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Abstract—Apache Hadoop is one of the most prominent and
early technologies for handling big data. Different scheduling
algorithms within the framework of Apache Hadoop were devel-
oped in the last decade. In this paper, we attempt to provide a
comprehensive overview over the different paradigms for schedul-
ing in Apache Hadoop. The surveyed approaches fall under
different categories, namely, Deadline prioritization, Resource
prioritization, Job size prioritization, Hybrid approaches and
recent trends for improvements upon default schedulers.
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I. INTRODUCTION

Bollier stated that ”Big websites can generate terabytes of
raw log data every day. The sheer size of its data set has led
to the emergence of new cloud infrastructures, characterized
by the ability to scale to thousands of nodes, fault tolerance
and relaxed consistency” [1]. From 2005 to 2020, the digital
universe is expected to grow dramatically by a factor of 300,
from 130 exabytes to 40 trillion gigabytes, i.e more than 5,200
gigabytes per person in 2020. Moreover, the digital universe
is expected to double every two years [2]. A big part of the
growth is a defining trait of our current technology landscape -
the Internet of Things, quickly evolving into; "The Internet of
Everything” [3]. The benefits of “all interconnected” devices
is immense in terms of potentially huge increase in quality
of life. In the same time, it brings along the challenge of
handling extreme amounts of data. Devices generate nowadays
vast amounts logging data, but also functional data such as
media streams that are key to the sole purpose of the device.
Data is becoming the world’s new natural resource [4]. The
challenges represented by big data handling can be divided
into three groups:

e  Velocity
e  Volume
e  Variety

Hadoop possesses a sophisticated set of methods that handle
the above challenges elegantly through the use of:

e Hadoop Common (a set of utilities and libraries)
o  The file system called HDFS (Hadoop File System)
e  YARN (Yet Another Resource Negotiator)

e  MapReduce (a framework for distributing tasks and
parallel processing)

II. RELATED WORK

In this section, we will survey some promising new
scheduling algorithms, as well as some highly-cited and well
established ones. We have categorized those scheduling algo-
rithms by the type of the scheduling priority.

A. Deadline prioritization

1) Deadline Constraint Scheduler: Prioritizing deadline
in a Hadoop clusters is done by predicting the completion
time of jobs/tasks and then allocating them to nodes capable
of processing them withing a time limit where the data is
actually useful. The research reported in [6] was motivated
by the fact that FIFO, the default scheduling algorithm of
Hadoop clusters, has some visible drawbacks due to its rigid
prioritization scheme. The paper explores real time cluster
scheduling based on user specified deadlines. The authors
give a preliminary evaluation of their algorithm reckoned
as Deadline Constraint Scheduler, which is a scheduler that
simply ignores new tasks that can not be processed within
their deadline. This is achieved by calculating the deadline
and comparing it to the execution time. The latter approach
performs well in a homogeneous cluster, but is invalidated
in a heterogeneous cluster where execution times might vary
across nodes. In this case, the algorithm relaxes some of its
parameters so that to allow processing times to be decoupled
from the slowest node. However, this might lead to under-
utilization of certain nodes in the cluster. The authors concede
that they will address this issue in future work. To calculate
schedulability, the work calculates the minimum amount of
map tasks to get a job done, and compares it to the maximum
amount of reduce tasks. If there is less available reduce slots
than the maximum amount of possible reduce tasks in the job,
the task gets dropped. Experimental results show greater task
efficiency during MapReduce phases [6].

2) Cloud Least Laxity First: In another approach intro-
duced in the paper entitled A Deadline Scheduler for Jobs
in Distributed Systems [16], the authors propose an interesting
deadline scheduler for Hadoop called Cloud Least Laxity First
(CLLF), that orders tasks based on laxity (time left over to
deadline, after task is finished). They argue that by using this
technique one can reduce the amount of nodes needed while
maintaining total execution time at acceptable levels. This was
proven by comparing the algorithm to Time Shared and Space
Shared scheduling in a controlled environment. The devised
scheduler handles soft deadlines by introducing a penalty term
as a function of the lateness (lateness defined as completion
time minus deadline). The authors describe a system in which
each worker node uses a FIFO-queue and notifies the master
as soon as it has an idle processor. The master has the



role of hosting the CLLF-algorithm and allocating tasks. As
the authors themselves describe it: “The general idea of the
algorithm is to sort the cloudlets by laxities (the first has
the lowest one). Giving this sorted list, the algorithm takes
the first element of this list and looks for a host that locally
have the data of the cloudlet and which also have at least one
free slot. If one matching host is found, the task is ran on
it, otherwise, the algorithm restart the same procedure using
the second element of the list” [16]. As in the case of the
algorithm reported in [6] which falls in this category, this
algorithm [16] is limited to homogeneous environments. In line
with goal of reducing the amount of virtual nodes needed for
job executions, the work [16] shows a considerable decrease in
missed deadlines compared to Time Shared and Space Shared
algorithms, thus, increasing the disparity in effectiveness of
the latter two algorithms.

B. Resource prioritization

1) Coupling Scheduler: Algorithms delving into resource
allocation and optimization of utilization of worker nodes
are perhaps the most investigated topic within the field of
MapReduce. As processing and handling of data is getting
more and more centralized, virtualized Hadoop clusters seem
to be the future of MapReduce and has emerged as enabler
for business ventures through the cloud. In [5], it was argued
that the widely used Fair Scheduler has a starvation problem
involving the Map and Reduce operations. The paper focuses
on coupling the two progresses, instead of treating them
separately. The authors [5] also performed a performance
comparison, proving that Coupling Scheduler performs better
than Fair Scheduler in handling tasks with varying map service
times. The main effect this has on resource usage is that
reducers are gradually launched as more and more maps are
completed, instead of allocating a quantity of reducers based
on predicted need, i.e as seen in [6]. The benefits is that there
is virtually no under-utilization of resources in the cluster,
making the approach [6] energy efficient. However, Coupling
Scheduler ignores job sizes and can therefore be inefficient
when processing jobs with large map service times. This is
due to the coupling nature of ’sticky processor sharing” [5],
where a map task gradually gets the amount of reducers it
needs, disregarding task completion time, potentially allowing
huge tasks to complete before allocating resources to smaller
tasks [5].

2) Triple-Queue Scheduler and MR-predict: While [5] pre-
emptively couples mappers and reducers regardless of task
size, the authors behind the paper A Dynamic MapReduce
Scheduler for Heterogeneous Workloads [7] have devised a
prediction method called MR-predict to detect workloads in
real time. MR-predict focuses on optimizing the utilization and
balance between I/O-bound vs CPU-bound applications, which
is not a concern in legacy Hadoop MapReduce. Based on
MR-Predict, which classifies a type of workload, they propose
Triple-Queue Scheduler to serve tasks based on the predicted
workload. The standard First Come First Served strategy would
not be able to handle scheduling different task types, as it has
a single queue. With the Triple-Queue-Scheduler the authors
solve this issue by paralleling queues, and delivering I/O bound
tasks to nodes with I/O resources to spare, while at the same
time serving CPU bound tasks to fitting nodes. MR-predict
checks the history of a job to predict the future tasks, and from

there describe the workload type. If a new job is received with
no previous history, the job is sent to a waiting queue withing
Triple-Queue-Scheduler, where the scheduler will assign one
map task of that job to every TaskTracker whenever it has idle
slots. When the map tasks finish, MR-predict calculates the
MTCT (Map Task Completed Time), MID (Map Input Data)
and MOD (Map Output Data) based on the data gathered from
these tasks. The type of workload then gets determined, and the
job is moved into either a I/O-Bound queue, or a CPU-Bound
queue. Furthermore, the scheduler monitors tasks assigned to
queues, checking if MTCT increases. If MTCT increase passes
the threshold of 140%, the scheduler determines that the task
was assigned to the wrong queue, and moves the task to an
alternative queue. The tests were run on a native Hadoop
cluster, running TeraSort, GrepCount and WordCount. The
authors observed a 20% increase in resource utilization and
an impressive 30% increase in throughput. This is naturally
only meant for heterogeneous workloads, as there would be
little use to predict a homogeneous job flow. The algorithm is
also exclusively useful in a homogeneous environment [7].

3) Workload Characteristic and Resource Aware Sched-
uler: In this paper, the authors propose WCRA-scheduling
of Hadoop clusters (Workload Characteristic and Resource
Aware) [12]. WCRA-scheduling checks the CPU, RAM and
1/O-load on the nodes first. Afterwards, all the tasks are sorted
based on Estimated Completion Time then scheduled on the
most fitting nodes. The work bears some similarity to [7], but
also embraces RAM as an important parameter, ensuring that
more than 25% of the primary memory is always available
before scheduling a job. The authors argue that “is critical in
case of CPU and Disk I/O bound tasks” [12]. It was found
that "compute node works significantly if it has the available
physical memory greater than 25%. Tasks are assigned to
the node if the memory availability is greater than 25%”
[12]. WRCA-scheduling has the benefit of being specifically
designed to handle heterogeneous clusters. In a similar manner
to [7], WRCA works by first completing a set of sample
tasks for a new job in order to determine predicted type of
workload, and then classifies the job as either CPU-bound or
I/0-bound. Compared to [7], more extensive testing with more
jobs were reported, albeit on a smaller cluster environment, and
actually reached the same amount of increase in throughput
(30%) when compared to FIFO, Fair-scheduler and Capacity
scheduler.

4) Adaptive resource allocation schedulers: By definition,
an adaptive resource allocation scheduler adapts to the capa-
bilities and performance of each node in the cluster individ-
ually. In [14], the authors argued that legacy resource-aware
schedulers give nodes a fixed amount of resources for each
job, potentially causing over/under-utilization of resources, in
contrast to their devised scheduler [14] which dynamically
adapts its resource allocation over the course of the job. Based
on the estimated amount of tasks that can be processed con-
currently on each node, the devised algorithm shrinks/extends
the amount of resources over the run time. This algorithm is
also designed to optimize a heterogeneous cluster as in [7].
Instead of predicting tasks and queueing the workloads, the
authors propose a strategy where the worker nodes and their
“available/lack resources (CPU and memory) are monitored,
and based on this, the scheduler will extend/shrink the capacity
of the TaskTracker by increasing/decreasing the number of



map/reduce slots of the TaskTracker” [14]. The approach was
tested using different benchmarks including TeraSort, PiEsti-
mator and WordCound, in a similar manner to the main stream
of papers in this category. According to the experimental
findings, it was observed an average increase of the completion
time of all tasks by around 30%. As in the case of [16], this
approach also yields an increased effectiveness with reduced
nodes / slots in the cluster, compared to native algorithms like
FIFO and Fair-scheduler [14].

C. Job size

1) Size-Based Scheduling: As was remarked in a series
of papers such as in [5], ignoring the job size might halt
throughput in cluster, although it is very resource-effective.
Weighing job-size first should then logically considerably
increase throughput in the cluster and is claimed to achieve
’near-optimal system response times” [15]. The hard part about
designing an algorithm focused on size, is that it has to pri-
oritize jobs/tasks with the shortest remaining completion time
to be effective. This can lead to bigger tasks starving to get
resources. The authors behind HFSP: Size-based Scheduling
for Hadoop [15] introduce HFSP, which is a scheduler that
lets Hadoop determine job size during execution in real time.
They claim that their approach “satisfies both the interactivity
requirements of small jobs and the performance requirements
of large jobs, which can thus coexist in a cluster without
requiring manual setups and complex tuning” [15]. To be able
to schedule tasks with short completion times without forcing
starvation of larger tasks, the author implement a common
aging policy, where the cost of a task in the queue gets
gradually decremented as it waits for resources. They call the
technique “’Shortest Remaining Virtual Time (SRVT)” [15].
SRVT results in a slight increase in average throughput time,
at the benefit of virtually eliminating errors and starvation in
the queue. By applying a size-based scheduling algorithm the
authors also argue that the scheduler has significantly reduced
overhead, as its only concern is the direct size of the job, and
no additional calculations are necessary. As seen in [12] and
[7], this scheduler determines size by running a small set of
sample tasks from a job. The approach [15] is endowed with a
preemptive estimation module that sets a coarse size value for
the job before the samples are processed, which gets gradually
refined as samples are completed. The authors have measured
the performance of their approach in a benchmarking suite, and
found a significant decrease in system response times. Contrary
to [16] and [14], this effectiveness disparity increased in larger
jobs and larger clusters [9].

2) LsPS (Leveraging size Patterns Scheduler): The work
reported in [15] proposes an algorithm that specializes in
handling bursty workloads in a multi-user environment, by
tuning resource shares among users, and even the scheduling
algorithm for each user, based on job size. The authors have
tested their algorithm both in a controlled environment, and
in a production cluster: Amazon EC2, and observed reduced
MapReduce job response times. The job tracker calculates
how many slots and resources each user should have based
on the history of task completion, and predicted completion
time based on job size. Every time a task is finished, the
statistics of that particular user are updated. Based on all this
data, the Job Tracker continually sorts users instead of tasks,
making sure to let the most efficient users get the most slots,

without starving other users. This is done by granting a slot
share ratio to the users that is inversely proportional to their
job average sizes. In the case of new users entering the cluster
have no history for determining average job size / completion
time. In this case predefined job profiles are added to the
scheduler, and assigned to users based on a couple of user-
defined criteria. The authors have chosen a FIFO-algorithm as
a fallback, in case of tasks getting the same cost and confusing
LsPS, making sure that the first task submitted simply gets
processed. The experimental results show huge promise in
enterprise environments, with multiple users, heterogeneous
clusters and heterogeneous workloads. For smaller clusters and
predictable workloads however, the overhead cost might be too
high [15].

D. Improving Native Hadoop

1) Fair and Efficient Slot Configuration and Scheduling: In
many cases enterprises just want to use Hadoop for parallel big
data processing out-of-the-box, without much configuration by
experts. This frequently leads to using native Hadoop sched-
ulers which may be inefficient. The team behind FRESH: Fair
and Efficient Slot Configuration and Scheduling for Hadoop
Clusters [10] argue that Hadoop is far too complex to tweak
for many users. The authors propose a new Hadoop scheduling
system called FRESH (FaiR and Efficient Slot scheduling for
Hadoop) that dynamically configures slots and assign tasks to
achieve optimal performance from a cluster. They introduce
two different algorithms, one which statically assigns slots
for each job submitted, and one that dynamically alters the
amounts of slots for a job during run time. The static algorithm
calculates optimal amounts of slots for each job, allocates slots
for nodes, and then hands the jobs over to Fair Scheduler to
server tasks to the nodes. The dynamic algorithm takes the
whole process without help for Fair scheduler, and acts as both
back end slot allocator and task server for nodes, dynamically
monitoring each node and making sure all tasks are processed
with optimal fairness. The authors present their own novel
definition of fairness, named overall fairness with an algorithm
that more accurately disperses resources between jobs. The
reported tests show a significant improvement, especially with
the dynamic slot allocation, increasing makespan by up to 30%
compared to Fair scheduler across all types of workloads [10].

2) Chronos: Instead of creating a totally new “default”
scheduler from scratch, a different approach for enhancing
the native Hadoop scheduler is proposed by the authors of
Chronos: Failure-Aware Scheduling in Shared Hadoop Clus-
ters [11]. The authors argue that the performance of Hadoop
systems in part depends on how failures are handled. Hadoop
handles failures by re-executing all the tasks of the failed
machines. In this case, the machines need to wait for re-
sources to execute recovery tasks. They argue that the fact
that this is black-boxed from Hadoop schedulers (not visible
or configurable for schedulers) may hinder the schedulers from
optimizing the workflow according to the scheduling goal
efficiently, and thus significantly reducing performance of the
cluster. In order to counter this problem, the authors introduce
Chronos, a failure-aware scheduling strategy that preemptively
allocates resources to nodes with task failures, and also con-
siders data locality for optimized performance. Chronos is an
optional component independent from schedulers, and works
together with the scheduler of a users choice (like native



Hadoop - FIFO or Fair). Chronos works basically by listening
to heartbeats from Hadoop. Upon a failure, Chronos queries the
JobTracker for the nodes that has task failures. Chronos then
attempts to “inject” the recovery tasks into the front of the
task queue, based on an algorithm working together with the
scheduler goal to determine priorities of tasks. When it finds
an appropriate slot, it then allocates resources away from less
important tasks in the queue and on to the recovering node. The
latter strategy allows the failed slots to preemptively be freed,
instead of waiting in starvation for recovery resources. The
authors tested Chronos in combination with FIFO and Fair-
scheduler and experienced a reduce in job completion times
by up to an astonishing percentage of 55%.

E. Hybrid approach

1) Resource and Deadline-aware Job Scheduling: As
aforementioned, there is a vast variety of interesting and
effective scheduling algorithms with different prioritization,
and different drawbacks. In general term, hybrid approaches
aspire to combine one or more different approaches so that to
distill the best of their combination [13]. In [13], the authors
introduce a hybrid algorithm that takes both task deadlines
and a predicted future resource availability into account when
allocating tasks. To achieve this they apply a receding horizon
control algorithm in combination with a self-learning model
that learns to predict an estimate of future resource availability
and job completion times. They do this by introducing control
intervals in which actual resources and job sizes and predicted
resources and job sizes gets calculated, and based on this
they optimize the schedule while evaluating deadlines. This
is especially useful in an environment where resources are
dynamic and heterogeneous, as resources can be added or taken
away during run time, and the controls will catch the updates
and optimize for it. Tested in a controlled environment against
Fair scheduler, the authors were able to reduce the penalty of
deadline misses by 36%, and against Earliest Deadline First
scheduler they show a reduced penalty of 10% [13].

2) Classification and Optimization based Scheduler: A
truly hybrid solution is introduced in [8]. The authors analyze
the performance of widely used schedulers like FIFO and
Fair Share Scheduler, and an algorithm reckoned as COSHH
(Classification and Optimization based Scheduler for Hetero-
geneous Hadoop) scheduler. Based on the performances of
these algorithms the paper introduces a hybrid solution where
all three algorithms are used in the same cluster based on
different system loads. "When the system is underloaded, and
the number of free slots is greater than the number of waiting
tasks, the scheduler switches to the FIFO algorithm. Here, the
simple FIFO algorithm can improve the average completion
time with minimum scheduling overhead. However, as the
system load increases such that the available number of slots
is less than the number of waiting tasks, the hybrid scheduler
selects the Fair Sharing algorithm. When the load increases
such that the system is overloaded, and the number of waiting
tasks in job queues is quickly increasing, the Fair Sharing
algorithm can greatly increase the average completion time.
Therefore, the scheduler switches to the COSHH algorithm
which improves the average completion time, while avoiding
considerable degradation in the fairness metric” [8]. The hybrid
scheduler chooses the best scheduling algorithm for different
scales of jobs and resources to address average completion

time and fairness” [8]. The results of the experiments are
thoroughly documented, showing that the approach works, in
numerous cases cutting scheduling and completion-time by
half [8].

III. CONCLUSION

After reviewing a number of related works on Hadoop
scheduling, the conclusion that stands out is the potential for
improvement in the default Hadoop scheduling algorithms.
Almost all the surveyed schedulers in this paper have advan-
tages in terms of fairness and completion time compared to
the default Hadoop scheduling policy. Interestingly, FRESH
[10] and COSHH-hybrid [8] have the potential to become a
native part of Hadoop, replacing FIFO and Fair sharing, as
well as Chronos [11] which holds a lot of promise while
still needing further testing. When it comes to large enterprise
environments, LsPS [15] represents a promising approach as
it delivered unprecedented performance and user control in a
scalable and dynamic cluster, vastly improving upon default
schedulers.
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