state with the max probability value is chosen.

(2) The expected value of the P(n) at step n is another possible
estimation method:

λ̂exp(n) =
N∑
i=0

xipi (n) (3)

(3) The median is the third estimation method which is given
by:

λ̂med(n) = xz where z is the index satisfying
z∑
i=0

pi (n) ≥ 0.5 and
N∑
i=z

pi (n) ≥ 0.5 (4)

Intuitively, it makes sense to estimate λ∗(n) by the most visited state
as given by (2). However, if the system varies rapidly, the estimate
P(n) will be quite poor and in such case taking the expectation, as
given by (3), may be a more robust alternative. Finally, the median
in (8) might be also a more robust alternative than the max in (2).

In Section 3.2 we suggest to use the probabilities for different
state transitions instead of the probabilities given in Section 3.1. We
argue that this might perform better since the estimation Markov
chain will have many transitions around the true and unknown
λ∗(n).

3.2 Probability vector for transitions
Let xi+ denote the fact that the Markov chain makes a transition
from xi to xi+1 or from xi+1 to xi . Further let X+(n) denote a
multinomially distributed variable over the possible state transition
xi+, i = 0, 1, . . . ,N − 1.

Further we define the portion of state transitions that go from
xi to xi+1 or from xi+1 to xi , given by P(X+(n) = xi+) = si+(n), i =
0, 1, . . . ,N − 1.

Let x+(n) be the concrete realization of X+(n) at time step n.
From the definitions in Section 2 we have x(n) = [λ(n), λ(n) +
1/N ) or [λ(n) − 1/N , λ(n)).

The SLWE method estimates
S+(n) = [s0+(n), s1+(n), . . . , s(N−1)+(n)]

T by maintaining a running
estimate of P+(n) = [p0+(n),p1+(n), · · · ,p(N−1)+(n)]

T of S+(n)where
pi+(n) is the estimate of si+(n) at time n. The updating rule is (the
rules for other values of pj+(n), j , i , are similar):

pi+(n + 1) ← αpi+(n) + (1 − α)
if a transition xi → xi+1 or xi+1 → xi

← αpi+(n) otherwise
(5)

Again, α is a user-defined parameter, 0 < α < 1 for updating the
probability distribution.

Similarly, based on P+(n)we propose three statistical parameters
to estimate λ∗(n) as follows:

(1) The first estimate is to choose the state with maximum prob-
ability as the estimate:

z = arg max
i
(pi+(n))

λ̂+max(n) =
xz + xz+1

2
(6)

since the maximum value refers to a pair that LM transits
the most, we take the middle point of pair as λ̂+max(n). For
non-unique z, the last visited pair with the max probability
value is chosen.

(2) The expected value of the X+(n) at step n is used in the next
estimation method:

λ̂+exp(n) =
N∑
i=0

x̄i+pi (n) (7)

where x̄i+ =
xi + xi+1

2 .
(3) The median is used in the third estimation which is described

as follows:

λ̂+med(n) = x̄z+ where z is the index satisfying
z∑
i=0

pi+(n) ≥ 0.5 and
N∑
i=z

pi+(n) ≥ 0.5 (8)

and where x̄z+ =
xz + xz+1

2

3.3 A theoretical comparison of the two
estimation strategies

The two multinomially distributed random variables X (n) and
X+(n) and their probability vector S(n) and S+(n) are clearly re-
lated. In this part we will compare them and show why the second
strategy is more efficient.

Assume that xz < λ∗(n) < xz+1. For an index i below z we have
a transition to the right with probability p and a transition to the
left with probability 1 − p and opposite for i > z. For z = i , we
will have a probability p in both directions since the transition will
result in crossing the value λ∗(n). Consequently the probabilities
are related as follows
• for i < z:
si+(n) = psi (n) + (1 − p)si+1(n)
• for i = z:
si+(n) = psz (n) + psz+1(n)
• for i > z:
si+(n) = (1 − p)si (n) + psi+1(n)

We expect that [s0(n), · · · , sz (n)]T is increasing and
[sz+1(n), · · · , sN (n)]T is decreasing. As a result sz (n) and sz+1(n)
take the maximum value. We observe that the distribution of tran-
sitions yields higher probabilities around the true z (sz+(n)) since
p > 0.5. More specifically, for the true z we multiply with p > 0.5
both terms (psz (n)+psz+1(n)), and not for any other value of z. This
gives a sharper peak of the distribution S+(n) around z, compared
to the distribution S(n). Therefore we expect that the strategies in
Section 3.2 will perform better than the strategies in Section 3.1.

4 EXPERIMENTAL RESULTS
In this paper we assume that λ∗(n) varies over time n. In such
a setting, it is hard (or impossible) to deduce asymptotic proofs.
Therefore we resort to simulation experiments to evaluate the per-
formance of the estimators suggested in this paper.

Two types of comparisons are presented to show the advantages
of the new strategies. The first comparison type, depicted in Fig. 1
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and Fig. 2, is to illustrate that our estimations are smoother (in a
single run) than random walk itself which Oommen considered as
the estimate of λ∗(n). To do so, we first define λ∗(n) to be constant
for a period of time and then switches to another random number
for the same period of time and so on. In Fig. 1 the number of
steps is set to T = 10000 and λ∗(n) changes each 2000 steps. The
probability of receiving correct guidance from environment is 0.7
while α = 0.97. For the sake of brevity, we just show the second
strategy for estimations, i.e. the one with transitions since the other
one yields similar results.1 As shown in the figure, λ(n) exhibits
a zigzag behavior and the rest of the curve displays more stable
behaviour. Next, we define λ∗(n) to be a sine function that changes
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Figure 1: This figures illustrates the case where the resolu-
tion N = 16, environment effectiveness p = 0.7 and λ∗(n) gets
a random value in the [0, 1] which changed after each 2000
steps. Time is set to T = 10000 and α = 0.97. Each sub-figure
shows how the estimate tracks λ∗(n).

continuously between 0.7 and 0.9. In Fig. 2 the number of steps is
set to T = 10000 and λ∗(n) = 0.8 + 0.1 sin((n/10)◦) where the sine
argument is in degree. α = 0.97 and the probability of receiving
correct direction from environment is 0.7. Again λ(n) moves in a
zigzag manner and the rest of the curve is smoother.

The second comparison is based on the measured error when
resolution and environment effectiveness are fixed to N = 16 and
p = 0.7 respectively. To measure the estimation error we use the
mean absolute error (MAE) which simply is defined by:

MAE = 1
T

T∑
n=1
| λ̂(n) − λ∗(n) |

where T is the total time steps and λ̂(n) is the estimated value at
time step n.

Again we consider two different scenarios for the evolution of
λ∗(n). The first one is represented in Fig. 6 and illustrates the case of
discrete changes, i.e. after each 2000 time steps the point location is
1The second strategy slightly outperforms the first strategy and both of them outper-
form the Oommen strategy.
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Figure 2: This figures illustrates the case where the resolu-
tion resolution N = 16, environment effectiveness p = 0.7
and λ∗(n) = 0.8+0.1 sin(n◦). Time is set toT = 400 and α = 0.97.
Each sub-figure shows how the estimate tracks λ∗(n).

changed randomly. The comparison for errors is depicted in Fig. 5
where an average over 1000 runs is taken for MAE errors. The best
estimate is achieved for α near 0.97 and the second strategy, as we
expected, performs slightly more efficiently. However, interestingly,
all the 6 different estimates for 0.7 ≤ α ≤ 0.99 perform better
than λ(n). The reduced percent error2 between Oommen and our
strategies in this simulation is up to 0.073−0.027

0.073 × 100 = 63%.
The second result which is represented in Fig. 6 concerns the

case of continuous changes where λ∗(n) = 0.8 + 0.1 sin((n/10)◦).
The comparison for errors is depicted in Fig. 5 where an average of
1000 runs is taken for MAE errors. The best estimate is achieved
at α near 0.98. Similar to the Fig. 3, all the 6 different estimates for
0.7 ≤ α ≤ 0.99 perform better than λ(n) and the estimates for the
second strategy performs slightly better. The reduced percent error
is equal to 0.0175−0.071

0.0175 × 100 = 75%.

5 CONCLUSION
A wide range of real-life problems can be modeled as an instan-
tiation of the SPL problem, particularly when the environment is
considered to be non-stationary. The random walk based solution
due to Oommen [7] converges theoretically to a value arbitrarily
close to the point location whenever both the resolution N , and
the time n go to infinity. However, an arbitrarily large resolution
is not realistic in real life scenarios. To get more reliable results
under limited resolution we follow the same principles as Oommen
method- which discritizes the interval and performs a controlled
random walk- and rather take a step forward by presenting al-
ternative estimation methods. Our schemes rely on defining two
multinomially distributed random variables, then tracking their

2The calculation formula for this relative error is %Error = Actual change
xreference

=

Errorλ(n)−Errorλ̂(n)
Errorλ(n)

× 100.
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Figure 3: This figures illustrates the case where the res-
olution N = 16, environment effectiveness p = 0.7 and
λ∗(n) that gets a random value in the [0, 1]which changed
after each 2000 steps. Time is set to T = 10000, 0.7 ≤ α ≤ 1.
Average is taken over 1000 runs and error measure is the
MAE.
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Figure 4: This figure shows the evolution of λ∗(n) and, en-
vironment effectiveness p = 0.7 corresponding to Fig. 3
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Figure 5: This figures illustrates the case where the res-
olution N = 16, environment effectiveness p = 0.7 and
λ∗(n) = 0.8 + 0.1 sin((n/10)◦). Time is set to T = 10000,
0.7 ≤ α ≤ 1. Average is taken over 1000 runs and error
measure is the MAE.
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Figure 6: This figure shows the evolution of λ∗(n) and, en-
vironment effectiveness p = 0.7 corresponding to Fig. 3

probability vectors using the SLWE method, and finally devising
differed estimation methods involving the concepts of maximum,
expectation, and median. The results indicate that these methods
are smoother than the randomwalk itself and can track the changes
more efficiently.

The second strategy which uses pairs as the events of multinomi-
ally distributed random variable is slightly better than the first one.
In the simulation part, we considered environment effectiveness
fixed p = 0.7 and the resolution N = 16. Interestingly, the estimated
error was reduced up to 75%.
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