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Abstract 

   The question whether rotational motion is relative according to the general theory of relativity is 

discussed. Einstein’s ambivalence concerning this question is pointed out. In the present article I defend 

Einstein’s way of thinking on this when he presented the theory in 1916. The significance of the 

phenomenon of perfect inertial dragging in connection with the relativity of rotational motion is 

discussed. The necessity of introducing an extended model of the Minkowski spacetime, in which a 

globally empty space is supplied with a cosmic mass shell with radius equal to its own Schwarzschild 

radius, in order to extend the principle of relativity to accelerated and rotational motion, is made clear. 
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1. Introduction 

   The extension of the principle of relativity from rectilinear motion with constant velocity to 

accelerated and rotational motion was an important motivating factor for Einstein when he constructed 

the general theory of relativity. 

   He was inspired by the point of view of E. Mach who wrote in 1872 *1+: “It does not matter whether 

we think of the Earth rotating around its axis, or if we imagine a static Earth with the celestial bodies 

rotating around it.” Mach further wrote *2+: “Newton’s experiment with the rotating vessel of water 

simply informs us that the relative rotation of the water with respect to the sides of the vessel produces 

no noticeable centrifugal forces, but that such forces are produced by its relative rotation with respect 

to the mass of the Earth and the other celestial bodies.” 

   Today physicists are somewhat ambivalent as to whether Einstein succeeded in constructing a theory 

according to which accelerated and rotational motion is relative. The question was discussed already in 

1916, when Einstein presented the general theory of relativity. After having read Einstein’s great article 

[3] in 1916 the astrophysicist W. De Sitter was not in doubt. He wrote [4+: “Rotation is thus relative in 

Einstein’s theory. For Einstein, who makes no difference between inertial and gravitation, and knows no 

absolute space, the accelerations which the classical mechanics ascribed to centrifugal forces are of 

exactly the same nature and require no more and no less explanation, than those which in classical 

mechanics are due to gravitational attraction.” But, as mentioned by J. Illy [5], he warned us that the 

relativity of rotation does not imply that the fundamental difference between rotation and translation 

will disappear. Translation may be eliminated globally by a Lorentz transformation, but rotation may not 

(see below). Newton interpreted this difference by introducing the concept of absolute space; Einstein, 

however, by not distinguishing between centrifugal and gravitational forces.  

   In the present article I will discuss conditions that must be fulfilled in order that the principle of 

relativity as applied to rotating (and accelerating) motion shall be contained in the general theory of 

relativity. 

2. Einstein, De Sitter and relativity of rotation 

   When Einstein presented this theory in 1916 [3], he wrote in the Introduction that the special theory 

of relativity contains a special principle of relativity, where the word “special” is meant to say that the 

principle is restricted to motion of uniform translation. 

   The second paragraph of Einstein’s great 1916-article is titled: “The need for an extension of the 

postulate of relativity”. He starts by writing that the restriction of the postulate of relativity to uniform 

translational motion is an inherent epistemological defect. Then he writes: “The laws of physics must be 

of such a nature that they apply to systems of reference in any kind of motion. Along this road we arrive 

at an extension of the postulate of relativity”.  
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   Furthermore Einstein makes use of the principle of equivalence, according to which the physical 

effects of inertial forces in an accelerated reference frame K’ are equivalent to the effects of the 

gravitational force in a frame K at rest on the surface of a massive body. Einstein asks: Can an observer 

at rest in K’ perform any experiment that proves to him that he is “really” in an accelerated system of 

reference? He says that if the principle of equivalence is valid, then this is not possible. Then he states: 

“Therefore, from the physical standpoint, the assumption readily suggests itself that the systems K and 

K’ may both with equal right be looked upon as “stationary””.  

   P Kerzberg [6+ has given a very interesting discussion of “The relativity of rotation in the early 

foundations of general relativity”. In particular he reviews and comments an article published in 1917 

titled “On the relativity of rotation in Einstein’s theory” by W. De Sitter *4]. Kerzberg writes “De Sitter 

thus maintains that rotation is relative in Einstein’s theory, and even as relative as linear translation. 

Both rotation and translation are susceptible to being transformed away. Nonetheless a difference 

persists”. He then cites De Sitter: “If a linear translation is transformed away (by a Lorentz 

transformation), it is utterly gone; no trace of it remains. Not so in the case of rotation. The 

transformation which does away with rotation, at the same time alters the equation of relative motion 

in a definite manner. This shows that rotation is not a purely kinematical fact, but an essential physical 

reality.”  

   In this way one is lead to the point of view that according to Einstein’s theory, rotation is always 

relative to observable masses, and that this is a sort of constraint on the very content of the universe. De 

Sitter says: “The condition that the gravitational field shall be zero at infinity forms part of the 

conception of an absolute space, and in a theory of relativity it has no foundation”. Kerzberg comments: 

“In the theory of general relativity, such ideal boundary conditions should be replaced by physical 

conditions on space-time”, and he further notes that in this theory distant matter is the physical support 

of the Minkowski spacetime. He then writes: “The search for a physical interpretation of boundary 

conditions is now seen as vital to the survival of Mach’s principle”. A necessary boundary condition for 

the validity of the principle of relativity for rotational motion will be given in section 8 below. 

   In a lecture in Leiden in 1920 Einstein seemed to give up the relativity of rotation [7]. He discussed the 

question whether the surface of the water in a bucket would change its shape as a result of a change of 

rotational velocity. Assume that the principle of relativity is valid for rotation. Then an observer in the 

water can consider the water as at rest and the mass of the universe as rotating. Inertial dragging due to 

the rotating matter would then be the cause of the changing surface of the water. But this requires, said 

Einstein, instantaneous action at a distance. Hence he argued for the existence of some sort of “ether” 

that conveys the inertial dragging effect. Also he argued that the water would change its shape even in 

the absence of the remote cosmic matter. Hence he reintroduced absolute rotation. 

   I will argue for the point of view that Einstein had in 1916 and which was supported by De Sitter, that 

the principle of relativity is valid for rotation. It is a consequence of Einstein’s field equations that there 

is inertial dragging inside a rotating shell of matter, and that there is perfect dragging inside a shell with 

radius equal to the Schwarzschild radius of the cosmic mass inside the shell. But the dragging is smaller 

the smaller mass the shell has for a given radius, and vanishes if the shell is removed. In principle this 

can be tested experimentally by performing a “Gravity probe B experiment” inside a rotating shell. This 
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inertial dragging is a prediction of the general theory of relativity which is what we are concerned about 

here – whether the principle of relativity is valid for rotation according to the general theory of 

relativity.  

   Let us first consider Einstein’s 1920-argument about action at a distance. Assume that the angular 

velocity of the water relative to the cosmic masses increases, and consider the situation from the point 

of view of an observer following the water. He would then see the angular velocity of the cosmic mass 

increasing. However the actual increase of the angular velocity happened at the point of time when the 

received light was emitted, at the retarded time. Hence it is sufficient that the gravitational action is 

moving with the speed of light. Instantaneous action at a distance is not needed.  

   Let us then think about what happens, according to the theory of relativity if the cosmic mass is made 

less and then removed. The solution of Brill and Cohen [8] gives the dragging angular velocity inside a 

massive shell with radius 0r , Schwarzschild radius SR , and which is observed to rotate with an angular 

velocity  ,   

    

(1) 

 

Assume that initially the Schwarzschild radius of the shell is equal to its radius, so that there is perfect 

dragging inside it. The surface of the water would be flat if the water is at rest in an inertial Zero Angular 

Momentum (ZAMO) frame. The shape depends upon the angular velocity of the water relative to the 

ZAMO inertial frame. An observer at rest in the water would observe that the cosmic shell has an 

angular velocity       , and the ZAMO inertial frame has an angular velocity       .  Initially               and the 

surface of the mass is maximally curved. The Brill-Cohen formula shows that if the cosmic mass is made 

less, the angular velocity of the ZAMO inertial frames would decrease relative to the water, and when 

there was no cosmic mass they would be at rest relative to the water. Hence the shape of the water 

would flatten out as the mass of the cosmic mass decreased.   

   The conclusion is that the general theory of relativity predicts that there would not be any change of 

the surface of the water if one tried to put it into rotation in an empty universe. Such an effort would 

not succeed. The water would not begin to rotate because there is nothing it can rotate relative to.  

 

3. A cosmic time effect 

   In the Hafele-Keating experiment [9,10] the travelling time around the Earth as measured on a clock 

travelling in the same direction as the Earth rotates, a clock moving in the opposite direction, and one at 

rest on the surface of the Earth was compared. The result was that the clock travelling in the same 

direction as the Earth rotates showed shortest travelling time, and the one moving in the opposite 

direction with the same velocity relative to the surface of the Earth, showed the longest travelling time.  

   Particular focus was given to the ‘East-West effect’, i.e. that the travel time measured by a clock during 

circumnavigation of the Earth depends both on the direction of the circumnavigation and on the Earth’s 

rotational speed.   
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   Hafele deduced the proper time shown by the clocks by employing a non-rotating reference frame in 

which the Earth rotates [11]. In the Galilean approximation the velocity of the clocks in this frame is 

                                                                          u R h v        ,                                                                    (2) 

where  R  is the radius of the Earth, h  is the height of the orbit,   is the angular velocity of the diurnal 

rotation of the Earth, and v  is the velocity of the airplane with plus for travelling westwards and minus 

eastwards. The East-West effect then comes from the usual kinematical time dilation 

factor 2 21 /u c . 

   The Hafele-Keating experiment may be thought of as a temporal version of the Foucault pendulum, 

making it possible to measure the rotation of the reference frame in which the experiment is 

performed, i.e. the rotation of the Earth. Hence, it invites to an interpretation where rotation is 

absolute. 

   Let us consider the situation with one clock A at rest and one B in circular motion in the Schwarzschild 

spacetime from the point of view of a rotating reference frame in which the clock B is at rest. A set of 

comoving coordinates                            in the rotating reference frame, is given by the transformation 

 

(3) 

 

Here             represents the angular velocity of the reference frame. Note that the coordinate clocks 

showing     goes at the same rate independent of their distance from the origin. For simplicity we 

assume that the clock B performs orbital motion at a constant radius     in the equatorial plane for which                      

                  . Then the line element in the rotating reference frame along the path of the twins takes the 

form 

 

(4)                    

 

For timelike intervals the general physical interpretation of the line element is that it represents the 

proper time        between the events connected by the interval, 

 

 (5) 

 

It follows that the proper travelling time measured by the clock A is 

 

(6) 

 

where                     is the angular velocity of A in the rotating reference frame. The travelling time of B, 
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(7) 

 

The terms in eq.(6) have the following physical interpretations: 

                   represents the gravitational time dilation due to the central mass. 

                   represents the gravitational time dilation due to the centrifugal gravitational field. 

                   represents the kinematical, velocity dependent time dilation for clocks moving in the rotating 

frame.    

                       is neither a gravitational nor a kinematical time dilation. It has not earlier been given any 

reasonable interpretation. Bræck and Grøn [12] have called it a cosmic time effect for reasons that will 

be explained below. 

   The expression for A’s travelling time may be written 
 

(8) 

where                                     . . The graph of the function              is shown in Figure 1, 

 
Figure 1. Sketch of the function              introduced in Eq.(20) for different coordinate velocities      .   

 

   The graph shows that a clock with               ages fastest. This clock is at rest in the non-rotating inertial 

frame. Naturally the graph is symmetrical about this angular velocity. Hence for clocks at the same 

height, the cosmic time effect acts so that the clock at rest in the non-moving, inertial frame ages 

fastest. The mathematical expression of the ‘East-West effect’, interpreted as a cosmic time effect, 

follows directly from eq. (6), giving the difference in travel time to lowest order, of a clock moving 

eastwards and one travelling westwards 

                                                                       2 22 /R c     ,                                                                    (9) 
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where   is the travelling time, 2 /   . Hence the East-West time difference may be written 

                                                                         24 / ,A c                                                                              (10) 

where 2A R  is the area enclosed by the paths of the clocks. The East-West time difference is 

independent of the velocity of the clocks, depending only upon the angular velocity of the reference 

frame and the area enclosed by the paths of the clocks. 

   This effect acts so as to make the clock that has the smallest angular velocity relative to the ‘starry sky’ 

age fastest. This means that the clock that travels eastwards, i.e. in the opposite direction to the 

rotation of the Earth, ages faster and will show a greater travelling time than the one that travels 

westwards. If the clock travels with the same velocity as a particle fixed on the surface of the Earth due 

to the Earth’s diurnal rotation, i.e. about 1600 km/h, the clock would age faster than every other clock 

at the same height. In particular this clock travelling eastwards ages faster than a clock at rest on the 

Earth. 

 

4. On the concept “gravitational field” 

   One may wonder whether the “cosmic time effect” is rather trivial and just the result of a coordinate 

transformation. However, that point of view does not take into consideration that the principle of 

equivalence is involved in a non-trivial way here. The statement would be like saying, when Einstein 

found that the frequency of light is increased if light moves in an accelerated reference frame in the 

opposite direction to that of the acceleration, that this is not particularly interesting, because it is only 

the result of a coordinate transformation. However, the important point was that Einstein further said: 

Hence the frequency of light is increased when moving downward in a gravitational field caused by 

masses. In the same way we say: Hence there is a cosmic time effect described by the expression        

                     in a gravitational field inside a rotating shell of mass. 

   This gravitational field is non-tidal [13] meaning that it exists in flat spacetime.  The distinction 

between a tidal- and a non-tidal gravitational field is based on the geodesic equation and the equation 

of geodesic deviation. Consider two nearby points P0 and P in spacetime, and two geodesics, one passing 

through P0 and one through P. Let n  be the distance vector between P0 and P. The geodesics are 

assumed to be parallel at P0 and P, so that  
0

/ 0
P

dn d  . Using Eq.(53) of Ref.14 we find that a Taylor 

expansion about the point P0 gives the following formula for the acceleration of a free particle at P, 
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The first term represents the acceleration of a free particle at P0, and contains, for example, the 

centrifugal acceleration and the Coriolis acceleration in a rotating reference frame. 

   We define the gravitational field strength at the point P, g , as the acceleration of a free particle 

instantaneously at rest. Then the spatial components of the four velocity vanish. Using the proper time 

of the particle as time coordinate gives 0 1u  , and Eq.(8) simplifies to 
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Grøn and Vøyenli [13] has shown that in a stationary metric this equation can be written 

                                                        00 00 0 0 0 0 ,i i k i i j i j

jk j jg n R n

                                                         (13) 

where the Christoffel symbols and the components of the Riemann curvature tensor are evaluated at 

the point P0. The first term of this equation represents the acceleration of gravity at the point P0, i.e. it 

represents the uniform part of the gravitational field. The second term represents the nonuniform part  

of the gravitational field which is also present in a non-inertial reference frame in flat spacetime, for 

example, the non-uniformity of the centrifugal field in a rotating reference frame. The last term 

represents the tidal effects, which in the general theory are proportional to the spacetime curvature.    

   This suggests the following separation of a gravitational field into a nontidal part and a tidal part 

                                                                              ,i i i

NT Tg g g                                                                            (14) 

where the non-tidal part is given by 

                                                              00 00 0 0 ,i i k i i j

NT jk jg n

                                                               (15) 

and the tidal part by 

                                                                               0 0 .i i j

T jg R n                                                                            (16) 

The nontidal gravitational field can be transformed away by going into a local inertial frame. The tidal 

gravitational field cannot be transformed away. The mathematical expression of these properties is that 

the nontidal gravitational field is given by Christoffel symbols, and they are not tensor components. All 

of them can be transformed away. But the tidal gravitational field is given in terms of the Riemann 

curvature tensor of spacetime, which cannot be transformed away. 

   It will be shown in section 6.3 that Eq.(15) gives the correct expression for the centrifugal non-tidal 

gravitational field inside a cosmic mass shell due to perfect inertial dragging. 

 

       5. Ageing in the Kerr spacetime 

   The rotation of a mass distribution changes the properties of space outside it. Inertial frames are 

dragged along in the same direction as the mass rotates. We shall consider circular motion in an axially 

symmetric space. Along the circular path the line element can be written 

 

(17) 

 

The coordinate clocks showing     goe  equally fast everywhere. Hence the proper time interval of a clock 

with angular velocity                        is given by 

 

(18) 

 

It can be shown [15] that an observer with zero angular momentum (ZAMO) has angular velocity 

 

(19) 
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A non-vanishing value of         is an expression of inertial dragging. Let us find the angular velocity of the 

clock which ages fastest. One might think that it is the clock at rest, due to the kinematical time dilation, 

which tends to slow down. Putting the derivative of the function 

 

(20) 

 

equal to zero, one finds, however, that the ZAMO ages fastest. 

   In the Kerr spacetime the angular velocity of a ZAMO is [15] 

 

(21) 

   

where                      is the gravitational length of the central rotating body, and                       where      is 

the angular momentum of the central mass (note that   has dimension length). The ZAMO angular 

momentum vanishes in the asymptotic Minkowski spacetime in the limit             . If the central body is 

non-rotating there is Schwarzschild spacetime and the angular velocity of the ZAMO vanishes. 

   Our treatment of the clocks in the Schwarzschild and Kerr spacetimes seems to imply that rotating 

motion is absolute. For example one can decide which clock rotates by measuring how fast it ages. In 

the special theory of relativity rotational motion is absolute. However if the general principle of relativity 

is generally valid according to the general theory of relativity, rotational motion has to be relative. Below 

we shall see how the phenomenon of perfect inertial dragging plays a decisive role in this connection. 

 

        6.  Inertial dragging inside a rotating shell of matter 

 

6.1. The weak field result 

    As pointed out by Pfister [16] inertial dragging inside a rotating shell of matter was described already 

in 1913 by Einstein and Besso in a manuscript that was not published. This work was based on Einstein’s 

so-called Entwurf theory of gravity which Einstein soon discovered had some serious weaknesses. The 

first published paper on inertial dragging inside a rotating shell based on the general theory of relativity 

was published by H. Thirring [17] in 1918. He calculated the angular velocity of Z  a ZAMO inside a shell 

with Schwarzschild radius SR  and radius 0r   rotating slowly with angular velocity    , in the weak field 

approximation, and found the inertial dragging angular velocity, 

   

(22) 

    
This calculation does not, however, remove the difficulty with absolute rotation in an asymptotically 

empty Minkowski space. Both the angular velocity of the shell and that of the ZAMO are defined with 

respect to a system that is non-rotating in the far away region. There is nothing that determines this 

system. The absolute character of rotational motion associated with the asymptotically empty 

Minkowski spacetime, has appeared. 
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6.2. Perfect inertial dragging 

   In 1966 D. R. Brill and J. M. Cohen [8] presented a calculation of the ZAMO angular velocity inside a 

rotating shell valid for arbitrarily strong gravitational fields, but still restricted to slow rotation, giving the 

expression (1). For weak fields, i.e. for              , this expression reduces to that of Thirring. But if the shell 

has a radius equal to its own Schwarzschild radius,              , the expression above gives                . Then 

there is perfect dragging. In this case the inertial properties of space inside the shell no longer depend 

on the properties of the ZAMO at infinity, but are completely determined by the shell itself. 

   Brill and Cohen further write that a shell of matter with radius equal to its Schwarzschild radius 

together with the space inside it can be taken as an idealized cosmological model, and proceeds: “Our 

result shows that in such a model there cannot be a rotation of the local inertial frame in the center 

relative to the large masses in the universe. In this sense our result explains why the “fixed stars” are 

indeed fixed in our inertial frame.  

   The problem of the induction of a correct centrifugal force and Coriolis force by rotating masses was 

solved to order 2  by H. Pfister and K. H. Braun in 1985 [18]. They took into account two important 

facts: (a) Any physically realistic, rotating body will suffer a centrifugal deformation and cannot be 

expected to keep its spherical shape. (b) They noted that in order to realize corrects expressions for 

Coriolis and centrifugal forces – and no other forces – the spacetime inside the mass shell has to be flat. 

Hence, according to Pfister, the problem of inducing the same inertial properties inside a rotating shell 

as those in a rotating frame inside a static shell boils down to the question of whether it is possible to 

connect a “rotating” flat inerior metric through a mass shell (with, to begin with, unknown geometrical 

and material properties) to the non-flat but asymptotically flat exterior metric of a rotating body.  

   In 1995 H. Pfister [19] wrote that whether there exists an exact solution of Einstein’s field equations 

with flat spacetime and correct expressions for the centrifugal- and Coriolis acceleration inside a 

rotating shell of matter, was still not known. However, permitting singular shells such a solution 

certainly exists, as will now be made clear. 

 
6.3.  A source of the Kerr metric with perfect inertial dragging 

 
   In 1981 C. A. Lopez [20] found a source of the Kerr spacetime. A few years later Ø. Grøn [21] gave a 
much simpler deduction of this source and discussed some of its physical properties. The source is a 
shell with  radius       rotating with an angular velocity 
                              
 

(23) 
 

The radius of the exterior horizon in the Kerr metric is 

 

(24) 

 
Hence, if the radius of the shell is equal to the horizon radius         , the ZAMO angular velocity just 

outside the shell is equal to the angular velocity of the shell, 
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(25) 

 

   Demanding continuity of the dragging angular velocity at the shell it follows that the inertial frames in 

the Minkowski spacetime inside the shell are co-moving with the shell. There is perfect dragging of the 

inertial frames inside the shell. The properties of the shell, and of spacetime outside and inside the shell, 

solve Einstein’s field equations without needing the assumptions of week fields and slow rotation. The 

inertial properties of space inside the shell, such as the Coriolis acceleration, do not depend on any 

property of an asymptotic far away region, only on the state of motion of the reference frame relative to 

the shell. 

   In the flat spacetime inside the cosmic shell there is a non-tidal gravitational field. With co-moving 

cylindrical coordinates in a reference frame in which the cosmic shell is at rest, the line element takes 

the form 

                                                                  2 2 2 2 2 2 2ds c dt dr r d dz                                                            (26) 

and the non-vanishing Christoffel symbols are  

                                                                      
1

,r

r rr
r

 

                                                                        (27) 

Inserting these into Eq.(15) gives a vanishing field strength of the non-tidal gravitational field. This is as 

expected since this frame is inertial, and a non-tidal gravitational field only exists in a non-inertial frame. 

 

   In a reference frame in which the cosmic shell is observed to rotate with an angular velocity   the line 

element has the form 

                                          2 2 2 2 2 2 2 2 2 2 21 / 2ds r c c dt dr r d dz r d dt                                          (28) 

The additional non-vanishing Christoffel symbols are 

                                                   2 , ,r r r
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r

 

 


                                                         (29) 

Then Eq.(15) shows that the non-tidal gravitational field at the point P has the components 

                                                                 2 2 2,r r

NT NTg r n g n                                                              (30) 

The term 2r  is the “centrifugal” acceleration at the point P0, and the other terms are due to the 

inhomogeneity of this field. 

 

7. Is there perfect dragging in our universe? 

   The distance that light and the effect of gravity have moved since the Big Bang is called the lookback 

distance,                , where      is the age of the universe. WMAP-measurements have shown that the age 

of the ΛCDM-model of our universe is close to its Hubble-age,                    , namely that                         , 

and that the universe is flat, i.e. that it has critical density 

 

(31) 

 

It follows that 

 

0 0R ct 0t

01/Ht H 0 0,996 Ht t

2

03 / 8cr H G 

 
22 2

0 08 / 3 / 1 /crG c H c R   
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(32) 

 

The Schwarzschild radius of the cosmic mass inside the lookback distance is 

 

(33) 

 

Hence in our universe the Schwarzschild radius of the mass within the lookback distance is 

approximately equal to the lookback distance. It follows that the condition for perfect dragging may be 

fulfilled in our universe.  

   The question of perfect dragging in our universe has been considered from a different point of view by 

C. Schmid [22, 23]. By introducing a rotational perturbation in a realistic FRW-model he has shown that 

the ZAMO angular velocity in the perturbed FRW universe is equal to the average angular velocity of the 

cosmic mass distribution. Hence perfect dragging explains why the swinging plane of the Foucault 

pendulum rotates with the “starry sky”. In Newtonian gravity where there is no dragging, this is a 

consequence of the absolute character of rotation. One says that the swinging plane of the Foucault 

pendulum is at rest relative to the starry sky because neither of them rotates. Hence the pendulum is in 

a room with an absolute rotation.  

 

8. An extended model of Minkowski spacetime 

   In the general theory of relativity the significance of the Minkowski spacetime is that it is used as the 

asymptotic metric outside a localized mass distribution, for example in the Kerr spacetime. This means 

that absolute rotation is introduced into the general theory of relativity through this choice of boundary 

condition when solving Einstein’s field equations.  

   This may have been noted already by H. Thirring when he worked on his 1918-paper on inertial 

dragging [17]. Pfister [16+ writes: “Presumably, Thirring has realized that the rotating sphere and the 

rotating mass shell with their asymptotically Minkowskian boundary conditions do not answer the 

Machian question concerning a static Newton bucket inside a rotating celestial sphere.” 

   S. Bhattacharya and A. Lahiri [24] have recently pointed out that when one has a cosmological event 

horizon one cannot reach the spatial infinity, and therefore the boundary conditions which must then be 

set at the cosmological event horizon may be very different from those of the asymptotically flat and 

empty spacetime.  

   Even without a cosmological event horizon one must choose a boundary condition to determine a 

solution of Einstein’s field equations, and this has consequences for the status of accelerated and 

rotational motion in the theory of relativity, whether they are absolute or relative. It may also have 

significance for the quantization of the Minkowski spacetime. 

   A meaningful boundary condition for flat spacetime is to introduce a massive shell that represents the 

cosmic mass inside the shell. As shown in the previous section the mass inside the lookback distance of 

our universe has a Schwarzschild radius equal to the lookback distance. Hence, it is natural to impose 

the boundary condition that the asymptotically empty spacetime is replaced by the boundary condition 

that there is a mass shell at the lookback distance with radius equal to its own Schwarzschild radius and 

mass equal to the cosmic mass inside the lookback distance. 

 2 2 3

0 02 / 8 / 3S crR GM c G c R R   
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   The extended model of Minkowski spacetime is also relevant in connection with a point made several 

years ago by C. Møller [25+. He wrote that when one solves Einstein’s field equations in a rotating 

reference frame it is necessary to take account of the far away cosmic masses. However there was an 

exception for globally or asymptotic Minkowski spacetime, where there was no cosmic masses. In the 

extended model the Minkowski spacetime must be treated in the same way as any other spacetime. 

   In the spacetime inside the shell a centrifugal gravitational field appears in a reference frame rotating 

relative to the shell. An observer in a frame R rotating relative to the shell can maintain that the frame R 

does not rotate, and that it is the shell that rotates. His calculations would show that there is perfect 

dragging inside the rotating shell, and that this causes the centrifugal gravitational field. With this model 

of the Minkowski spacetime rotational motion is relative. Without the shell rotation is absolute.  

   Pfister [16] notes that the work of Einstein, Thirring and others, which conserved some aspects of the 

relativity of rotation in the model class of rotating mass shells, was often criticized for the asymptotic 

flatness of the exterior solution, instead of using cosmological boundary conditions. They should rather 

have been criticized for the asymptotic emptiness. In a model with flat space and cosmic mass producing 

perfect dragging, the mass must be represented by a cosmic shell, and this is a boundary condition 

making any exterior to the shell irrelevant.  

   Finally it may be mentioned that translational inertial dragging inside an accelerating shell has been 

investigated in the weak field approximation by Ø. Grøn and E. Eriksen [26]. They found that the inertial 

acceleration inside a shell with acceleration g , Schwarzschild radius SR  and radius R  is 

 

(34) 

 

Hence, according to this approximate calculation there is perfect translational dragging inside a shell 

with radius                          .   

     

9. Conclusion 

   The difference between an active and passive rotation is illustrated in Figure 1 (from Wikipedia). 

 
Figure 1. In the active transformation (left), point P moves relative to the coordinate frame to location P', while the 
coordinate frame remains unchanged, while in a passive transformation (right), point P is observed in two different 
coordinate frames. 
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   An active rotation of a bucket with water makes the surface of the water curved, while a passive 

rotation (of the reference frame) makes no difference to the surface. Does the difference between an 

active and a passive transformation mean that rotation is absolute? With the globally empty Minkowski 

spacetime it does. But with the extended model including a cosmic shell of matter, the answer is 

different. Rotation of the water relative to the cosmic shell makes the surface of the water curved. In 

the rest frame of the water this is due to perfect inertial dragging caused by the rotating cosmic shell. An 

active transformation changes the rotation of the water relative to the cosmic shell, while a passive 

transformation does not. Hence it is possible to decide by a local experiment whether a bucket with 

water rotates relative to the cosmic shell or not. But this is a relative acceleration. One is perfectly free 

to consider either the water as rotating and the cosmic shell as at rest, or the water as at rest and the 

cosmic shell as rotating. But without the cosmic shell one must consider the water with a curved surface 

as rotating. 
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