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A new optimization concept is introduced which involves the optimization of non-linear
planar shear buildings by using gradients based on equivalent linear structures, instead
of the traditional practice of calculating the gradients from the non-linear objective
function. The optimization problem is formulated as an equivalent linear system of
equations in which a target fundamental eigenfrequency and equal dissipated energy
distribution within the storeys of the building are the components of the objective function.
The concept is applied in a modified Newton–Raphson algorithm in order to find the
optimum stiffness distribution of two representative linear or non-linear MDOF shear
buildings, so that the distribution of viscously damped and hysteretically dissipated
energy, respectively, over the structural height is uniform. A number of optimization
results are presented in which the effect of the earthquake excitation, the critical modal
damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness
distributions is studied. Structural design based on the proposed approach is more
rational and technically feasible compared to other optimization strategies (e.g., uniform
ductility concept), whereas it is expected to provide increased protection against global
collapse and loss of life during strong earthquake events. Finally, it is proven that the new
optimization concept not only reduces running times by as much as 91% compared to the
classical optimization algorithms but also can be applied in other optimization algorithms
which use gradient information to proceed to the optimum point.

Keywords: optimization, non-linear, Newton–Raphson, shear building, stiffness distribution, energy dissipation

INTRODUCTION

Optimization techniques play an important role in various occasions in structural design, where
they can be used by engineers, decision makers, etc. to find the best possible solution. Optimization
methods used for structural design can be classified into various categories, i.e., deterministic or
stochastic (based on whether the model involves a fully specified or probabilistic formulation),
constrained or unconstrained, local or global, etc. The objective of any structural optimization
algorithm is to select among various possible design cases the optimum case which will minimize
cost, maximize safety, and at the same time comply with the various design and construction
constraints, if present.

In modern structural design for static and/or dynamic loading, it is intended to design structures
that will partially respond in the inelastic range, since this design proves to be more economical.
Especially in seismic design, inelastic behavior is acceptable within certain limits, determined by the
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tradeoff between structural safety and economy. Besides, many
structures have resisted earthquakes during which much higher
inertia forces were induced to them than their strength calculated
through linear elastic force-based design. The concept of ductility
was introduced to justify the latter and as a design tool for the for-
mer. These facts are realized bymost current seismic design codes,
mainly based on the traditional force-based design procedures,
which take these effects into account by introducing modification
factors to reduce seismic force and overstrength demands depend-
ing on the structural system and the ductility desired. However,
both force-based and displacement-based design concepts are
based only on the peak responses of a structure subject to an
earthquake; the loading history or the time history of its response
are not taken into account. The peak response does not provide
enough information on how the structure has performed non-
linearly during an earthquake ground motion; there are various
quantities which accumulate within the structure, such as the plas-
tic energy absorbed by the structural components. The latter is a
good indication of the damage suffered by the structure, especially
in reinforced concrete structures. Therefore, it should be under-
stood that seismic design should be time-history dependent and
not based only on peak response at specific time instances. Based
on the above a new design method has appeared, based on the
energy input and dissipation in structures, named Energy-Based
Design (EBD). According to this method, an energy-dissipating
mechanism has to be designed, which must have the ability to
absorb greater amounts of energy than the input energy to a
structure during strong ground motion, in order to ensure that
the structure will efficiently resist earthquake motions.

Apart from the ductility of the construction material, the seis-
mic performance of a structure is affected by its structural con-
figuration and the distribution of strength and stiffness. Most
collapses during or after past earthquakes have occurred to some
extent due to incorrect structural configuration. The creation
of soft storeys is a characteristic example of deficient structural
behavior, where excessive ductility and drift are observed at a
single floor of a building, leading to local collapse. Most buildings
are designed according to the concept of equivalent static forces
prescribed by seismic codes. The heightwise distribution of these
forces results from the inherent assumption that the vibration
modes of the structure are linear elastic. On the other hand,
according to the EBD concept, it is assumed that the structure
responds non-linearly; consequently the assumption of linear
elastic modes does not lead to realistic calculation of equivalent
force distributions of the structure, and thus does not necessarily
ensure optimum seismic performance, or even safety.

In this study, a new iterative optimization algorithm of Newton
type with line-search capabilities especially designed for struc-
tural optimization is presented and implemented for the opti-
mum structural design in terms of the energy absorbed during
an ensemble of seismic excitations. More specifically, the objec-
tive of the optimization process is to minimize the variation of
the dissipated energy distribution along the height of a MDOF
planar shear building, by finding the optimum distribution of
storey stiffness and strength, for a prescribed fundamental (small
strain) eigenperiod of the building. The optimization procedure
is applied both for linear elastic and elastoplastic buildings. Based

on the optimization results, the effects of different earthquakes,
number of stories, and amount of viscous damping along the
height of the building on the optimum strength distributions are
investigated and discussed.

LITERATURE REVIEW

In most seismic design codes for buildings worldwide, the seismic
effects on structures are taken into account in simplistic ways
which refer to linear elastic structural models, or lateral force
methods of analysis, e.g., CEN (1998), KBC (2009), International
Code Council (ICC) (2006), UBC (1997), NZS1170 (2004), AIJ
(1996). For example, in Part 1, section 4.3.3.2 of CEN (1998), the
horizontal seismic force distributions to be applied for design are
determined based on the elastic properties of the structure, or
even on a triangular distribution of horizontal displacements. It
is apparent that these force distributions usually do not lead to
evenly distributed dynamic distress of building structures, and
therefore attempts have been made in the past to calculate these
distributions in an optimum way by enforcing that distress and
damage are equidistributed among the storeys of a building.

A first approach is to apply the theory of uniform deforma-
tion to determine the optimum seismic forces (Moghaddam and
Hajirasouliha, 2004). According to this concept, while in most
conventional design cases the ductility demand will vary among
the floors of a building, leading either tomaterial partiallyworking
or to material less than required, it is enforced that the maximum
inter-storey drift is uniformly distributed heightwise, and equal
to the maximum allowable limit. Thus, the condition of uniform
deformation results in optimum use of material. The uniform
deformation theory has been successfully applied in various stud-
ies for optimum seismic design of shear buildings, either fixed
base (Moghaddam and Hajirasouliha, 2006; Park and Medina,
2007; Hajirasouliha and Moghaddam, 2009; Hajirasouliha and
Pilakoutas, 2012; Hajirasouliha et al., 2012) or with soil–structure
interaction effects taken into account (Ganjavi and Hao, 2012,
2013).

Besides these, hysteretic energy dissipation in a structure dur-
ing an earthquake is the key factor related to the amount of damage
in it. A structure is considered to resist an earthquake ground
motion provided that the energy input to the structure from the
earthquake is lower than its energy absorption capacity. Following
this, the EBD concept as well as the determination of elastic and/or
hysteretic energy distributions were examined for MDOF systems
(Berg and Thomaides, 1960; Penzien, 1960; Zahrah and Hall,
1982; Akiyama, 1985; Nakamura and Yamane, 1986; Léger and
Dussault, 1992; Rodriguez, 1994; Nakashima et al., 1996; Connor
et al., 1997). Chou and Uang (2003) presented a procedure for the
distribution of seismic energy demand over the floors of a MDOF
system solely by modal superposition of energy shapes, which
are established from a static pushover analysis. Similar equivalent
SDOF system concepts have also been used in the context of
modal pushover analysis to estimate the hysteretic energy demand
without the need for non-linear time-history analysis (Ghosh and
Collins, 2006; Prasanth et al., 2008). Wang and Yi (2012) and
Mezgebo (2015) proposed suitable hysteretic energy distributions
for MDOF systems.
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Apart from the above, it has been shown that the addition to
the structure of dampers of various types leads to modification
of the hysteretic energy or maximum inter-storey drift patterns.
Optimum stiffness distribution along the building height has been
proposed by Uetani et al. (2003). Optimum placement of oil,
hysteretic, and inertial mass dampers in order to minimize the
maximum inter-storey drift of the structure has been examined
by Murakami et al. (2013). Detailed methods for addition of
dampers in structures to optimize performance-based design for
earthquakes can be found in Takewaki (2011).

Despite the large amount of the literature being concerned with
hysteretic energy distributions in shear buildings, to the best of the
authors’ knowledge, the investigation of the conditions for uni-
form distribution of hysteretic energy along the height of a shear
building has not been yet addressed in the literature. Shargh and
Hosseini (2010) and Shargh and Hosseini (2011) showed that it is
possible to find an optimal stiffness distribution over the height
of a linear elastic MDOF building to minimize the total seismic
input energy, a ratio of which is the hysteretic energy responsible
for structural damage. This optimum stiffness distribution results
in minimum value of total dissipated hysteretic energy (Shargh
et al., 2012).

PURPOSE OF THE PRESENT STUDY

The issue of optimum seismic design of non-linear MDOF struc-
tures by modification of the stiffness and strength properties in
order to achieve a uniform hysteretic energy dissipation pattern
over the structure’s height requires the formulation of a theory
of uniform hysteretic energy dissipation, similar to the theory of
uniform deformation already used for optimum seismic design
and presented in the previous section. It has been shown that
according to the latter with decreasing lateral yield strength the
ductility demand decreases and if the former becomes lower than
a certain point this trend is reversed (Penzien, 1960). However,
the variation of hysteretic energy demand with yield strength is
not as obvious as the variation of ductility demand with yield
strength; it also depends on additional factors such as the duration
of the seismic event. This entails that more robust techniques than
those used for the uniform deformation theory have to be used to
find optimum structural properties for uniform hysteretic energy
distributions. An attempt to develop a new powerful optimization
technique is made in this study to solve the uniform hysteretic
energy problem in MDOF systems, a problem that has not been
solved yet, to the best of the author’s knowledge. Therefore, two
main novelties are considered in this study:

• Formulation of the theory of uniform energy dissipation and
optimumdesign of shear buildings according to the former, and

• Development of a new fast and robust energy-based optimiza-
tion technique.

NUMERICAL MODELING

Structural Model
The most common model used for the dynamic response history
analysis of building structures is the shear beam model. This

system is represented by a viscously damped spring-mass sys-
tem, where the mass is considered to be concentrated on each
floor level and the storey shear force versus storey deflection
relationship is presumed to be bilinear with a very low non-zero
positive post-yield stiffness, so that themodel responds effectively
as elastic—perfectly plastic. The building deforms only in shear,
since it is assumed that the floors are axially and flexurally rigid.
Regularitywith regards to themass distribution along the height of
a building is assumed and also it is presumed that changes in the
stiffness distribution lead to negligible changes in the mass dis-
tribution (resulting from changes, e.g., in the cross section of the
columns, etc.). Moreover, it is assumed that the floor masses move
horizontally only within a vertical plane. Two MDOF systems are
analyzed: one 5-storey building and one 10-storey building. For
each of the twoMDOF systems the height of the stories is assumed
to be equal to 3m and the mass per floor is assumed to be equal
to 25,000 kg. For each building a realistic value of fundamental
eigenfrequency f 0 has been assumed; for the 5-storey building
it is set equal to 2Hz (corresponding to fundamental eigenpe-
riod 0.5 s) and for the 10-storey building it is set equal to 1Hz
(corresponding to fundamental eigenperiod 1 s). The well-known
rule of thumb that the fundamental eigenperiod of a building is
equal to 0.1 s multiplied by the number of storeys was used. Both
buildings are considered to be fixed at their base, whereas their
behavior is assumed to be either linear or non-linear. Both linear
and non-linear buildings have been examined in this study. Also,
for the non-linearMDOF systems uniformnon-dimensional yield
displacement is assumed for all the floors, i.e., lateral stiffness is
assumed as proportional to shear strength at each story. Damping
is included through a classical damping matrix resulting from the
superposition of the damping matrices of all linear elastic modes
of the structures which have the same modal damping ratio. A
number of horizontal seismic excitations are imposed at the base
of the MDOF systems, resulting in their dynamic response. The
two MDOF shear buildings analyzed are shown in Figure 1.

Several types of hysteresis models are employed in research and
engineering practice to predict the response of steel and reinforced
concrete members subjected to cyclic loading. Six of them have
been presented by Decanini and Mollaioli (2001) who applied a
methodology for the assessment of the seismic energy demands
imposed in structures. Tomodel the non-linear force-deformation
behavior of shear buildings, the elastic-perfectly plastic consti-
tutive model is chosen in this study. The elastoplastic model is
chosen as a reference hysteretic model, since the introduction of a
more sophisticated model of non-linear response would compli-
cate the range of validity of the optimization results, subtracting
thus from generality. The elastoplastic model is considered as
the fundamental model of hysteretic behavior and furthermore
it is easier to be compared with other models. The methodology
introduced in the present study is virtually a general framework for
the optimum design of shear buildings, opening thus the way for
more specialized treatments of the problem using advanced struc-
tural constitutivemodels. Bilinear hysteretic behavior is simulated
using two linear models, corresponding to the two branches of the
hysteresis loop.

The basic idea is that each branch of the hysteresis may be
described by an equation of the form fK = k(u− d), where fK is the
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FIGURE 1 | Planar shear building models analyzed in this study with 5 and 10 storeys.

restoring force, u is the displacement, and d, k are the equilibrium
displacement and pre- or post-yield stiffness at the last appli-
cation of the elastoplastic model. The restoring force is 0 when
u= d. By suitable loops over the floors of the MDOF structure
(counting from top to bottom of the shear building) and identifi-
cation of transitions between the elastic loading, plastic loading,
elastic unloading states, the inter-storey forces, and stiffnesses
are calculated and passed to the time integration algorithm. An
indicative one-cycle force-displacement diagram of the bilinear
elastic model is shown in Figure 2. The elastic-perfectly plastic
constitutive model used in this study is implemented as follows:

• (∗) Form the square pre-yield stiffness matrix K from khi
• Find the eigenfrequencies ωi and eigenvectors φi of the linear

elastic (pre-yield) structure with stiffness K and mass M for
which the following relations hold:∣∣∣K − ω

2
iM

∣∣∣ = 0 (1)(
K − ω

2
iM

)
φi = 0 (2)

and calculate the elastic pre-yield tangent damping matrix:

C =
ndofs∑
i=1

2ξωiMφiφ
T
i M (3)

FIGURE 2 | Force-displacement diagram showing one cycle of the bilinear
elastic model used in this study.

• (∗∗)Read the values of u, u̇ and add a zero element to u, u̇ to
account for the fixed base:

u =
[
u
0

]
, u̇ =

[
u̇
0

]
(4)
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• for i from 1 to ndofs, where ndofs is the number of degrees of
freedom (or storeys) of the structure, do the following:

• Compute the stiffness force of the current storey from k and
d stored from previous application of the elastoplastic model
[see step beginning with three asterisks (∗∗∗) below]:

pK,i = ki (ui − ui+1 − di) (5)

• Compute the yielding force level:

py,i=klo,i (ui − ui+1) + (khi,i − klo,i) uy,i · sign (u̇i − u̇i+1)
(6)

• Check for yielding or load reversal and update ki and di
accordingly

• If ki = khi ,i and u̇i−u̇i+1 > 0 and pK,i > py ,i, the systemhas
exceeded its positive yield force level. Update as follows:

ki = klo,i (7)

di = (1 − khi,i/klo,i ) uy,i (8)

• If ki = khi ,i and u̇i−u̇i+1 < 0 and pK,i < py,i, the systemhas
exceeded its negative yield force level. Update as follows:

ki = klo,i (9)

di = (khi,i/klo,i − 1) uy,i (10)

• If ki = klo ,i and pK,i (u̇i − u̇i+1) < 0, the system reloads
from negative ultimate displacement or unloads from
positive ultimate displacement. Update as follows:

ki = khi,i (11)

di = ui − ui+1 − klo,i/khi,i (ui − ui+1 − di) (12)

• Update the global force vector:

pK,int,i+1 = ki (ui − ui+1 − di) (13)

• for i from 1 to ndofs find the elastoplastic forces of all storeys of
the structure (with respect to its base):

pi = pK,int,i+1 − pK,int,i (14)

• Add the contribution of linear elastic damping to the internal
force:

p = p + Cu̇ (15)

• (∗∗∗) Store k and d, and go back to the step beginning with an
asterisk (∗). Alternatively, store C, k and d, and go back to the
step beginning with two asterisks (∗∗).

The dimensionless inter-storey drift yield limit is considered to
be uniform along the height of the MDOF shear building and is
given by the equation:

ūy =
kuy

max {|ẍg|}m
= uy

(2πf0)2

max {|ẍg|}
(16)

where k is the pre-yield stiffness of a hypothetical SDOF system, uy
is its yield limit,m is its mass, f 0 is its fundamental eigenfrequency
(which is considered equal to that of the building analyzed), and
ẍg is the time history of the earthquake acceleration.

Time Integration Algorithm for Evaluation
of Structural Response
The hysteretic energy demand can be accurately computed
through a non-linear dynamic time-history analysis of the struc-
ture subjected to a given earthquake ground acceleration. For
the dynamic response history analyses performed in this study,
the family of non-linear direct time integration algorithms pre-
sented by Papazafeiropoulos et al. (2017) is used. This family of
algorithms is described by the following basic relationships:

• The updates of displacement and velocity:

un+1 = un + λ1u̇n∆t+ λ2ün∆t2 + λ3 (ün+1 − ün) ∆t2 (17)

u̇n+1 = u̇n + λ4ün∆t + λ5 (ün+1 − ün) ∆t (18)

• The update of acceleration:

M̃k
nün+1 = f̃kn (19)

where

f̃kn
(
Kk

n,Ck
n, fkn

)
= −M

(
ükn − µ6ükn

)
− Ck

n

(
u̇kn + µ4ükn∆t − µ5ükn∆t

)
− Kk

n

(
ukn + µ1u̇kn∆t + µ2ükn∆t2 − µ3ükn∆t2

)
+ (1 − W1) fkn + W1fkn+1 (20)

and

M̃k
n

(
Kk

n,Ck
n

)
= µ6M + µ5Ck

n∆t + µ3Kk
n∆t2 (21)

• The residual equivalent force, which becomes 0 if an iteration
within an increment reaches equilibrium:

gkn = f̃kn − M̃k
nükn (22)

Any scheme of the aforementioned algorithm family needs
15 integration constants (of which 14 are independent) to be
uniquely defined. See Papazafeiropoulos et al. (2017) for a com-
plete list of known time integration schemes which are special
cases of this family. The time integration algorithm used here
has optimal numerical dissipation and dispersion and zero-order
overshooting in displacement and velocity (U0-V0-Opt). In addi-
tion, equilibrium iterations are made within each increment by
the use of a Newton–Raphson (N–R) procedure. The last updates
the stiffness matrix at each iteration, until an equilibrium state
is reached and the time integration algorithm proceeds to the
next increment. It is possible, however, that during the iterations
within an increment the algorithm does not converge, usually
due to the fact that the stiffness of the structure changes abruptly
between pre- and post-yielding state. In this case, the iterations
are terminated and the last meaningful solution is accepted for
equilibrium.

EBD Optimization Problem
Theminimization of the deviation of the energy distribution along
the height of a building is treated in this study as an unconstrained
optimization problem, the components of which are described in
detail in the following paragraphs.
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Design Variables
The design variables of the optimization procedure are simply the
stiffness of each storey of the two buildings under consideration,
namely, for the 5-storey and 10-storey buildings there are 5 and
10 design variables, respectively. The various stiffness distribu-
tions encountered during the optimization process have to respect
some upper and lower limits, to ensure that computations remain
meaningful and that no premature termination of the process
occurs. For the stiffness of each storey, an upper and a lower
limit is imposed which remains constant during the optimization.
Moreover, if at an iteration the new value of xk violates any of the
upper and lower bounds, the step length is appropriately decreased
by applying a line-search algorithm, so that the new value of xk lies
within the upper and lower limits, whereas the Newton direction
remains unchanged. This line-search algorithm is described in
Section “Optimization Algorithm” below. The upper and lower
bounds are equal to 1E9 and 1E6N/m, respectively.

Objective Function
The objective of the optimization procedure employed in this
study is to find the stiffness distribution that corresponds to uni-
form energy dissipation over the structural height, either in terms
of energy dissipation due to viscous damping for linear elastic
structures, or in terms of energy dissipation due to hysteresis
for elastic-perfectly plastic structures. However, the enforcement
of uniform energy dissipation alone does not lead to a unique
stiffness/strength distribution of the structure; the magnitude of
the energy dissipated has to be additionally determined. The
latter is done by imposing that the structure will have a specific
fundamental eigenfrequency f 0 which controls the energy input
in the structure. From the above it is concluded that the objective
function has to be defined in away that not only the distribution of
the energy dissipation, but also the fundamental eigenfrequency
of the structure have to be calculated as functions of the design
variables (stiffness distribution along the height).

In this study the gradient of the objective function for elastic-
perfectly plastic structures is defined as:

∇fobj (xk) =
yk
ȳk

−
(

ω0,k

2πf0

)q
(23)

where the exponent q serves as a weighting factor between the
energy distribution and the desired fundamental eigenfrequency
of the building and is selected in a manner that maximizes the
convergence rate of the optimization process. In this study, q is set
equal to 10 for all optimization analyses. Here, yk is the vector of
the hysteretically dissipated energy distribution along the height
of the structure, ȳk is its mean value and ω0,k is the fundamental
cyclic eigenfrequency of the structure having stiffness distribution
xk. Analogous equation holds for the linear elastic structures:

∇fobj (xk) =
dk
d̄k

−
(

ω0,k

2πf0

)q
(24)

where dk is the vector of the damped energy distribution along the
structural height and d̄k its average. It must be noted here that the
explicit definition of the objective function is not of interest here,
since it does not have any physical meaning; only its gradient is
considered, which becomes 0 at the point of optimum design.

TABLE 1 | Earthquake excitations considered in this study and their characteristics.

Earthquake Station Instrument Component

Imperial Valley,
1979

El Centro Array Sta 8, CA,
95 E Cruickshank Rd

Ground level 140

Kobe, 1995 Takarazuka Ground level 0

Izmit-Kocaeli,
1999

Yarimca Petkim Basement 0

Cape
Mendocino,
1992

Cape Mendocino, CA,
Petrolia

Ground level 90

Loma Prieta,
1989

Gilroy Array Sta 3, CA,
Sewage Plant

Ground level 0

Chi-Chi, 1999 Nantou—Hsinjie School,
WNT

Free-field 90

Imperial Valley,
1940

El Centro Terminal
Substation Building

Ground level N-S

Spitak, 1988 Gukasyan Free-field 0

San Fernando,
1971

Castaic, CA, Old Ridge
Route

Ground level 291

Earthquakes Considered
Nine earthquake records have been studied, which are the
following: Imperial Valley (1979), Kobe (1995), Izmit-Kocaeli
(1999), Cape Mendocino (1992), Loma Prieta (1989), Chi-Chi
(1999), Imperial Valley (1940), Spitak (1988), and San Fernando
(1971). More details about these earthquake records can be seen
in Table 1.

Optimization Algorithm
In this study, a gradient optimization strategy is employed to find
optimum stiffness (and strength) distributions at MDOF shear
buildings. Gradient-based optimization methods search for a
minimum of a scalar function f obj(xk) of a vector including the
floor stiffnesses as design variables xk iteratively, by approximat-
ing the objective function by a Taylor series expansion around xk:

fobj (xk + x) ≈ fobj (xk)+
(
∇fobj (xk)

)Tx+ 1
2
xT∇2fobj (xk) x (25)

At each optimization step, a direction ek and a step length ak are
calculated based on the current value of the stiffness distribution
xk, and the latter as well as the objective function are updated
based on the following equations:

xk+1 = xk + akek (26)

fobj (xk+1) (27)

The algorithm begins with a random initial stiffness distri-
bution x0. The above process is repeated until the convergence
criterion is satisfied, at which point the optimization algorithm
terminates. The formal version of the Newton direction method
involves a quadratic approximation of the objective function real-
ized through the calculation of the Hessian matrix as follows:

ek = −
[
∇2fobj (xk)

]−1
∇fobj (xk) (28)

where ∇2fobj (xk) is the Jacobian. In this study, however, the above
Newton direction is modified by adding a constant multiplied by
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the unity matrix, which is proved to stabilize the whole behavior
of the optimization algorithm:

ek = −
[
∇2fobj (xk) + NRstabI

]−1
∇fobj (xk) (29)

where ∇2fobj (xk) + NRstabI is the modified Jacobian. Eq. 29 can
be rewritten due to Eqs 23 and 24 as follows:

ek = −
[
∇

{
dk
d̄k

−
(

ω0,k

2πf0

)q}
+ NRstabI

]−1 [
yk
ȳk

−
(

ω0,k

2πf0

)q]
(30)

and

ek = −
[
∇

{
dk
d̄k

−
(

ω0,k

2πf0

)q}
+ NRstabI

]−1 [
dk
d̄k

−
(

ω0,k

2πf0

)q]
(31)

for elastic-perfectly plastic and linear elastic MDOF structures,
respectively.

In this study, Eqs 30 and 31 are used for the computation of the
modified Newton direction, without explicit consideration of the
objective function f obj(xk). Note that the modified Jacobian of Eq.
30 is not a function of the hysteretically dissipated energy yk, but
the damping energy of the equivalent linear elastic MDOF system
dk. The equivalent linear elastic MDOF system of a given elastic-
perfectly plasticMDOF system is defined as the latter with its yield
limit set equal to infinity (i.e., the former is defined by the behavior
of the latter for small strains). This new way of calculation of the
Jacobian accelerates by far the optimization process of the non-
linear MDOF system, despite the minor loss in accuracy that is
associated with this option.

Given that the calculation of the derivative of the energy distri-
bution requires the largest part of the total computational effort
required for the optimization process, it is concluded that this
new logic of gradient optimization of non-linear structures is
vital for the reduction of the computational load. In addition,
this rationale introduces the concept of optimization points found
from non-linear structural response and directions found from
equivalent linear structural response. The last concept can be
applied not only in the case of Newton direction methods, but
in many other types of optimization methods, utilizing either
line searches or trust regions, such as steepest descent, conjugate
gradient, subspaceminimization, Broyden class algorithms, etc. In
a future study, the authors will deal with how the aforementioned
concept can be applied for improving the performance of such
algorithms.

Two optimization procedures are implemented in this study.
The first concerns the optimization of the linear elastic structure
with respect to damping energy, using Eqs 31 and 26, whereas
the second concerns the optimization of the elastic-perfectly plas-
tic structure using Eqs 30 and 26. After having estimated the
optimum stiffness distribution of the linear elastic structure, this
distribution is used as the initial point for the optimization of the
non-linear structure. The optimization procedure implemented in
this study is as follows:

• Initialize:
k = 1 (32)
xk = x0 (33)
rk = −r (34)

• While the vector |rk|/|r| contains at least one value higher than
tolr:

• Check if the hessian has to be updated. If yes, calculate it
from the relation (35), else omit this step and proceed to the
following steps:

Jk = ∇
{
dk
d̄k

−
(

ω0,k

2πf0

)q}
+ NRstabI (35)

• Solve for the quasi-Newton direction ek according to Eq. 30
or 31.

• Find a trial value for xk by assuming a unit step along the
direction ek, using Eq. 36:

xk+1 = xk + ek (36)

• If any value of the new vector xk+1 is not within the upper and
lower limits ub and lb respectively:

• Perform line search for the step in the direction ek as
follows:

a1k = min {ub − xk}/(max {ek} − min {ek}) (37)

a2k = min {xk − lb}/(max {ek} − min {ek}) (38)

ak = min {a1k, a2k} (39)

• Adjust xk+1 for the next iteration according to Eq. 26.

• Calculate the new residual for the next iteration:

rk = ∇fobj (xk+1) (40)

• Update the design variables and the iteration counter for the
next iteration of the while loop:

xk = xk+1 (41)
k = k + 1 (42)

Regarding the aforementioned optimization parameters, the
values NRstab =−3E−6 and tolR = 0.01 are specified in this study.
The optimization algorithm implemented in this study can be
easily applied in the case of irregular structures and give proper
optimum stiffness distributions, not only for linear, but also for
non-linear shear buildings.

TYPICAL HYSTERETIC ENERGY
DISTRIBUTIONS FOR SHEAR BUILDINGS

Typical distributions of the energy dissipated due to hysteresis
during elastoplastic response of the 5-storey and 10-storey build-
ings considered in this study are shown in Figure 3. It has been
assumed that the buildings have uniform stiffness distributions
along their height, which are scaled so that they correspond to
fundamental eigenfrequencies equal to 2 and 1Hz, respectively.
As it has been often observed in practice, the largest amounts of
energy are concentrated at the bottom floors of the buildings for
all the earthquake records considered. At the top floors the energy
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FIGURE 3 | Distributions of energy dissipated due to hysteresis for the 5- and 10-storey shear buildings with uniform stiffness along their height, ξ=5%, ūy=0.01
and fundamental eigenfrequencies 2 and 1Hz, respectively, for various earthquake records.

FIGURE 4 | Optimum distributions of elastic stiffness and energy dissipated due to damping for the 5-storey shear building with ξ= 5% for various earthquake
records.

is much lower, and sometimes becomes 0 (i.e., the upper floors do
not participate as an energy absorptionmechanismduring seismic
response). It is seen that generally the energy distributions vary
non-linearly with height. The largest energy demand on the build-
ing is generally imposed by the Kobe (1995), Kocaeli (1999), and
Chi-Chi (1999) earthquakes. Figure 3 shows clearly the reason
for which the damages caused by an earthquake accumulate at
the lower floors, and why soft storey mechanisms develop more
often at these levels. This phenomenon is undesirable; there is
the need to equidistribute the seismic energy absorbed by the
building among all storeys, in order to exploit the construction
material as much as possible, and maximize structural safety. This
study tries to cover this need by proposing a new fast optimization
algorithms which has already been presented in the previous
sections.

OPTIMUM STIFFNESS DISTRIBUTIONS
FOR LINEAR STRUCTURES

In this section, the optimum stiffness distributions are shown
for the cases of the linear elastic versions of the 5-storey and
10-storey planar shear buildings considered in this study. The

optimum stiffness distributions refer to the specific fundamen-
tal eigenfrequencies prescribed for both buildings (2 and, 1Hz
respectively) and various values of the critical damping ratio;
uniformity of the dissipated energy due to viscous damping is
enforced as has been already discussed. Apart from the optimum
stiffness distributions, the effects of various factors are discussed
in the next.

Effect of Earthquake Excitation on
Optimum Stiffness and Energy
Distributions
Two families of optimum stiffness distributions along with
their corresponding damping energy distributions are shown in
Figure 4 and Figure 5 for the 5-storey and 10-storey MDOF
systems analyzed in this study, respectively. It seems that the
optimum stiffness generally has a regular distribution, where the
largest value is at the first storey and the lowest at the top storey.

Similar results with Figure 4 are presented in Figure 5, where
the optimumstiffness and optimumdamping energy distributions
for the 10-storey shear building are shown. It is obvious that the
stiffness distributions of the 10-storey MDOF systems are regular
and have generally their largest value at the bottomof the structure
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FIGURE 5 | Optimum distributions of elastic stiffness and energy dissipated due to damping for the 10-storey shear building with ξ= 5% for various earthquake
records.

FIGURE 6 | Optimum distributions of elastic stiffness and energy dissipated due to damping for the 5-storey shear building subject to the El Centro earthquake
record for various critical modal damping ratios.

and their lowest value at the top. The general observation is that
the stiffness distribution which corresponds to uniform damping
energy over the height of a shear building is generally independent
of the earthquake motion with which the building is excited.
By comparing Figure 5 with Figure 4, it can be stated that the
stiffnesses of the 10-storey building are generally close to those
of the 5-storey shear buildings. On the other hand, the energy
distributions of the 10-storey building seem to be generally lower
than those of the 5-storey building.

Effect of Modal Damping on Optimum
Stiffness and Energy Distributions
In Figures 6 and 7 the effect of critical modal viscous damp-
ing ratio on the optimum distributions of stiffness and damping
energy for both 5-storey and 10-storey systems considered in this
study is illustrated. In Figures 6 and 7 results regarding the El
Centro earthquake record are presented. It is apparent that the
two shear buildings have nearly identical stiffness distributions
for the various critical damping ratios in the case of the El Centro
earthquake record. Regarding the damping energy distributions,

it can be seen generally that as the damping ratio increases, the
amount of the dissipated energy also increases. Apart from this,
with increasing damping ratio, the difference between successive
dissipated energy distributions of the 5-storey system and the 10-
storey system becomes lower. Finally, another thing to be noted is
that the energy distributions of the 5-storey building are generally
larger than those of the 10-storey building.

OPTIMUM STIFFNESS DISTRIBUTIONS
FOR ELASTIC—PERFECTLY PLASTIC
STRUCTURES

In this section, optimization results are presented for the elastic-
perfectly plastic counterparts of the planar shear buildings con-
sidered in the previous section. Along with the critical modal
damping ratio, an additional parameter is taken into account here,
which is the normalized inter-storey drift yield limit, defined in
Eq. 16. The fundamental eigenfrequencies of the two buildings
remain the same as those in the linear elastic case: 2 and 1Hz
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FIGURE 7 | Optimum distributions of elastic stiffness and energy dissipated due to damping for the 10-storey shear building subject to the El Centro earthquake
record for various critical modal damping ratios.

FIGURE 8 | Optimum distributions of elastic pre-yield stiffness and energy dissipated due to hysteresis for the 5-storey shear building with ξ= 5%, ūy= 0.1 for
various earthquake records.

for the 5- and 10-storey building, respectively. The uniform nor-
malized inter-storey drift yield limit is assumed to be ūy = 0.1
and ūy = 0.04 for the 5- and 10-storey building, respectively.
It has to be noted here that the effective seismic force for which
the structure will be designed can be easily calculated from the
optimum stiffness distribution multiplied by the uniform yield
inter-storey drift limit.

Effect of Earthquake Excitation on
Optimum Stiffness and Energy
Distributions
The optimum pre-yield stiffness distributions and its correspond-
ing hysteretic energy distributions are shown in Figure 8, in
the left and right subplots, respectively, for the 5-storey shear
building considered in this study. It is observed that the stiffness
distributions generally decrease from bottom to top, as was seen
in the linear elastic case in Figure 4. It is noted that a general
(quasi-linear) optimum stiffness distribution trend exists which is
followed by the stiffness distributions for the various earthquake
records considered, for both 5-storey and 10-storey buildings,

perhaps with the slight exception of the Cape Mendocino (1992)
and Loma Prieta (1989) earthquakes in the cases of 5- and 10-
storey shear buildings, respectively. The general stiffness distri-
bution trend can be used in each case for structural design, at
least in the preliminary stage. Concerning the hysteretic energy
distributions for optimum stiffness at the right subplot of the
figure, it is seen that the hysteretic energy that is suffered by the
two buildings in the case of Kobe (1995) earthquake appears to be
the largest of all earthquakes. The Kobe (1995) earthquake yields
also the largest damping energy distribution in the case of the
linear elastic 10-DOF system with optimum stiffness distribution
(Figure 5). The hysteretic energy distribution of the Spitak (1988)
earthquake remains to be the lowest of all earthquakes for both
buildings. The above results lead to the conclusion that there is
some close relation between the linear viscous damping energy
and elastoplastic hysteretic energy that is dissipated at the storeys
of a shear building.

Figure 9 shows the optimum pre-yield stiffness distribu-
tions and their associated hysteretic energy distributions for the
elastoplastically responding 10-storey shear building subject to
various seismic excitations. It is seen that a general trend is again
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FIGURE 9 | Optimum distributions of elastic pre-yield stiffness and energy dissipated due to hysteresis for the 10-storey shear building with ξ= 5%, ūy= 0.04 for
various earthquake records.

FIGURE 10 | Optimum distributions of elastic pre-yield stiffness and energy dissipated due to hysteresis for the 5-storey shear building with ūy= 0.1 subject to the El
Centro earthquake record for various critical modal damping ratios.

followed by themajority of the earthquakes considered. Regarding
the energy distributions, it is seen again that the maximum hys-
teretic energy distribution occurs for the Kobe (1995) earthquake
and the minimum for the Spitak (1988) earthquake. Additionally,
the former is larger for the optimal 5-storey building than that for
the optimal 10-storey building.

Effect of Critical Modal Damping Ratio
on Optimum Stiffness and Energy
Distributions
The effect of critical modal damping ratio on the optimum stiff-
ness and energy distributions of the two shear buildings is shown
in Figures 10 and 11 for the El Centro earthquake. It is observed
that the various optimum stiffness distributions are nearly iden-
tical for the various cases of damping ratio, whereas it seems that
as the damping ratio increases, the hysteretic energy distribution
decreases. This can be explained by considering that the earth-
quake energy that is input to a shear building can be dissipated
through either damping or hysteretic elastoplastic response. As the
damping ratio increases, the energy dissipated through damping

also increases. As a consequence of this, the portion of the input
energy that is dissipated through hysteresis decreases. Apart from
this, it is also observed that in all cases examined the 5-storey
building has larger hysteretic energy distributions than the 10-
storey building. Finally, the stiffness distributions for the 10-storey
building are slightly lower than the corresponding distributions of
the 5-storey building.

Effect of Normalized Yield Inter-Storey
Drift on Optimum Stiffness and Energy
Distributions
The distribution of the normalized inter-storey drift yield limit
at a shear building is another factor that affects profoundly its
structural response in the elastoplastic regime. This parameter is
taken to be uniform for all storeys, and is calculated based on Eq.
16. In Figures 12 and 13 the effect of this parameter is illustrated
for the 5-storey and 10-storey shear building, respectively with
ξ= 0.05, subject to the El Centro earthquake excitation. It is
observed that the stiffness distributions are relatively close to each
other both for 5-storey and for 10-storey buildings, for the two
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FIGURE 11 | Optimum distributions of elastic pre-yield stiffness and energy dissipated due to hysteresis for the 10-storey shear building with ūy= 0.04 subject to the
El Centro earthquake record for various critical modal damping ratios.

FIGURE 12 | Optimum distributions of elastic pre-yield stiffness and energy dissipated due to hysteresis for the 5-storey shear building with ξ= 5% subject to the El
Centro earthquake record for various normalized yield inter-storey drifts.

FIGURE 13 | Optimum distributions of elastic pre-yield stiffness and energy dissipated due to hysteresis for the 10-storey shear building with ξ=5% subject to the El
Centro earthquake record for various normalized yield inter-storey drifts.
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values of ūy. This can be attributed to the fact that ūy is uniform
over the building height for both cases. Besides, the energy dis-
tributions show clearly that as ūy decreases, the dissipated energy
due to hysteresis increases, as is expected. This can be explained
by the fact that as ūy decreases, the structure responds at the
perfectly plastic branch of the elastoplastic response for larger time
intervals, and therefore, the effect of plasticity becomes greater,
leading to larger hysteresis loops and thus increased hysteretic
energies. Finally, it can be noted that the 5-storey building has
slightly lower stiffness distributions and dissipates larger amounts
of hysteretic energy than the 10-storey building.

EFFECTIVENESS OF THE NEW
OPTIMIZATION CONCEPT

For every new optimization algorithm, the question arises, how it
increases the effectiveness, speed, etc. of the optimization process
to which it is applied. The new optimization concept presented
in this study can be applied for any energy-based optimization
problem, andwe need to see how the algorithm behaves for typical
examples already presented in previous sections. In Figure 14
the evolution of the standard deviation of the hysteretic energy
distribution is shown as a function of the normalized running
time for the 5- and 10-storey shear buildings considered in this
study with f 0 = 2Hz, ξ= 0.05, ūy = 0.1 and f 0 = 1Hz, ξ= 0.05,
ūy = 0.04, respectively, subject to the El Centro earthquake
record. The optimum stiffness and energy distributions for the
two cases are shown in Figure 12 and 13. It is seen that the
running times of the NR algorithm using linear derivatives are
much lower than those with non-linear derivatives. The running
time of each optimization problem is normalized with respect
to the running time of the optimization algorithm using non-
linear derivatives, hence the running time of the two non-linear
derivative algorithms is set to unity (100%).

It is clearly seen that the novel optimization algorithmproposed
in this study can be roughly as much as 11 times faster than
the traditional NR for the 10-storey system and roughly seven

times faster for the 5-storey system. For further increasing number
of stories, the novel algorithm is expected to be even over 11
times faster than the ordinary NR, saving thus a great amount of
computational effort. It has to be noted here that, for comparison
purposes, the initial stiffness distributions with which the algo-
rithms began were set to be identical for both sets of cases, and
equal to the linear elastic optimum stiffness distributions shown
in Figure 6 and 7 for ξ= 0.05. Since the algorithms begin from
the same initial distribution to solve essentially the same problem
(in terms of earthquake record and various structural properties),
the differences in the running times and the general behavior are
affected merely by the nature of the algorithm and its properties.
The results of the optimization studies shown in Figure 14, are
shown in Table 2.

It is seen that, the proposed NR algorithm in this study, while
it retains the number of iterations approximately at the same
levels with the classic NR, it can reduce the execution time by as
much as 85% in the case of the 5-storey building and by 91% in
the case of the 10-storey building. The reduction in the running
time is expected to increase for buildings with more storeys, or
generally structures with more degrees of freedom. As a result, as
the problem becomes more complicated, the proposed algorithm
is expected to perform better compared to the classic NR method.
Finally, it has to be pointed out that in both sets of cases, the final
optimum stiffness distribution result was identical for both the
classical NR method and the proposed optimization algorithm.

TABLE 2 | Numerical results of the optimization processes the evolution of which is
presented in Figure 14.

Case Normalized
running
time (%)

Time
reduction

(%)

Iterations

5-storey, Newton–Raphson 100 – 136
5-storey, proposed algorithm 14.9 85.1 135
10-storey, Newton–Raphson 100 – 153
10-storey, proposed algorithm 8.8 91.2 143

FIGURE 14 | Evolution of the standard deviation of the hysteretic energy distributions during various optimization processes for the classic N–R optimization
procedure and the proposed N–R optimization procedure, for 5- and 10-storey shear buildings with f0 = 2Hz, ξ= 5%, ūy = 0.1 and f0 = 1Hz, ξ= 5%, ūy = 0.04,
respectively, subject to the El Centro earthquake record.
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CONCLUSION

The main conclusions drawn from this study are the following:

• It is shown that there exist unique optimum stiffness distribu-
tionswhich correspond to equidistributed viscous damping and
hysteretic energy dissipation for linear elastic and elastoplastic
planar shear building structures, respectively.

• In addition, the optimum stiffness distribution for both elastic
and elastoplastic shear buildings appears generally to have a
quasi-linear shape (slightly curved), with the maximum value
at the bottom floor and the minimum value at the top floor of
the structure. This shape is generally independent of the earth-
quake excitation and offers the possibility for the development
of simple methods for the calculation of the optimum stiffness
distribution in shear buildings.

• Structural design based on the proposed approach is more
rational and technically feasible compared to the uniform
ductility concept, whereas it is expected to provide increased
protection against global collapse and loss of life during strong
earthquake events.

• It is finally proved that the novel concept of linear direc-
tions equipped with a stabilizer for optimization of non-linear
problems, as applied for the modification of a simple full
N–R method, leads to substantial computational savings, since,
although the number of iterations required for convergence
remains roughly the same, the running times can be reduced
by a factor equal to 11. It is obvious that the new modified N–R
algorithm is robust and efficient. The new concept presented in
this study can be applied to other commonly used algorithms,
which is the aim of future research to be conducted by the
authors.
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APPENDIX: NOTATION

ak: step length of update of xk at iteration k
C: damping matrix
d: equilibrium displacement
di: equilibrium displacement at degree of freedom i at the last

application of the elastoplastic model
dk: damping energy distribution vector at iteration k of the

optimization procedure
d̄k: average of damping energy distribution at iteration k of the

optimization procedure
ek: direction of update of xk at iteration k
Ed: damping energy of a SDOF system
f : equivalent external loading vector due to seismic excitation

imposed on the structure
f̃: effective force vector

yk: hysteretic energy distribution vector at iteration k of the
optimization procedure

ȳk: average of hysteretic energy distribution at iteration k of the
optimization procedure

f 0: fundamental eigenfrequency of SDOF or MDOF structure
for small deformations

fk: restoring force
f obj: objective function
g: residual equivalent force vector
I: unity matrix
Jk: Jacobian matrix (first derivative of energy distribution) at

iteration k
k: iteration number or stiffness associated with a degree of

freedom
khi: pre-yield stiffness vector
khi ,i: pre-yield stiffness at degree of freedom i
ki: stiffness at degree of freedom i at the last application of the

elastoplastic model
klo ,i: post-yield stiffness at degree of freedom i
K: stiffness matrix
lb: lower bound of stiffness distribution xk
M: mass matrix
M̃: effective mass matrix
m: lumped mass per storey of SDOF or MDOF systems

ndofs: number of degrees of freedom of the structure
NRstab: Newton–Raphson stabilizer constant for optimization

procedure
pi: internal force due to stiffness at degree of freedom i

pK,i: internal force at degree of freedom i due to stiffness
pK ,int,i: inter-storey force between degrees of freedom i and i+ 1

due to stiffness
py ,i: yield force at degree of freedom i
q: exponent of eigenfrequency ratio
r: initial value of residual for the optimization procedure
rk: residual at iteration k of optimization procedure
T0: fundamental eigenperiod of SDOF or MDOF structure

for small deformations
tolr: tolerance of |rk|/|r|
u: displacement
ub: upper bound of stiffness distribution xk
ui: displacement at degree of freedom i
u̇i: velocity at degree of freedom i
üi: acceleration at degree of freedom i
uy: yield displacement
uy ,i: yield displacement at degree of freedom i. Yielding

occurs if the inter-storey drift between degrees of free-
dom i and i+ 1 exceeds uy ,i.

ūy: dimensionless yield inter-storey drift
W1: time integration constant
ẍg: earthquake ground acceleration
xk: stiffness distribution at iteration k of optimization pro-

cedure
x0: initial value of stiffness distribution to start optimization

procedure
∆t: step of direct time integration scheme

λ1. . .λ5: time integration constants
µ1. . .µ6: time integration constants

ξ: ratio of critical viscous damping of the system, assumed
to be unique for all stories of the structure

φi: ith fundamental eigenmode of structure
ω0,k: fundamental cyclic eigenfrequency of structure with

stiffness distribution xk for small deformations
ωi: ith fundamental cyclic eigenfrequency of structure
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