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Abstract 

Background:  Chronic fatigue syndrome (CFS) is a prevalent and disabling condition affecting adolescents. The 
pathophysiology is poorly understood, but immune alterations might be an important component. This study 
compared whole blood gene expression in adolescent CFS patients and healthy controls, and explored associations 
between gene expression and neuroendocrine markers, immune markers and clinical markers within the CFS group.

Methods:  CFS patients (12–18 years old) were recruited nation-wide to a single referral center as part of the Nor-
CAPITAL project. A broad case definition of CFS was applied, requiring 3 months of unexplained, disabling chronic/
relapsing fatigue of new onset, whereas no accompanying symptoms were necessary. Healthy controls having 
comparable distribution of gender and age were recruited from local schools. Whole blood samples were subjected 
to RNA sequencing. Immune markers were blood leukocyte counts, plasma cytokines, serum C-reactive protein and 
immunoglobulins. Neuroendocrine markers encompassed plasma and urine levels of catecholamines and cortisol, as 
well as heart rate variability indices. Clinical markers consisted of questionnaire scores for symptoms of post-exertional 
malaise, inflammation, fatigue, depression and trait anxiety, as well as activity recordings.

Results:  A total of 29 CFS patients and 18 healthy controls were included. We identified 176 genes as differentially 
expressed in patients compared to controls, adjusting for age and gender factors. Gene set enrichment analyses 
suggested impairment of B cell differentiation and survival, as well as enhancement of innate antiviral responses and 
inflammation in the CFS group. A pattern of co-expression could be identified, and this pattern, as well as single gene 
transcripts, was significantly associated with indices of autonomic nervous activity, plasma cortisol, and blood mono-
cyte and eosinophil counts. Also, an association with symptoms of post-exertional malaise was demonstrated.

Conclusion:  Adolescent CFS is characterized by differential gene expression pattern in whole blood suggestive of 
impaired B cell differentiation and survival, and enhanced innate antiviral responses and inflammation. This expres-
sion pattern is associated with neuroendocrine markers of altered HPA axis and autonomic nervous activity, and with 
symptoms of post-exertional malaise.
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Background
Chronic fatigue syndrome (CFS) is a long-lasting and dis-
abling condition characterized by disproportional fatigue 
after exertions, musculoskeletal pain, headaches, cogni-
tive impairments, and other symptoms [1, 2]. Adolescent 
CFS prevalence is estimated at 0.1–1.0% [3–5], and CFS 
may have detrimental effects on psychosocial and aca-
demic development [6], as well as family functioning [7].

The disease mechanisms of CFS remain poorly under-
stood, but some studies indicate modest immunological 
alterations, such as low-grade systemic inflammation 
and attenuation of NK cell function [8–10]. Furthermore, 
the reported beneficial effect of treatment with the anti-
CD20 antibody rituximab might suggest a role for B cells 
in the pathophysiology [11]. Studies of plasma cytokine 
levels have been inconclusive; findings include increased 
levels of interleukin (IL)-1 and tumor necrosis factor 
(TNF) [12], increased levels of IL-1α and IL-1β but nor-
mal levels of TNF [13], and no differences between CFS 
patients and healthy controls [14, 15].

Immune cell gene expression has been addressed by 
several studies over the last decade. However, the find-
ings do not give a consistent picture: Kerr and co-work-
ers reported differential expression of 88 genes in whole 
blood samples from CFS patients and healthy controls 
[16]. A similar pattern of gene expression was later found 
in two other CFS patient cohorts by the same research 
group [17]. From leukocyte samples, Light and co-work-
ers reported an increase in expression of genes that are 
related to sensory, adrenergic and immune system as a 
response to physical exercise in CFS patients but not in 
healthy controls [18]. A recent review concluded that 
there is a larger post-exercise increase in IL-10 and Toll-
like receptor 4 (TLR4) gene transcripts in CFS as com-
pared to healthy controls [19]. Restricting the analyses to 
gene expression from peripheral blood mononuclear cells 
(PBMC) correlated with multidimensional fatigue inven-
tory and depression scales, Fang and co-workers identi-
fied cytokine–cytokine receptor interaction as one of 
the most significant pathways [20]. Also studying PBMC, 
Gow and co-workers identified that the top upregulated 
genes are related to immunological processes [21]. On the 
other hand, a study of monozygotic twins discordant for 
CFS did not reveal any differences in whole blood gene 
expression [22], and it has been maintained that previ-
ously reported differences in gene expression were study-
specific and not useful for CFS diagnostic purposes [23]. 
Also, attempts of relating gene expression profiles to clini-
cal symptoms of CFS have had limited success [24]. For 
instance, Galbraith and co-workers investigated whole 
blood gene expression in three post-infective cohorts; 63 
genes were identified as differentially expressed, but there 
were no consistent associations to clinical symptoms [25].

The reasons for these discrepancies may partly be due 
to the multifactorial nature of CFS, which may obscure 
direct correlations with molecular observations. The 
complex regulation of transcription, post transcriptional 
control and RNA metabolism may also prompt variability 
in gene expression studies; hence mRNA measurements 
are not always linearly correlated with targeted functional 
proteins in biological samples at varying time-points.

In addition to immune changes, some studies have 
found that CFS disease mechanisms are characterized 
by neuroendocrine alterations including enhanced sym-
pathetic and attenuated parasympathetic cardiovascular 
nervous activity [26–29] and attenuation of the hypo-
thalamus–pituitary–adrenal axis (HPA axis) [30–32]. 
These phenomena might be causally related. The com-
plex immune influence exerted by glucocorticoids has 
been recognized for decades [33]; more recently, ample 
evidence suggests that both parasympathetic and sym-
pathetic nervous activity promotes immunomodulation 
[34–36]. Accordingly, the “sustained arousal” model of 
CFS suggests that the observed immune alterations are 
secondary to the neuroendocrine alterations [37]. This 
hypothesis received some support from the observation 
that treatment of adolescent CFS patients with low-dose 
clonidine, which attenuates sympathetic and enhanced 
parasympathetic nervous activity through central mecha-
nisms [38], caused a significant reduction in serum levels 
of C-reactive protein (CRP) [39].

To the best of our knowledge, no previous study has 
addressed whole blood gene expression in adolescent 
CFS patients, who are less burdened by comorbidity and 
aging processes and presumably more homogeneous 
than adult patients. Nor do we know of any study using 
high throughput sequencing (HTS) for gene expression 
analyses in CFS. Furthermore, no previous study has 
explored associations between neuroendocrine mark-
ers and gene expression in CFS. Thus, the aim of this 
exploratory study was twofold: (a) To map whole blood 
differential gene expression in adolescent CFS patients 
and healthy controls, and (b) To explore the associations 
between gene expression and neuroendocrine markers, 
immune markers and clinical markers within the CFS 
group.

Methods
CFS patients
This study is part of the NorCAPITAL-project (The 
Norwegian Study of Chronic Fatigue Syndrome in Ado-
lescents: Pathophysiology and Intervention Trial; Clini-
calTrials ID: NCT01040429). Details of the recruitment 
procedure and inclusion/exclusion criteria are described 
elsewhere [39]. Briefly, all hospital paediatric depart-
ments in Norway (n  =  20), as well as primary care 
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paediatricians and general practitioners, were invited 
to refer CFS patients aged 12–18 years consecutively to 
our study center. A standard form required the referral 
unit to confirm the result of clinical investigations con-
sidered compulsory to diagnose pediatric CFS according 
to national Norwegian recommendations. Exclusion cri-
teria encompassed somatic and psychiatric co-morbidity, 
pharmaceutical usage (including hormone contracep-
tives) and being bed-ridden. Patients considered eligible 
to this study were summoned to a clinical encounter at 
our study center after which a final decision on inclusion 
was made.

In agreement with clinical guidelines [2, 40] and previ-
ous studies from our group [27–29], we applied a ‘broad’ 
case definition of CFS, requiring 3  months of unex-
plained, disabling chronic/relapsing fatigue of new onset. 
We did not require that patients meet any other accom-
panying symptom criteria.

Healthy controls
A group of healthy controls with a comparable distribu-
tion of gender and age were recruited from local schools. 
Controls were not matched to cases on any variable. No 
chronic disease and no regular use of pharmaceuticals 
(including hormone contraceptives) were allowed.

Study design and ethics
A 1-day in-hospital assessment included clinical exami-
nation and blood sampling and always commenced 
between 7.30 and 9.30 a.m. All participants were 
instructed to fast overnight and abstain from tobacco 
products and caffeine for at least 48 h. The participants 
were instructed to apply an ointment containing the local 
anesthetic lidocaine (Emla®) on the skin in the antecubi-
tal area 1 h in advance. After at least 5 min supine rest 
in calm surroundings, blood samples were obtained in 
a fixed sequence from antecubital venous puncture. A 
questionnaire was completed after the clinical encounter 
and returned in a pre-stamped envelope.

Data were collected in the period from March 2010 
until October 2012. The NorCAPITAL project has been 
approved by the Norwegian National Committee for Eth-
ics in Medical Research and the Norwegian Medicines 
Agency. Written informed consent was obtained from 
all participants and from parents/next-of-kin if required. 
Details of the design are reported elsewhere [39].

Gene expression profiling by RNA sequencing
Whole blood samples (3  mL) at baseline were collected 
and stored according to the protocol of the Invitro-
gen Tempus stabilizing reagents (Applied Biosystems, 
Thermo Fischer Scientific, Waltham, MA, USA). Total 
RNA was extracted using the Tempus Isolation kit 

according to manufacturer’s manual with the exception 
that 2  mL out of the 9  mL mixture of whole blood and 
reagent were extracted using a modified protocol where 
3 mL blood was mixed well with 6 mL Invitrogen Tem-
pus reagent and 2 mL of the mixture was used for RNA 
isolation. Removal of globin RNA was performed using 
the Human GLOBINclear kit (Ambion Inc., Texas, USA). 
The RNA sample quality was analyzed using the Lab-
on-a-Chip Agilent RNA Nano kit (Agilent, Santa Clara, 
USA) and the Agilent 2100 Bioanalyzer platform. RNA 
samples with RNA integrity number (RIN) value ≥7 
were used for gene expression characterization by RNA 
sequencing (RNA-Seq) at the Genomics Core Facilities at 
the Oslo University Hospital Radiumhospitalet, Norway. 
RNA library preparation and sequencing were performed 
according to the HiSeq 2500 Illumina protocol for 101 bp 
single-end strand-specific sequencing (Illumina Inc., San 
Diego, CA, USA). 130 ng of Globin depleted RNA from 
each sample was converted into a cDNA library using 
the RiboZero Gold and TruSeq Stranded mRNA Sample 
Prep Kit (Illumina Inc., San Diego, CA, USA). A total of 
15–35 million reads were generated per sample.

Transcriptome alignment and gene expression 
quantification
Raw RNA reads from Illumina sequencing were assessed 
by the fastQC tool [41] to assess sequence quality per 
base, quality scores per sequence, sequence and GC con-
tent per base, sequence length distribution, sequence 
duplication levels, Kmer content and overrepresented 
sequences (which also detected the presentation of ribo-
somal contamination). Adapter contamination elimina-
tion and reads trimming were conducted by the fastx 
toolkit [42].

All reads that passed QC assessment were mapped to 
the human genome version GRCh38.p2 by STAR [43]. 
To investigate the level and uniformity of the read cover-
age against the human genome, we plotted mapped reads 
against all human chromosomes using the SeqMonk soft-
ware [41].

Statistics for differential expression analyses were per-
formed using Bioconductor tools [44] in the R environ-
ment version 3.1.2. Gene expression abundance was 
quantified by the Subread package [45] at the gene level. 
Normalization of raw read quantification and removal 
of variation before differential expression analyses were 
processed following RUVg method [46]. Differentially 
expressed genes (DEG) between CFS patients and con-
trols were identified using DESeq2 package [47]. In order 
to correct for possible confounding background fac-
tors, age groups as scaling factor and gender input were 
included in the design model of DESeq2. For each DEG, a 
p value cut off ≤0.10 after multiple-testing adjustment by 
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Benjamini–Hochberg [False Discovery Rate (FDR) 10%] 
was applied, in accordance with the DESeq2 workflow.

A heatmap of samples distance was constructed by 
clustering distance matrix from logarithm 2 transformed 
values of count data [48] using the pheatmap package of 
Bioconductor. Hierarchical clustering of 100 top DEGs 
was performed using genefilter and pheatmap packages 
of Bioconductor in order to measure the deviation of 
expression value of each sample from the average expres-
sion across all samples. The purpose is to build blocks of 
genes that co-vary across different samples, and cluster-
ing the amount by which each gene deviates in a specific 
sample from the gene’s average across all samples.

Validation of differentially expressed genes
To validate some of the genes from the DEG list, RT-qPCR 
was performed on the RNA material subjected to sequenc-
ing. Specific primers for each target gene were designed as 
to establish RT-qPCR conditions for each DEG individu-
ally (Additional file 1: Table S1). RNA was converted into 
cDNA by High-Capacity cDNA Reverse Transcription 
Kit (Life Technologies, Carlsbad, CA, US). Five nanogram 
cDNA was tested in duplicate reaction on a 7900 HT real-
time machine (Applied Biosystems, Foster City, California, 
USA), using the Evagreen Sso Fast Master mix (Biorad 
Laboratories, CA, USA). The relative expression levels of 
each DEG were calculated by the 2ΔΔCt method and were 
normalized to the GAPDH reference gene.

Downstream data analysis
Functional annotation of genes obtained from DESeq  2 
was done by uploading all DEGs into HumanMine [49]. 
Network visualization and Functional Enrichment Analy-
sis was conducted through Cytoscape software 3.3. and 
ClueGO 2.3.2 [50]. Log2 of fold change of the expression 
value (after normalization) was imported into QIAGEN 
Ingenuity Pathways Analysis (IPA) for an Upstream Tran-
scriptional Factor analysis as well as a mechanistic net-
work enrichment analysis.

Previous analyses of whole blood gene expression 
in CFS patients [51] as well as healthy individuals [52] 
have revealed that co-expression of genes is a common 
phenomenon. Such co-expression might be the effect of 
neuroendocrine signaling initiating a specific expression 
pattern; this is in line with the “sustained arousal”-model 
of CFS [37]. Furthermore, a certain pattern of co-expres-
sion might be associated with specific clinical phenom-
ena. To explore different axis of co-expression and reduce 
dimensionality in the present study, a factor analyses 
[principal component analysis (PCA) featuring varimax 
rotation] was applied to the DEG dataset (RNA-Seq nor-
malized counts), in line with previous reports [51, 52]. 
Thereafter, the associations between factor scores and 

immune, neuroendocrine and clinical markers (cf. below) 
were explored using correlation and regression analyses. 
Similar association studies were also performed for some 
selected single gene transcriptional counts. In all these 
analyses, a p ≤  0.05 was considered statistically signifi-
cant; no adjustment for multiple testing was performed.

Immune markers
Serum samples from 21 CFS patients and 18 controls 
were used to identify levels of immunoglobulins. The 
immunoglobulin classes IgA, IgE, IgM and the four IgG 
subclasses IgG1, IgG2, IgG3 and IgG4 in serum were meas-
ured using Luminex bead-based multiplex technology 
with reagents from the Procartaplex Immunoassay (Affy-
metrix eBioscience, San Diego, USA). The concentration 
of each sample was determined by plotting the expected 
concentration of standards against fluorescence intensity. 
Data analysis was performed using Procartaplex Analyst 
1.0 and normalization was based on the best curve fit of 
standards curve.

The serum concentration of C-reactive protein (CRP) 
was analyzed as described previously [39]. Blood samples 
for analyses of IL-1β, IL-6 and TNF were placed on ice; 
plasma was separated by centrifugation (2500×g, 10 min, 
4  °C) and frozen at −80  °C until assayed using a multi-
plex cytokine assay (Bio-Plex Human Cytokine 27-Plex 
Panel; Bio-Rad Laboratories Inc., Hercules, CA, USA) as 
described elsewhere [15]. Hematology and biochemistry 
routine assays were performed at the accredited labora-
tory at Oslo University Hospital, Norway.

Neuroendocrine markers
As outlined in detail elsewhere [32], blood samples 
for plasma norepinephrine (NE) and epinephrine (E) 
were placed on ice; thereafter, plasma was separated 
by centrifugation (2250×g, 15  min, 4  °C) and assayed 
by high-performance liquid chromatography (HPLC) 
with a reversed-phase column and glassy carbon elec-
trochemical detector (Antec, Leyden Deacade II SCC, 
Zoeterwoude, The Netherlands) using a commercial kit 
(Chromsystems, München, Germany). Plasma cortisol 
level was determined by routine assays at the accredited 
laboratory at Oslo University Hospital, Norway. Morning 
spot urine samples for NE and E analyses were acidified 
to pH 2.5 immediately after collection, and assayed with 
the same HPLC protocol as for plasma measurements 
[32]. Morning spot urine free cortisol (non-conjugated 
cortisol) was assayed by solid phase competitive lumi-
nescence immunoassay (LIA) (type Immulite® 2000, Sie-
mens Healthcare Diagnostics, NY, USA). The urine levels 
of creatinine were analyzed using standard automatic 
analyzer techniques at the accredited laboratory at Oslo 
University Hospital, Norway.
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Indices of heart rate variability (HRV) were obtained 
from ECG recordings of participants laying in a horizon-
tal position and connected to the Task Force Monitor 
(TFM) (Model 3040i, CNSystems Medizintechnik, Graz, 
Austria). Methodological details are provided elsewhere 
[53]. Power spectral analysis of HRV was automatically 
provided by the TFM, returning numerical values for 
Low Frequency (LF) power (0.05–0.17  Hz), High Fre-
quency (HF) power (0.17–0.4  Hz) and the LF/HF ratio. 
In addition, the time-domain index RMSSD (the square 
root of the mean square differences of successive RR-
intervals) was computed. RMSSD and HF power are both 
considered indicative of parasympathetic heart rate mod-
ulation; LF power reflects the combined effect of sympa-
thetic and parasympathetic heart rate control, whereas 
the LF/HF ratio is an index of sympathetic/parasympa-
thetic balance [54].

Clinical markers
A CFS symptom inventory for adolescents assesses the 
frequency of 24 common symptoms during the preced-
ing month, as has been described elsewhere [39]. Briefly, 
each symptom is rated on a 5-point Likert scale, rang-
ing from ‘never/rarely present’ to ‘present all the time’. A 
composite score reflecting inflammatory symptoms was 
generated by taking the arithmetic mean across three 
single items (fever/chills, sore throat, and tender lym-
phatic nodes) and a composite score reflecting symptoms 
of post-exertional malaise was generated by taking the 
arithmetic mean across two single items (post-exertional 
fatigue and non-refreshing sleep). For both variables, 
the total range is from 0 to 5; higher scores imply more 
severe symptom burden.

The Chalder Fatigue Questionnaire (CFQ) total sum 
score is applied in the present study [55]; total range is 
from 0 to 33, where higher scores imply more severe 
fatigue. The Mood and Feelings Questionnaire (MFQ) 
consists of 34 items, each scored on a 0–2 Likert scale; 
thus, the total sum score is from 0 to 68 [56]. The Spiel-
berger State-Trait Anxiety Inventory subscore reflecting 
trait anxiety is derived from the sum across 20 items; 
total range is from 20 to 80 [57]. The activPAL accelerom-
eter device (PAL Technologies Ltd, Glasgow, Scotland) 
was used for monitoring of daily physical activity during 
7 consecutive days [58], as described elsewhere [39].

Results
Participants
RNA was extracted from a sub-cohort of the NorCAPI-
TAL study and a total of 60 samples with RIN value ≥7 
were subjected to RNA sequencing. After removing 
ribosomal contamination and bad quality reads from 
the RNA-Seq experiment, a random sample of 29 CFS 

patients and 18 healthy controls (a total of 47, mean RIN 
value = 7.67) were analyzed further for differential gene 
expression quantification in the present study.

The background characteristics of the two groups are 
given in Table  1. In line with previously reported find-
ings from the NorCAPITAL project [39], plasma norepi-
nephrine, plasma epinephrine, and urine norepinephrine 
were significantly higher in the CFS group, as were scores 
of symptoms of post-exertional malaise, inflammation, 
fatigue, depression, and trait anxiety. The number of steps 
per day was significantly lower in the CFS group. Overall, 
the values of the different variables in the present study 
are comparable to the values pertaining to the entire Nor-
CAPITAL cohort (Additional file 2: Table S2), except for 
urine cortisol/creatinine ratio (for which there was no 
across-group difference in the present study but lower 
among CFS patients in the entire NorCAPITAL cohort).

Differentially expressed genes in whole blood 
between CFS patients and healthy controls
RNA-Seq produced 18–45  ×  106 single end reads per 
sample, which was previously reported to be sufficient 
for transcriptome quantification [59]. The rate of unique 
mapping into the reference genome was 80–92%, with 
50% reads mapped to exons. A percentage of the reads 
(3–5%) were found to be mapped to ribosomal RNAs. 
Multiply mapped reads, reads mapped to the sense 
strands and reads mapped to exon–exon boundaries 
were not counted. As might be expected from the inher-
ent heterogeneity of whole-blood gene expression, there 
was no evident subgrouping between either patients or 
controls in our gene expression data before normaliza-
tion. This is illustrated in Fig.  1a where the individual 
samples are distant from one another.

Normalization and differential expression analysis, with 
correction for age and gender factors, detected a total of 
176 genes that were differentially expressed between CFS 
patients and healthy controls (adjusted p < 0.10) (Addi-
tional file 3: Table S3). The robustness of DEGs after nor-
malization was confirmed by good separation between 
the CFS and control groups through principal compo-
nent analysis (Fig. 1b) and by plotting regular log expres-
sion values compared with median of log expression 
across all samples (Fig. 1c).

Of the 176 DEGs, 137 were upregulated and 37 were 
downregulated (Fig.  2a, b; Additional file  3: Table S3). 
This corresponds to an observation of 78% of the DEGs 
being up-regulated in CFS patients as compared to 22% 
of the genes having a down-regulated transcriptional 
pattern compared to healthy controls. Although sig-
nificant, the differences in normalized expression levels 
were small, ranging from 0.8- to 1.25-fold (linear scale) 
(Table  2; Additional file  3: Table S3). Among the 176 
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differentially expressed genes we observed nuances of 
expression both within the groups as well as between the 
two groups (Fig. 2b).

A total of 12 genes were selected for further examina-
tion featuring RT-qPCR (Fig. 3). Because of the explora-
tory nature of this study, we wanted these selected genes 

Table 1  Background characteristics of  the chronic fatigue syndrome (CFS) group and  the healthy control (HC) group 
in the present study

Italics indicate a statistically significant p-value

n/a not applicable, SD standard deviation, IQR interquartile range, RMSSD square root of the mean squared differences of subsequent RR-intervals in the ECG, LF low-
frequency power of heart rate variability, HF high-frequency power of heart rate variability
a  Cf. Ref. [88]
b  Cf. Ref. [89]
c  In the present study, no data were obtained from the healthy control group
d  In the present study, data were obtained from eight healthy controls only
e  Based upon t test, Mann–Whitney test or Fisher exact test as appropriate

CFS group (n = 29) HC group (n = 18) p valuee

Background markers

 Female gender. Number, % 18 62 11 61 0.948

 Scandinavian ethnicity. Number, % 29 100 17 95 0.383

 Age (years). Mean, SD 15.1 1.4 14.7 1.4 0.335

 Body mass index (kg/m2). Mean, SD 20.2 3.4 19.4 1.9 0.317

 Disease duration (months). Median, range 12 4–60 n/a

 Adheres to the Fukuda criteria of CFSa. Number, % 20 69 n/a

 Adheres to the Canada 2003-criteria of CFSb. Number, % 11 38 n/a

Immune markers

 Blood leukocytes (cells × 109/L). Mean, SD 6.0 2.0 5.5 1.0 0.370

 Blood neutrophils (cells × 109/L). Mean, SD 3.1 1.6 2.8 0.7 0.462

 Blood lymphocytes (cells × 109/L). Mean, SD 2.2 0.7 2.1 0.5 0.626

 Blood monocytes (cells × 109/L). Mean, SD 0.48 0.19 0.42 0.10 0.146

 Blood eosinophils (cells × 109/L). Mean, SD 0.18 0.11 0.17 0.07 0.787

 Blood basophils (cells × 109/L). Mean, SD 0.02 0.04 0.02 0.04 0.681

 Serum C-reactive protein (mg/L). Median, IQR 0.40 0.89 0.32 0.28 0.405

 Plasma interleukin-1β (pg/mL). Mean, SD 3.0 2.1 2.3 1.5 0.223

 Plasma interleukin-6 (pg/mL). Mean, SD 10.0 7.5 7.2 4.3 0.158

 Plasma tumor necrosis factor (pg/mL). Mean, SD 63 40 47 29 0.161

Neuroendocrine markers

 Plasma norepinephrine (pmol/L). Mean, SD 2067 835 1530 358 0.004

 Plasma epinephrine (pmol/L). Mean, SD 362 131 284 74 0.012

 Plasma cortisol (nmol/L). Mean, SD 334 151 349 202 0.782

 Urine norepinephrine/creatinine ratio (nmol/mmol). Mean, SD 14.5 6.5 10.9 3.6 0.033

 Urine epinephrine/creatinine ratio (nmol/mmol). Mean, SD 1.7 1.1 1.6 0.9 0.657

 Urine cortisol/creatinine ratio (nmol/mmol). Median, IQR 4.4 3.3 4.5 2.8 0.605

 Heart rate variability, RMSSD (ms). Mean, SDc 83 50 n/a

 Heart rate variability, LF power (abs). Median, IQRd 541 1068 844 1729 0.445

 Heart rate variability, HF power (abs). Median, IQRd 919 2557 1009 1414 0.666

 Heart rate variability, LF/HF-ratio. Mean, SDd 0.83 0.59 0.90 0.41 0.774

Clinical markers

 Inflammatory symptoms (total score). Mean, SDd 2.1 0.8 1.3 0.5 0.010

 Symptoms of post-exertional malaise (total score). Median, IQRd 4.0 1.5 1.0 0.4 <0.001

 Chalder fatigue questionnaire (total score). Mean, SDd 20.4 5.2 6.8 4.9 <0.001

 Moods and feelings questionnaire (total score). Mean, SDd 20.6 10.8 3.9 3.8 <0.001

 Spielberger state-trait anxiety questionnaire (trait subscore). Mean, SDd 46 9.1 32 3.2 <0.001

 Steps per day (number). Mean, SDd 4698 2622 11,282 4670 0.005
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(See figure on next page.) 
Fig. 2  a Volcano plot showing the alignment between DESeq p values versus log2 fold changes of CFS patients against healthy controls. Red points 
indicate DEGs with a log2 fold change >0.2 and p < 0.0016 (Table 2). b Hierarchical clustering of all 176 differently expressed genes. The heatmap 
was constructed based on the deviation of gene expression levels of individual sample from averaged gene expression across all samples (Table 2). 
The color code for variance value is shown in the upper right corner of the panel

(See figure on previous page.) 
Fig. 1  a Hierarchal clustering of all 47 samples based on the rlog value [48]. The color density at the top right panel reflects the Euclidean distance. P 
CFS patients, C healthy controls. b Output of variation removal of our RNA-Seq data using RUVSeq. principle component analysis (PCA) is performed 
without using any differently expressed genes, and demonstrates relatively good separation between CFS patients (orange) and healthy controls 
(green). c Relative log expression (RLE) plot shows the distribution of read counts across all samples centered around zero. The y axis corresponds to 
the deviation of each RLE per gene per sample compared to median RLE over all samples (x axis). (CFS patients orange. Healthy controls green)

to be as representative as possible for the RNA-Seq 
results as a whole: Three genes are related to B cells dif-
ferentiation/survival (CD79A, FTL3) and B cell malignan-
cies (BCL7A); in addition, these three genes are among 
the most under-expressed in the CFS group. Two genes 
are related to IL1 and IL17 signaling pathways (IL1RN 
and GLRX1, respectively). Two genes are annotated to 
inflammatory responses (NAMPT, CASP1). Three genes 
are related to innate antiviral defense (APOBEC3A, IFI16, 
PLSCR1). The final two genes (HK3, KCJN5) are the two 
most over-expressed in the CFS group. Ten of the tran-
scripts were found to be differentially expressed in the 
same direction as in the RNA seq experiments; for three 
of the transcripts (APOBEC3A, PLSCR1, IL1RN), the 
fold change differences were statistically significant or 
close to the level of significance (p = 0.0005, p = 0.0489, 
p =  0.0507, respectively, Mann–Whitney test). The fold 
changes measured between CFS patients and healthy 
controls were moderate, which is in accordance with the 
RNA-Seq data.

Gene set enrichment analyses performed using Gene 
Ontology annotation by HumanMine and independent 
filtering, suggested that a large fraction of the DEGs (34 
out of 176) were related to the immune system (Table 2). 
Five of the genes that were most down-regulated in the 
CFS group are associated with B cell differentiation and 
survival (Fig. 4, cf. above): FLT3 (encoding FLT3, a tyros-
ine kinase), EBF1 (encoding EBF, 1 early B cell factor 1), 
CD79A (encoding Igα, a co-molecule of the membrane 
bound B cell receptor (BCR) complex), CXCR5 (encod-
ing CXCR5, a chemokine receptor), and TNFRSF13C 
(encoding BAFFR, a receptor for B cell activating factor). 
Conversely, many of the genes that we found to be upreg-
ulated in CFS have a role in innate immunity and inflam-
mation. Prominent examples include CASP1 (encoding 
caspase 1), CLEC2B (encoding activation-induced C-type 
lectin), PLSCR1 (encoding phospholipid scramblase 1), 
IFI16 (encoding gamma-interferon-inducible protein 16), 

PDE1B (encoding cyclic nucleotide phosphodiesterase), 
IRF9 (encoding interferon regulatory factor 9), TLR8 
(encoding toll-like receptor 8), and APOBEC3A (encod-
ing a DNA editing enzyme).

Downstream data analysis
Functional enrichment by ClueGO and visualization by 
Cytoscape identified a network of genes related to viral 
genome replication in the CFS group. Also, a down-
stream biological analysis using Ingenuity Pathway Anal-
yses (IPA) confirmed that genes that are important for B 
cell differentiation and survival were down-regulated in 
the CSF patients. A search in IPA for mechanistic net-
work enrichment of the upstream transcriptional regu-
lators identified three top genes (Additional file 4: Table 
S4). The top upstream regulator identified was IRF7, 
which has functional couplings with STAT3 or STAT6 
through TNF and IFN respectively [60]. The others were 
transcription factors: SPI1 encodes a protein involved 
in myeloid and B cell lymphoid development, whereas 
STAT6 encodes STAT6, which is activated by IL-4 and 
IL-13 and is important in signal transduction in many 
immune cells.

Immunoglobulin classes and subclasses in CFS patients 
and healthy controls
As the DEGs suggested possible effects on B cell differen-
tiation and survival among CFS patients, immunoglobu-
lin classes and the IgG subclasses were analyzed across 
the two groups. Measurements of all immunoglobulin 
isotype fell within the linear range of the standard curve, 
except for one control sample in which IgG3 concentra-
tion was higher than the upper limit of detection. There 
were no across group differences among the serum lev-
els of IgG1, IgG2, IgG3, IgG4, IgA, IgE, and IgM. Further 
characterization of B cell function in CFS could not be 
pursued, as viable PBMC that could be used for stimula-
tion experiments were unavailable.
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Fig. 3  RT-qPCR results of 12 selected transcripts. CFS patients and controls are plotted on the x axis and relative fold change difference normalized 
against GAPDH is plotted on the y axis. For three transcript, the differential expression between patients and controls were below or close to the 
level of significance (APOBEC3A, p = 0.0005; PLSCR1, p = 0.0498; IL1RN, p = 0.0507)
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Co‑expression of genes and associations with immune, 
neuroendocrine and clinical markers within the CFS group
The principal component analyses (PCA) of all DEGs in 
the CFS group revealed that a 4-factor structure would 
account for 70% of the total variation. Inspection of 
the factor loadings revealed that several of the immune 
process annotated genes that were most differentially 
expressed across groups (including genes related to B cell 
differentiation and survival, and innate immunity) loaded 
on one factor (Additional file  5: Table S5), suggesting a 
possible co-expression pattern. Therefore, this factor, 
labelled “Factor 3” in the following, was selected for fur-
ther explorative analyses.

In bivariate correlation analyses, factor 3 correlated 
positively with serum CRP-levels, granulocyte and mono-
cyte count, plasma cortisol levels and indices of sympa-
thetic nervous activity. There was a negative correlation 
with eosinophil count and indices of parasympathetic 
nervous activity. Finally, there was a slight association 
to symptoms of post-exertional malaise (p =  0.05), but 
not to any other clinical markers, including symptoms of 
depression and anxiety as well as physical activity (steps 
per day).

Based on results from bivariate correlation analyses as 
well as theoretical considerations, a multiple regression 

model was explored. The final model explained 67% of 
Factor 3 total variance (Fig. 5). LF/HF ratio (an index of 
sympathetic vs parasympathetic balance), blood mono-
cyte count, and plasma cortisol levels were positively 
associated with Factor 3, whereas blood eosinophil count 
was negatively associated with Factor 3. Furthermore, 
LF/HF ratio was positively associated with blood mono-
cyte count.

Associations of individual transcripts with immune, 
neuroendocrine and clinical markers within the CFS group
To further explore associations between gene expres-
sion and immune, neuroendocrine and clinical mark-
ers, transcripts that loaded on Factor 3 and in addition 
were annotated to immune processes (cf. Table  2) 
were selected. Three of the selected genes (CD79A, 
TNFRSF13C, CXCR5) are related to B cell differentiation 
and survival; they loaded negatively on Factor 3 (Addi-
tional file 5: Table S5) and were also less expressed in the 
CFS group. Three other genes (CASP1, PLSCR1, IFI16) 
are related to regulation of innate immune responses; 
they loaded positively on Factor 3 and were also overex-
pressed in the CFS group.

The transcript of all the three genes related to B cell dif-
ferentiation and survival tended to correlate negatively 

Fig. 4  The RNA-Seq identified five down-regulated genes encoding proteins associated with B cell differentiation and survival. FLT3 encodes FLT3 
(fms-related tyrosine kinase 3), which is important during the very early stages of differentiation in the bone marrow of the hematopoietic stem 
cell into the Pro-B cell. EBF1 encodes EBF (early B-cell factor 1), which is important during all stages of B cell differentiation except for the plasma 
cell. CD79A encodes Igα (immunoglobulin-associated alpha), which is a co-molecule in the membrane bound Pre-BCR and the BCR, and ensures 
a functional receptor. TNFRSF13C encodes BAFFR (B-cell activating factor receptor), which is important for the peripheral B cells to receive survival 
signal. CXCR5 encodes CXCR5 [chemokine (C-X-C motif ) receptor 5], which ensures that matured B cells migrate to B cell follicles of the spleen and 
Peyer patches. Assuming that the down-regulation of these genes is reflected at the protein and pathway level, our data suggest that the efficiency 
of B cell differentiation is impaired and that their survival is reduced in the CFS. HSC hematopoietic stem cell, BCR B cell receptor, B B cell, Ig immuno-
globulin
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B=2.1 
p=0.007

B=-2.7 
p=0.019

B=0.002 
p=0.019R2=0.67

B=0.60 
p=0.011

B-NeuB-Mono B-Eos

P-Cort U-EpiRMSSDLF/HF

Factor 3 from PCA

B=0.12 
p=0.038R2=0.15

Fig. 5  Multiple regression model on the associations between neuroendocrine markers (upper row), immune markers (middle row) and co-expres-
sion of genes as captured in Factor 3 from a principal component analysis (lower row). LF/HF, B-Mono, B-Eos and P-Cort are all independently and 
significantly associated with Factor 3, explaining 67% of the total variance. For LF/HF, B-Mono and P-Cort, the association is positive; for B-Eos the 
association is negative. In addition, LF/HF is significantly associated with B-Mono. P plasma, U urine, B blood, LF/HF low-frequency/high-frequency 
power of heart rate (an index of sympathetic vs parasympathetic balance), RMSSD square root of the mean squared differences of subsequent 
RR-intervals (an index of parasympathetic activity), Cort cortisol, Epi epinephrine, Mono monocytes, Eos eosinophils, Neu neutrophils, PCA principal 
component analysis, B regression coefficient (unstandardized), R2 explained variance of the dependent variable in the multiple regression model

with blood neutrophil count, blood monocyte count, 
serum CRP, plasma cortisol, LF/HF ratio and symptoms 
of post-exertional malaise, and positively with blood 
eosinophil count and RMSSD (Additional file  6: Table 
S6). An opposite pattern was observed for the three 
genes related to innate immunity; in addition they were 
positively associated with urine epinephrine, but not 
with clinical symptoms. In multiple regression models, a 
homogeneous picture was observed regarding the three 
B cell related transcripts (Fig. 6a): there was a significant 
negative association to plasma cortisol levels and a sig-
nificant positive association to blood monocyte count, 
which in turn was positively associated with LF/HF ratio. 
For the transcripts related to innate immunity, the pic-
ture was more heterogeneous (Fig. 6b), but all were nega-
tively associated with eosinophil count and positively 
associated with plasma cortisol and urine epinephrine 
levels.

Discussion
The main findings of this study are: (a) A total of 176 
genes are differentially expressed in whole blood across 
adolescent CFS patients and healthy controls after 
adjusting for age and gender differences (FDR 10%); in 
CFS, there is down-regulation of genes related to B cell 
differentiation and survival, and upregulation of genes 
related innate antiviral responses and inflammation. (b) 
Within the CFS group, the differentially expressed genes 
are associated with neuroendocrine markers of altered 

HPA-axis and autonomic nervous activity, as well as with 
symptoms of post-exertional malaise.

The down-regulated genes related to B cell differentia-
tion and survival included the genes mentioned above: 
EBF1, CD79A, CXCR5, TNFRSF13C, and FLT3. The FLT3 
protein acts as a cell-surface receptor and is a regulator 
for the differentiation, proliferation and survival of B cell 
progenitor cells in the bone marrow [61]. The EBF1 pro-
tein is a transcription factor that is expressed in B cells 
at all stages of their differentiation except for fully differ-
entiated plasma cells [62]. The Igα encoded by CD79A is 
a co-molecule of the BCR complex and ensures that the 
signal cascade for recognition of antigen is sent. This is 
necessary for internalization of the BCR-antigen com-
plex and further processing and presentation of anti-
gen peptides on the B cell surface [63]. The chemokine 
receptor CXCR5 is important for migration of B cells 
into secondary lymphoid organs [64]. The B cell activat-
ing factor receptor (BAFFR) encoded by TNFRSF13C 
enhances mature B cell survival and controls peripheral B 
cell population [65]. Taken together, our data suggest that 
the efficiency of B cell differentiation is impaired and that 
their survival is reduced in the CFS patients (Fig. 4).

As for upregulated innate immunity genes, a number 
was related to viral defence mechanisms. APOBEC3A 
was enriched in the negative regulation of viral genome 
replication together with PLSCR1 and FAM111A (a 
chromatin-associated DNA clamp required for prolifer-
ating cell nuclear antigen loading on replication sites). 
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The enzyme encoded by APOBEC3A deaminates foreign 
DNA as part of viral clearance [66], whereas phospho-
lipid scramblase 1 (encoded by PLSCR1) was observed to 
play a role in enhancement of IFN response and increase 
expression of antiviral genes in mice [67]. This network 
was in turn connected to IFI16, Gamma-interferon-
inducible protein 16, which is a sensor for intracellu-
lar DNA and a mediator of IFN induction. Other genes 
that were found to be related to IFN signaling were the 
genes encoding interferon regulatory factor 9 (IRF9) and 
TLR8. The Interferon regulatory factor 9 is a component 

of the interferons stimulated gene factor 3 complex that 
is involved in positive regulation of type I interferon gene 
[68]. TLR8 is an endosomal receptor which acts against 
foreign ssRNAs by intracellular signalling through NF-κB 
or IRF7 pathways [69].

Other upregulated innate immunity genes were related 
to inflammation: Caspase 1 (encoded by CASP1), having a 
central role in the formation of inflammasomes and other 
inflammatory-related responses [70]; activation-induced 
C-type lectin (encoded by CLEC2B), which promote 
the cross-talk between monocytes and NK-cells [71];  

Fig. 6  Multiple regression models on the associations between neuroendocrine markers, immune markers and single gene transcripts within the 
CFS group. a Three genes related to B cell differentiation and survival, with negative loadings of Factor 3 and down-regulated expression in the CFS-
group as compared to healthy controls. b Three genes related to innate immunity, with positive loadings of Factor 3 and up-regulated expression 
in the CFS group as compared to healthy controls. P plasma, U urine, B blood, LF/HF low-frequency/high-frequency power of heart rate (an index of 
sympathetic vs parasympathetic balance), RMSSD square root of the mean squared differences of subsequent RR-intervals (an index of parasym-
pathetic activity), Cort cortisol, Epi epinephrine, Mono monocytes, Eos eosinophils, Neu neutrophils, PCA principal component analysis, B regression 
coefficient (unstandardized), R2 explained variance of the dependent variable in the multiple regression model
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and cyclic nucleotide phosphodiesterase encoded by 
PDE1B, which is important for the cellular response to 
granulocyte macrophage colony-stimulating factor [72].

Down-regulation of genes important for B cell differ-
entiation and survival in CFS, as suggested by the pre-
sent study, comply with a previous CFS studies: Recently, 
increased levels of the B lymphocyte activating factor of 
the tumor necrosis family (BAFF) was reported in adults 
with CFS [73]. We speculate that this might be a com-
pensatory mechanism as BAFF is a ligand for BAFFR 
encoded by TNFRSF13C, which is one of the most sup-
pressed genes among CFS patients in the present study. 
Taken together, these results might indicate a role for 
B cells in CFS pathophysiology, as is supported from 
studies of cellular immunology: Brenu and co-workers 
reported a decrease in immature B cells and an increase 
in memory B cells among CFS patients [74], whereas 
Bradley and co-workers [75] and Mensah and co-work-
ers [76] found subtle distortions in the proportion of B 
cell subsets. Alterations of immunoglobulin levels in CFS 
have also been reported [77], but was not identified in the 
present material, which is not surprising given the strong 
propensity of compensatory mechanisms to ensure nor-
mal immunoglobulin levels in circulation despite changes 
in B cell function [78].

Up-regulation of genes related to innate antiviral 
responses has, to our knowledge, not been consist-
ently reported previously in CFS, not even in cohorts 
suffering from chronic fatigue following long-lasting 
viral infections [25]. Our data point to functionally con-
nected genes and pathways involved in innate immunity 
responses as differentially expressed in the CFS group 
and might suggest less efficient viral clearance or reac-
tivation of latent viruses such as members of the herpes 
virus family, in the CFS group [79]. Of note, the herpes 
virus Epstein-Barr virus (EBV) is a well-known trigger of 
CFS in adolescents [80]. The possible presence of inef-
ficient viral clearance or virus reactivation, and whether 
intracellular signaling cascades activated by long-lasting 
viral infections may be a contributor to CFS pathophysi-
ology, warrant further studies. A model from Thorley-
Lawson suggested that EBV uses a pathway similar of B 
cell survival and B cell differentiation in order to establish 
its infection, persistence and replication [81]. Loebel and 
co-workers assumed that a frequent EBV reactivation or 
impaired control of EBV was a result of the diminished 
EBV-specific memory B cell response in CFS patients 
[82]. Therefore we speculate that in some patients, CFS is 
characterised by persistent EBV-host interactions. Based 
on the observation of altered B cells differentiation and 
B cell survival signature, in future experiments, we aim 
to validate the finding by measuring B cell responsiveness 
to stimulator such as EBV virus antigens [viral capsid 

antigen (VCA) and EBV nuclear antigen 1 (EBNA-1)] 
alone or after exposure to the neuroendocrine hormones.

Up-regulation of genes related to inflammation in the 
CFS group, which is corroborated by the positive corre-
lation between “Factor 3″ and serum CRP levels, comply 
with previous CFS studies reporting elevation of proin-
flammatory cytokines in adult CFS [12, 13, 83]. Inter-
estingly, a recent study of gene expression in NK cells of 
CFS patients showed upregulation of RIPK3 [84], in line 
with the present data (Additional file  3: Table S3); this 
gene encodes a kinase that plays a vital role in inflammas-
omes and IL-1β signaling. However, a previous analysis 
of cytokine levels in the present material did not relieve 
any differences in CFS patients as compared to healthy 
controls [15]. Thus, a skewing of the immune response 
towards inflammation appears to be subtle, or even indi-
rect, complying with other studies of gene expression 
reporting small or moderate fold changes in inflamma-
tory related gene transcripts [16, 25].

The strong association between “Factor 3” with neu-
roendocrine markers within the CFS group is a novel 
finding. Although causal interferences cannot be made 
from our cross-sectional design, the results are in line 
with the “sustained arousal” model of CFS which suggests 
that immune alterations are secondary to neuroendo-
crine alterations [37]. This potential mechanism complies 
with findings in studies of neuro-immunomodulation: 
Sympathetic nervous activity has complex effects on B 
cells, monocytes and several other immune cells through 
adrenergic receptors that in turn promote alteration of 
gene expression [35]. Parasympathetic nervous activity 
has a well-described anti-inflammatory effect based upon 
gene expression alterations of spleen macrophages [34]. 
The glucocorticoid effects on immunity are extensive 
[33], and might in addition be abnormal in CFS, as some 
studies have indicated a fundamental alteration of gluco-
corticoid signaling [32, 85].

Taken together, the results of the present study might 
indicate a skewing of the immune responses from adap-
tive to innate immunity promoted by the combined effect 
of HPA axis alteration and sympathetic vs. parasympa-
thetic predominance in CFS patients. We speculate that 
“Factor 3” in the present data set encapsulates this skew-
ing, being negatively associated with transcripts regu-
lating B cell differentiation and survival, and positively 
associated with transcripts involved in inflammation 
and innate antiviral defense. Interestingly, such a skew-
ing shares some similarities with the concept of “Con-
served Transcriptional Response to Adversities” (CTRA) 
[86]. Recent evidence suggests that CTRA is promoted 
by increased sympathetic nervous activity to the bone 
marrow, altering myeloid cell numbers and function and 
promoting functional glucocorticoid desensitization [87]. 
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This complies with the present findings of autonomic 
nervous activity indices, blood monocyte and eosinophil 
counts, as well as plasma cortisol level being strongly 
associated with “Factor 3” (Figs. 5, 6).

The present study did not demonstrate strong asso-
ciations between gene expression profiles and clinical 
markers; this lack of association to clinical symptoms is 
in line with other studies [24, 25]. Specifically, there was 
no correlation between gene transcripts and symptoms 
of inflammation within the CFS group, confirming pre-
vious findings [15]. However, the present data did sug-
gest an association between differential gene expression 
and symptoms of post-exertional malaise, which is con-
sidered a hallmark of the CFS phenotype [1]. This asso-
ciation was primarily evident for the transcripts related 
to B cell differentiation and survival (Additional file  6: 
Table S6), an observation that warrants further studies. 
The lack of association between “Factor 3” and depres-
sive symptoms, trait anxiety and steps per day suggests 
that the findings are not confounded by the co-existence 
of emotional problems nor physical inactivity in the CFS 
group.

Study strengths and limitations
A strength of this study is the HTS based methods com-
bined with extensive clinical phenotyping. The back-
ground data show that the subsets of participants in the 
present study are comparable to the entire NorCAPITAL 
cohort (Additional file  2: Table S2). However, the num-
bers of subjects are relatively low, and the wide inclu-
sion criteria might have obscured results pertaining to 
a subgroup; unfortunately, the study did not have suf-
ficient statistical power to allow meaningful subgroup 
analyses. In addition, the relatively strict p value cut off 
of ≤0.1 (after multiple-testing adjustment) for identifying 
DEGs might increase the risk of type 2-errors. However, 
previous studies of the NorCAPITAL data set do not 
suggest subgroup differences [15, 32, 39, 53]. Further-
more, important background factors such as BMI, smok-
ing status and alcohol consumption do not differ across 
patients and controls, reducing the risk of confounding 
effects [39]. There was a relatively poor correspondence 
between RNA seq results and RT-qPCR results; reasons 
for this discrepancy might be different primers and dif-
ferent normalization methods between RNA seq and RT-
qPCR, as well as low concentration of remaining cDNA 
after RNA seq. Also, the study might have benefitted 
from a more stringent approach for selecting genes for 
RT-qPCR analyses. In addition, the design of the Nor-
CAPITAL project did not allow analyses of correlation 
between mRNA levels and protein levels. Another limita-
tion is that we did not assess gene expression responses 
to exercise or other stimuli (such as fatigue provoking 

mental activity), which might have provided important 
additional information [19]. Furthermore, the RNA seq 
analysis was not corrected for the different cell popula-
tions in whole blood. The investigational program in the 
NorCAPITAL project did neither include subtyping nor 
biobanking of peripheral blood cells; thus, validation of 
the gene expression findings with flow cytometer analy-
ses or functional assays was not possible in the present 
study. Future studies should include deep phenotyping of 
the peripheral cell populations and analysis of their effec-
tor functions. Further studies should also be powered to 
allow subgroup analyses, as well as ensure robust valida-
tion of the findings.

Conclusion
Adolescent CFS is characterized by differential gene 
expression pattern in whole blood suggestive of impaired 
B cell differentiation and survival and enhanced innate 
antiviral responses and inflammation. This expres-
sion pattern is associated with neuroendocrine mark-
ers of altered HPA axis and autonomic nervous activity, 
and with symptoms of post-exertional malaise. Taken 
together, the results contribute to the understanding of 
CFS disease mechanism, which in turn is a prerequisite 
for development of improved diagnostic procedures and 
therapeutic interventions. Also, the results are in in line 
with the “sustained arousal”-model of CFS disease mech-
anisms, in which a causal relationship between neuroen-
docrine changes and immune alterations is suggested 
[37]. This possible causality, as well as the association to 
CFS clinical symptoms and the specific role of altered B 
cell function, should be explored in further studies.
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Additional file 1: Table S1. Primer names and sequences for the RT-
qPCR experiments.

Additional file 2: Table S2. Background characteristics of the chronic 
fatigue syndrome (CFS) group and the healthy control (HC) group in the 
present study compared with the characteristics of all CFS patients and 
HC in the NorCAPITAL dataset.

Additional file 3: Table S3. Differentially expressed genes and their 
annotated proteins or gene products in CFS patients as compared to 
healthy controls, adjusted for age and gender differences across groups 
and sorted according to foldchange.

Additional file 4: Table S4. Upstream transcriptional regulators for the 
observed dataset based on ingenuity pathway analyses (IPA) mechanistic 
network enrichment.

Additional file 5: Table S5. Principal component analysis (PCA) with 
varimax rotation in the CFS group.

Additional file 6: Table S6. Pearson correlation between single gene 
transcriptional counts and selected immune, neuroendocrine and clinical 
markers within the CFS group. Genes are sorted according to differential 
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