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Metropolis-Hastings algorithm, seismic inversion1. IntroductionIn a hidden Markov model (HMM) the observations are incomplete and noisyfunctions of an underlying unobserved process, where the latent process is assumedto be Markov. The goal is typically to restore the underlying process from the noisyobservations and possibly also to estimate unknown parameters in both the latentand observation processes. For some HMM the underlying process consists of twolayers, where Switching linear dynamical systems (SLDS) (Bar-Shalom and Li, 1998)is a typical example. In SLDS the bottom layer of the underlying unobserved processis a discrete Markov chain and conditioned on this the second unobserved layer isa Gaussian Markov process. Given the two unobserved layers the observations areassumed independent Gaussian. The mean vector and covariance matrix for theobserved value at any time index are functions of the two unobserved states at thesame time index. The goal is to restore the unobserved layers. SLDS have been usedin many applications, e.g. fault detection in planetary rovers (Dearden and Clancy,2002), speech recognition (Rosti and Gales, 2004), dancing of bees (Oh et al., 2005),econometrics (Kim, 1994) and machine learning (Lerner et al., 2000; Ghahramaniand Hinton, 1998). Larsen et al. (2006) considers the problem of seismic inversionand a model similar to SLDS, but allow the observations to be a function of bothpast and future values of the hidden Gaussian process. The goal is again to restorethe unobserved layers.Recursive algorithms for HMM have successfully been used in many areas, seethe discussions and references in MacDonald and Zucchini (1997), Künsch (2000),Scott (2002) and Cappé et al. (2005). Generalizations to hidden semi-Markov mod-els are discussed in Guédon (2007) and Bulla et al. (2010). When an HMM onlyhas one unobserved layer modelled as a discrete Markov chain, e�cient recursivecomputations known as the forward-backward algorithm can be used. If the ob-servations and the unobserved layer both are Gaussian, then the forward-backwardalgorithm corresponds to the famous Kalman �lter. Forward-backward algorithmsfor HMM with two unobserved layers have been considered by Bar-Shalom andLi (1998), Barber (2006) and Zoeter and Heskes (2006). The forward-backward2



recursions can also be formulated for these models, but are not computationallyfeasible as they involve a mixture of Gaussian distributions where the number ofterms grows exponentially with the length of the Markov chain. In the �rst set ofreferences given above, approximate forward recursions are de�ned by substitutingthe Gaussian mixture by a single Gaussian term. Larsen et al. (2006) de�ne ap-proximate recursions by approximating the marginal distribution for the unobservedcontinuous process by a product of Gaussian densities.We consider a model close to the model in Larsen et al. (2006) and separatefrom SLDS in that the observations can be a function of both past and futurevalues. To get a computationally feasible algorithm, we construct an approximateforward-backward algorithm. In the forward recursions we propose to drop termsassociated with small weights in the Gaussian mixture. Thus, our approximationis less dramatic than previous suggestions, but with a corresponding higher com-putational cost. Clearly, the quality of the approximation depends on the numberand importance of the terms that are dropped. Using the approximate forward-backward algorithm as a proposal distribution in a Metropolis�Hastings algorithm(Smith and Roberts, 1993; Dellaportas and Roberts, 2003) we correct for the in-duced approximation. Moreover, we use the Metropolis�Hastings acceptance rateas a measure for the quality of the approximation. The proposed algorithm canin principle be used for SLDS and other similar models with the Markov property.The potential use of the algorithm is therefore large.An alternative strategy to cope with HMM with two hidden layers are sequentialMonte Carlo algorithms. Chen and Liu (2000) de�ne a sequential Monte Carloalgorithm for what they call conditional dynamic linear models (CDLM). Our modelde�ned in Section 2 can be rephrased to a CDLM by rede�ning the state variables.However, Chen and Liu (2000) only consider the �ltering problem, whereas ourfocus is mainly the smoothing problem. Doucet et al. (2000) also use sequentialMonte Carlo for a model similar to the one in Chen and Liu (2000), but the focusis again on �ltering. Godsill et al. (2004) use sequential Monte Carlo to solve thesmoothing problem for a state-space model. To generalize the procedure in Godsillet al. (2004) to handle a CDLM constitutes an alternative avenue for solving theproblem we discuss. 3



In Hammer et al. (2010) a slightly modi�ed variant of the simulation algorithmwe present have successfully been used to invert real seismic data from an oil�eldo�shore Norway. Ulvmoen and Hammer (2009) also focus on the seismic inversionproblem and use the procedure proposed in the present article to evaluate thequality of a much faster, but rougher approximation strategy. We also considerthe problem of seismic inversion, but the focus here is to evaluate the e�ciencyof our proposed algorithm. In the seismic inversion setting, the Markov chainrepresents lithology-�uid classes along a vertical trace through the underground,the intermediate Gaussian layer represents elastic parameters of the rock along thesame trace, and the observations are seismic data. The focus is to restore theunobserved Markov chain. Parameter estimation is clearly also of interest, but notconsidered here.The paper is organized as follows. Section 2 introduces necessary notation for ourhidden Markov model. In Section 3 we develop the approximate forward-backwardalgorithm. Section 4 gives a brief introduction to the seismic inversion applicationand explains how the hidden Markov model is the core part of the resulting model.We also evaluate the algorithm in simulation examples. Finally, Section 5 providesconclusions.2. The switching linear Gaussian modelWe represent (multivariate) Gaussian distributions in its canonical form, as thissimpli�es the forward-backward recursions. A Gaussian distribution with meanvector µ ∈ R
r and covariance matrix Σ ∈ R

r×r is then parameterized by theprecision matrix Q = Σ−1 and the vector q = Qµ, and we use N(q, Q) to denotethis distribution. The corresponding density we denote by N(u|q, Q), which readsN(u|q, Q) =

√
|Q|
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uT Qu − 2qT u

]}
. (1)Consider a three layer hidden Markov model {(xi, yi, zi)}

n
i=1 as visualized inFigure 1, where xi ∈ {1, . . . , L}, yi = (yi1, . . . , yir)

T ∈ R
r and zi = (zi1, . . . , zis)

T ∈

R
s for i = 1, . . . , n. We call this a switching linear Gaussian model. We requirethe number of possible values for xi, L, to be small. In the seismic data examplein Section 4 we have L = 4. We let x1:n = (x1, . . . , xn)T be a stationary, aperiodic4



��
��

��
��

��
��

��
��

��
��

· · · xi−2 xi−1 xi xi+1 xi+2 · · ·- - - - - -

6 6 6 6 6
��
��

��
��

��
��

��
��

��
��

· · · yi−2 yi−1 yi yi+1 yi+2 · · ·

6 6 6 6 6
�

�
��

�
�

��

�
�

��

�
�

��

�
�

��

@
@

@I

@
@

@I

@
@

@I

@
@

@I

@
@

@I��
��

��
��

��
��

��
��

��
��

· · · zi−2 zi−1 zi zi+1 zi+2 · · ·

Figure 1: Directed acyclic graph (DAG) representation of the hidden Markov model discussed inSections 2 and 3.and ergodic Markov chain with transition matrixP = [p(xi|xi−1)]
L
xi−1,xi=1. (2)Thus, the marginal distribution of x1, which we denote by p(x1), equals the limitingdistribution induced by P. Conditioned on x1:n we assume the elements of y1:n =

(y1, . . . , yn)T to be independent and Gaussian distributed, where the mean vectorand precision matrix of yi are (known) functions of xi and denoted by µ(xi) and
Q(xi), respectively. Thus,

yi|x1:n ∼ N(q(xi), Q(xi)) , where q(xi) = Q(xi)µ(xi). (3)Given y1:n we assume the elements of z1:n = (z1, . . . , zn)T to be independent andGaussian, and the mean vector and precision matrix of zi are aT
i yi−1+bT

i yi+cT
i yi+1and Ri, respectively, i.e.

zi|y1:n ∼ N (AT
i yi−1 + BT

i yi + CT
i yi+1, Ri

)
, (4)where Ai = aiRi, Bi = biRi and Ci = ciRi. Note that we allow the coe�cientmatrices ai, bi and ci to vary with i, and in particular we require a1 = cn = 0.3. The forward-backward algorithmIn this section we de�ne an approximate forward-backward algorithm for themodel described in Section 2. We �rst derive the exact forward recursions. Startingwith π(x1:n, y1:n|z1:n) we integrate out yi and xi for i = 1, . . . , n in turn to get5



the distributions π(xi:n, yi+1:n|z1:n) and π(xi:n, yi:n|z1:n) for i = 1, . . . , n. This isthe basis for the backward simulation part of the algorithm, which sequentially for
i = n, . . . , 1 generates xi from π(xi|xi+1:n, yi+1:n, z1:n) ∝ π(xi:n, yi+1:n|z1:n) and yifrom π(yi|xi:n, yi+1:n, z1:n) ∝ π(xi:n, yi:n|z1:n).3.1. Forward integrationThe conditional distribution of interest is π(x1:n, y1:n|z1:n). However, to avoidnotationally cumbersome special cases for i = n − 1 and n we also introduce xn+1,
yn+1, yn+2 and zn+1. We make these auxiliary variables independent of the variablesof interest by setting p(xn+1|xn) = 1/L and also adopting (3) for i = n + 1 and
n + 2 and (4) for i = n + 1 with An+1 = Bn+1 = Cn+1 = 0 and Rn+1 = I. As afunction of x1:n and y1:n we then have
π(x1:n, y1:n|z1:n) ∝ π(x1:n+1, y1:n, z1:n+1|yn+1:n+2) ∝ p(x1)

n+1∏

i=2

p(xi|xi−1) ·

n∏

i=1

N (yi|q(xi), Q(xi)) ·

n+1∏

i=1

N (zi|A
T
i yi−1 + BT

i yi + CT
i yi+1, Ri

)
.

(5)To get a more compact notation in the development of the forward recursions wede�ne
T0(y1:2) = N(z1|B

T
1 y1 + CT

1 y2, R1) (6)and
Ti(xi, yi:i+2) = N(yi|q(xi), Q(xi))N(zi+1|A

T
i+1yi +BT

i+1yi+1 + CT
i+1yi+2, Ri+1), (7)for i = 1, . . . , n, so that

π(x1:n, y1:n|z1:n) ∝ p(x1)T0(y1:2)

n∏

i=1

p(xi+1|xi)Ti(xi, yi:i+2). (8)Starting with this expression we integrate and sum out yi and xi for i = 1, . . . , n inturn and de�ne Ui(xi, yi:i+1) and Vi(xi, yi+1:i+2) for i = 1, . . . , n so that the resultbecomes
π(xi:n, yi:n|z1:n) ∝ Ui(xi, yi:i+1)

n∏

j=i

p(xj+1|xj)Tj(xj , yj:j+2) (9)and
π(xi:n, yi+1:n|z1:n) ∝ Vi(xi, yi+1:i+2)p(xi+1|xi)

n∏

j=i+1

p(xj+1|xj)Tj(xj , yj:j+2). (10)The following theorem gives the relation between the Ui and Vi functions.6



Theorem 1. Consider the hidden Markov model de�ned in Section 2 and the no-tation introduced above. We then have
U1(x1, y1:2) = p(x1)T0(y1:2), (11)and the recursions

Ui+1(xi+1, yi+1:i+2) =

L∑

xi=1

Vi(xi, yi+1:i+2)p(xi+1|xi), i = 1, . . . , n − 1 (12)and
Vi(xi, yi+1:i+2) =

∫
Ui(xi, yi:i+1)Ti(xi, yi:i+2) dyi, i = 1, . . . , n. (13)The theorem is proven as follows. By comparing (8) and (9) for i = 1 we get(11). Next, by summing out xi in (10) and comparing with (9) we get (12). Finallyintegrating out yi in (9) and comparing with (10) one gets (13).In the following we use the notation

D1 =




I00  , D3 =




00I  , D12 =




I 00 I0 0  and D23 =




0 0I 00 I  , (14)where 0 and I are an r × r matrix with all elements equal to zero and the r-dimensional identity matrix, respectively. Then the following theorem gives how tocompute the Ui and Vi functions recursively.Theorem 2. Consider the hidden Markov model de�ned in Section 2 and the no-tation introduced above. We then have
Ui(xi, yi:i+1) ∝

Ni∑

j=1

γij(xi)N(yi:i+1|gij , Gij) (15)and
Vi(xi, yi+1:i+2) ∝

Ni∑

j=1

κij(xi)N(yi+1:i+2|kij(xi), Kij(xi)) (16)for i = 1, . . . , n, where Ni = Li−1 and γij(xi) ∈ R, gij ∈ R
2r×1, Gij ∈ R

2r×2r,
κij(xi) ∈ R, kij(xi) ∈ R

2r×1 and Kij(xi) ∈ R
2r×2r can be computed recursively.Initial values γ11(x1), g11 and G11 are

γ11(x1) = p(x1), g11 =




B1

C1


 z1, G11 =




B1

C1


R−1

1

[
BT

1 CT
1

]
. (17)7



For i = 1, . . . , n and j = 1, . . . , Ni the κij(xi), kij(xi) and Kij(xi) can be obtainedfrom γij(xi), gij and Gij by
κij(xi) = γij(xi)

√
|Gij | · |Q(xi)|

|Hij(xi)|
·

exp

{
−

1

2

[
gT

ijG
−1
ij gij + q(xi)

T Q(xi)
−1q(xi) − hij(xi)

T Hij(xi)
−1hij(xi)

]}
(18)

kij(xi) = Kij(xi)D
T
23Hij(xi)

−1hij(xi) (19)and
Kij(xi) =

(
DT

23Hij(xi)
−1D23

)−1
, (20)where

hij(xi) = D1q(xi) + D12gij +

[
AT

i+1 BT
i+1 CT

i+1

]T

zi+1 (21)and
Hij(xi) =D1Q(xi)D

T
1 + D12GijD

T
12 + δ(i ≥ n − 1)D3D

T
3

+

[
AT

i+1 BT
i+1 CT

i+1

]T

R−1
i+1

[
AT

i+1 BT
i+1 CT

i+1

]
,

(22)where δ(·) is the indicator function, i.e. δ(E) = 1 when E is true and δ(E) = 0otherwise. Finally, for i = 2, . . . , n, j = 1, . . . , Ni−1 and l = 1, . . . , L

γi,j+(l−1)Ni−1
(xi) = p(xi|l)κi−1,j(l), (23)

gi,j+(l−1)Ni−1
= ki−1,j(l) (24)and

Gi,j+(l−1)Ni−1
= Ki−1,j(l). (25)The theorem is proved by induction. Reordering terms in T0(y1:2) straightfor-wardly gives (15) for i = 1 and initial values (17). Starting with (13), rearrangingterms and using well known properties of the multivariate Gaussian distributiongives (16) and (18) through to (22). We represent Gaussian distributions in thecanonical form and not by the mean vector and covariance matrix and this causesthe somewhat unfamiliar expressions in (19) and (20).The D3D

T
3 term that appears in (22) for i = n−1 and n ensures that the Hn−1,jand Hnj matrices are invertible. The D3D

T
3 term does not in�uence the variablesof interest, x1:N and y1:n, only the auxiliary variables yn+1 and yn+2. Finally, (12)straightforwardly gives (15) and (23) through to (25) by a reordering of the terms.8



As the number of terms in (15) and (16) grows exponentially with i the recur-sive algorithm is computationally feasible only for small values of n. In the nextsection we propose to approximate Ui(xi, yi:i+1) and Vi(xi, yi+1:i+2) by ignoring lessimportant terms.3.2. Approximate forward integration algorithmIn this section we propose an approximate, but computationally feasible versionof the recursions developed above. We �rst compute the (exact) representationsof U1(x1, y1:2) and V1(x1, y2:3) as given in Theorem 2. The starting point for �nd-ing an approximation for Ui(xi, yi:i+1) and Vi(xi, yi+1:i+2) is an approximation of
Vi−1(xi−1, yi:i+1) on the form

Ṽi−1(xi−1, yi:i+1) ∝

Ñi−1(xi−1)∑

j=1

κ̃i−1,j(xi−1)N(yi:i+1|k̃i−1,j(xi−1), K̃i−1,j(xi−1)),(26)where we use tilde to distinguish approximate quantities from exact ones. Theapproximate representation is of the same form as (16), except that in (26) thenumber of terms may depend on the value of xi−1. Of course, for i = 2 we use
Ṽi−1(xi−1, yi:i+1) = Vi−1(xi−1, yi:i+1). For i > 2 we de�ne Ṽi(xi, yi+1:i+2) from
Ṽi−1(xi−1, yi:i+1) in to steps. First we use the recursions in Theorem 2 to �nd an ap-proximationU?

i (xi, yi:i+1) to Ui(xi, yi:i+1) and a �rst approximation V ?
i (xi, yi+1:i+2)to Vi(xi, yi+1:i+2). Thereafter we drop the less important terms in V ?
i (xi, yi+1:i+2)to get a �nal approximation Ṽi(xi, yi+1:i+2). More precisely, we set

U?
i (xi, yi:i+1) ∝

N?

i∑

j=1

γ?
ij(xi)N(yi:i+1|g

?
ij , G

?
ij) (27)and

V ?
i (xi, yi+1:i+2) ∝

N?

i∑

j=1

κ?
ij(xi)N(yi+1:i+2|k

?
ij(xi), K

?
ij(xi)), (28)where N?

i =
∑L

l=1 Ñi−1(l). Corresponding to (23) through to (25), γ?
ij(xi), g?

ij and
G?

ij are de�ned by
γ?

i,j+
∑

l−1

t=1
Ñi−1(t)

(xi) = p(xi|l)κ̃i−1,j(l), (29)
g?

i,j+
∑

l−1

t=1
Ñi−1(t)

= k̃i−1,j(l) (30)9



and
G?

i,j+
∑

l−1

t=1
Ñi−1(t)

= K̃i−1,j(l), (31)for i = 2, . . . , n, j = 1, . . . , Ñi−1(l) and l = 1, . . . , L. Finally, κ?
ij(xi), k?

ij(xi) and
K?

ij(xi) are de�ned by replacing κij(xi), kij(xi), Kij(xi), γij(xi), gij , Gij and Niwith corresponding starred quantities in (18) through to (22).Which terms in (28) that are of less importance is not obvious as the termsare functions of yi+1:i+2 which is still unspeci�ed when the decision about whatterms to drop has to be made. Natural strategies are either to maximize over orto integrate out yi+1:i+2 before comparing the terms. Maximizing over yi+1:i+2 isobtained by evaluating the Gaussian densities in (28) at their mean values. Thus,for a threshold value ε this gives that we should drop terms in (28) that have
κ?

ij(xi)N (µ?
ij(xi)

∣∣ k?
ij(xi), K

?
ij(xi)

)

maxk=1,...,N?

i
(xi) {κ

?
ik(xi)N (µ?

ik(xi)| k?
ik(xi), K?

ik(xi))}
< ε, (32)where µ?

ij(xi) = K?
ij(xi)

−1k?
ij(xi). With the second strategy, integrating out yi+1and yi+2, only κ?

ij(xi) remains to compare. Thus, again for a given threshold ε, wedrop all terms that corresponds to a κ?
ij(xi) that have

κ?
ij(xi)

maxk=1,...,N?

i
(xi) {κ

?
ik(xi)}

< ε. (33)In the simulation examples in Section 4 we adopt the �rst strategy, but we do notexpect the second strategy to behave much di�erently. One should note that wedecide what terms to drop separately for each possible value of xi, and as a resultthe number of remaining terms, Ñi(xi), becomes a function of xi.Clearly, alternative term dropping strategies may be de�ned. First, one may usethe term dropping step for U?
i (xi, yi:i+1) instead, but we do not expect this to makemuch di�erence. Second, instead of choosing a speci�c threshold value ε, one may�x the number of terms we want to keep and drop the necessary number of smallterms. Thereby the memory requirements for running the algorithm will be knownin advance, but the quality of the approximation may be more variable than withthe strategy we have chosen.3.3. Backward simulationWhen the (exact or approximate) forward integration is done and necessaryquantities stored in memory, backward simulation is straight forward. Here we10



give the necessary equations for the approximate, computational feasible algorithm.We initiate auxiliary variables xn+1, yn+1:n+2 and zn+1 with arbitrary values andsequentially for i = n, . . . , 1 �rst simulate xi from
π?(xi|xi+1:n, yi+1:n, z1:n) ∝ V ?

i (xi, yi+1:i+2)p(xi+1|xi) (34)and then yi from
π?(yi|xi:n, yi+1:n, z1:n) ∝ U?

i (xi, yi:i+1)Ti(xi, yi:i+2). (35)The �rst is a discrete distribution and the second a mixture of r-variate Gaussiandensities, so both are easy to sample from. The resulting realization is therebysimulated from an approximation to the conditional distribution π(x1:n, y1:n|z1:n),
π?(x1:n, y1:n|z1:n) =

n∏

i=1

[π?(xi|xi+1:n+1, yi+1:n+2, z1:n+1)π
?(yi|xi:n+1, yi+1:n+2, z1:n+1)] .

(36)One should note that evaluating π?(x1:n, y1:n|z1:n) is straight forward for a gener-ated sample (x1:n, y1:n), but to do this correctly one must of course remember to in-clude the normalizing constants in the two conditional distributions π?(xi|xi+1:n+1, yi+1:n+2, z1:n+1)and π?(yi|xi:n+1, yi+1:n+2, z1:n+1).3.4. Simulation from the hidden Markov modelThe error introduced by the approximation discussed above may be corrected forby adopting π?(x1:n, y1:n|z1:n) as a proposal distribution in an independent proposalMetropolis�Hastings scheme. The resulting acceptance rate can then also be usedas a measure for the quality of the approximation.4. Simulation examplesWe study the approximate forward-backward algorithm in a number of simula-tion exercises. We implement the algorithm in C++, where a list is used to storethe Gaussian mixture. Each element in the list is a term in the Gaussian mixture.Using a list makes it is easy to remove terms with small weight following Section3.2. 11



In the simulation examples we focus on the problem of seismic inversion fromthe petroleum industry. Our objective here is to demonstrate that our approximatealgorithm is able to solve a problem of signi�cant practical importance. Here weconsider simulated data only, but in Hammer et al. (2010) we also apply it onreal seismic data. Seismic inversion is the discipline of predicting lithology-�uidcharacteristics in a reservoir from seismic data. Numerous introductory books toseismic terminology and inversion exist, see for example Sheri� and Geldart (1995)and references therein.Seismic data is created by an explosion which sends sound waves into the ground.Parts of the waves are re�ected, returned upwards and observed by microphones(geo- or hydrophones). These observations are the basis for the seismic data. Aforward model, describing what we observe for given lithology��uid characteris-tics, is known from physics theory. In seismic inversion we are interested in thecorresponding inverse problem.The simulation example is organized as follows. In Section 4.1 we present theseismic model and in Section 4.2 we present our choices of parameters in the seismicmodel. Further in Section 4.3 we link the seismic model to the switching modelin Section 2 and explain how we simulate e�ciently by taking advantage of theapproximate forward-backward algorithm in Section 3. Finally in Sections 4.4 and4.5 we present simulation results.4.1. Seismic modelOur forward model is similar to the ones in Buland et al. (2003) and Larsenet al. (2006). When dealing with seismic data depth is typically not referencedby distance, but time used by the sound wave from the surface to a location inthe underground and back, called two way travel time. An important problem notconsidered here is how to convert travel times to depths. Following Buland et al.(2003) and Larsen et al. (2006) we discretize the travel time and formulate theproblem in a Bayesian setting. Let i = 1, . . . , n denote n two way travel times alonga vertical pro�le and let xi denote the lithology-�uid class in location i. As priorfor x1:n = (x1, . . . , xn)T we adopt a Markov chain as speci�ed by (2). Assuming anisotropic and elastic medium, the material properties at a location i are uniquely12



de�ned by the P-wave velocity (αi), S-wave velocity (βi) and density (ρi) at thatlocation. Let yi = (ln αi, lnβi, ln ρi)
T . The distribution of y1:n = (y1, . . . , yn)Tgiven x1:n is based on a rock physics model (Avseth et al., 2005) and we assume aGaussian distribution as speci�ed by (3).We consider seismic data for s o�set values, or angles, θ1, . . . , θs. For each depthlocation i and o�set value θj a re�ection coe�cient rij results from y1:n. For thiswe use what is known as a weak contrast approximation to the Zoeppritz equations(Aki and Richards, 1980; Buland and Omre, 2003) and get for ri = (ri1, . . . , ris)

T ,
ri = Γ

yi+1 − yi−1

2
for i = 2, . . . , n − 1, (37)where

Γ =




γα(θ1) γα(θ2) · · · γα(θs)

γβ(θ1) γβ(θ2) · · · γβ(θs)

γρ(θ1) γρ(θ2) · · · γρ(θs)




, γα(θ) = 1
2

(
1 + tan2(θ)

)
,

γβ(θ) = −4β/α
2
sin2(θ),

γρ(θ) = 1
2

(
1 − 4β/α

2
sin2(θ)

)
(38)and one has assumed the ratio βi/αi to have an approximately constant value β/αin the reservoir. The di�erence in (37) is an approximation to a derivative in thecorresponding continuous model. For i = 1 and n we correspondingly use forwardand backward di�erences, respectively. Finally, seismic observation dij is obtainedfor each location i and o�set θj through a convolution of the re�ection coe�cients,

dij =

k∑

u=−k

ωujri−u,j + εij , (39)where {ωuj}
k
u=−k de�nes a wavelet for each o�set θj and εij is Gaussian observationnoise. Similar to Buland and Omre (2003) we assume the main part of the noise tohave a correlation structure corresponding to the wavelet. The argument for this isthat both the signal and noise parts are the results of sound waves going throughthe (same) underground. More precisely, we set

εij =

k∑

u=−k

wujε
1
i−u,j + ε2

ij , (40)where ε1
ij and ε2

ij are independent Gaussian white noise with Var(ε1
ij) = σ2

1 andVar(ε2
ij) = σ2

2 . 13



4.2. Parameter valuesOur base case parameter values are chosen to be realistic for the seismic inversionapplication and are based on the values adopted in Larsen et al. (2006). We have
L = 4 classes for xi, where xi = 1, 2 and 3 represent gas-, oil- and brine (water)saturated sandstone, respectively, and xi = 4 represents shale. Sandstone is porousand allows �ow of gas, oil and water, whereas the shale porosity is negligible andthereby acts as a barrier to �uid �ow. Our choice of transition matrix P is basedon values used in Larsen et al. (2006), but we consider a coarser seismic resolutionthan done there. Numbering the nodes from bottom to top, we useP =




0.9441 0 0 0.0559

0.0431 0.9146 0 0.0424

0.0063 0.0230 0.9422 0.0284

0.0201 0.0202 0.1006 0.8591




. (41)The zero elements are important in the seismic application as these represent knownphysical properties. Water has a higher density than oil, which again has a higherdensity than gas. Thus, water can not be above gas or oil and oil can not be abovegas, unless separated by a non-porous shale layer. The corresponding marginalprobabilities for xi are [0.24, 0.16, 0.38, 0.22].As discussed in Section 4.1 we use yi ∈ R
3, where the three elements representlogarithms of P- and S-wave velocities and density, respectively. In Larsen et al.(2006) the distribution of yi|xi is represented as empirical distributions given bya set of corresponding xi and yi values. We use the same set of (xi, yi) valuesto estimate mean vectors and covariance matrices for the four assumed Gaussiandistributions. The resulting mean vectors are µ(1) = [8.052, 7.492, 7.688]T , µ(2) =

[8.071, 7.472, 7.730]T , µ(3) = [8.121, 7.467, 7.746]T and µ(4) = [8.166, 7.546, 7.846]T ,and for each value of xi, the diagonal and o�-diagonal entries in the followingmatrices give corresponding standard deviations and correlations



0.031 0.876 0.322

0.876 0.033 0.271

0.322 0.271 0.012



, 


0.027 0.891 0.384

0.891 0.032 0.295

0.384 0.295 0.009




, (42)
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Figure 2: Scatter plots of P- and S-wave velocities and density of samples from the distributionadopted for yi|xi in BC. Red, green, blue and black is used for gas-, oil- and brine-saturatedsandstone and shale, respectively.



0.022 0.912 0.453

0.912 0.032 0.317

0.453 0.315 0.008



, 


0.044 0.982 0.935

0.982 0.068 0.917

0.935 0.917 0.015



. (43)Figure 2 shows scatter plots of simulated P- and S-wave velocities and density ac-cording to the speci�ed distributions. Here and in all the following we use red,green, blue and black for gas-, oil- and brine-saturated sandstone and shale, re-spectively. We observe that shale is well separated from the other classes and thatgas-saturated sandstone is reasonably well separated from oil- and brine-saturatedsandstone, whereas there is more overlap between oil- and brine-saturated sand-stone.To specify the model for d1:n|y1:n we must give what o�sets to use, the waveletfor each o�set, and the variances σ2

1 and σ2
2 . Still following Larsen et al. (2006)we use s = 5 o�sets θ = 0◦, 10◦, 20◦, 30◦ and 40◦ and adopt an o�set independentRicker wavelet,

w(u, θ) =
{
1 − 2 (πφu)

2
}

exp
{
− (πφu)

2
}

, u = −k, . . . , k, (44)with φ = 0.11 and k = 10. For the error variances we use σ2
1 = 0.0152 and

σ2
2 = σ2

1/104, which also corresponds to values used in Larsen et al. (2006).The above de�nes our base case parameter set, which we refer to as BC. Wede�ne four more parameter sets, which are small modi�cations of BC. First thevariances of the noise terms ε1
ij and ε2

ij are scaled to give higher and lower signal-to-noise ratios, and we denote these by LN and MN, respectively. We use σ2
1 = 0.00852and 0.0262 for LN and MN, respectively, still keeping σ2

2 = σ2
1/104. The next two15



Parameter set BC LN MN RL RMSignal-to-noise-ratio 1.34 2.22 0.53 1.30 1.36

ε 2.5 · 10−3 2.5 · 10−3 1.8 · 10−3 1.7 · 10−3 1.7 · 10−3acceptance rate 0.44 0.43 0.37 0.46 0.42Table 1: Signal-to-noise ratios, value used for the tuning parameter ε, and the resulting Metropolis�Hastings acceptance rate for the various parameter sets.cases are obtained from BC by a scaling of the covariance matrices in the rockphysics model, yi|xi. We de�ne rock physics models with less variance (RL) andmore variance (RM) by multiplying the covariance matrices de�ned by (42) and (43)by 1/2 and 2, respectively. We want the signal-to-noise ratios for RL and RM to beabout the same as for BC and obtain this by modifying the noise variance σ2
1 , stillkeeping σ2

2 = σ2
1/104. When de�ning the signal-to-noise ratio we consider variabilityin d1:n originating from x1:n as signal and the remaining variability in d1:n as noise,see Hammer (2008) for the precise de�nition. This gave σ2

1 = 1.65 · 10−2 and
1.10 · 10−2 for RL and RM, respectively. Table 1 gives the resulting signal-to-noiseratios for all �ve parameter sets.4.3. Simulating from the seismic modelWe want to simulate x1:n and y1:n conditioned on d1:n in the seismic modelde�ned above. A key point in the construction of an e�ective simulation algorithm isto take advantage of the approximate forward-backward algorithm de�ned in Section3. We achieve this by introducing the additional variable z1:n = (z1, . . . , zn)T , where
zi = (zi1, . . . , zis)

T ∈ R
s for i = 1, . . . , n,

zi = ri + ε1
i (45)and ε1

i = (ε1
i1, . . . , ε

1
is)

T . The distributions for x1:n, y1:n and z1:n is then as speci�edin Section 2. In (4) we have Ai = −Γ Ri/2, Bi = 0 and Ci = Γ Ri/2 for i =

2, . . . , n − 1, and using forward and backward di�erence at the boundaries B1 =

−Γ R1, C1 = Γ R1, An = −Γ Rn and Bn = Γ Rn. Finally we have Ri = σ−2
1 I for

i = 1, . . . , n, where I is the identity matrix. Combining (39), (40) and (45) we get16



the relation between z1:n and d1:n,
dij |z ∼ N(σ−2

2

k∑

u=−k

w(u, θj) · zi−u,j , σ
−2
2 I

)
. (46)We construct a Metropolis�Hastings algorithm (Smith and Roberts, 1993; Dellapor-tas and Roberts, 2003) consisting of two updates in each iteration. The �rst updateis a block Gibbs update for y1:n and z1:n. The joint full conditional for these areGaussian and therefore easy to sample from. The second update in each iterationis a joint Metropolis�Hastings update for x1:n and y1:n by using the approximateforward-backward algorithm as the proposal distribution.4.4. Evaluation of the approximate forward-backward algorithmIn this section we report the results for one Metropolis�Hastings run for each ofthe �ve parameter sets de�ned in Section 4.2 with n = 100 and use this to evaluatethe performance of the proposed approximate forward integration algorithm. Ineach case we �rst simulate x1:n, y1:n, z1:n and d1:n according to the model speci�ed inSections 2 and 4.1 and thereafter use the algorithm proposed in Section 4.3 to samplefrom the resulting posterior distribution π(x1:n, y1:n, z1:n|d1:n). We evaluate thequality of the approximate algorithm by the acceptance rates and the convergenceand mixing properties of the simulated Markov chains.Following the optimal strategies for choice of Metropolis�Hastings tuning pa-rameters found in Roberts et al. (1997) and Roberts and Rosenthal (1998) we �nda value for our tuning parameter ε for each of the �ve parameter sets by aiming ata Metropolis�Hastings acceptance rate of about 0.4. It should be noted that oursituation di�ers from what is discussed in the two references, so it is not clear thatthis is an optimal strategy in our situation. However, we found it to be a reasonable�rst try and it has worked satisfactory in all our runs. Table 1 reports both the εvalues used and the resulting acceptance rates.Figures 3 to 7 present simulation results for each of the �ve parameter sets. Theupper rows show the simulated �true� values. Note that we use the same realizationof x1:n in all cases to make comparison easier. The lower rows consist of threeparts. To the left the �true� x1:n is replotted for easier comparison, in the middleeach state of the Metropolis�Hastings run is plotted side by side, and the plots to the17
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500 1000 1500 2000 0 0.2 0.4 0.6 0.8 1Figure 3: Simulation results for parameter set BC: The upper row shows, from left to right,the simulated �true� x1:n, elastic parameters exp(y1:n), z1:n and d1:n. The lower row containsposterior simulation results. From left to right, the lower row shows the true x1:n (replottedfor easier comparison), each state of the Metropolis�Hastings run plotted side by side, and theresulting estimated marginal posterior probabilities.right show the resulting estimated marginal probabilities for each node i. The runsshown are all initiated by setting all xi = 1 and drawing y1:n and z1:n values fromthe corresponding full conditional. In all the runs the initial state is left within veryfew iterations and the burn-in phases are not even visible in the �gures. We havealso tried starting with all xi = 4 and other initial values, but without experiencingany burn-in problems. The results clearly show that the approximate forward-backward algorithm gives a good approximation to the distribution of interest andproduces very good mixing properties when used as a proposal distribution in aMetropolis�Hastings setting.For the data shown in Figures 3 to 7 we have also tried the algorithm describedin Section 3.4 for simulating from π(x1:n, y1:n|z1:n). Again we tuned the valueof ε as described above. The results indicated quite good convergence and mixingproperties, but here some stickiness in the runs could be observed. As the algorithmis an independent proposal procedure, the latter should come as no surprise. Figure8 shows the total number of Gaussian terms stored for each node i. Comparing the18
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500 1000 1500 2000 0 0.2 0.4 0.6 0.8 1Figure 4: Simulation results for parameter set LN: See Figure 3 for an explanation of the di�erentparts of the �gure.
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500 1000 1500 2000 0 0.2 0.4 0.6 0.8 1Figure 6: Simulation results for parameter set RL: See Figure 3 for an explanation of the di�erentparts of the �gure.
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BC LN MN RL RM
0 100 200 300 400 500 0 100 200 300 400 500 0 500 1000 1500 2000 2500 0 200 400 600 800 0 200 400 600 800Figure 8: Simulation results for each of the �ve parameter sets: Number of terms stored in theapproximate forward integration algorithm,∑

xi−1
Ñi(xi−1), as a function of node number i whensimulating x1:n, y1:n|z1:n. Note the di�erent horizontal scales.�ve models we observe that more terms are required for noisy models. This is alsoas one should expect, in the extreme case when the noise level goes to in�nity theimportance of the terms are only decided by the prior. Studying the �ve graphsseparately we observe a growing trend in the number of terms, but it grows muchslower than the exponential increase of all terms. We have also tried runs for n > 100and the results there supports this conclusion. We also note the large �uctuationsin the number of terms and that many of the abrupt changes happens close to wherethe true xi changes value.4.5. Inversion resultsFor each of our �ve parameter sets we repeated the simulation exercise shown inFigures 3 through to 7 ten times, now also randomizing over the value of the true

x1:n. For each run we used the MCMC results to estimate a confusion matrix [cij ]where cij is the average posterior probability for class j in nodes with true class i.Table 2 shows the resulting confusion matrices. As one would expect we observea tendency that higher signal-to-noise ratios gives better predictions. However,LN and RM have comparable performances, demonstrating that the model noise in
y1:n|x1:n is informative. We also tried an alternative de�nition of the signal-to-noiseratio by considering variability originating from both x1:n and y1:n as signal, see thediscussion in Hammer (2008), but this did not produce a better explanation of the�gures in Table 2. Studying the individual confusion matrices we see that shale is21



BCgas oil brine shalegas 0.668 0.324 0.004 0.004oil 0.353 0.581 0.063 0.003brine 0.005 0.064 0.891 0.040shale 0.001 0.005 0.028 0.967LN MNgas oil brine shalegas 0.837 0.163 0.000 0.000oil 0.173 0.824 0.002 0.001brine 0.000 0.136 0.833 0.093shale 0.007 0.003 0.013 0.977
gas oil brine shalegas 0.611 0.279 0.102 0.009oil 0.285 0.323 0.367 0.025brine 0.047 0.115 0.740 0.098shale 0.015 0.014 0.130 0.842RL RMgas oil brine shalegas 0.787 0.197 0.016 0.001oil 0.156 0.530 0.297 0.022brine 0.006 0.059 0.918 0.017shale 0.000 0.001 0.035 0.964
gas oil brine shalegas 0.881 0.112 0.005 0.001oil 0.104 0.768 0.122 0.006brine 0.001 0.033 0.924 0.042shale 0.001 0.006 0.063 0.930Table 2: Confusion matrices for the various parameter sets. In the tables element (i, j) is theestimated average posterior probability for class j for nodes where the true class is i.
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most frequently classi�ed correctly in all �ve cases. Considering Figure 2 this comesas no surprise. The misclassi�cation between gas- and oil-saturated sandstone issigni�cant in all cases. Oil-saturated sandstone is frequently misclassi�ed to brine-saturated sandstone in MN, RL and RM, whereas such a misclassi�cation is lessfrequent in BC and rare in LN.5. Closing remarksWe have revisited the seismic inversion problem as a hidden Markov model withboth continuous and discrete hidden variables. We split the model into a switchinglinear Gaussian model and a Gaussian linear model. To handle the �rst part com-putationally we propose an approximate forward-backward algorithm. In a numberof simulation exercises we demonstrate the e�ectiveness of the approximation andhow this makes inversion of the seismic model computationally feasible. The ap-proximate algorithm includes a tuning parameter ε. To choose a value for ε onemust compromise between memory usage and computation time on one side andapproximation accuracy on the other. We have found no automatic way to set thevalue of ε, but our experience is that it is relatively easy to �nd a reasonable valueby trial and error. What makes the choice of ε non-trivial is that it is used to decidewhat terms to drop in the forward recursions when information from the data isavailable from one side only. The importance of the various terms becomes available�rst when the following backward recursions have been done.We think the inversion problem in the switching linear Gaussian model for seis-mic inversion is harder than the problems previously considered for switching lineardynamical systems (Zoeter and Heskes, 2006; Bar-Shalom and Li, 1998) and switch-ing state space models (Barber, 2006). Within an interval with the same value for
x1:n, the seismic data does not depend on the mean value of the continuous vari-ables. By the di�erence taken in (37) the mean value of the continuous variablesin�uence the data only when the value of x1:n is changing. This induces largerposterior uncertainty in x1:n and it becomes correspondingly more important tohave an approximate forward-backward algorithm that realistically represents thisuncertainty. Thus, we think the importance of including more Gaussian terms inthe forward recursion is larger for the seismic model than for the cases previously23



considered in Zoeter and Heskes (2006), Bar-Shalom and Li (1998) and Barber(2006).We de�ne an approximate forward recursion by dropping Gaussian terms withsmall weights. In the references mentioned above an approximation is obtained bytaking a single Gaussian density that (approximately) represents the whole Gaussianmixture. It is clearly also possible to de�ne an approximate forward recursion byfollowing an intermediate strategy, �nding groups of terms in the Gaussian mixturethat have similar mean and covariance and approximate these by a single Gaussianterm. However, the computational cost of �nding what terms to merge is quadraticin the number of terms, whereas the cost of �nding what terms to drop growslinearly with the number of terms. Thus, unless the number of Gaussian termsnecessary to obtain a su�ciently good approximation is dramatically reduced whenusing the merging strategy, our simple dropping strategy is preferable. We havedone a little experimentation with the merging strategy for our seismic inversionmodel, but without success. However, we think the merging strategy may have apotential if the continuous variable yi is univariate.The focus of the simulation examples of this paper is the computational prob-lem associated with the hidden Markov seismic model. We have not consideredinversion of real seismic data. To answer a real inversion problem one must alsosolve the associated parameter estimation problem. Preliminary experimentationwith maximum likelihood estimation from simulated data indicates that it is notpossible to estimate all the model parameters only from seismic data. Either onemust adopt a Bayesian view with informative priors, or information about (at leastsome of) the parameters must be obtained from other data sources.ReferencesAki, K. and Richards, P. G. (1980). Quantitative seismology: Theory and methods,W. H. Freeman and Company.Avseth, P., Mukerji, T. and Mavko, G. (2005). Quantitative seismic interpretation-Applying rock physics tools to reduce interpretation risk, Cambridge UniversityPress. 24
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