
FAMILIES OF LOW DIMENSIONAL DETERMINANTAL SCHEMES.

JAN O. KLEPPE

Abstract. A scheme X ⊂ Pn of codimension c is called standard determinantal if its
homogeneous saturated ideal can be generated by the t × t minors of a homogeneous
t× (t + c− 1) matrix (fij). Given integers a0 ≤ a1 ≤ ... ≤ at+c−2 and b1 ≤ ... ≤ bt, we
denote by Ws(b; a) ⊂ Hilb(Pn) the stratum of standard determinantal schemes where fij

are homogeneous polynomials of degrees aj − bi and Hilb(Pn) is the Hilbert scheme (if
n− c > 0, resp. the postulation Hilbert scheme if n− c = 0).

Focusing mainly on zero and one dimensional determinantal schemes we determine the
codimension of Ws(b; a) in Hilb(Pn) and we show that Hilb(Pn) is generically smooth
along Ws(b; a) under certain conditions. For zero dimensional schemes (only) we find a
counterexample to the conjectured value of dimWs(b; a) appearing in Kleppe and Miró-
Roig [25].

1. Introduction

The goal of this paper is to study maximal families of determinantal schemes. Recall
that a scheme X ⊂ Pn of codimension c is called determinantal if its homogeneous sat-
urated ideal can be generated by the r × r minors of a homogeneous p × q matrix (fij)
with c = (p− r+ 1)(q− r+ 1). If r = min(p, q), then X is called standard determinantal.
X is called good determinantal if it is standard determinantal and a generic complete
intersection.

Let Hilb(Pn) be the Hilbert scheme (resp. postulation Hilbert scheme, i.e. the Hilbert
scheme of constant Hilbert function) parameterizing closed subschemes of Pn of dimension
n− c > 0 (resp. n− c = 0). Given integers a1 ≤ a2 ≤ ... ≤ ap and b1 ≤ ... ≤ bq, we denote
by W (b; a) (resp. Ws(b; a)) the stratum in Hilb(Pn) consisting of good (resp. standard)
determinantal schemes where fij are homogeneous polynomials of degrees aj − bi. Then
Ws(b; a) is irreducible and W (b; a) 6= ∅ if and only if Ws(b; a) 6= ∅ (Corollary 2.1).

In this paper we focus, notably for zero dimensional schemes, on the following problems.

(1) Determine when the closure of W (b; a) is an irreducible component of Hilb(Pn).
(2) Find the codimension of W (b; a) in Hilb(Pn) if its closure is not a component.
(3) Determine when Hilb(Pn) is generically smooth along W (b; a).

This paper generalizes and completes several results of [24] and [25] for schemes of di-
mension 0 or 1. Moreover we announced in [25], Rem. 6.3 that [24], §10 contains inaccurate
results in the zero dimensional case, which we fully correct in this paper (Remark 4.26).

By successively deleting columns of the matrix associated to a determinantal scheme
X, we get a nest (“flag”) of closed subschemes X = Xc ⊂ Xc−1 ⊂ ... ⊂ X2 ⊂ Pn. We
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prove our results inductively by considering the smoothness of the Hilbert flag scheme
of pairs and its natural projections into the Hilbert schemes. Note that, for c = 2, one
knows that the closure W (b; a) is a generically smooth irreducible component of Hilb(Pn)
(i.e. Hilb(Pn) is smooth along some non-empty open subset U of Hilb(Pn) satisfying
U ⊂ W (b; a)), see Theorem 4.10.

In this approach we need to prove that certain (kernels of) Ext1-groups vanish or to
compute its dimensions. If dimX = 1 (resp. 0), then one (resp. 2 or 3) of these Ext1-
groups may be non-zero and its dimension (resp. the sum of its dimensions) is precisely
the codimension of W (b; a) in Hilb(Pn) under certain assumptions, see Theorem 4.19,
Proposition 4.24 and Proposition 4.15 of Section 4. These are main results of this paper,
together with Theorem 4.6 which through Proposition 4.13 and Lemma 4.4 give the tools
we need in the proofs. As a consequence, if the mentioned Ext1-groups vanish and c ≤ 5
or 6, we get that the closure W (b; a) is a generically smooth irreducible component of
Hilb(Pn) and that every deformation of a general X of W (b; a) comes from deforming the
defining matrix (fij) of X. Note that this conclusion holds if dimX ≥ 2 and 3 ≤ c ≤ 4
because the above Ext1-groups vanish by [25] and [24]. If the codimension of W (b; a)
in Hilb(Pn) is positive, there are deformations of X which do not come from deforming
the matrix (fij). In the proofs we use results of [25] and [24] (see Section 3 which also
contains a counterexample to the Conjectures of [25] in the case dimX = 0), as well as the
Eagon-Northcott and Buchsbaum-Rim complexes ([9],[6], [10]). We give many examples,
supported by Macaulay 2 computations [13], to illustrate the results.

As an application we use the results for zero dimensional schemes X = Proj(A) of
this paper, together with the main result of [22] in which artinian Gorenstein rings are
obtained by dividing A with ideals being isomorphic to a fixed twist of the canonical
module of A, to contribute to the classification of Gorenstein quotients of a polynomial
ring of e.g. codimension 4 from the point of view of determining PGor(H), cf. [19], [21].

Some of the results of this paper were lectured at the ”4th World Conference on 21st
Century Mathematics 2009” in Lahore in March 2009. The author thanks the organizers
for their hospitality. Moreover I thank prof. R.M. Miró-Roig at Barcelona for interesting
comments and our discussion on the Conjectures 3.1 and 3.2 and the counterexample 3.3.

Notation: In this paper P := Pn will be the projective n-space over an algebraically
closed field k, R = k[x0, x1, . . . , xn] is a polynomial ring and m = (x0, . . . , xn).

We mainly keep the notations of [25]. If X ⊂ Y are closed subschemes of Pn, we
denote by IX/Y (resp. NX/Y ) the ideal (resp. normal) sheaf of X in Y . Note that by the
codimension, codimYX, of an irreducible X in a not necessarily equidimensional scheme Y
we mean dimOY,x−dimX, where x is a general k-point of X. For any closed subscheme X
of Pn of codimension c, we denote by IX its ideal sheaf, NX its normal sheaf, IX = H0

∗ (IX)
its saturated homogeneous ideal and we let ωX = ExtcOPn (OX ,OPn)(−n − 1). When we
write X = Proj(A) we take A := R/IX and KA = ExtcR(A,R)(−n− 1) for the canonical
module of A or X. We denote the group of morphisms between coherent OX-modules
by HomOX

(F ,G) while HomOX
(F ,G) denotes the sheaf of local morphisms. Moreover

we set hom(F ,G) = dimk Hom(F ,G) and we correspondingly use small letters for the
dimension, as a k-vector space, of similar groups.
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We denote the Hilbert scheme by Hilbp(Pn), p the Hilbert polynomial [14], and (X) ∈
Hilbp(Pn) for the point which corresponds to the subscheme X ⊂ Pn. We denote by
GradAlg(H), or HilbH(Pn), the representing object of the functor which parameterizes flat
families of graded quotients A of R of depthmA ≥ min(1, dimA) and with Hilbert function
H, H(i) = dimAi ([21], [22]), and we call it “the postulation Hilbert scheme” ([23], §1.1)
even though it may be different from the parameter space studied by Gotzmann, Iarrobino
and others ([12], [19]) who study the “same” scheme with the reduced scheme structure
(ours may be non-reduced and is equivalent to the Hilbert scheme of constant postulation
considered in [33] in the curve case. They are both special cases of the multigraded Hilbert
scheme of Haiman and Sturmfels [17]). Again we let (A), or (X) where X = Proj(A),
denote the point of GradAlg(H) which corresponds to A. Note that if depthmA ≥ 1 and

0HomR(IX , H
1
m(A)) = 0, then

(1.1) GradAlg(H) ' Hilbp(Pn) at (X) ,

and hence we have an isomorphism 0Hom(IX , A) ' H0(NX) of their tangent spaces (cf.
[11] for the case depthmA ≥ 2, and [22], (9) for the general case). If (1.1) holds and X
is generically a complete intersection, then 0Ext1

A(IX/I
2
X , A) is an obstruction space of

GradAlg(H) and hence of Hilbp(Pn) at (X) ([22], §1.1). When we simply write Hilb(Pn),
we interpret it as the Hilbert scheme (resp. postulation Hilbert scheme) if n−c > 0 (resp.
n − c = 0). By definition X (resp. A) is unobstructed if Hilbp(Pn) (resp. HilbH(Pn)) is
smooth at (X). Note that we called X H-unobstructed in [24] if A was unobstructed.

We say that X is general in some irreducible subset W ⊂ Hilb(Pn) if (X) belongs to
a sufficiently small open subset U of W such that any (X) in U has all the openness
properties that we want to require.

2. Background

In this section we recall some basic results on standard (resp. good) determinantal
schemes needed in the sequel, see [3], [4], [10] and [34] for more details. Let

(2.1) ϕ : F =
t⊕
i=1

R(bi) −→ G :=
t+c−2⊕
j=0

R(aj)

be a graded morphism of free R-modules and let A = (fij)
j=0,...,t+c−2
i=1,...t , deg fij = aj− bi, be

a t × (t + c − 1) homogeneous matrix which represents the dual ϕ∗ := HomR(ϕ,R). Let
I(A) = It(A) (or It(ϕ)) be the ideal of R generated by the maximal minors of A. In the
following we always suppose

(2.2) c ≥ 2, t ≥ 2, b1 ≤ ... ≤ bt and a0 ≤ a1 ≤ ... ≤ at+c−2.

Recall that a codimension c subscheme X ⊂ Pn is standard determinantal if IX = I(A)
for some homogeneous t × (t + c − 1) matrix A as above. Moreover X ⊂ Pn is a good
determinantal scheme if additionally, A contains a (t − 1) × (t + c − 1) submatrix (al-
lowing a change of basis if necessary) whose ideal of maximal minors defines a scheme
of codimension c + 1. Note that if X is standard determinantal and a generic complete
intersection in Pn, then X is good determinantal, and conversely [27], Thm. 3.4.
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Given integers bi and aj satisfying (2.2) we let W (b; a) (resp. Ws(b; a)) be the stratum
in Hilb(Pn) consisting of good (resp. standard) determinantal schemes as above. Since
we will not require A to be minimal (i.e. fij = 0 when bi = aj) for X = Proj(R/It(A))
to belong to W (b; a) or Ws(b; a), we need to reconsider [25], Cor. 2.6. Indeed looking to
its proof and to [25], Rem. 3.7 and the end of p. 2877 (see the Preliminaries of [26] for
details), we get

Corollary 2.1. The closures of W (b; a) and Ws(b; a) in Hilb(Pn) are equal and irre-
ducible. Moreover

W (b; a) 6= ∅ ⇔ Ws(b; a) 6= ∅ ⇔ ai−1 ≥ bi for all i and ai−1 > bi for some i .

Let A := R/It(A) and M := coker(ϕ∗). Using the generalized Koszul complexes asso-
ciated to a codimension c standard determinantal scheme X, one knows, for A minimal,
that the Eagon-Northcott complex yields the following minimal free resolution

(2.3) 0 −→ ∧t+c−1G∗ ⊗ Sc−1(F )⊗ ∧tF −→ ∧t+c−2G∗ ⊗ Sc−2(F )⊗ ∧tF −→ . . .

−→ ∧tG∗ ⊗ S0(F )⊗ ∧tF −→ R −→ A −→ 0

of A and that the Buchsbaum-Rim complex yields a minimal free resolution of M ;

(2.4) 0 −→ ∧t+c−1G∗ ⊗ Sc−2(F )⊗ ∧tF −→ ∧t+c−2G∗ ⊗ Sc−3(F )⊗ ∧tF −→ . . .

−→ ∧t+1G∗ ⊗ S0(F )⊗ ∧tF −→ G∗ −→ F ∗ −→M −→ 0.

See, for instance [4]; Thm. 2.20 and [10]; Cor. A2.12 and Cor. A2.13. Note that (2.3)
show that any standard determinantal scheme is arithmetically Cohen-Macaulay (ACM).

Let B be the matrix obtained deleting the last column of A and let B be the k-algebra
given by the maximal minors of B. Let Y = Proj(B). The transpose of B induces a map
φ : F = ⊕ti=1R(bi) → G′ := ⊕t+c−3

j=0 R(aj). Let MB be the cokernel of φ∗ = HomR(φ,R),
let MA = M and suppose c > 2. In this situation we recall that there is an exact sequence

(2.5) 0 −→ B −→MB(at+c−2) −→MA(at+c−2) −→ 0

in which B −→MB(at+c−2) is a regular section given by the last column of A. Moreover,

(2.6) 0 −→MB(at+c−2)
∗ := HomB(MB(at+c−2), B) −→ B −→ A −→ 0

is exact by [27] or [24], (3.1), i.e. we may put IX/Y := MB(at+c−2)
∗. Due to (2.4),

M is a maximal Cohen-Macaulay A-module, and so is IX/Y by (2.6). By [10] we have
KA(n+ 1) ' Sc−1MA(`c), and hence KB(n+ 1) ' Sc−2MB(`c−1), where

(2.7) `i :=
t+i−2∑
j=0

aj −
t∑

k=1

bk for 2 ≤ i ≤ c.

Hence by successively deleting columns from the right hand side of A, and taking maximal
minors, one gets a flag of determinantal subschemes

(2.8) (X.) : X = Xc ⊂ Xc−1 ⊂ ... ⊂ X2 ⊂ Pn

where each Xi+1 ⊂ Xi (with ideal sheaf IXi+1/Xi
= Ii) is of codimension 1, Xi ⊂ Pn is of

codimension i and where there exist OXi
-modules Mi fitting into short exact sequences

(2.9) 0→ OXi
(−at+i−1)→Mi →Mi+1 → 0 for 2 ≤ i ≤ c− 1,
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such that Ii(at+i−1) is the OXi
-dual of Mi for 2 ≤ i ≤ c, and M2 is a twist of the

canonical module of X2. In this context we let Di := R/IXi
, IDi

= IXi
and Ii := IDi+1/IDi

.

Remark 2.2. Let α be a positive integer. If X is general in W (b; a) and ai−min(α,t)−bi ≥ 0
for min(α, t) ≤ i ≤ t, then Xj, for all j = 2, · · · , c, is non-singular except for a subset of
codimension at least min{2α− 1, j + 2}, i.e.

(2.10) codimXj
Sing(Xj) ≥ min{2α− 1, j + 2}.

As observed in Rem. 2.7 of [25], this follows from the Theorem of [7] by arguing as in [7],
Example 2.1. See also [38], Prop. 1, [1], Sect. 2 and [35] for a related cases. In particular,
if α ≥ 3, we get that for each i > 0, the closed embeddings Xi ⊂ Pn and Xi+1 ⊂ Xi are
local complete intersections outside some set Zi of codimension at least min(4, i + 1) in
Xi+1 (depthZi

OXi+1
≥ min(4, i+ 1)), cf. next paragraph.

In what follows we always let Z ⊂ X (and similarly for Zi ⊂ Xi) be some closed subset
such that U := X − Z ↪→ Pn (resp. Ui := Xi − Zi ↪→ Pn) is a local complete intersection
(l.c.i.). Using that the 1st Fitting ideal of M is equal to It−1(ϕ), we get that M̃ is locally
free of rank one precisely on X − V (It−1(ϕ)) [3], Lem. 1.4.8. Since the set of non locally
complete intersection points of X ↪→ Pn is exactly V (It−1(ϕ)) by e.g. [39], Lem. 1.8, we
get that U ⊂ X − V (It−1(ϕ)) and that M̃ is locally free on U . Indeed Mi and IXi

/I2
Xi

are locally free on Ui, as well as on Ui−1 ∩Xi. Note that since V (It−1(B)) ⊂ V (It(A)), we
may suppose Zi−1 ⊂ Xi!

Finally notice that there is a close relation between M(at+c−2) and the normal module
NX/Y of the quotient B ' R/IY → A ' R/IX . If we suppose depthI(Z)B ≥ 2 where now
Y − Z ↪→ Pn is an l.c.i., we get by applying HomB(IX/Y ,−) to (2.6), that

(2.11) 0 −→ B −→MB(at+c−2) −→ NX/Y

is exact. Hence we have an injectionMA(at+c−2) ↪→ NX/Y , which in the case depthI(Z)B ≥
3 leads to an isomorphism MA(at+c−2) ' NX/Y . Indeed, this follows from the more general
fact (by letting L = N = IX/Y ) that if L and N are finitely generated B-modules such

that depthI(Z) L ≥ r + 1 and Ñ is locally free on U := Y − Z, then the natural map

(2.12) ExtiB(N,L) −→ H i
∗(U,HomOY

(Ñ , L̃))

is an isomorphism (resp. an injection) for i < r (resp. i = r), and H i
∗(U,HomOY

(Ñ , L̃)) '
H i+1
I(Z)(HomB(N,L)) for i > 0, cf. [15], exp. VI. Note that we interpret I(Z) as m if Z = ∅.

3. The dimension of the determinantal locus

In [25] we conjectured the dimension of W (b; a) in terms of the invariant

(3.1) λc :=
∑
i,j

(
ai − bj + n

n

)
+
∑
i,j

(
bj − ai + n

n

)
−
∑
i,j

(
ai − aj + n

n

)
−
∑
i,j

(
bi − bj + n

n

)
+1.

Here the indices belonging to aj (resp. bi) range over 0 ≤ j ≤ t+ c− 2 (resp. 1 ≤ i ≤ t),(
a
n

)
= 0 if a < n and we always suppose W (b; a) 6= ∅ in the following, cf. Corollary 2.1.
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Conjecture 3.1. Given integers a0 ≤ a1 ≤ ... ≤ at+c−2 and b1 ≤ ... ≤ bt, we set
`i :=

∑t+i−2
j=0 aj −

∑t
k=1 bk and hi−3 := 2at+i−2 − `i + n, for i = 3, 4, ..., c. Assume

ai−min([c/2]+1,t) ≥ bi for min([c/2] + 1, t) ≤ i ≤ t. Then we have

dimW (b; a) = λc +K3 +K4 + ...+Kc , ( dimW (b; a) = λ2 if c = 2 )

where K3 =
(
h0

n

)
and K4 =

∑t+1
j=0

(
h1+aj

n

)
−
∑t

i=1

(
h1+bi
n

)
and in general

Ki+3 =
∑
r+s=i
r,s≥0

∑
0≤i1<...<ir≤t+i
1≤j1≤...≤js≤t

(−1)i−r
(
hi + ai1 + · · ·+ air + bj1 + · · ·+ bjs

n

)
for 0 ≤ i ≤ c− 3.

For the special case where all the entries of A have the same degree, this means:

Conjecture 3.2. Let W (0; d) be the locus of good determinantal schemes in Pn of codi-
mension c given by the maximal minors of a t×(t+c−1) matrix with entries homogeneous
forms of degree d. Then,

dimW (0; d) = t(t+ c− 1)

(
d+ n

n

)
− t2 − (t+ c− 1)2 + 1.

In [25] we proved that the right hand side in the formula for dimW (b; a) in the Con-
jectures is always an upper bound for dimW (b; a) ([25], Thm. 3.5), and moreover, that
the Conjectures hold in the range

(3.2) 2 ≤ c ≤ 5 and n− c > 0 ( supposing chark = 0 if c = 5 ) ,

as well as for large classes in the range c ≥ 2 (without assuming n > c), cf. [25], §4.

Example 3.3 (Counterexample to the Conjectures in the range n = c ≥ 3).
Let A be a general 2× (c+1) matrix of linear entries. The vanishing of all 2×2 minors

defines a reduced scheme X of c+ 1 different points in Pc. The conjectured dimension is
c(c+ 1) + c− 2 while the dimension of the postulation Hilbert scheme, dim(X) HilbH(Pc)
is at most c(c+ 1). Hence

dimW (0, 0; 1, 1, ..., 1) ≤ c(c+ 1) .

This contradicts both conjectures
for every c ≥ 3.

We have, however, looked at many examples in the range a0 > bt where we have
used Macaulay 2 to compute necessary invariants (cf. (3.3) below), without finding more
counterexamples. The counterexample we have is only for zero dimensional schemes.
Mainly because of this example the Conjecture is slightly changed (for zero-schemes) in
[26], Conj. 4.1, excluding Example 3.3 from the new conjecture.

Now we recall a few statements from the proof of (3.2) and a variation which we will
need in the next section. In the proof we used induction on c by successively deleting
columns of the largest possible degree. Hence we computed the dimension of W (b; a),
a = a0, a1, ..., at+c−2 in terms of dimension of W (b; a′), where a′ = a0, a1, ..., at+c−3. As in
§2, we let X = Proj(A) belong to W (b; a) and we let Y = Proj(B), (Y ) ∈ W (b; a′), be
obtained by deleting the last column of A. We have
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Proposition 3.4. Let c ≥ 3, let (X) ∈ W (b; a) and suppose dimW (b; a′) ≥ λc−1 +K3 +
K4 + ...+Kc−1 and depthI(Z)B ≥ 2 for a general Y = Proj(B) ∈ W (b; a′). If

(3.3) 0homR(IY , IX/Y ) ≤
t+c−3∑
j=0

(
aj − at+c−2 + n

n

)
,

then dimW (b; a) = λc +K3 +K4 + ...+Kc. We also get equality in (3.3), as well as

dimW (b; a) = dimW (b; a′) + dimkMB(at+c−2)0 − 1− 0homR(IY , IX/Y ).

Proof. Indeed the proof of Thm. 4.5 of [25] contains the ideas we need, but since the
assumptions of Thm. 4.5 are different, we include a proof. First we remark that we have

λc +K3 +K4 + ...+Kc ≥ dimW (b; a)

by [25], Prop. 3.13 which combined with the assumption on dimW (b; a′) yields

λc − λc−1 −Kc ≥ dimW (b; a)− dimW (b; a′).

Next by [25], Prop. 4.1 we have the inequality

dimW (b; a)− dimW (b; a′) ≥ dimkMB(at+c−2)0 − 1− 0homR(IY , IX/Y ).

Since Kc = 0hom(cokerϕ,R(at+c−2)) by definition (see [25], Prop. 3.12 and (3.14)) we
can use (2.4) and (2.5) to get

(3.4) dimMB(at+c−2)0 − 1 = dimMA(at+c−2)0 =

dimF ∗(at+c−2)0 − dimG∗(at+c−2)0 + 0hom(cokerϕ,R(at+c−2)) =

=
t∑
i=1

(
at+c−2 − bi + n

n

)
−

t+c−2∑
j=0

(
at+c−2 − aj + n

n

)
+Kc.

Now looking at (3.1) and noticing that λc−1 is defined by the analogous expression where
aj (resp bi) ranges over 0 ≤ j ≤ t+c−3 (resp. 1 ≤ i ≤ t), it follows after a straightforward
computation that

λc − λc−1 =
t∑
i=1

(
at+c−2 − bi + n

n

)
−
t+c−2∑
j=0

(
at+c−2 − aj + n

n

)
−
t+c−3∑
j=0

(
aj − at+c−2 + n

n

)
.

Combining with (3.3), we get

dimMB(at+c−2)0 − 1− 0homR(IY , IX/Y ) ≥ λc − λc−1 +Kc .

Hence all inequalities of displayed formulas in this proof are equalities and we are done. �

Theorem 3.5. The Conjectures (and if c > 2, the final dimension formula of Proposi-
tion 3.4) hold provided

2 ≤ c ≤ 5 and n− c > 0 ( supposing chark = 0 if c = 5 ) .

Indeed this is mainly [25], Thm. 4.5, Cor. 4.7, Cor. 4.10, Cor. 4.14 and [11] (c = 2) and
[24] (c = 3). Moreover since the proofs of [25] also show (3.3), we get the final dimension
formula of Proposition 3.4. Moreover we have (valid also for n = c and chark 6= 0):

Remark 3.6. Assume a0 > bt. Then (3.3) for X general, and Conjecture 3.1 hold
provided 3 ≤ c ≤ 5 (resp. c > 5) and at+c−2 > at−2 (resp. at+3 > at−2) by [26], Thm. 3.2.
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4. the codimension of the determinantal locus

In this section we consider the problem of when the closure of W (b; a) is an irreducible
component of Hilb(Pn). If it is not a component, we determine its codimension in Hilb(Pn)
under certain assumptions. We also examine when Hilb(Pn) is generically smooth along
W (b; a). Moreover we have chosen to introduce the notion “every deformation of X

comes from deforming A” because it gives the main reason for why W (b; a) is not always
an irreducible component of Hilb(Pn).

In the case the determinantal schemes are of dimension zero or one, then W (b; a) is not
necessarily an irreducible component of Hilb(Pn), as the following example shows.

Example 4.1 ( W (b; a) not an irreducible component in the range 0 ≤ n− c ≤ 1, c ≥ 3).
Let B be a general 2 × c matrix of linear entries and let A = [B, v] where the entries

of the column v are general polynomials of the same degree 2. The vanishing all 2 × 2
minors of A defines a determinantal scheme X of codimension c in Pn.

(i) Let n = c. Then X = Proj(A) is a reduced scheme of 2c+1 points in Pc and with h-
vector (dimAi)

∞
i=0 = (1, c+1, 2c+1, 2c+1, ...). It follows that vH

1
m(A) ' H1(IX(v)) = 0

for v ≥ 2 and we get 0HomR(IX , H
1
m(A)) = 0. By (1.1) the postulation Hilbert scheme

is isomorphic to the usual Hilbert scheme at (X), whose dimension is c(2c+ 1). Moreover

since the dimension of W (b; a) is at most the conjectured value c2 + 4c− 2, and since

c2 + 4c− 2 < c(2c+ 1) for every c ≥ 3,

it follows that W (0, 0; 1, 1, ..., 1, 2) is not an irreducible component of HilbH(Pc).
(ii) Let n = c + 1. Then X is a smooth connected curve in Pc+1 of degree d = 2c + 1

and genus g = c. Since dimW (b; a) is at most the conjectured value, which is c2 + 7c+ 2,
and since dim(X) Hilbp(Pc+1) is at least (n+ 1)d+ (n− 3)(1− g) = c2 + 8c, it follows that

W (0, 0; 1, 1, ..., 1, 2) is not an irreducible component of Hilbp(Pc+1) for every c ≥ 3.

In what follows we briefly say “T a local ring” (resp. “T artinian”) for a local k-algebra
(T,mT ) essentially of finite type over k = T/mT (resp. such that mr

T = 0 for some integer
r). Moreover we say “T → S is a small artinian surjection” provided there is a morphism
(T,mT )→ (S,mS) of local artinian k-algebras whose kernel a satisfies a ·mT = 0.

Let A = R/It(A). If T is a local ring, we denote by AT = (fij,T ) a matrix of homoge-
neous polynomials belonging to the graded polynomial algebra RT := R ⊗k T , satisfying
fij,T ⊗T k = fij and deg fij,T = aj − bi for all i, j. Note that all elements from T are
considered to be of degree zero.

Once having such a matrix AT , we get an induced morphism

(4.1) ϕT : FT := ⊕ti=1RT (bi)→ GT := ⊕t+c−2
j=0 RT (aj)

and we put MT = cokerϕ∗T .

Lemma 4.2. If X = Proj(A), A = R/It(A), is a standard determinantal scheme, then
AT := RT/It(AT ) and MT are (flat) graded deformations of A and M respectively for
every choice of AT as above. In particular XT = Proj(AT ) ⊂ PnT := Proj(RT ) is a
deformation of X ⊂ Pn to T with constant Hilbert function.
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Proof. Consulting (2.3) and (2.4) we see that the Eagon-Northcott and Buchsbaum-Rim
complexes are functorial in the sense that, over RT , all free modules and all morphisms in
these complexes are induced by ϕT , i.e. they are determined byAT . Since these complexes
become free resolutions of A and M respectively when we tensor with k over T , it follows
that AT and MT are flat over T and satisfy AT ⊗T k = A and MT ⊗T k = M . �

Definition 4.3. Let X = Proj(A), A = R/It(A), be a standard determinantal scheme.
We say “every deformation of X comes from deforming A” if for every local ring T and
every graded deformation RT → AT of R → A to T , then AT is of the form AT =
RT/It(AT ) for some AT as above. Note that by (1.1) we can in this definition replace
“graded deformations of R→ A” by “deformations of X ↪→ Pn” provided dimX ≥ 1.

Lemma 4.4. Let X = Proj(A), A = R/It(A), be a standard determinantal scheme,
(X) ∈ W (b; a). If every deformation of X comes from deforming A, then A (and hence X

if dimX ≥ 1) is unobstructed. Moreover W (b; a) is an irreducible component of Hilb(Pn).

Proof. Let T → S be a small artinian surjection and let AS be a deformation of A to S.
By assumption, AS = RS/It(AS) for some matrix AS. Since T → S is surjective, we can
lift each fij,S to a polynomial fij,T with coefficients in T such that fij,T ⊗T S = fij,S. By
Lemma 4.2 it follows that AT := RT/It(AT ) is flat over T . Since AT ⊗T S = AS we get
the unobstructedness of A, as well as the unobstructedness of X in the case dimX ≥ 1
by (1.1).

Finally let T be the local ring of Hilb(Pn) at (X) and let AT , or Proj(AT ) if dimX ≥ 1,
be the pullback of the universal object of Hilb(Pn) to Spec(T ). Then there is a matrix
AT = (fij,T ) such that AT = RT/It(AT ) by assumption. We can extend fij,T to poly-
nomials fij,D with coefficients in D where Spec(D) ⊂ Hilb(Pn) is an open neighborhood
of (X) for which the Eagon-Northcott complex associated to the matrix AD = (fij,D) is
exact at any (X ′) ∈ Spec(D) (cf. [32], Lem. 6.3 or [11], proof of Thm. 1; in our case
the existence of Spec(D) is quite easy since the Eagon-Northcott complex of the homo-
geneous coordinate ring of a standard determinantal scheme is always exact). It follows
that Spec(D) ⊂ W (b; a), and since Spec(D) is open in Hilb(Pn) we are done. �

Remark 4.5. The arguments of these lemmas, which rely on the fact that we get T -
flat schemes by just parameterizing the polynomials of A over a local ring T , is mostly
known, see e.g. Laksov’s papers [29], [28] where he looks to flat families of determinantal
schemes and their singular loci for arbitrary determinantal schemes. Indeed we may
expect from Laksov’s papers (or prove by other arguments, as we remember Laksov did
in a talk at the university of Oslo in the 70’s) that families of arbitrary determinantal
schemes obtained by parameterizing polynomials as above are T -flat; thus he mainly
shows the unobstructedness part of Lemma 4.4. The unobstructedness may also easily
be deduced from of Schaps’ paper [36], Remark to Prop. 1. Since we in this paper only
look at determinantal schemes defined through maximal minors, our proof only uses the
exactness of the Eagon-Northcott complex which somehow contains the argument about
generators and relations indicated in [36] as a main ingredient. Surprisingly enough the
corresponding unobstructedness result of the R-module M (of maximal grade [5]) seems
less known. Indeed one may prove the unobstructedness ofM as we did for A in Lemma 4.4
because we from the Buchsbaum-Rim complex may see that every deformation of M to
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T comes from deforming A. We have learned, by distributing a preliminary version of
this paper to specialists in deformations of modules, that the unobstructedness of M was
proved in Runar Ile’s PhD thesis, cf. [20], ch. 6 (Lem. 6.1.2 or Cor. 6.1.4).

The following result is a key result to our work in this section. Here the morphisms of
the Ext1-groups are induced by the inclusion IX/Y ↪→ B, e.g.

τX/Y : 0Ext1
B(IY /I

2
Y , IX/Y )→ 0Ext1

B(IY /I
2
Y , B).

Theorem 4.6. Let X = Proj(A) ⊂ Y = Proj(B) be good determinantal schemes defined
by the vanishing of the maximal minors of A and B respectively where B is obtained by
deleting the last column of A. Let Z ⊂ Y be a closed subset such that U := Y − Z ↪→ Pn
is a local complete intersection and suppose

(1) depthI(Z)B ≥ 3, or

depthI(Z)B ≥ 2 and ρ1 : 0Ext1
B(IX/Y , IX/Y )→ 0Ext1

B(IX/Y , B) is injective,

(2) τX/Y : 0Ext1
B(IY /I

2
Y , IX/Y )→ 0Ext1

B(IY /I
2
Y , B) is injective, and

(3) every deformation of Y comes from deforming B.

Then every deformation of X comes from deforming A. Moreover

dim(X) Hilb(Pn) = dim(Y ) Hilb(Pn) + dimMB(at+c−2)0 − 1− 0homR(IY , IX/Y ).

Remark 4.7. If depthI(Z)B ≥ 3, then depthI(Z) IX/Y ≥ 3 and it follows from (2.12) that

0Ext1
B(IX/Y , IX/Y ) = 0Ext1

B(IX/Y , B) = 0.

Remark 4.8. Let GradAlg(H2, H1) be the “postulation Hilbert-flag scheme”, i.e. the
representing object of the functor deforming surjections (B → A) of graded quotients
of R of positive depth at m, or equivalently flags (X ⊂ Y ) of closed subschemes of Pn
with Hilbert functions HY = HB = H2 and HX = HA = H1. In [22], Prop. 4 (iii), we
use theorems of Laudal on deformations of a category ([30]) to show that the forgetful
morphism

GradAlg(H2, H1) −→ GradAlg(H1)

induced by (X ⊂ Y ) −→ (X), is smooth and has fiber dimension 0homR(IY , IX/Y ) at (X ⊂
Y ) provided B is unobstructed and (2) of Theorem 4.6 holds. By (1.1) this conclusion
holds for the corresponding forgetful map from the Hilbert-flag scheme into the usual
Hilbert scheme provided X and Y are ACM and dimX ≥ 1.

Proof. Let RT → AT be any graded deformation of R → A to a local ring T . By the
smoothness of the forgetful map of Remark 4.8, there is a graded deformation RT → BT

of R → B and a morphism BT → AT . By the assumption (3) there exists a matrix BT
such that BT = RT/It(BT ). By Lemma 4.2 BT also defines a deformation MBT

of MB.
We will prove that there is a matrix AT such that AT = RT/It(AT ) and such that

we get BT by deleting the last column of AT . Looking at (2.5) and the text before and
after (2.5), we see that if we can find a section BT → MBT

(at+c−2) which reduces to
B →MB(at+c−2) via (−)⊗T k, we can use this section to define a column vT which allows
us to put AT := [BT , vT ]. Now since we have a deformation BT → AT of B → A, it
follows that IXT /YT

:= ker(BT → AT ) is a deformation of IX/Y ' MB(at+c−2)
∗. If we

sheafify and restrict to U we get an isomorphism ĨX/Y |U ' M̃B(at+c−2)
∗|U of invertible
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sheaves. Hence the flat sheaves (ĨXT /YT
)∗ and M̃BT

(at+c−2) are also isomorphic on the set

UT which corresponds to U . Taking global sections, H0
∗ (UT ,−), of B̃T → (ĨXT /YT

)∗, we
get a map which fits into a commutative diagram

BT

��

// H0
∗ (UT , M̃BT

(at+c−2))

��

' MBT
(at+c−2)

B // H0
∗ (U, M̃B(at+c−2)) ' MB(at+c−2)

where the lower isomorphism follows from the fact that MB is maximally CM, i.e. from

depthI(Z)MB = depthI(Z)B ≥ 2 .

Note that since an MB-regular sequence lifts to an MBT
-regular sequence, we also have

sufficient depth to get the upper isomorphism. Hence we get a section BT →MBT
(at+c−2)

and an induced matrix AT , as required.
Let A′ = RT/It(AT ). We claim that A′ = AT , i.e. that I ′T = IXT /YT

where I ′T =
ker(BT → A′). Let Tr := T/mr

T , BTr := BT ⊗T Tr,

IXTr/YTr
:= ker(BTr → AT ⊗T Tr) , I ′Tr

= ker(BTr → A′ ⊗T Tr)

and S := Tr−1. To prove the claim we first show that I ′Tr
= IXTr/YTr

for every integer
r > 0. To see that this follows from the assumption (1), we suppose by induction that
I ′S = IXS/YS

as ideals of BS. Then I ′Tr
and IXTr/YTr

are two deformations of the same
ideal IXS/YS

↪→ BS to Tr and their difference, as graded BTr modules, corresponds to an
element,

diff ∈ 0Ext1
B(IX/Y , IX/Y )⊗k (mr−1

T · Tr)

which via ρ1 maps to a difference, o1 − o2 ∈ 0Ext1
B(IX/Y , B) ⊗k (mr−1

T · Tr) where oi are
the following obstructions. One of them, say o1 (resp. the other o2) is the obstruction of
deforming the graded morphism I ′S ↪→ BS (i.e. the ideal) to a graded morphism between
I ′T and BT (resp. between IXTr/YTr

and BTr), cf. [22], Rem. 3 for a similar situation. Since
I ′T and IXTr/YTr

are ideals in BTr , such graded morphisms exist. Hence oi = 0 for i = 1, 2,
whence diff = 0 by the injectivity of ρ1, and we conclude that I ′Tr

= IXTr/YTr
.

To get the claim let A′′ := BT/(I
′
T + IXT /YT

). It suffices to show that the natural maps
A′ → A′′ and AT → A′′ are isomorphisms. Note that A′′ ⊗T k ' A′′ ⊗RT

R ' A and that
we have similar isomorphisms for A′ and AT . Notice also that every maximal ideal of RT

lies over mT . Hence we get both isomorphisms by the lemma of Nakayama, Azumaya and
Krull ([31], Lem. 1.M), i.e. by “Nakayama’s lemma” if we can show that A′′ is T -flat.
But by the proof in the paragraph above the induced maps A′ ⊗T Tr → A′′ ⊗T Tr are
isomorphism for every r > 0. It follows that A′′ ⊗T Tr is Tr-flat since A′ ⊗T Tr is! Since
A′′ is idealwise separated for mT , we get that A′′ is T -flat by Bourbaki’s local criterion of
flatness (see Thm. 20.C of [31]).
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It remains to prove the dimension formula. Recall that there is a “standard” diagram
(whose square is cartesian)
(4.2)

0
↓

0HomR(IY , IX/Y )
↓

A1
Tpr1−→ 0HomR(IY , B)

↓ � ↓
0Hom(IX/Y , A) ↪→ 0Hom(IX , A) −→ 0HomR(IY , A)

δ−→ 0Ext1
B(IX/Y , A)

↓
0

which defines the tangent space A1 of the Hilbert flag scheme GradAlg(H2, H1) at (B →
A) and where the morphisms Tpr1 and δ are natural maps (cf. [22], (10) and note that the
algebra cohomology group 0H

2(B,A,A) ' 0Ext1
B(IX/Y , A) (cf. [22], §1.1)). Under the

assumption (2) the vertical sequence is exact. We claim that δ = 0. To see it, it suffices
to prove that Tpr1 is surjective. The cartesian diagram is, however, well understood in
terms of the deformation theory of the Hilbert flag scheme. Indeed if we take an arbitrary
deformation BS of B to the dual numbers S := k[t]/(t2), then Tpr1 is surjective provided
we can prove that there is a deformation (BS → AS) of (B → A) to S. The latter follows
from the first part of the proof, or simply, from the assumption (3) because we by (3)
get BS = RS/It(BS) for some matrix BS and we can take AS = [BS, vS] where vS is any
lifting of the last column of A to S. Letting AS := RS/It(AS) we get the claim.

Since we have dim(X) Hilb(Pn) = 0hom(IX , A) and dim(Y ) Hilb(Pn) = 0hom(IY , B) by
Lemma 4.4, we get the dimension formula from the big diagram in which δ = 0 provided
we can prove that 0hom(IX/Y , A) = dimMB(at+c−2)0−1. To see it we apply Hom(IX/Y ,−)
onto 0 → IX/Y → B → A → 0. If we use that Hom(IX/Y , B) ' MB(at+c−2), see (2.11),
we get the exact sequence

(4.3) 0→ B →MB(at+c−2)→ Hom(IX/Y , A)→ Ext1
B(IX/Y , IX/Y )→ Ext1

B(IX/Y , B),

and we conclude by the assumption (1). �

Remark 4.9. Suppose τX/Y is not injective. Then the vertical sequence in the diagram
(4.2) is not exact, and δ may be non-zero. It is, however, easy to enlarge the diagram
(4.2) to a diagram of exact horizontal and vertical sequences by including ker τX/Y and
im δ in the diagram. From this enlarged diagram it follows that

0hom(IX , A) = 0hom(IX/Y , A) + h0(NY )− 0hom(IY , IX/Y ) + dim ker τX/Y − dim im δ

since we have Hom(IY , B) ' H0
∗ (Y,NY ) by (2.12) and depthmB ≥ 2. The displayed

formula also holds if τX/Y is injective.

Theorem 4.10. Suppose either c = 2 and n ≥ 2, or 3 ≤ c ≤ 4, n − c ≥ 2 and
ai−min(3,t) ≥ bi for min(3, t) ≤ i ≤ t. If W (b; a) 6= ∅, then W (b; a) is a generically smooth
irreducible component of Hilb(Pn) of dimension

λc +K3 + ...+Kc .
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Moreover every deformation of a general (X) ∈ W (b; a) comes from deforming A.

For c > 2 this result is really [25], Thm. 5.1 and Cor. 5.3 except for the final statement.
Since, however, the proof of Theorem 4.10 is to apply Theorem 4.6 inductively to the
flag (2.8), starting with the codimension 2 case where we by Lemma 4.11 know that the
final statement holds, the proof of [25] extends to get Theorem 4.10 for c > 2. If c = 2
we get the other conclusions (and even more) from [11] for n > 2 and from works of
Gotzmann and others for n = 2 as explained in [23], Rem. 22 (i), or see [25], Rem. 4.6
for a direct approach to dimW (b; a) = λ2. (We also get all conclusions for c = 2 by
combining Lemma 4.11 and Lemma 4.4.)

Lemma 4.11. If X = Proj(A), A = R/It(A), is a standard determinantal scheme of
codimension 2 in Pn and n ≥ 2, then every deformation of X comes from deforming A.

Proof. Let A = (fij) be a homogeneous t× (t+ 1) matrix which represents the morphism
ϕ∗ of (2.1) and let RT → AT be a graded deformation of R→ A to a local ring T . To see
that AT is of the form AT = RT/It(AT ) for some matrix AT reducing to A via (−)⊗T k,
we consider the canonical module KA = Ext2

R(A,R)(−n − 1). Note that since c = 2 we

have KA(n+ 1− `1) = M , where G∗
ϕ∗−→ F ∗ → M → 0 is a part of the Buchsbaum-Rim

complex, cf. (2.4) and (2.7). Now we observe that KAT
:= Ext2

RT
(AT , RT )(−n − 1) is a

(flat) graded deformation of KA to T because ExtiR(A,R) = 0 for i 6= 2 ([8], Proposition
(A1)). It follows that KAT

(n+ 1− `1) = coker(ϕ∗T ) where ϕ∗T corresponds to some matrix
AT := (fij,T ), as in (4.1).

Let A′ := RT/It(AT ). It suffices to show that A′ and AT are isomorphic as RT quotients.
Looking to the Eagon-Northcott complex associated to A′ over RT and dualizing, i.e.
applying HomRT

(−, RT ) to it, we get back the part of the Buchsbaum-Rim complex where
ϕ∗T appeared (up to twist). It follows that KAT

' KA′ where KA′ := Ext2
RT

(A′, RT )(−n−
1). Note that the Buchsbaum-Rim complex above is a free resolution of KA′(n + 1− `1)
over RT since it is T -flat and reduces to a R-free resolution via a (−) ⊗T k. Applying
HomRT

(−, RT ), we get A′ ' Ext2
RT

(KA′ , RT )(−n−1). Similarly by dualizing twice an RT -

free resolution of AT we show that AT ' Ext2
RT

(KAT
, RT )(−n− 1) and we are done. �

Remark 4.12. If we apply Theorem 4.6 successively to the flag (2.8) it is straightforward
to generalize Thm. 5.1 of [25] to the zero dimensional case, i.e. we may replace the
condition n ≥ 1 of [25], Thm. 5.1 by n ≥ 0 provided we in (i) of Thm. 5.1 (and
correspondingly in (ii) of Thm. 5.1) replace the depth ≥ 3 condition by the condition (1)
of Theorem 4.6.

There is a variation to Theorem 4.6 that we will use in the case n = c (dimX = 0) in
which we mainly replace the injectivity assumption in (1) for the Ext1-groups with the
injectivity assumption for the corresponding Ext2-groups. More precisely let

(4.4) ρi : 0ExtiB(IX/Y , IX/Y )→ 0ExtiB(IX/Y , B).

be the map induced by IX/Y ↪→ B. Then we have

Proposition 4.13. Let X = Proj(A) ⊂ Y = Proj(B) be good determinantal schemes
defined by A and B where B is obtained by deleting the last column of A. Let Z ⊂ Y be
a closed subset such that U := Y − Z ↪→ Pn is a local complete intersection and suppose
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(1) 0Ext1
B(IX/Y , A) = 0 (i.e., ρ1 surjective and ρ2 injective) and depthI(Z)B = 2,

(2) τX/Y : 0Ext1
B(IY /I

2
Y , IX/Y ) ↪→ 0Ext1

B(IY /I
2
Y , B) is injective, and

(3) Y is unobstructed (this is weaker than (3) in Theorem 4.6).

Then A is unobstructed and the postulation Hilbert scheme HilbHA(Pn) satisfies

dim(X) HilbHA(Pn) = dim(Y ) HilbpY (Pn)+dimMB(at+c−2)0−1− 0homR(IY , IX/Y )+dim ker ρ1.

Proof. Let T → S be a small artinian surjection with kernel a, and let RS → AS be
any graded deformation of R → A to S. By Remark 4.8, there is a graded deformation
RS → BS of R→ B and a morphism BS → AS. By assumption (3) and (1.1) there exists
a deformation RT → BT of RS → BS to T . It is well known that the algebra cohomology
group 0H

2(B,A,A) ⊗k a contains the obstruction of deforming BS → AS further to BT

and that there is an injection 0H
2(B,A,A) ↪→ 0Ext1

B(IX/Y , A) ([16], exp. VI, [22], §1.1).
The rightmost group vanishes by (1), and it follows that A is unobstructed.

Finally we get the dimension formula from the diagram (4.2). Indeed the arguments
are almost exactly the same as in the proof of Theorem 4.6 with the variation that (4.3)
now implies

0hom(IX/Y , A) = dimMB(at+c−2)0 − 1 + dim ker ρ1.

�

Remark 4.14. We say that “A is unobstructed along any graded deformation of B”
(call this phrase (*)) if for every small artinian surjection T → S and for every graded
deformation BS → AS of B → A to S, there exists, for every graded deformation BT of
BS to T , a graded deformation BT → AT reducing to BS → AS via (−)⊗T S. It is clear
from the proof above that 0Ext1

B(IX/Y , A) = 0 implies (*) and moreover that we can

generalize Proposition 4.13 by replacing the assumption 0Ext1
B(IX/Y , A) = 0 by (*).

Now we come to the main results of this paper which are direct consequences of The-
orem 4.6 and Proposition 4.13. We start with determinantal curves whose result we will
need in the zero dimensional case. Note that the result below is known ([24], Cor. 10.15
and Rem. 10.9 for c = 3, [25], Rem. 5.4 and Cor. 5.7 for 4 ≤ c ≤ 5) except for the final
statement of (i) and most statements on the codimension in (ii) and (iii). With notations
as in Theorem 4.6 we have

Proposition 4.15. Let X = Proj(A), A = R/It(A), be general in W (b; a) and suppose
ai−min(3,t) ≥ bi for min(3, t) ≤ i ≤ t, dimX = n− c = 1 and 3 ≤ c ≤ 5 (and chark = 0 if
c = 5). If Y = Proj(B) is defined by the vanishing of the maximal minors of B where B
is obtained by deleting the last column of A, then the following statements are true:

(i) If τX/Y : 0Ext1
B(IY /I

2
Y , IX/Y )→ 0Ext1

B(IY /I
2
Y , B) is injective, then X is unobstructed

and W (b; a) is a generically smooth irreducible component of Hilbp(Pn) of dimension λc+
K3 + ...+Kc. Moreover every deformation of X comes from deforming A.

(ii) If 0Ext1
A(IX/I

2
X , A) = 0, then X is unobstructed, dimW (b; a) = λc +K3 + ...+Kc

and
codimHilbp(Pn)W (b; a) = dim ker τX/Y − 0ext1

B(IX/Y , A) .

(iii) We always have dimW (b; a) = λc +K3 + ...+Kc and

codimHilbp(Pn)W (b; a) ≤ dim ker τX/Y .
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Moreover if 0Ext1
B(IX/Y , A) = 0, then we have equality in the codimension formula if and

only if X is unobstructed.

Proof. In all cases we use Theorem 3.5 to get dimW (b; a) = λc +K3 + ...+Kc.
(i) Since Theorem 4.10 applies to W (b; a′) 3 (Y ) where a′ = a0, a1, ..., at+c−3, we get (i)

from Theorem 4.6, Remark 2.2 and Lemma 4.4.
(ii) The vanishing of the Ext1-group of (ii) implies that X is unobstructed (X is l.c.i.

by Remark 2.2), and moreover that im δ ' 0Ext1
B(IX/Y , A), cf. the diagram (4.2) and

continue the horizontal exact sequence as a long exact sequence of algebra cohomol-
ogy. Since we have h0(NY ) − dimW (b; a′) = 0 by Theorem 4.10 and 0hom(IX/Y , A) =
dimMB(at+c−2)0 − 1 by (4.3) and Remark 4.7, we conclude by Remark 4.9 and the final
dimension formula of Theorem 3.5.

(iii) As in (ii) we get 0hom(IX , A)− dimW (b; a) = dim ker τX/Y − im δ and hence the

inequality of (iii). If the 0Ext1
B(IX/Y , A) vanishes, then im δ = 0, and since one knows

that X is unobstructed if and only if we have equality in h0(NX) ≥ dim(X) Hilbp(Pn), we
conclude easily. �

Remark 4.16 (for the case where the codimension of X in Pn is 3, i.e. c = 3).
(i) Since Y is licci ([24], Def. 2.10) for c = 3 , we always have 0Ext1

B(IY /I
2
Y , B) = 0 by

[2] (or see [18] or [24], Prop. 6.17) and hence we get ker τX/Y ' 0Ext1
B(IY /I

2
Y , IX/Y ).

(ii) It is shown in [24], Cor. 10.11 (for n − c = 1) and Cor. 10.17 (for n − c = 0)
that 0Ext1

B(IY /I
2
Y , IX/Y ) = 0 provided at+1 > at + at−1 − b1. Indeed the proofs of [24]

(or [25], Cor. 5.10 (i)) show 0Ext1
R(IY , IX/Y ) = 0 by mainly using the R-free minimal

resolution of IY and the degree of the minimal generators of IX/Y which we get from

(2.3). Hence we can conclude by the injection 0Ext1
B(IY /I

2
Y , IX/Y ) ↪→ 0Ext1

R(IY , IX/Y ).

The vanishing of 0Ext1
B(IY /I

2
Y , IX/Y ) is, however, much more common than given by the

above argument. Indeed examining many examples by Macaulay 2 ([13]) in the range
a0 > bt = b1 we almost always got 0Ext1

B(IY /I
2
Y , IX/Y ) = 0 provided at+1 > 3 + bt−n+ c

and 0 ≤ n− c ≤ 1.

Example 4.17 (determinantal curves in P4, i.e. with c = 3). (i) Let B be a general
2 × 3 matrix of linear entries and let A = [B, v] where the coordinates of the column v
are general polynomials of the same degree m, m > 0. The vanishing of all 2× 2 minors
defines a smooth curve X = Xm of degree 3m + 1 and genus 3m(m − 1)/2 in P4. By
Macaulay 2 (mainly),

0Ext1
B(IY /I

2
Y , IXm/Y ) = 0 if and only if m 6= 2.

Its dimension is 1 if m = 2 in which case 0Ext1
A(IXm/I

2
Xm
, A) = 0 and 0Ext1

B(IXm/Y , A) =
0. Note that we above only need to use Macaulay 2 for m ≤ 2 because the condition
at+1 > at + at−1 − b1 of Remark 4.16 (ii) is equivalent to m > 2. It follows from Propo-

sition 4.15 (i) that W (b; a) is a generically smooth irreducible component of Hilbp(P4)
of dimension λ3 + K3 for m 6= 2, and from either (ii) or (iii) that Xm is unobstructed

and codimHilb(P4)W (b; a) = 0ext1
B(IY /I

2
Y , IXm/Y ) = 1 for m = 2. Hence if m = 2, then

dim(Xm) Hilb(P4) = λ3 +K3 + 1. This coincides with the c = 3 case of Example 4.1!
Finally computing λ3 andK3 by their definitions, we get λ3+K3 = 17+(m+1)(3m+4)/2

for m > 1 and 21 for m = 1.
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(ii) Let A be a general 2 × 4 matrix whose columns consist of general polynomials of
the same degree, 1, 2, 3 and m, m ≥ 3 respectively. Put A = [B, v] where the coordinates
of the column v are all of degree m. The vanishing of all 2 × 2 minors of A defines a
smooth curve X =: Xm of degree 11m + 6 and genus (11m2 + 29m + 8)/2 in P4. By
Remark 4.16 we get 0Ext1

B(IY /I
2
Y , IXm/Y ) = 0 for m > 5, but a Macaulay 2 computation

shows this vanishing also for 3 ≤ m ≤ 5. It follows from Proposition 4.15 (i) that W (b; a)
is a generically smooth irreducible component of Hilbp(P4) of dimension λ3 +K3 =

85 +m(11m− 5)/2 for m > 3 , and 126 for m = 3.

We can also analyze the cases m = 1 and 2 by using Proposition 4.15 (i). Note that
we now delete the column of degree 3 polynomials to define B, i.e. we let Y be defined
by the maximal minors of the 2× 3 matrix B consisting of linear (resp. degree 2 and m)
entries in the first (resp. second and third) column. If m = 1 (resp. m = 2) one verifies

that 0Ext1
B(IY /I

2
Y , IXm/Y ) = 0 by Macaulay 2 and we get that W (b; a) is a generically

smooth irreducible component of HilbH(P3) of dimension 66 (resp. 96).

Remark 4.18. We have checked the vanishing of 0Ext1
A(IXm/I

2
Xm
, A) for several m ≥ 1

in Example 4.17 (ii). It seems that this group is always non-zero for every m ≥ 1. This,
we think, shows that the results presented here are quite strong because it is hard to
show unobstructedness and to find dim(Xm) HilbH(Pn) when even the “smallest known

obstruction group, 0Ext1
A(IXm/I

2
Xm
, A),” does not vanish.

Now we consider zero dimensional determinantal schemes (n − c = 0). Indeed Theo-
rem 4.6 with depthI(Z)B = 2 and Proposition 4.13 are designed to take care of this case.
We restrict our attention to a general X which through Remark 2.2 imply that all depth
conditions of Theorem 4.6 and Proposition 4.13 are satisfied. Then our result leads e.g.
to the unobstructedness of A where X = Proj(A). In fact for special choices of X, A may
be obstructed [37]. First we consider codimension c = 3 determinantal subschemes and
schemes with c ≥ 4 which we may treat similarly.

Theorem 4.19. Let X = Proj(A), A = R/It(A), be general in W (b; a) and let Y =
Proj(B) and V = Proj(C) be defined by the vanishing of the maximal minors of B and
C respectively where B (resp. C) is obtained by deleting the last column of A (resp. B).
Suppose dimX = n− c = 0, ai−3 ≥ bi for min(3, t) ≤ i ≤ t and suppose that (3.3) holds.
Moreover suppose

either c = 3 or [ 4 ≤ c ≤ 6 and ker τY/V = 0 ],

and suppose chark = 0 if c = 6. Then the following statements are true:

(i) If both ρ1 : 0Ext1
B(IX/Y , IX/Y )→ 0Ext1

B(IX/Y , B) and τX/Y : 0Ext1
B(IY /I

2
Y , IX/Y )→

0Ext1
B(IY /I

2
Y , B) are injective, then A is unobstructed and W (b; a) is a generically smooth

irreducible component of the postulation Hilbert scheme HilbH(Pc) of dimension λc+K3 +
...+Kc. Moreover every deformation of X comes from deforming A.

(ii) If 0Ext1
B(IX/Y , A) = 0 and ker τX/Y = 0, then W (b; a) belongs to a unique gener-

ically smooth irreducible component Q of HilbH(Pc) and the codimension of W (b; a) in
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HilbH(Pc) is dim ker ρ1. Indeed A is unobstructed and

dimQ = λc +K3 + ...+Kc + dim ker ρ1.

(iii) If 0Ext1
A(IX/I

2
X , A) = 0, then A is unobstructed, dimW (b; a) = λc +K3 + ...+Kc

and

codimHilbH(Pc)W (b; a) = dim ker ρ1 + dim ker τX/Y − 0ext1
B(IX/Y , A).

(iv) We always have codimHilbH(Pc)W (b; a) ≤ dim ker ρ1 + dim ker τX/Y .

Suppose 0Ext1
B(IX/Y , A) = 0. Then we have

codimHilbH(Pc)W (b; a) = dim ker ρ1 + dim ker τX/Y

if and only if A is unobstructed.

Proof. In all cases we use Proposition 3.4 to get dimW (b; a) = λc+K3 + ...+Kc since the
Conjectures hold for W (b; a′) 3 (Y ) where a′ = a0, a1, ..., at+c−3 by Theorem 3.5. Moreover
if we apply Proposition 4.15 (i) to Y ⊂ V ⊂ Pn, (Y ) ∈ W (b; a′) (provided c > 3, if c = 3
we apply Theorem 4.10 to W (b; a′) 3 (Y ) ), it follows that every deformation of Y comes
from deforming B.

(i) Using the above statements we easily conclude by Theorem 4.6 and Lemma 4.4.
(ii) Now we use Proposition 4.13 instead of Theorem 4.6. Comparing the dimen-

sion formula of Proposition 4.13 with the final one of Proposition 3.4 and using that
dim(Y ) Hilbp(Pc) = dimW (b; a′) by Lemma 4.4, we get all conclusions of (ii).

(iii) The vanishing of the Ext1-group implies that A is unobstructed and that im δ '
0Ext1

B(IX/Y , A), cf. (4.2). We have 0hom(IX/Y , A) = dimMB(at+c−2)0− 1 + dim ker ρ1 by
(4.3) and h0(NY )−dimW (b; a′) = 0 by Lemma 4.4. We conclude by Remark 4.9 and the
final dimension formula of Proposition 3.4.

(iv) The proof is similar to the last part of (iii), cf. the proof of Proposition 4.15 (iii). �

Remark 4.20. (i) Looking to the proofs we see that we don’t need to suppose (3.3) to get
the conclusions of (i) and (ii) which don’t involve dimension and codimension formulas.

(ii) Note the overlap in (ii) and (iv) of the theorem.

In [24], Ex. 10.18 we considered the example A = [B, v] where B was a general 2 × 3
matrix of linear entries and where the coordinates of the column v are general poly-
nomials of the same degree m, m > 2. Using Macaulay 2 one may easily check that

0Ext1
B(IX/Y , IX/Y ) = 0 for m = 3. Since IX/Y = K∗B(−m − 1) by (2.6) and (2.7), it

follows that 0Ext1
B(IX/Y , IX/Y ) is independent of m, and hence vanishes for every m ≥ 3.

The families of zero dimensional schemes given in [24], Ex. 10.18 are therefore generically
smooth of known dimension by Theorem 4.19 (i). More advanced examples are given
in the examples below where several aspects of Theorem 4.19 are used. Note that the
condition (3.3) in Theorem 4.19 is taken care of by Remark 3.6.

Example 4.21 (determinantal zero-schemes in P3, using mainly Theorem 4.19 (i)).
Let A = [B, v] be a general 2 × 4 matrix with linear (resp. cubic) entries in the first

and second (resp. third) column and where the entries of v are polynomials of the same
degree m, m ≥ 3. The vanishing of all 2 × 2 minors defines a reduced scheme X =: Xm
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of 7m+ 3 points in P3. For m = 3 one verifies that

0Ext1
B(IXm/Y , IXm/Y ) = 0 and vExt1

B(IY /I
2
Y , IXm/Y ) = 0 and v ≤ 0

by Macaulay 2 mainly and since IXm/Y = K∗B(−m+1) by (2.6) and (2.7), we get the same

conclusion for every m ≥ 3. It follows from Theorem 4.19 (i) that W (b; a) is a generically
smooth irreducible component of HilbH(P3) of dimension λ3 + K3 = 7m + 25 (resp. 45)
for m > 3 (resp. m = 3).

If m = 1 or 2 we delete the column of degree 3 polynomials to define B, i.e. we let Y be
defined by the maximal minors of the 2×3 matrix B consisting of linear (resp. degree m)
entries in the first and second (resp. third) column. If m = 1 one verifies (by Macaulay
2) that

0Ext1
B(IXm/Y , IXm/Y ) = 0Ext1

B(IY /I
2
Y , IXm/Y ) = 0

and we get by Theorem 4.19 (i) that W (b; a) is a generically smooth irreducible component
of HilbH(P3) of dimension λ3+K3 = 22. If m = 2 one verifies that 0Ext1

B(IY /I
2
Y , IXm/Y ) =

0 and that 0ext1
B(IXm/Y , IXm/Y ) = 2. Hence we can not use Theorem 4.19 (i), but we can

use Theorem 4.19 (ii)! Such cases are more thoroughly explained in the next example.
We verify that 0Ext1

B(IXm/Y , B) = 0, to get dim ker ρ1 = 0ext1
B(IXm/Y , IXm/Y ), and that

0Ext1
B(IXm/Y , A) = 0. We conclude that W (b; a) is contained in a generically smooth

irreducible component of HilbH(P3) of dimension λ3 +K3 + 0ext1
B(IXm/Y , IXm/Y ) = 37.

Example 4.22 (determinantal zero-schemes in P3, using mainly Theorem 4.19 (ii)).
Similar to Example 4.17 (ii) we let A = [B, v] be a general 2× 4 matrix whose columns

consist of general polynomials of the same degree, 1, 2, 3 and m, m ≥ 3 respectively.
The vanishing of all 2 × 2 minors of A defines a reduced scheme X =: Xm of 11m + 6
points in P3. This time Macaulay 2 computations show 0ext1

B(IXm/Y , IXm/Y ) = 2 and

vExt1
B(IXm/Y , B) = 0 for every m ≥ 3 and every v ≥ 0 (we only need to check it for

m = 3 because IXm/Y = K∗B(−m+ 2) by (2.6) and (2.7)). It follows that

dim ker ρ1 = 0ext1
B(IXm/Y , IXm/Y ) = 2

for every m ≥ 3, i.e. we can not use Theorem 4.19 (i) at all. We have, however,

0Ext1
B(IY /I

2
Y , IXm/Y ) = 0 for m > 5 by Remark 4.16 (ii) and 0ext1

B(IY /I
2
Y , IXm/Y ) = 2

(resp. 0) for m = 3 (resp. 3 < m ≤ 5) by Macaulay 2. Since 0Ext2
B(IXm/Y , IXm/Y ) = 0

for m = 3 and hence for every m ≥ 3, we get 0Ext1
B(IXm/Y , A) = 0 for m ≥ 3. We can

therefore apply Theorem 4.19 (ii) in this situation except when m = 3. In the latter case

0Ext1
A(IXm/I

2
Xm
, A) = 0 and Theorem 4.19 (iii) applies. Hence Theorem 4.19 applies for

every m ≥ 3, and we get that W (b; a) belongs to a unique generically smooth irreducible
component of HilbH(P3) of codimension 2 (resp. 4) for m > 3 (resp. m = 3). Indeed A
is unobstructed and

dimW (b; a) = λ3 +K3 = 11m+ 35 for m > 3 and 67 for m = 3.

We remark that we have checked a possible vanishing of 0Ext1
A(IXm/I

2
Xm
, A) for several

m ≥ 3, and in the range 3 < m ≤ 6 this group is non-zero.
Finally to be complete we consider the cases m = 1 and m = 2 in which case we will

delete the column of degree 3 polynomials to define B and hence Y . If m = 1 we get
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by Macaulay 2 dim ker ρ1 = 0ext1
B(IXm/Y , IXm/Y ) = 2, 0Ext1

B(IY /I
2
Y , IXm/Y ) = 0 and

0Ext1
B(IXm/Y , A) = 0. We have dimW (b; a) = λ3 +K3 = 35 and

codimHilbH(P3)W (b; a) = dim ker ρ1 = 2

by Theorem 4.19 (ii). Moreover if m = 2 we get dim ker ρ1 = 0ext1
B(IXm/Y , IXm/Y ) = 4,

0ext1
B(IY /I

2
Y , IXm/Y ) = 1, 0Ext1

B(IXm/Y , A) = 0 and 0Ext1
A(IXm/I

2
Xm
, A) = 0 by Macaulay

2. By Theorem 4.19 (iii) we find dimW (b; a) = λ3 +K3 = 53 and

codimHilbH(P3)W (b; a) = dim ker ρ1 + dim ker τX/Y = 4 + 1 = 5.

Example 4.23 (Using Theorem 4.19 (i) with non-vanishing obstruction groups).
We letA = [B, v] be a general 2×4 matrix whose columns consist of general polynomials

of the same degree, 2, 2, 4 and m, m ≥ 4 respectively. The vanishing of all 2× 2 minors
of A defines a reduced scheme X =: Xm of 20m+ 16 points in P3. This time Macaulay 2
computations show 0ext1

B(IXm/Y , IXm/Y ) = 0 and 0Ext1
B(IY /I

2
Y , IXm/Y ) = 0 (resp. = 1)

for every m > 4 (resp. m = 4). It follows from Theorem 4.19 (i) that W (b; a) is a
generically smooth irreducible component of HilbH(P3) of dimension λ3 +K3 = 20m+ 49
for m > 4. For m = 4 we have verified that 0ext1

A(IXm/I
2
Xm
, A) = 3 and in this particular

case we have not been able to verify whether A is unobstructed or not. But for every m >
4, A is unobstructed by Theorem 4.19 (i)! Moreover we have checked a possible vanishing
of 0Ext1

A(IXm/I
2
Xm
, A) for many m, and combined with some theoretical arguments (which

we don’t take here) we can conclude that this group is always non-zero for every m ≥ 4.
Again, we think, this shows that the results presented here are quite strong because it is
really hard to show unobstructedness when even the “smallest known obstruction group,

0Ext1
A(IXm/I

2
Xm
, A),” does not vanish.

In the final case 4 ≤ c ≤ 6 and ker τY/V 6= 0 where a general X = Proj(A) ⊂ Y =
Proj(B) ⊂ V = Proj(C) is given by deleting columns as above we can not apply Theo-
rem 4.6 to X ⊂ Y because there is no reason to expect condition (3) of Theorem 4.6 to
be true (that condition is closely related to ker τY/V = 0). But we can still use Proposi-
tion 4.13 since condition (3) of Proposition 4.13 is weakened to ”Y unobstructed”. The
natural condition for ”Y unobstructed” which also give a formula for h0(NY )−dimW (b; a′)
is 0Ext1

B(IY /I
2
Y , B) = 0, cf. the proof of Proposition 4.15 (ii). We get

Proposition 4.24. With notations as above, suppose 4 ≤ c ≤ 6 (let chark = 0 if c = 6),
dimX = n − c = 0, ai−3 ≥ bi for min(3, t) ≤ i ≤ t and suppose that (3.3) holds. Then
dimW (b; a) = λc +K3 + ...+Kc and the following statements are true:

(i) If 0Ext1
B(IX/Y , A) = 0, 0Ext1

B(IY /I
2
Y , IX/Y ) = 0 and 0Ext1

B(IY /I
2
Y , B) = 0 then A

is unobstructed. Moreover W (b; a) is contained in a unique generically smooth irreducible
component of HilbH(Pc) of codimension dim ker ρ1 + dim ker τY/V − 0ext1

C(IY/V , B).

(ii) We always have codimHilbH(Pc)W (b; a) ≤ dim ker ρ1 + dim ker τX/Y + dim ker τY/V .

Suppose 0Ext1
B(IX/Y , A) = 0 and 0Ext1

C(IY/V , B) = 0. Then we have

codimHilbH(Pc)W (b; a) = dim ker ρ1 + dim ker τX/Y + dim ker τY/V

if and only if A is unobstructed (e.g. 0Ext1
A(IX/I

2
X , A) = 0).
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Proof. We have dimW (b; a) = λc + K3 + ... + Kc by Proposition 3.4 since Theorem 3.5
applies to W (b; a′) where a′ = a0, a1, ..., at+c−3.

(i) This follows from Proposition 4.13 and Proposition 4.15 (ii) and by comparing the
dimension formula of Proposition 4.13 with the final one of Proposition 3.4.

(ii) Combining Remark 4.9 and the final formula of Proposition 3.4 with (4.3), we get

0hom(IX , A)− dimW (b; a) = h0(NY )− dimW (b; a′) + dim ker ρ1 + dim ker τX/Y − im δ.

By the same argument we have h0(NY ) − dimW (b; a′) ≤ dim ker τY/V and moreover,

if 0Ext1
C(IY/V , B) = 0, then equality holds. Hence we get the inequality of (ii), and

furthermore, if the two Ext1-groups of (ii) vanish then the inequality of (ii) is an equality
if and only if dim(X) HilbH(Pc) = 0hom(IX , A) and we are done. �

Example 4.25 (determinantal zero dimensional schemes in P4, i.e. with c = 4).
Let A = [B, v] be a general 2 × 5 matrix with linear (resp. quadratic) entries in the

first, second and third (resp. fourth) column and let both entries of the column v be
of degree m ≥ 2. Keeping the notations of Proposition 4.24, we get that the vanishing
of all 2 × 2 minors defines a reduced scheme X of 7m + 2 points in P4. One verifies
that dim ker ρ1 = 0ext1

B(IX/Y , IX/Y ) = 3, 0Ext1
B(IX/Y , A) = 0 and that (3.3) holds

by Remark 3.6. Note that we have dim ker τY/V = 1 and 0Ext1
C(IY/V , B) = 0 from

Example 4.17 (i).
Suppose m > 2. Then 0Ext1

B(IY /I
2
Y , IX/Y ) = 0Ext1

B(IY /I
2
Y , B) = 0 for every m > 2

and it follows from Proposition 4.24 (i) that A is unobstructed and dimW (b; a) = λ4 +
K3 +K4 = 7m+31. Hence W (b; a) is contained in a unique generically smooth irreducible
component of the postulation Hilbert scheme HilbH(P4) and,

codimHilbH(P4)W (b; a) = dim ker ρ1 + dim ker τY/V = 3 + 1 = 4.

Suppose m = 2. Since dim ker τX/Y = 0ext1
B(IY /I

2
Y , IX/Y ) = 4 and 0Ext1

A(IX/I
2
X , A) =

0, it follows from Proposition 4.24 (ii) that A is unobstructed and that dimW (b; a) =
λ4 +K3 +K4 = 44. Hence W (b; a) is contained in a unique generically smooth irreducible
component of HilbH(P4) and,

codimHilbH(P4)W (b; a) = dim ker ρ1 + dim ker τX/Y + dim ker τY/V = 3 + 4 + 1 = 8.

In this case we see that all three kernels of Proposition 4.24 (ii) contribute to the codi-
mension of W (b; a) in HilbH(P4)!

Remark 4.26. If we apply Theorem 4.6 successively to the flag (2.8) we get Prop. 10.12
and Thm. 10.13 of [24] in a correct version (the injectivity of ρ1, i.e. the assumption (1)
of Theorem 4.6 in the case depthI(Z)B = 2 lacked in [24]). Indeed in [25], Rem. 6.3 we
announced that some results in §10 of [24] were inaccurate, and in the new hypothesis
(*) of Rem. 6.3 we increased the depth assumption of the corresponding hypothesis in
[24] by 1 to get valid results. The new hypothesis (*) applies to determinantal schemes of
positive dimension, i.e. the results of [24], §10 hold in this case. In the zero dimensional
case we introduced, in addition to (*) of Rem. 6.3, an assumption (Rem. 6.3 (ii)), which is
equivalent to the injectivity of ρ1. This assumption makes the results of [24], §10 correct
in the zero dimensional case. In [25], Rem. 6.3 (ii) we indicate a proof for this claim,
and now Theorem 4.6 provides us with another proof. In [25], Rem. 6.3 (i) and (iii), we
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claimed that e.g. the unobstructedness of A also implied all results of [24], §10, but this is
a little inaccurate because the very final result of [24] (Cor. 10.17) uses the injectivity of ρ1

to get the dimension formula. E.g. in Example 4.22 for m > 3 (resp. Example 4.21 with
m = 2) the formula of Cor. 10.17 gives dim(X) HilbH(P3) = dimW (b; a), which should
be correct according to Rem. 6.3 (i) (resp. Rem. 6.3 (iii)). The correct dimension is,
however, dim(X) HilbH(P3) = dimW (b; a) + dim ker ρ1, dim ker ρ1 = 2 in both cases. This
observation is a reason for writing this paper, namely to provide detailed proofs in the zero
dimensional case for the correction “Rem. 6.3 (ii)” and to present several results related
to [25], Rem. 6.3 (i) and (iii) (see Proposition 4.13, Theorem 4.19, Proposition 4.24 where
we see that we have to add dim ker ρ1 to get valid (co)dimension formulas. Note also the
obvious misprint in Rem. 6.3, that Ic should have been Ic−1). Thus, letting Di = R/IXi

and Ii = IXi+1/Xi
, the following hypothesis makes all results of [24], §10, true for good

determinantal schemes X with dimX ≥ 0;
Given X ⊂ Pn a good determinantal scheme of dimension n − c, we will assume that

there exists a flag X = Xc ⊂ Xc−1 ⊂ ... ⊂ X2 ⊂ Pn such that for each i < c, the
closed embedding Xi+1 ↪→ Xi is l.c.i. outside some set Zi of codimension 2 in Xi+1

(depthZi
OXi+1

≥ 2). Moreover, we suppose X2 ↪→ Pn is an l.c.i. in codimension ≤ 1 and

if c = n we suppose that 0Ext1
Dc−1

(Ic−1, Ic−1) ↪→ 0Ext1
Dc−1

(Ic−1, Dc−1) is injective.

5. applications to families of Gorenstein quotients

The results of the preceding section lead to many well described generically smooth com-
ponents of Hilb(Pn) of known dimension. Once we have such a component of HilbHA(Pn)
consisting, say, of codimension 3 zero dimensional schemes X = Proj(A), then regular sec-
tions of a twist of the anticanonical module of A lead to artinian Gorenstein codimension
4 quotients through the exact sequence

(5.1) 0→ KA(−s) σ−→ A→ D → 0 .

Indeed by [22], Thm. 16, we have the following result (true for arbitrary dimension of X).

Theorem 5.1. Let A = R/IA be a graded, CM quotient with canonical module KA, let
X := Proj(A) be locally Gorenstein and let D be the Gorenstein algebra given by a regular
section of σ ∈ (K∗A)s for some integer s. If s >> 0, then D is HA-generic. Moreover A
is unobstructed if and only if D is unobstructed, and

dim(D) HilbHD(Pn) = dim(X) HilbHA(Pn) + dim(K∗A)s − 1 .

Here D is said to be HA-generic if there is an open subset of HilbHD(Pn) containing
(D) whose members D′ are quotients of some quotient A′ of R with Hilbert function HA.
In fact if X is general in some irreducible component of HilbHA(Pn) we may suppose D is
general in some component of HilbHD(Pn), see [22], Thm. 24 for the entire correspondence.

To make s >> 0 precise, we notice that Theorem 5.1 holds for every integer s satisfying

(5.2) sExt1
A(S2(KA), KA) = 0 and −sExtiR(IA, KA) = 0 for i = 0, 1 ,

see Lem. 9, Prop. 10 (ii) and proof of Thm. 27 of [23] to understand that we may replace
“−sHomB(H2(R,A,A), KA) = 0 (e.g. IA is generically syzygetic) and −sExt1

A(IA/I
2
A, KA) =
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0 ” of [22], Prop. 13 and Thm. 16 with “−sExt1
R(IA, KA) = 0 ”. Hence we can still use the

arguments of [22] which consider minimal resolutions of IA and KA to find s. We get

Remark 5.2. (i) If X is a zero-scheme of degree d, we may replace dim(D) HilbHD(Pn)
by dim(D) PGor(HD), s >> 0 by s ≥ 2 reg(IA) and dim(K∗A)s by d (cf. [22], Rem. 22).

(ii) If X is an integral curve of degree d and arithmetic genus p, we may replace s >> 0
by s > max{2 reg(IA)− 2, (4p− 4)/d} and dim(K∗A)s by ds+ 3− 3p (cf. [22], Rem. 18).

We finish this paper by taking two far from straightforward examples.

Example 5.3 (Artinian Gorenstein quotients of R of codimension 4).
Take the determinantal zero dimensional scheme X of Example 4.22 in whichA = [B, v]

was a general 2× 4 matrix whose columns consisted of polynomials of the same degree, 1,
2, 3 and m respectively. In that example X = Proj(A) was a reduced scheme of 11m+ 6

points in P3 and W (b; a) was a proper closed subset of a generically smooth component
V of HilbHA(P3) of codimension 2 (resp. 4 or 5) for m > 3 and m = 1 (resp. m = 3 or 2).
Moreover

dimW (b; a) = λ3 +K3 = 11m+ 35 for m > 3

and dimW (b; a) = 67, 53 or 35 for m = 3, 2 or 1 respectively. Using (2.3) we find the
leftmost part of a minimal resolution of A and hence of the general element R/J of V to
be 0→ R(−m− 6)3 → ... , from which we deduce reg(J) = m+ 4. Moreover writing the
Hilbert function H as (H(0), H(1), H(2), ...) we have

HR/J = HA = (1, 4, 10, 19, ..., 11m− 4, 11m+ 3, 11m+ 6, 11m+ 6, ...).

By Theorem 5.1 and Remark 5.2 (i) we get, for every m ≥ 1 and s ≥ 2m+8 a generically
smooth component of PGor(HD) of dimension 22m + 42 (resp. 109, 85 or 53) provided
m ≥ 4 (resp. m = 3, 2 or 1) where the Hilbert function HD is given by the “(s+1)-tuple”

(1, 4, 10, ..., 11m+ 3, 11m+ 6, ..., 11m+ 6, 11m+ 3..., 10, 4, 1, 0, 0, ...),

e.g. the case m = 2 and s = 12 yields

(1, 4, 10, 18, 25, 28, 28, 28, 25, 18, 10, 4, 1, 0, 0, ...).

Example 5.4 (One dimensional Gorenstein quotients of R of codimension 4).
Now we consider the determinantal one dimensional schemes of Example 4.17 in which
A is exactly as in Example 5.3 with the exception that the polynomials are taken from
R := k[x0, ..., x4]. In this case X = Proj(R/IA) is a smooth curve of degree d = 11m+ 6
and genus p = (11m2 + 29m+ 8)/2 in P4, and reg(IA) = m+ 4. By Example 4.17 we see

that W (b; a) is a generically smooth irreducible component of Hilbp(P4) of dimension

λ3 +K3 = 85 +m(11m− 5)/2 (resp. 126, 96 or 66) for m > 3 (resp. m = 3, 2 or 1).

Since (4p − 4)/d < 2m + 5 we apply Theorem 5.1 and Remark 5.2 (ii). Hence for every
m ≥ 1 and s ≥ 2m+7 we get a generically smooth component V of the postulation Hilbert
scheme HilbHD(P4) whose general element is a codimension 4 Gorenstein quotient of R
and whose h-vector is the (s+ 1)-tuple of Example 5.3. Moreover

dimV = (11m+ 6)s− 11m2 − 46m+ 75 for m > 3

and dimV = (11m+ 6)s− q where q = 163, 67 or 4 for m = 3, 2 or 1 respectively.
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