
Deep Learning with Cellular Automaton-
Based Reservoir Computing

Stefano Nichele

Department of Computer Science
Oslo and Akershus University College of Applied Sciences
Oslo, Norway
stefano.nichele@hioa.no

Andreas Molund

Department of Computer and Information Science
Norwegian University of Science and Technology
Trondheim, Norway
andrmolu@stud.ntnu.no 

Recurrent  neural  networks  (RNNs)  have  been  a  prominent  concept
within artificial intelligence. They are inspired by biological neural net-
works  (BNNs)  and  provide  an  intuitive  and  abstract  representation  of
how  BNNs  work.  Derived  from  the  more  generic  artificial  neural  net-
works  (ANNs),  the  recurrent  ones  are  meant  to  be  used  for  temporal
tasks, such as speech recognition, because they are capable of memoriz-
ing historic input. However, such networks are very time consuming to
train  as  a  result  of  their  inherent  nature.  Recently,  echo  state  networks
and liquid state machines have been proposed as possible RNN alterna-
tives,  under  the  name  of  reservoir  computing  (RC).  Reservoir  comput-
ers  are  far  easier  to  train.  In  this  paper,  cellular  automata  (CAs)  are
used  as  a  reservoir  and  are  tested  on  the  five-bit  memory  task  (a  well-
known  benchmark  within  the  RC  community).  The  work  herein  pro-
vides  a  method  of  mapping  binary  inputs  from  the  task  onto  the
automata  and  a  recurrent  architecture  for  handling  the  sequential
aspects.  Furthermore,  a  layered  (deep)  reservoir  architecture  is  pro-
posed.  Performances  are  compared  to  earlier  work,  in  addition  to  the
single-layer  version.  Results  show  that  the  single  cellular  automaton
(CA) reservoir system yields similar results to state-of-the-art work. The
system  comprised  of  two  layered  reservoirs  does  show  a  noticeable
improvement  compared  to  a  single  CA  reservoir.  This  work  lays  the
foundation  for  implementations  of  deep  learning  with  CA-based  reser-
voir systems. 

Introduction1.

Temporal  tasks,  which  we  humans  experience  daily,  are  a  great
source of inspiration for research within the fields of complex systems
and  biologically  inspired  artificial  intelligence.  Systems  capable  of

https://doi.org/10.25088/ComplexSystems.26.4.319

mailto:stefano.nichele@hioa.no
mailto:andrmolu@stud.ntnu.no
https://doi.org/10.25088/ComplexSystems.26.4.319


solving  temporal  tasks  must  be  able  to  memorize  historical  data.
Recurrent  neural  networks  (RNNs)  are  an  example  of  a  system  of
that  sort  and  have  been  studied  for  many  years.  However,  training
RNNs  is  usually  compute  intensive.  One  alternative  is  to  consider
recurrent  networks  as  an  untrained  reservoir  of  rich  dynamics  and
only  train  an  external  feed-forward  readout  layer.  The  rich  dynamics
are to provide the necessary projection of the input features onto a dis-
criminative  and  high-dimensional  space.  Basically,  any  substrate
equipped  with  these  properties  can  be  used  as  a  reservoir.  This  paper
investigates  the  use  of  cellular  automata  (CAs)  computing  substrates,
inspired by [1].

Cellular  automata  at  a  microscopic  scale  are  seemingly  simple  sys-
tems that exhibit simple physics but at a macroscopic scale can reveal
complex  behavior  that  might  provide  the  needed  reservoir  properties.
Specifically, CAs are able to support transmission, storage and modifi-
cation of information [2], all of which are necessary properties to sup-
port computation. 

Furthermore,  stacking  reservoir  systems  in  a  multilayered  setup  to
offer  additional  computational  capabilities  has  been  successfully
applied in [3], using a traditional RNN as a reservoir. 

The  focus  of  the  work  herein  is  to  explore  series  of  CA  reservoirs.
As such, a system with a single cellular automaton (CA) reservoir has
been implemented first, and a second reservoir has been stacked at the
end  of  the  first  one,  to  investigate  whether  two  smaller  layered  reser-
voirs  can  replace  a  single  larger  one  with  regard  to  computational
capacity. The single CA reservoir system is therefore compared to ear-
lier work, as well as to the layered version. 

The  paper  is  organized  as  follows.  Section  2  presents  background
information. Section 3 describes the specific method and system archi-
tecture  in  detail.  Section  4  provides  the  experimental  setup,  and
Section  5  outlines  the  experimental  results.  A  discussion  is  given  in
Section  6.  Finally,  Section  7  provides  ideas  for  future  work,  and  Sec-
tion�8 concludes the paper. 

Background2.

Reservoir Computing2.1
Fundamentals2.1.1

Information  in  feedforward  neural  networks  (NNs)  is  sent  one  way
through layers of neurons: from an input layer through one (or more)
hidden layers to an output layer. Neurons in each layer are connected
to neurons in the subsequent layer (except the last one) with weighted
edges,  and  each  neuron  propagates  signals  according  to  its  activation

320 S. Nichele and A. Molund

Complex Systems, 26 © 2017



function. An RNN contains the same basic elements. However, it has
recurrent  connections  that  feed  portions  of  the  information  back  to
the  internal  neurons  in  the  network,  making  the  RNN  capable  of
memorization  [4],  hence  RNNs  are  promising  architectures  for
processing  of  sequential  tasks’  data,  for  example,  speech  recognition.
Ways  of  training  RNNs  are  different  variants  of  backpropagation  [4,
5], all with different computational complexity and time consumption.

One fairly recent discovery based upon the fundamentals of RNNs
is  echo  state  networks  (ESNs)  [6].  An  ESN  is  a  randomly  generated
RNN, in which the network does not exhibit any layer structure, and
its  internal  connection  weights  remain  fixed  (untrained)  and  can  be
treated  as  a  reservoir  of  dynamics.  The  “echo  state  property”  is  the
activation  state  of  the  whole  network  being  a  function  of  previous
activation  states.  Training  of  such  a  network  involves  adapting  only
the weights of a set of output connections. 

Another similar discovery is liquid state machines (LSMs) [7]. Liq-
uid  state  machines  are  similar  to  ESNs  in  terms  of  topology,  with  an
internal  randomly  generated  neural  network  and  problem-specific
trained output weights. 

The  basic  idea  of  having  readout  nodes  with  trained  weights  con-
nected  to  an  arbitrary  number  of  neurons  inside  the  untrained  reser-
voir  has  been  named  reservoir  computing  (RC).  Figure  1  depicts  this
general RC idea. 

Figure 1. A generic reservoir. It is only necessary to adapt weights W to a cer-
tain target.

Physical Reservoir Implementations2.1.2

Different  physical  substrates  have  been  shown  to  possess  the  neces-
sary  rich  dynamics  to  act  as  a  reservoir.  Potentially,  any  high-
dimensional dynamic medium or system that has the desired dynamic
properties can be used. For example, in [8] a linear classifier was used
to  extract  information  from  the  primary  visual  cortex  of  an  anes-

Deep Learning with Cellular Automaton-Based Reservoir Computing 321

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


thetized cat. In [9], waves produced on the surface of water were used
as  an  LSM  to  solve  a  speech  recognition  task.  The  genetic  regulatory
network  of  the  Escherichia  coli  bacterium  (E.  coli)  was  used  as  an
ESN  in  [10]  and  as  an  LSM  in  [11].  In  [12–14],  unconventional  car-
bon  nanotube  materials  were  configured  as  a  reservoir  through
artificial evolution. An optoelectronic reservoir implementation is pre-
sented in [15, 16].

Deep Reservoirs2.1.3

Within the RC research field, it has been suggested that reservoir per-
formances  may  be  improved  by  stacking  multiple  reservoirs  [3,  17,
18]. A critical analysis of deep reservoir systems is given in [19]. In a
deep  reservoir  system,  since  the  hidden  units  in  the  reservoir  are  not
trainable,  the  reservoir’s  readout  values  are  sent  as  input  to  the  next
reservoir.  Thus,  the  reservoir  and  its  associated  output  layer  are
stacked  in  a  multilayered  (possibly  deep)  architecture.  This  technique
is inspired by deep neural networks, in which adding layers of hidden
units  increases  the  ability  of  representation  and  abstraction,  and  thus
the  performance  of  the  system.  One  argument  for  stacking  multiple
reservoir  systems  is  that  the  errors  of  one  reservoir  may  be  corrected
by  the  following  one,  which  may  learn  the  semantics  of  the  pattern
that  it  gets  as  input.  As  an  example,  in  [3]  a  deep  reservoir  architec-
ture based on ESNs proved successful in phoneme recognition. 

Cellular Automata2.2

Cellular  automata  were  inspired  by  the  study  of  self-reproducing
machines  by  von  Neumann  in  the  1940s  [20].  Cellular  automata  are
able  to  show  emergent  behavior;  that  is,  the  macroscopic  properties
are hard to explain from solely looking at the microscopic properties.
Within  a  CA,  simple  cells  communicate  locally  over  discrete  time.
Locally means that a cell only interacts with its immediate neighbors;
thus  it  has  no  global  control.  The  cells  are  discrete  and  placed  on  a
regular  grid  of  arbitrary  dimension.  The  most  common  ones  are  one-
and  two-dimensional.  At  each  time  step,  all  cells  on  the  grid  are
updated  synchronously  based  on  their  physics,  that  is,  a  transition  to
a new state based on the previous state of the cell itself and its neigh-
bors. Such transition tables are also referred to as CA rules. 

Regarding the rule space, if K is the number of states a cell can be

in, and N is the number of neighbors (including itself), then KN
 is the

total  number  of  possible  neighborhood  states.  Furthermore,  each  ele-
ment  is  transitioning  to  one  of  K  states;  thus,  the  transition  function

space  is  of  size  KKN
.  For  example,  in  a  universe  where  cells  have  five

possible states and three neighbors, there are 55
3
≈ 2.4⨯1087  different

rules or possible transition functions. 

322 S. Nichele and A. Molund

Complex Systems, 26 © 2017



Elementary  CAs  are  the  simplest  class  of  one-dimensional  CAs.
They  comprise  cells  laid  out  in  one  dimension,  in  which  K  2  and
N  3. The rule space can be enumerated in a base-2 system; each of

the 28  256 transition functions can be represented by a base-2 num-
ber  of  length  8,  as  for  example  rule  110  shown  later  in  Figure  3  that

is represented as 01 1011102. 

Going  a  step  in  a  more  general  direction,  all  one-dimensional  CAs
were  categorized  by  Wolfram  [21]  into  four  qualitative  classes,  based
on  the  resulting  evolution,  that  is,  the  emergent  CA  behavior.  Evolv-
ing  one-dimensional  CAs  can  easily  be  visualized  by  plotting  the
whole  spacetime  diagram,  iteration  by  iteration,  downward;  see  Fig-
ure  2  for  illustrations.  Cellular  automata  in  class  I  will  always  evolve
to  homogeneous  cell  states,  independent  of  the  initial  states.  Class  II
leads  to  periodic  patterns  or  single  everlasting  structures,  either  of
which  outcome  is  dependent  on  initial  local  regions  of  cell  states.
Class  III  leads  to  a  chaotic  and  seemingly  random  pattern.  Finally,
class IV leads to complex localized structures that are difficult to pre-
dict; see Figure 2(d). 

Langton introduced a scheme for parameterizing rule spaces in [2],
namely  the  λ  parameter.  Briefly  explained,  within  a  transition  func-
tion, the value of λ represents the fraction of transitions that lead to a
quiescent state. As an example, rule 110 in Figure 3 has λ  0.625. If
λ  0.0,  then  everything  will  transition  to  0,  and  the  automaton  will
clearly  lead  to  a  homogeneous  state.  λ  is  especially  useful  for  large
rule  spaces  where  it  is  hard  to  exhaustively  enumerate  all  rules,
because  it  can  be  used  to  generate  rules  with  the  desired  behavior.
Langton [2] did a qualitative survey throughout the rule space on one-
dimensional  CAs  with  K  4  and  N  5;  rules  were  generated  from
different values of λ, from which CAs were evolved and analyzed. As
the parameter increased from 0.0 to 1.0, the observed behavior under-
went  various  phases,  all  the  way  from  activity  quickly  dying  out  to
fully  chaotic.  In  the  vicinity  of  phase  transition  between  ordered  and
chaotic,  a  subset  of  all  CA  rules  was  observed  to  lead  to  complex
behavior  that  produced  long-lasting  structures  and  large  correlation
lengths.  Langton  suggested  that  in  this  “edge  of  chaos”  region  is
where computation may spontaneously emerge. 

Cellular Automata in Reservoir Computing2.3

Cellular  automata  reservoirs  were  first  introduced  in  [1],  and  dis-
cussed subsequently in [22–24]. In [25] the usage of nonuniform CAs
was proposed, and in [26] a CA reservoir system was used for modal-
ity  classification  of  medical  images.  In  [27],  pairs  of  CA  rules  were
used for reservoir computing and extreme learning machines. 

Deep Learning with Cellular Automaton-Based Reservoir Computing 323

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


(a) (b)

(c) (d)

Figure 2. Elementary  cellular  automata  iterating  downward.  (a)  and  (b)  are
cut  short.  A  black  cell  represents  1.  These  four  are  examples  of  each  of
Wolfram’s classes: (a) is class I with rule 40, (b) is class II with rule 108, (c) is
class III with rule 150, and (d) is class IV with rule 110.

Figure 3. The elementary CA rule 110 01 1011102  11010.

Since  the  automata  cells  take  on  values  from  a  discrete  and  finite
set,  mapping  schemes  to  translate  inputs  onto  CAs  may  be  needed.
For  problems  and  tasks  of  a  binary  nature,  such  as  five-bit  memory

324 S. Nichele and A. Molund

Complex Systems, 26 © 2017



tasks  [28]  and  temporal  bit  parity  and  density  [29],  this  is  relatively
straightforward.  For  input  with  real  values,  there  are  different  pro-
posed  mapping  methods  [1,  25,  26].  After  translation,  a  rule  is  then
applied  to  the  automaton  for  some  iterations,  each  of  which  is
recorded,  so  the  nonlinear  evolution  becomes  a  projection  of  the
input onto a discriminating state space. This projection is later used in
regression and classification for the task at hand. 

Cellular automata as reservoirs provide several benefits over ESNs.
One  is  that  the  selection  of  reservoir,  that  is,  the  CA  transition  table,
is trivial; it is merely a choice of a CA rule with the wanted dynamics.
Even  in  elementary  CAs,  one  of  the  simplest  forms,  there  exist  rules
that  are  Turing  complete,  that  is,  capable  of  universal  computation
[30,  31].  Another  improvement  is  the  aspect  of  computational
complexity. According to [1], the speedups and energy savings for the
N-bit  task  are  almost  two  orders  of  magnitude  because  of  the  num-
bers and type (bitwise) of operations. Binarized variations of deep neu-
ral  networks  [32,  33]  and  neural  GPUs  [34]  have  been  recently
suggested,  in  order  to  allow  easier  implementations  in  hardware  than
conventional  deep  neural  network  architectures.  In  [35],  binarized
neural  networks  are  implemented  on  field-programmable  gate  arrays
(FPGAs).  Such  binary  implementations  are  well  suited  for  reconfig-
urable logic devices. One advantage of using binary CAs (locally con-
nected)  over  deep  neural  networks  (fully  connected)  is  a  significantly
lower  memory  cost  and  computation  cost  (binary  operations  imple-
mented with a lookup table or bitwise logic in case of additive rules). 

A vast sea of possibilities exists regarding how to set up a CA reser-
voir  system.  For  example,  in  a  recent  paper  [24],  memory  enhance-
ments  of  the  CA  are  explored  by  adopting  pre-processing  methods
prior  to  evolution.  Further  research  with  these  possibilities  can  pro-
vide  new  understanding  and  insight  in  the  field  of  reservoir  comput-
ing with cellular automata (ReCA) and CA-based deep learning. 

Method3.

In this section, the ReCA system used is described in detail (Figure 4).
The first implementation comprises a single reservoir tested (with sev-
eral  parameters)  on  the  five-bit  memory  task  to  compare  to  state-of-
the-art  results  [22,  23].  In  the  second  implementation,  an  additional
reservoir  is  added,  whose  input  is  the  output  of  the  first  one.  This
larger system is tested on the same task (five-bit memory) for compari-
son. The code base that is used in this paper is available for download
at https://github.com/andreasmolund/reca.

Deep Learning with Cellular Automaton-Based Reservoir Computing 325

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


Figure 4. System architecture.

System Architecture3.1

Elementary  cellular  automata  are  used  as  the  medium  in  the  reser-
voirs;  that  is,  their  cells  have  three  neighbors  (including  themselves),
each  of  which  can  be  in  one  of  two  states.  This  means  that  there  are
256 rules that can be applied, not all of which are used in this paper.
A selection of rules is presented in Section 5.

In  the  encoding  stage,  input  to  the  system  is  mapped  onto  the
automata.  Since  the  problem  can  be  represented  with  binary  vectors,
the input elements translate directly into cell states. This is one of the
two  input-to-automaton  options  proposed  in  [1],  with  the  other  one
being for nonbinary input data. In addition to regular translation, the
encoder  is  also  responsible  for  padding  and  for  diffusing  the  input
onto an area that is of greater size than the input, if desired. Padding
is the method of adding elements of no information, in this case zeros,
at  some  end  of  the  mapped  vector.  These  buffers  are  meant  to  hold
some activity outside of the area where the input is perturbing. Thus,
diffusing  is  a  sort  of  padding  by  inserting  zeros  at  random  positions
instead of at the end. It disperses the input to a larger area. The length
of the area to which the input is diffused is denoted Ld. Currently, out

of these two methods of enlarging the memory capacity, only the dif-
fuse  parameter  Ld  is  set.  Figure  5  illustrates  how  the  system  is  map-

ping input to automata. 

Figure 5. Encoding input onto an automaton. Lin  4, R  2, Ld  10, I  4.

The two different colors of X1
P
 signify the two different random mappings.

326 S. Nichele and A. Molund

Complex Systems, 26 © 2017



A  reservoir  can  consist  of  R  separate  CAs,  each  of  which  initial
configuration  is  a  randomly  mapped  input.  At  system  initialization,
the  indexes  used  for  random  mapping  are  generated,  which  means
that  the  mappings  are  final  and  do  not  change  throughout  computa-
tion.  These  automata  are  concatenated  at  the  beginning  of  evolution
to form a large initial configuration of size R⨯Ld. It is also possible to

concatenate  them  after  they  are  done  iterating,  but  that  proved  to
yield  worse  results.  At  the  boundaries,  the  automata  are  wrapped
around;  that  is,  the  rightmost  cell  has  the  leftmost  cell  as  its  right
neighbor, and vice versa. 

For  the  five-bit  memory  task  described  later  in  this  paper,  the  sys-
tem  needs  to  be  able  to  handle  sequential  inputs.  In  [22],  a  recurrent
architecture for CAs in reservoir computing is proposed. 

The system is initialized with an input X1  at the first time step. X1

is  permuted;  that  is,  its  elements  are  randomly  mapped  onto  a  vector
of  zeros  according  to  the  mapping  scheme  R  times  and  concatenated

to form the initial configuration of the automaton X1
P: 

X1
P  X1

P1 ; X1
P2 ; …X1

PR.

The  automaton  is  now  of  length  R⨯Ld.  Z  is  said  to  be  the  transi-

tion function, or rule, and is applied to the automaton for I iterations.
This renders an expressive and discriminative spacetime volume of the
input: 

A1
(1)  ZX1

P

A2
(1)  ZA1

(1)

⋮

AI
(1)  ZAI-1

(1) .

s

A1
(1)

 through AI
(1)

 constitutes the evolution of the automaton and is

concatenated  to  form  a  state  vector  used  for  estimation  at  the  first
time  step.  It  is  possible  to  include  the  permuted  version  of  the  input,
that  is,  the  state  before  the  first  application  of  the  rule,  which  is  the
case  for  the  feedforward  architecture  in  [22],  for  example.  However,
it is excluded here: 

A(1)  A1
(1); A2

(1); …AI
(1).

Because  this  is  a  recurrent  architecture,  a  fraction  of  the  state  vec-
tor  is  combined  with  the  next  input.  Several  methods  exist;  XOR,
“normalized  addition,”  which  is  adopted  in  [22],  and  a  variant  of
overwriting,  which  is  implemented  in  [23].  For  the  subsequent  time
step,  depicted  in  Figure  6,  the  last  iteration  of  the  previous  state

Deep Learning with Cellular Automaton-Based Reservoir Computing 327

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


vector is duplicated, after which the next input is permuted and writ-
ten onto. In other words, instead of mapping the input onto a zero vec-
tor, it is done onto a vector that already contains information: 

X2
P  YX2, AI

(1)

where  Y  is  the  function  that  overwrites  AI
(1)

 with  the  permuted  ele-

ments of X2. One implication about this process is that the operation

cannot  be  vectorized  to  an  elementwise  operand  and  hence  hamper
performance.  The  positive  is  that  no  input  information  is  lost;  for
example,  one  of  the  input  bits  being  zero  (a  signal  is  switched  to  off)
will  affect  the  subsequent  evolution.  In  other  methods  such  as  the
probabilistic normalized addition, we rely on an increasing number of
random  mappings  to  increase  the  probability  that  input  information

is  preserved.  To  obtain  the  next  state  vector  A(2),  the  transition  func-

tion is applied on X2
P
 for I iterations and concatenated:

A(2)  A1
(2); A2

(2); …AI
(2).

A(2)
 is consequently used for estimation of time step 2. This process

is repeated for every time step of the input sequence. 

Figure 6. Combining  input  with  portions  of  the  previous  state.  X2
P

 has  traces

of A4
(1)

 from Figure 5.

Readout3.2

As we can infer from what was described earlier, the number of read-
out  values  from  the  reservoir  depends  on  the  diffuse  length  and  the
number of random mappings and iterations. The readout values from
one  time  step  are  sent  into  a  linear  regression  model  together  with
their  corresponding  labels.  Specifically,  the  linear_model.Linear
Regression  class  from  scikit-learn  [36]  is  used.  For  ease  of  training,
the  model  is  fitted  all  at  once  with  the  output  from  all  time  steps  for
each  element  in  the  training  set,  together  with  their  labels.  Even
though the elements are from different time steps, from different loca-
tions in the training set, they are weighted and treated equally because
they  each  retain  (to  a  greater  or  lesser  degree)  history  from  their

328 S. Nichele and A. Molund

Complex Systems, 26 © 2017



respective “time lines.” Each corresponding label represents semantics
from which the model is to interpret the readout values. 

After  the  model  is  fitted,  it  can  be  used  to  predict.  Because  linear
regression is used, the output values from the predictions are floating
points. The output value x is binarized according to equation (1) 

xb 
0 if x < 0.5,

1 otherwise.
(1)

Deep Cellular Automaton Reservoir3.3

The  RC  framework  described  so  far  consists  of  one  CA  reservoir.
This  approach  is  now  expanded  with  new  components  as  depicted  in
Figure  4,  that  is,  a  second  encoder,  reservoir  and  regression  model.
After  the  values  of  the  first  readout  stage  are  classified,  it  is  used  as
input  to  the  second  system.  Both  regression  models  are  fitted  to  the
same  target  labels.  One  motivation  for  connecting  two  reservoirs
together is that the second can correct some of the wrong predictions
of the first one.

Training  the  system  as  a  whole  (and  really  testing  it  as  well)
involves  the  procedure  that  follows.  Inputs  are  encoded  and  mapped
onto  automata  from  which  the  first  reservoir  computes  state  vectors.
As  this  input  is  now  transformed  already,  it  is  stored  to  be  used  for
later prediction. The first regression model is fitted with these feature
vectors  to  the  corresponding  labels  and  does  its  prediction  immedi-
ately  after.  These  predictions  are  binarized,  encoded  and  mapped
onto  automata  from  which  the  second  reservoir  computes  new  state
vectors.  Consequently,  the  second  regression  model  follows  the  same
training  procedure  as  the  first  one,  only  with  these  new  state  vectors.
When the training is completed, the second regression model is tested
for classification. 

Experiment4.

Five-Bit Memory Task4.1

One sequential benchmark that has been applied to reservoir comput-
ing  systems  is  the  N-bit  memory  task  [1,  22,  23,  25,  37],  which  is
found to be hard for feedforward architectures [28].

In  the  five-bit  memory  task,  a  sequence  of  binary  vectors  of  size
four is presented to the system, where each vector represents one time
step.  The  four  elements  therein  act  as  signals;  thus,  only  one  of  them
can  be  1  at  a  time  step.  This  constraint  also  applies  on  the  output,
which is also a binary vector, but rather with three elements. In [28],
the  problem  was  formulated  with  four  output  bits,  but  the  fourth  is
“unused,” hence it is omitted in the implementation herein. 

Deep Learning with Cellular Automaton-Based Reservoir Computing 329

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


For  the  first  five  time  steps  in  one  run,  the  first  two  bits  in  the
input vector are toggled between 0 and 1. This is the information that
the system is to remember. If one of them is 1, the other one is 0, and
vice  versa;  hence,  there  is  a  total  of  32  possible  combinations  for  the
five-bit  task.  From  time  step  6  throughout  the  rest  of  the  sequences,
the third  bit is  set to  1, except  at time  Td + 5, where  the fourth  bit is

set to 1. The third bit is the distractor signal and indicates that the sys-
tem  is  waiting  for  the  cue  signal  (i.e.,  the  fourth  bit).  All  runs  pre-
sented  in  Section  5  are  with  Td  200,  meaning  a  total  sequence

length T  Td + 2⨯5  210. 

As for the output, for all time steps until Td + 5 inclusive, the third

bit  is  1.  Thereafter,  the  first  and  second  bit  are  to  replicate  the  first
five input signals. See Figure 7 for an example. 

Figure 7. An  example  of  the  five-bit  memory  task  with  a  distractor  period
Td  3. The cue signal occurs at time step 8, after which the first and second

bit  of  the  output  are  replicating  the  equivalent  bits  in  the  input  (marked  in
gray).

System Setup4.2

To collect the results, all 32 possible input patterns are used for both
training  and  testing.  Because  the  mappings  are  final  throughout  one
run and hence the system is deterministic, the regression model is basi-
cally fitted to the same output that it is to predict. One run is said to
be successful if the system can predict the right output for every time
step  for  all  of  the  32  possible  testing  sets.  That  means  a  total  of
3⨯210⨯32  bits  correctly  predicted.  Either  1000  or  100  runs  are  per-
formed (and specified in the results figure), as explained in Section 5.
The diffuse length is Ld  40.

330 S. Nichele and A. Molund

Complex Systems, 26 © 2017



Results5.

The  results  of  the  five-bit  memory  task  are  presented  in  this  section
and  summarized  in  Tables  1  and  2.  Only  the  most  promising  rules
have  been  tested  with  large  combinations  of  I  and  R.  The  combina-
tion of I and R is denoted (I, R) throughout the rest of the paper. 

Rule (I,R)(2,4) (2,8) (4,4) (4,8) (8,8) (8,16) (16,8) (16,16) 
90 18.5 45.9 29.2 66.1 100 100 98 100 

150 0.2 1.8 6.7 33.7 89 100 100 100 

182 0.0 0.0 0.0 0.1 0 100 99 100 

22 0.0 0.0 0.0 0.0 0 99 100 100 

60 4.5 22.7 28.2 71.2 99 100 100 

102 6.0 24.0 28.1 69.7 97 100 

105 0.3 2.5 7.9 31.7 90 

153 3.1 20.2 28.9 70.6 99 

165 3.4 29.2 14.6 56.1 94 

180 0.0 0.0 0.0 0.0 0 

195 3.4 21.4 26.5 67.2 98 

Table 1. The  correctness  (%)  from  the  first  reservoir  computing  system.  Up

until  I, R  4, 8  inclusive,  1000  runs  were  executed,  hence  the  single-

decimal precision. With greater I and R, only 100 runs were executed.

Rule (I,R)(2,4) (2,8) (4,4) (4,8) (8,8) (8,16) (16,8) (16,16) 
90 16.6 49.4 38.0 73.9 100 100 99 100 

150 0.3 3.5 10.4 39.7 90 100 100 100 

182 0.0 0.0 0.0 6.0 2 100 100 100 

22 0.0 0.0 0.0 0.0 0 100 100 100 

60 9.4 30.0 33.7 74.4 99 100 100 

102 9.8 31.9 35.2 71.9 97 100 

105 0.7 3.7 11.5 37.2 91 

153 5.0 24.6 35.4 73.9 99 

165 4.8 35.0 22.4 63.7 95 

180 0.1 0.2 0.1 0.1 0 

195 5.4 27.3 33.6 71.7 99 

Table 2. The  correctness  (%)  from  the  second  reservoir  computing  system.
What was mentioned in the caption of Table 1 still applies here.

From  8, 8  inclusive  and  up,  the  results  are  based  on  100  runs.

Under that, they are based on 1000 runs; hence they are given with a
single-decimal precision. 

Only a selection of all 256 possible rules is selected for experimen-
tation.  Rules  are  selected  based  on  available  literature  for  compari-
son,  for  example,  [1,  23].  In  [1],  it  is  found  that  rules  22,  30,  126,

Deep Learning with Cellular Automaton-Based Reservoir Computing 331

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


150,  182,  110,  54,  62,  90  and  60  are  able  to  give  0  error  for  some
combinations  of  (I, R),  where  the  best-performing  rules  are  90,  150,
182 and 22, in decreasing order. In [23], results are provided for rules
60, 90, 102, 105, 150, 153, 165, 180 and 195. 

Discussion6.

Comparison with Earlier Work6.1

The  individual  results  in  [23]  are  not  quite  equal  to  the  equivalent  in
Table 1. Some values differ noticeably, for example, rules 90 and 165

at  4, 4,  which  in  [23]  result  in  a  lower  correctness.  The  differences

may  be  due  to  the  different  concatenation  of  random  mappings,  that
is,  prior  to  CA  evolution  herein,  whereas  it  is  concatenated  after  in
[23]. Furthermore, no rule is able to achieve 100% correctness under

8, 8, which is also the case in [23].

For  the  five-bit  task  with  a  distractor  period  of  200,  the  best-per-

forming rule in [22] needs a minimum of (I, R)  32, 40 to produce

100%  correct  results.  That  means  a  state  vector  of  size  (or  trainable
parameters)  32⨯40⨯4  5120.  The  method  proposed  herein  needs
I⨯R⨯Ld  8⨯8⨯40  2560, according to Table 1. 

Some  rules  presented  in  Table  1  are  essentially  equivalent.
Rule 102  is  black-white  equivalent  with  153—that  is,  they  inter-
change  the  black  and  white  cells—and  left-right  equivalent  with  rule
60—that  is,  they  interchange  left  and  right  cells.  The  rule  is  further-
more  both  black-white  and  left-right  equivalent  with  rule  195.  With
these  four  rules  being  somehow  equivalent,  the  obtained  results  in
Table 1 are also approximately equal. 

Padding  versus  diffusing  is  furthermore  experimented  with,
although  not  documented  in  this  paper.  In  the  few  executed  tests,
padding alone is observed to produce more stable results. On the con-
trary, with only diffusion, the tests seemed to yield better results over-
all  but  with  higher  variance.  The  reason  is  most  likely  due  to  the
larger  area  to  which  the  input  is  mapped;  individual  elements  of
mapped  input  can  be  both  very  far  apart  and  very  close,  while  they
are immediately adjacent when padding. 

Another  side  experiment  was  executed  to  compare  the  fitting  time
when  doubling  the  reservoir  size.  The  number  of  random  mappings
was doubled from four (i.e., number of trainable parameters or read-
out  nodes  was  I⨯R⨯Ld  4⨯4⨯40  640).  When  doubling  R  and

hence  doubling  the  state  vector  size,  the  outcome  was  an  increase  in
fitting  time  by  a  factor  of  3.4.  A  set  of  32  was  used,  each  with  211
sequences. It is a rough figure, but it gives an indication of the compu-
tational complexity. 

332 S. Nichele and A. Molund

Complex Systems, 26 © 2017



Layered Reservoirs6.2

It  is  quite  intriguing  how  information  represented  by  three  bits  from
the  first  reservoir  computing  system  can  be  corrected  by  the  second
one.  From  a  human’s  perspective,  three  bits  is  not  much  to  interpret.
Nevertheless,  the  dynamics  of  the  architecture  and  expressiveness  of
CAs  prove  to  be  able  to  improve  the  result  from  a  single  reservoir
system.

Table  2  provides  results  on  the  correctness  of  the  two-layer  reser-
voir. The results in each cell are directly comparable to the equivalent

in  Table  1;  for  example,  rule  150  at  4, 4  improved  from  6.7%  cor-

rectness to 10.4%. 
Comparing the two tables, no rule in the second reservoir managed

to get 100% before the first reservoir. The rule that first is able to pre-

dict  100%  correctly  is  90  at  8, 8,  and  in  a  multilayered  setup,  the

same  still  applies:  rule  90  at  8, 8.  Below  this  (I, R)  and  where  the

first  reservoir  gets  > 10%,  the  best  improvement  gain  is  53.4%  for

rule 165 at 4, 4. Rule 165 also has the highest average improvement

with 21.7%. 
Overall  performance  seems  to  increase  with  two  reservoirs,  the

only decrease being rule 90 at the lowest (I, R). One possible explana-
tion for the decrease is that the reservoir has reached an attractor. If it
has,  it  must  have  occurred  within  the  distractor  period  where  the
input  signal  does  not  change.  The  system  has  been  observed  to  reach
an attractor when the addition method in the recurrent architecture is
XOR, in which case the system reached an attractor after around two
time steps within the distractor period. However, the described imple-
mentation in this paper does not use XOR. 

An  intuitive  comparison  would  be  to  compare  whether  adding  a
second  reservoir  of  equal  capacity  can  perform  better  than  a  single
reservoir with twice the random mappings. In that case, a viable con-
figuration  of  rule  and  (I, R)  does  not  seem  to  exist.  However,  when
adding training time in the equation, a tradeoff might be reasonable. 

Figure  8  is  a  visualization  of  the  actual  CA  states  on  a  successful
run  on  the  five-bit  task  with  two  reservoirs,  although  the  distractor
period  is  shortened  down  to  20  time  steps.  Each  tick  on  the  vertical
axis  signifies  the  beginning  of  a  new  time  step,  and  right  before  each
tick, new input is added onto the CA state. The input itself cannot be
spotted,  but  the  effects  of  it  can  (to  a  certain  degree).  Spotting  the
input  signals  is  feasible  at  early  time  steps,  but  gets  more  difficult  at
later iterations. 

Deep Learning with Cellular Automaton-Based Reservoir Computing 333

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


(a)

(b)

Figure 8. An  example  run  on  the  five-bit  task  with  two  reservoirs.  (a)  is  the
first reservoir and (b) is the second. I  8, R  8, Ld  40, and the distractor

period is shortened to 20.

334 S. Nichele and A. Molund

Complex Systems, 26 © 2017



Future Work7.

The results presented in this paper show that a system with two-layer
reservoirs  performs  better  than  a  single  reservoir.  This  paper  briefly
touched  upon  one  part  of  the  vast  spectrum  of  options  and  methods
to opt for a practical implementation of ReCA systems. These options
include the mapping method, investigating a larger rule space, the tar-
get  of  training  for  each  regression  model,  the  parameters  for  each
reservoir,  the  rule  of  each  reservoir  and  the  possibility  of  using  two-
dimensional CAs (e.g., Conway’s Game of Life). Especially interesting
is the mapping method, or more generally, preprocessing before excit-
ing  the  medium  within  the  reservoir.  For  example,  in  [24],  buffering
and methods for handling subsequent inputs yield promising results.

One  of  the  most  interesting  avenues  for  future  work  is  to  experi-
ment  further  with  more  than  two  reservoirs,  that  is,  a  deep  ReCA
system. 

In  addition,  because  of  the  nature  of  CAs,  ReCA  systems  are  suit-
able  for  implementation  in  FPGAs.  Cellular  automata  completely
avoid floating-point multiplications as opposed to ESNs, and further-
more, the regression stage can be replaced by summation [1]. 

Conclusion8.

In  this  paper,  a  reservoir  computing  system  with  cellular  automata
serving  as  the  reservoir  was  implemented.  Such  a  system  was  tested
on the five-bit memory task. The system was also expanded to a two-
layer reservoir, in which the output of the first reservoir inputs to the
second  reservoir.  Output  of  the  first  reservoir  was  used  to  compare
the result with state-of-the-art work, as well as to the implementation
with a layered reservoir. One of the main motivations for opting for a
two-layer  system  is  that  the  second  reservoir  can  correct  some  of  the
incorrect predictions of the first one. 

The  results  for  the  layered  system  show  noticeable  improvements
when  compared  to  the  single  reservoir  system.  The  greatest  improve-

ment  (53.42%)  was  achieved  by  rule  165  at  4, 4.  Rule  165  proved

to be promising in general, with an average improvement of 21.71%. 
Overall,  the  second  reservoir  does  improve  the  results  of  the  first

one  to  a  certain  degree.  This  work  lays  the  foundation  for  cellular
automaton-based deep learning implementations. 

Deep Learning with Cellular Automaton-Based Reservoir Computing 335

https://doi.org/10.25088/ComplexSystems.26.4.319

https://doi.org/10.25088/ComplexSystems.26.4.319


References

[1] O. Yilmaz, “Reservoir Computing Using Cellular Automata.”
arxiv.org/abs/1410.0162.

[2] C.  G.  Langton,  “Computation  at  the  Edge  of  Chaos:  Phase  Transitions
and  Emergent  Computation,”  Physica  D:  Nonlinear  Phenomena,
42(1–3), 1990 pp. 12–37. doi:10.1016/0167-2789(90)90064-V.

[3] F. Triefenbach, A. Jalalvand, B. Schrauwen and J.-P. Martens, Phoneme
Recognition  with  Large  Hierarchical  Reservoirs,  Ghent  University  Std.,
2010.  (Oct  16,  2017)  papers.nips.cc/paper/4056-phoneme-recognition-
with-large-hierarchical-reservoirs.pdf.

[4] H.  Jaeger,  A  Tutorial  on  Training  Recurrent  Neural  Networks,  Cover-
ing BPPT, RTRL, EKF and the “Echo State Network” Approach, GMD
Report  159,  Germany:  German  National  Research  Center  for  Informa-
tion Technology, 2002. (Oct 16, 2017)
minds.jacobs-university.de/sites/default/files/uploads/papers/
ESNTutorialRev.pdf.

[5] P.  J.  Werbos,  “Backpropagation  through  Time:  What  It  Does  and  How
to  Do  It,”  Proceedings  of  the  IEEE,  78(10),  1990  pp.  1550–1560.
doi:10.1109/5.58337.

[6] H. Jaeger, The “Echo State” Approach to Analysing and Training Recur-
rent  Neural  Networks—with  an  Erratum  Note,  GMD  Report  148,
Bonn,  Germany:  German  National  Research  Center  for  Information
Technology, 2001. (Oct 17, 2017)
minds.jacobs-university.de/sites/default/files/uploads/papers/
EchoStatesTechRep.pdf.

[7] W.  Maass,  T.  Natschläger  and  H.  Markram,  “Real-Time  Computing
without  Stable  States:  A  New  Framework  for  Neural  Computa-
tion  Based  on  Perturbations,”  Neural  Computation,  14(11),  2002
pp. 2531–2560. doi:10.1162/089976602760407955.

[8] D. Nikolic

, S. Haeusler, W. Singer and W. Maass, “Temporal Dynamics

of  Information  Content  Carried  by  Neurons  in  the  Primary  Visual  Cor-
tex,”  in  Proceedings  of  the  19th  International  Conference  on  Neural
Information Processing Systems (NIPS’06), Cambridge, MA: MIT Press,
2006 pp. 1041–1048. dl.acm.org/citation.cfm?id=2976456.2976587.

[9] C. Fernando and S. Sojakka, “Pattern Recognition in a Bucket,” in Pro-
ceedings  of  Advances  in  Artificial  Life  (ECAL  2003),  Dortmund,  Ger-
many  (W.  Banzhaf,  J.  Ziegler,  T.  Christaller,  P.  Dittrich  and  J.  T.  Kim,
eds.), Berlin, Heidelberg: Springer, 2003 pp. 588–597.
doi:10.1007/978-3-540-39432-7_63.

[10] X. Dai, “Genetic Regulatory Systems Modeled by Recurrent Neural Net-
work,”  in  Proceedings,  Part  II,  Advances  in  Neural  Networks:  Interna-
tional  Symposium  on  Neural  Networks  (ISNN  2004)  Dalian,  China.
Berlin, Heidelberg: Springer, 2004 pp. 519–524.
doi:10.1007/978-3-540-28648-6_ 83.

336 S. Nichele and A. Molund

Complex Systems, 26 © 2017

https://arxiv.org/abs/1410.0162
https://doi.org/10.1016/0167-2789(90)90064-V
http://papers.nips.cc/paper/4056-phoneme-recognition-with-large-hierarchical-reservoirs.pdf
http://papers.nips.cc/paper/4056-phoneme-recognition-with-large-hierarchical-reservoirs.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf
https://dx.doi.org/10.1109/5.58337
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
https://dx.doi.org/10.1162/089976602760407955
http://dl.acm.org/citation.cfm?id=2976456.2976587
https://dx.doi.org/10.1007/978-3-540-39432-7_63
https://dx.doi.org/10.1007/978-3-540-28648-6_83


[11] B.  Jones,  D.  Stekel,  J.  Rowe  and  C.  Fernando,  “Is  There  a  Liquid  State
Machine  in  the  Bacterium  Escherichia  coli?,”  in  Proceedings  of  the
IEEE  Symposium  on  Artificial  Life  2007  (ALIFE’07),  Honolulu,  HI,
IEEE, 2007 pp. 187–191. doi:10.1109/ALIFE.2007.367795.

[12] M. Dale, J. F. Miller and S. Stepney, “Reservoir Computing as a Model
for  in-Materio  Computing,”  Advances  in  Unconventional  Computing:
Volume  1:  Theory  (A.  Adamatzky,  ed.),  Cham,  Switzerland:  Springer
International Publishing, 2017 pp. 533–571.
doi:10.1007/978-3-319-33924-5_22.

[13] M.  Dale,  J.  F.  Miller,  S.  Stepney  and  M.  A.  Trefzer,  “Evolving  Carbon
Nanotube  Reservoir  Computers,”  in  Proceedings  of  International  Con-
ference  on  Unconventional  Computation  and  Natural  Computation
(UCNC  2016),  Manchester,  UK;  Cham,  Switzerland:  Springer  Interna-
tional Publishing, 2016 pp. 49–61.
doi:10.1007/978-3-319-41312-9_5.

[14] M. Dale, S. Stepney, J. F. Miller and M. Trefzer, “Reservoir Computing
in Materio: An Evaluation of Configuration through Evolution,” in Pro-
ceedings of the 2016 IEEE Symposium Series on Computational Intelli-
gence (SSCI), Athens, Greece, IEEE, 2016.
doi:10.1109/SSCI.2016.7850170.

[15] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelter-
man and S. Massar, “Optoelectronic Reservoir Computing.”
arxiv.org/abs/1111.7219.

[16] L.  Larger,  M.  C.  Soriano,  D.  Brunner,  L.  Appeltant,  J.  M.  Gutiérrez,
L.  Pesquera,  C.  R.  Mirasso  and  I.  Fischer,  “Photonic  Information  Pro-
cessing  beyond  Turing:  An  Optoelectronic  Implementation  of  Reservoir
Computing,”  Optics  Express,  20(3),  2012  pp.  3241–3249.
doi:10.1364/OE.20.003241.

[17] A.  Jalalvand,  G.  Van  Wallendael,  and  R.  Van  De  Walle,  “Real-Time
Reservoir  Computing  Network-Based  Systems  for  Detection  Tasks  on
Visual  Contents,”  in  2015  7th  International  Conference  on  Computa-
tional  Intelligence,  Communication  Systems  and  Networks  (CICSyN),
Riga, Latvia, IEEE, 2015 pp. 146–151. doi:10.1109/CICSyN.2015.35.

[18] A. Jalalvand, F. Triefenbach, K. Demuynck, and J.-P. Martens, “Robust
Continuous  Digit  Recognition  Using  Reservoir  Computing,”  Computer
Speech & Language, 30(1), 2015 pp. 135–158.
doi:10.1016/j.csl.2014.09.006.

[19] C.  Gallicchio  and  A.  Micheli,  “Deep  Reservoir  Computing:  A  Critical
Analysis,”  in  Proceedings  of  European  Symposium  on  Artificial  Neural
Networks,  Computational  Intelligence  and  Machine  Learning  (ESANN
2016), Bruges, Belgium, 2016 pp. 497–502.
www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-175.pdf.

[20] J.  Von  Neumann,  Theory  of  Self-Reproducing  Automata  (A.  W.  Burks,
ed.), Urbana, IL: University of Illinois Press, 1966 pp. 3–14. 

Deep Learning with Cellular Automaton-Based Reservoir Computing 337

https://doi.org/10.25088/ComplexSystems.26.4.319

https://dx.doi.org/10.1109/ALIFE.2007.367795
https://dx.doi.org/10.1007/978-3-319-33924-5_22
https://dx.doi.org/10.1007/978-3-319-41312-9_5
https://dx.doi.org/10.1109/SSCI.2016.7850170
https://arxiv.org/abs/1111.7219
https://dx.doi.org/10.1364/OE.20.003241
https://dx.doi.org/10.1109/CICSyN.2015.35
https://dx.doi.org/10.1016/j.csl.2014.09.006
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-175.pdf
https://doi.org/10.25088/ComplexSystems.26.4.319


[21] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[22] O.  Yilmaz,  “Connectionist-Symbolic  Machine  Intelligence  Using  Cellu-
lar Automata Based Reservoir-Hyperdimensional Computing.”
arxiv.org/abs/1503.00851. 

[23] E. T. Bye, “Investigation of Elementary Cellular Automata for Reservoir
Computing,” Master’s thesis, NTNU, Norway, 2016.
brage.bibsys.no/xmlui/handle/11250/2415318.

[24] M.  Margem  and  O.  Yilmaz,  “How  Much  Computation  and  Distribut-
edness  Is  Needed  in  Sequence  Learning  Tasks?,”  in  Artificial  General
Intelligence,  9th  International  Conference,  (AGI  2016).  New  York
(B.  Steunebrink,  P.  Wang  and  B.  Goertzel,  eds.),  New  York:  Springer,
2016 pp. 274–283. doi:10.1007/978-3-319-41649-6_ 28.

[25] S.  Nichele  and  M.  S.  Gundersen,  “Reservoir  Computing  Using  Non-
uniform Binary Cellular Automata.” arxiv.org/abs/1702.03812.

[26] D. Kleyko, S. Khan, E. Osipov and S.-P. Yong, “Modality Classification
of  Medical  Images  with  Distributed  Representations  Based  on  Cellular
Automata Reservoir Computing,” in Proceedings of the 2017 14th Inter-
national  Symposium  on  Biomedical  Imaging  (ISBI  2017),  Melbourne,
Australia, 2017, IEEE, 2017. doi:10.1109/ISBI.2017.7950697.

[27] N.  McDonald,  “Reservoir  Computing  and  Extreme  Learning  Machines
Using Pairs of Cellular Automata Rules.” arxiv.org/abs/1703.05807.

[28] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, 9(8), 1997 pp. 1735–1780.
doi:10.1162/neco.1997.9.8.1735.

[29] D.  Snyder,  A.  Goudarzi  and  C.  Teuscher,  “Computational  Capabilities
of  Random  Automata  Networks  for  Reservoir  Computing,”  Physical
Review E, 87(4), 2013 042808. doi:10.1103/PhysRevE.87.042808.

[30] S.  Wolfram,  A  New  Kind  of  Science,  Champaign,  IL:  Wolfram  Media,
Inc., 2002. 

[31] M.  Cook,  “Universality  in  Elementary  Cellular  Automata,”  Complex
Systems, 15(1), 2004 pp. 1–40.
www.complex-systems.com/pdf/15-1-1.pdf.

[32] I.  Hubara,  M.  Courbariaux,  D.  Soudry,  R.  El-Yaniv  and  Y.  Bengio,
“Binarized  Neural  Networks,”  in  Advances  in  Neural  Information
Processing  Systems  29  (NIPS  2016)  (D.  D.  Lee,  M.  Sugiyama,
U. V. Luxburg, I. Guyon and R. Garnett, eds.), Curran Associates, Inc.,
2016 pp. 4107–4115. 

[33] Y.  Umuroglu,  N.  J.  Fraser,  G.  Gambardella,  M.  Blott,  P.  Leong,
M� �Jahre  and  K.  Vissers,  “FINN:  A  Framework  for  Fast,  Scalable  Bina-
rized Neural Network Inference.” arxiv.org/abs/1612.07119.

[34] Ł. Kaiser and I. Sutskever, “Neural GPUs Learn Algorithms.”
arxiv.org/abs/1511.08228.

338 S. Nichele and A. Molund

Complex Systems, 26 © 2017

https://dx.doi.org/10.1016/0167-2789(84)90245-8
https://arxiv.org/abs/1503.00851
https://brage.bibsys.no/xmlui/handle/11250/2415318
https://dx.doi.org/10.1007/978-3-319-41649-6_28
https://arxiv.org/abs/1702.03812
https://dx.doi.org/10.1109/ISBI.2017.7950697
https://arxiv.org/abs/1703.05807
https://dx.doi.org/10.1162/neco.1997.9.8.1735
https://dx.doi.org/10.1103/PhysRevE.87.042808
http://www.complex-systems.com/pdf/15-1-1.pdf
https://arxiv.org/abs/1612.07119
https://arxiv.org/abs/1511.08228


[35] N.  J.  Fraser,  Y.  Umuroglu,  G.  Gambardella,  M.  Blott,  P.  Leong,
M. �Jahre  and  K.  Vissers,  “Scaling  Binarized  Neural  Networks  on
Reconfigurable  Logic,”  in Proceedings  of  the  8th  Workshop  and  6th
Workshop  on  Parallel  Programming  and  Run-Time  Management
Techniques  for  Many-Core  Architectures  and  Design  Tools  and Archi-
tectures  for  Multicore  Embedded  Computing  Platforms  (PARMA-
DITAM  ’17),  Stockholm,  Sweden,  New  York:  ACM,  2017  pp.  25–30.
doi:10.1145/3029580.3029586.

[36] F.  Pedregosa,  G.  Varoquaux,  A.  Gramfort,  V.  Michel,  B.  Thirion,
O.  Grisel,  M.  Blondel,  et  al.,  “Scikit-learn:  Machine  Learning  in
Python,”  Journal  of  Machine  Learning  Research,  12,  2011
pp. 2825–2830.
www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf.

[37] H.  Jaeger,  “Echo  State  Network,”  Scholarpedia,  2(9),  2007  2330.
doi:10.4249/scholarpedia.2330. 

Deep Learning with Cellular Automaton-Based Reservoir Computing 339

https://doi.org/10.25088/ComplexSystems.26.4.319

https://dx.doi.org/10.1145/3029580.3029586
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://dx.doi.org/10.4249/scholarpedia.2330
https://doi.org/10.25088/ComplexSystems.26.4.319

