
Mobile Networks and Applications manuscript No.
(will be inserted by the editor)

A Queue Model for Reliable Forecasting of Future
CPU Consumption

Hugo Lewi Hammer · Anis Yazidi · Alfred
Bratterud · H̊arek Haugerud · Boning
Feng

Received: date / Accepted: date

Abstract Statistical queuing models are popular to analyze a computer systems
ability to process different types requests. A common strategy is to run stress tests
by sending artificial requests to the system. The rate and sizes of the requests are
varied to investigate the impact on the computer system. A challenge with such
an approach is that we do not know if the artificial requests processes are realistic
when the system is applied in a real setting. Motivated by this challenge, we
develop a method to estimate the properties of the underlying request processes
to the computer system when the system is used in a real setting. In particular
we look at the problem of recovering the request patterns to a CPU processor. It
turns out that this is a challenging statistical estimation problem since we do not
observe the request process (rate and size of the requests) to the CPU directly,
but only the average CPU usage in disjoint time intervals.

In this paper we demonstrate that, quite astonishingly, we are able to recover
the properties of the underlying request process (rate and sizes of the requests)
by using specially constructed statistics of the observed CPU data and apply a
recently developed statistical framework called Approximate Bayesian Computing.

Further we apply the model to forecast future CPU consumption. Our results
show that the model forecast future CPU consumption with less error than both
the hidden Markov model (HMM) in [16] and an ARIMA model. Another good
property of the queue model is that we can forecast the instantaneous CPU con-
sumption at any time point in the future, while the HMM in [16] and time series
models are limited to only forecasting the average CPU consumption in disjoint
time intervals.

Keywords approximate Bayesian computing · CPU consumption · forecasting ·
queue process and time series

1 Introduction

Scaling of computer systems is one of the most fundamental tasks in computer
science. A popular approach is to assume that requests to a computer system

Department of Computer Science, Oslo and Akershus University College of Applied Sciences

2 H. L. Hammer et al.

follow some statistical queuing model, see e.g. [22,7,31,37,35,15,24] for a few
representative examples. The typical approach in such papers is to run artificial
stress tests on the system by sending requests to the system and vary the rate and
sizes of the requests. A challenge with such an approach is that we do not know
if the rates and sizes used in the stress tests are realistic compared that what the
computer system are faced with in a real setting. A natural strategy, of course, is
to observe how well the system performs in real life settings. Unfortunately, such
observations do not reveal the properties of the underlying request processes (rate
and sizes of requests) to the system which contains important information on how
the computer system should be scaled, see more below.

In this paper we address this challenge and focus on requests to a CPU pro-
cessor. We use real observed CPU consumption data to recover the properties of
the underlying request processes (queuing process) to the CPU processor. More
specifically we want to recover the size and rate of the requests to the CPU pro-
cessor. If we know the time point for every request to the CPU processor (arrival
times) and when the system finished processing the requests (departure times),
the estimation of the properties of the queuing process can usually be easily done
by standard statistical estimation techniques like maximum likelihood estimation.
Unfortunately, such information is far from available for observed CPU consump-
tion data. In fact, it is not even possible to observe the current CPU load (number
of active CPU cores), but only the average load in disjoint time intervals (e.g. five
minute intervals). Consequently, a process consisting of many small requests to
the CPU and a process consisting of only a few large requests may look similar
since the two processes on average consume the same amount of CPU resources.
Even though we only observe the average CPU consumption we show that by us-
ing the statistical framework called Approximate Bayesian Computing (ABC) we
are, quite astonishingly, able to estimate the properties of the underlying queuing
process, i.e. rates and sizes of requests to the CPU processor.

From a practical point of view, being able to recover the properties of the
underlying queuing process can be quite useful. E.g. if the request pattern turns out
to consist of many small tasks (in stead of a few large) it can easily be parallelized
and the computer system can be constructed to take advantage of this.

Hammer et al. demonstrated in [16] that consolidation of virtual machines in a
cloud computer system can be improved by forecasting future CPU consumption
and base the consolidation on these forecasts. In this paper we demonstrate how
the queue model presented in this paper can be used to make precise forecasts of
future CPU consumption. A very interesting property of the queue model is that
we can forecast the instantaneous CPU consumption at any time point in the
future, while the HMM in [16] and time series models, like ARIMA models, are
limited to only forecasting the average CPU consumption in disjoint time intervals.
Only by building a model with an underlying queue process are we able to forecast
the instantaneous CPU consumption at any time point.

This paper is a major extension of the conference paper [17]. The related work is
extended to adapt to the new main focus of the paper, namely forecasting of future
CPU consumption. The results in the conference paper [17] only indicate that the
queue model presented in this paper can be useful for analysis of computer systems.
In this paper we extend the analysis by presenting an original and novel algorithm
for how to apply the queue model to forecast future CPU consumption, please see
Section 6. The forecast algorithm is evaluated through extensive experimentation

Queue Forecasting Model 3

and the results show impressive performance of the forecasting algorithm (Section
7.2).

2 Related work

Forecasting CPU usage has been a focal research question in the literature. CPU
load forecasting is useful in many settings, such as, forecasting the running time
of tasks [9], deadline-aware scheduling decision of real-time applications [27,10],
achieving elasticity in Cloud Computing via pro-active Virtual Machine (VM)
migration [28], data center consolidation [32] etc.

The related work on this CPU load forecasting can be categorized under two
main categories: Time-series based Methods and Queue-Theory based Methods.

Time-series based Methods : Network Weather Service (NWS) [30] is one of the
most early and successful examples of one-step-ahead CPU forecaster. NWS resorts
to a set of parallel linear predictors. The Mean Square Error (MSE) is computed
for each forecasting model. The predictor that yields the smallest MSE is chosen to
forecast the next CPU value. Those models include running average, sliding win-
dow average, last measurement, adaptive window average, median filter, adaptive
window median, α-trimmed mean, stochastic gradient, and Auto-Regression(AR).
Nevertheless the NWS faces challenges when dealing with peaks [3].

The Dynamic Tendency Predictor [34] is among one of the most simple and yet
proved efficient one-step ahead CPU estimators. The approach states that recently
increasing load will tend to increase in the future and that recently deceasing load
will continue to decrease. The Dynamic Tendency Predictor [34] has been extended
in [36] to forecast the tendency based on taking into account more steps backward
in time instead of only relying on the last step as originally proposed in [34]. Then,
a polynomial fitting approach was proposed for the forecasting.

Furthermore, multi-step-ahead forecasting of CPU load has been investigated
in the literature, see for example [33]. Yang et al. [33] achieve the latter objective
by finding similar historical patterns to the original pattern based on Hamming
distance and Euclidean distance. Then different fusion strategies are used in order
to combine the different forecastings of the similar patterns.

At this juncture, it is important to emphasize that our work is distinct for
the later stream of approaches as we would to rather recover the CPU request
patterns to a CPU processor instead of merely looking at the historical CPU load
and trying to forecast future values via time series. We believe that recovering the
underlying request patterns is very useful for providing a better understanding of
the statistical dynamics of CPU load and thus achieving multi-step ahead forecast-
ing. In addition, such an approach permits to distinguish CPU forecasting from
classical time series forecasting. In fact, the informed reader can remark that the
aforementioned Time-series based Methods are general and not originally designed
for CPU forecasting but rather admits a long list applications ranging from stock
market forecasting to weather forecasting.

Queue-Theory based Methods : Applying queuing models for analyzing CPU re-
source usage have received a lot of attention. We shall review some representative
studies on this topic.

4 H. L. Hammer et al.

In [22], the authors propose to perform task scheduling not based on the worst
execution time but rather based on the distribution of the execution time. A
task is supposed to be composed of different sub-tasks and it is assumed that
the execution time of the task is equal to the execution time of the bottleneck
task which finishes last. If the worst-case execution time is known, scheduling
based on worst-case execution time is guaranteed to meet the timing requirement,
however the worst-case execution policy leads to waste of CPU resources which
are underutilized. It is known that scheduling based on distribution yields more
effective resource utilization. The authors devised a model so that to forecast the
task execution time based on two classes of parameters: intrinsic and extrinsic.
The intrinsic factors are related to the computational requirement of the task,
while the extrinsic factors are related to communication and synchronization. In
order to render the system analysis traceable, the model is simplified thanks to
a simplification of the extrinsic factors, and mapped to a distributed system a
queuing model which nodes dedicated to computations and nodes dedicated to
communication and synchronization.

Stochastic fluid models is used in [2] for CPU capturing and releasing. Dis-
tributed software agents have routine tasks that need to be processed by a CPU.
The problem is to find an optimal threshold on the workload of the agent to design
a release-recapture CPU policy. The problem is modeled using two buffers, one for
the routine tasks and one for the non-routine tasks. The process servers a buffer
using a threshold-based policy. The threshold based policy is described in simple
terms as [2]: ”Traffic is emptied at rate c by a single scheduler that alternates
between the two buffers. When buffer 1 becomes empty the scheduler switches to
buffer 2 (after a switch-over time) and returns back to buffer 1 when the contents
of buffer 1 exceeds a.”

Bouterse and Perros [6] developed a model inspired from the realm of circuit
switched telephony models, namely the model of blocking of Erlang, in order to
develop reserve capacity model. Different models are used to forecast the arrival
rate and based on this, an number of servers are provisioned so that to meet the
target the blocking probability using Erlang formula.

Parameter estimation in queuing models Parameter estimation in queuing models
have a long tradition going back to the David Cox paper from [8]. Most papers
rely on the likelihood principle in one way or another, see e.g. [21,1,12], but there
are some situations where standard estimation techniques can not be used. E.g.
Heggland and Frigessi [18] estimate the parameters of a G/G/1 queue model when
only the departure times are known applying a method called indirect inference.

A disadvantage of the indirect inference approach is that it is difficult to get
reliable uncertainty estimates of the parameter estimates. Over the recent years
the indirect inference framework has been generalized and casted in to a Bayesian
framework. The approaches are typically referred to as Approximate Bayesian
Computing (ABC). See e.g. [5,11] for very nice reviews of the different approaches
available within the ABC framework. Due to the complexity of the estimation
problem considered in this paper, we resort to the ABC framework.

Queue Forecasting Model 5

Fig. 1 The CPU consumption data for four arbitrary days.

3 CPU consumption data

Real CPU consumption data were collected on a computer with a Windows 7
operating system operated by an office worker. These are the same data used
in [16]. We observed the office worker for 19 whole working days (i.e. weekends
removed) and observed the average CPU usage at five-minute intervals, i.e. 288
observations every day. The CPU data for four arbitrary days are shown in Figure
1. A value of one is equivalent to one CPU core running constantly. We observe
that the CPU consumption is typically largest during the day, with some occasional
computations during the evening. We observe little CPU consumption during the
night. Large tasks are visible in the real data with a constant CPU usage of around
one, e.g. in the evening as shown in the upper left panel. In the same panel, we
observe that the CPU consumption is around two right after 8 p.m. (value 20
on the x axis), meaning that two CPU cores are running some larger tasks. We
also observe large time spans in which the CPU usage is far below one, which
means that, during these periods, a number of smaller requests are sent to the
CPU processor. Even though we do not observe the CPU requests directly, we are
still able to say something about the amount of requests and their sizes just by
inspecting the CPU consumption data.

In the next section, we will present a statistical model for how such CPU
consumption data are generated.

6 H. L. Hammer et al.

4 Data generating model

The computer from which the data were collected, was equipped with a four core
CPU processor. We assume that the number of available cores is higher than the
number of current requests that need to processed, so that requests are never
queued up. More specifically, we assume that the request process can be modelled
by a M/G/∞ queue process. This is a reliable assumption since all the four cores
were never used at the same time during the 19 days of observations.

4.1 Notation

We assume that we have CPU consumption data for D days. We divide each day
into T equidistant intervals by the time points τ0, . . . , τT and define the length of
each time interval by ∆τ = τt − τt−1. We let the measurement unit be in days, so
that τ0 = 0 and τT = 1. Let ydt, d = 1, . . . D, t = 1, and . . . T denote the average
CPU consumption in the time interval [τt−1, τt] at day d. Recall from the introduc-
tion that these are our actual observations. Further, let yd(τ) denote the current
CPU consumption at time τ on day d and recall that it is unobservable since we
only observe the average CPU consumption ydt. Let Nd be the number of requests
to the CPU processor on day d and let ad1, . . . , adNd denote the arrival times for
each of these requests. Finally, let sd1, . . . , sdNd denote the size (processing time)
of the requests ad1, . . . , adNd . Since we assume a M/G/∞ model, the departure
time for request, adn, will simply be hdn = adn + sdn. To separate the data and
realisations from the queue model, we add a superscript ’R’ to realisations, e.g.
yRdt.

4.2 Statistical queuing model

We assume thatNd, d = 1, and . . . ,D are independent Poisson-distributed stochas-
tic variables with expectation λ. For a homogeneous Poisson process, we assume
that the requests are uniformly distributed throughout the day. From a practical
point of view, this is rarely the case and not for the data analysed in this paper,
where we observed most of the requests during the day (Section 3). Instead, we
assume an inhomogeneous (time varying) Poisson process and assume that the
arrival times of the requests are independent Beta-distributed stochastic variables

ad1, . . . , adNd ∼ Beta(α, β), d = 1, . . . , D

By varying the shape parameters α and β, most of the arrivals (CPU requests)
will take place at different times during the day. For instance, if high values are
chosen for both shape parameters, e.g. α = β = 20, almost all arrivals (CPU
requests) will take place within a short time period in the middle of the day.
Setting α = β = 1, the arrivals will be uniformly distributed throughout the
day (homogeneous Poisson process). For more details about the Beta distribution,
see e.g. [14]. Finally, we assume that the processing time for each request (i.e.
the size of the request) is an independent stochastic variable from a Log-normal
distribution

sd1, . . . , sdNd ∼ LogN(µ, σ), d = 1, . . . , D

Queue Forecasting Model 7

If X is a normally distributed stochastic variable with expectation µ and standard
deviation σ, then Y = exp (X) will be Log-normal distributed with parameters
µ and σ. Of course, other distributions could be used in the model, but for the
data analysed in this paper, the Log-normal distribution performed well. Since
the requests to the CPU can comprise both very small (short processing time)
and very large tasks, we need a distribution that captures this. Taking the exp of
outcomes from the normal distribution, we potentially get both very small values
and very large values, and the Log-normal distribution is thus suitable. We also
experimented with both an exponential and a gamma distribution, but the results
were less promising.

Given the arrivals and processing times described above, and recalling that we
assume a M/G/∞ model, the current CPU consumption at time τ on day d is
given by

yd(τ) =

Nd∑
n=1

I(adn < τ < hdn) (1)

where I(A) is the indicator function, returning one if A is true and zero otherwise.
We see that yd(τ) is simply the sum of the requests being processed at time τ .
Finally, the CPU observations, ydt, can be computed from yd(τ). Recall that ydt
is the average CPU consumption in the time interval [τt−1, τt], which gives

ydt =
1

∆τ

∫ τt

τt−1

yd(τ) dτ

=
1

∆τ

∫ τt

τt−1

Nd∑
n=1

I(adn < τ < hdn) dτ

=
1

∆τ

Nd∑
n=1

∫ τt

τt−1

I(adn < τ < hdn) dτ

=

Nd∑
n=1

[F (τt; adn, hdn)− F (τt−1; adn, hdn)]

(2)

where

F (τ ; adn, hdn) =

0 if τ ≤ adn
τ − adn
∆τ

if adn < τ ≤ hdn

hdn − adn
∆τ

if τ > hdn

5 Parameter estimation based on Approximate Bayesian Computing

Given both the observations (Section 3) and the statistical model presented in the
previous section, the natural next step is to use the observations to estimate the
unknown parameters in the statistical model λ, α, β, µ and σ. The most common

8 H. L. Hammer et al.

way to estimate parameters in statistical models is to optimise the likelihood
functions, which in this case can be written as

L(λ, α, β, µ, σ |y1, . . . ,yD) =
D∏
d=1

(∫ ∫ ∞∑
Nd=0

Poisson(Nd;λ)

[
Nd∏
n=1

Beta(adn;α, β) LogN(sdn;µ, σ)

]
G(yd |ad, sd)dad dsd

)

where yd = yd1, . . . , ydt, ad = ad1, . . . , adNd , sd = sd1, . . . , sdNd and G(yd |ad, sd)
refers to the relation in (2). Here G(yd |ad, sd) is a delta function since the relation
(2) is deterministic. Hence all possible combinations of Nd,ad, sd that can give
rise to the observed data, yd, need to be identified. If we knew Nd and also in
which time interval, [τt−1, τt], each adn and hdn = adn + sdn occurred, (2) can be
solved. Unfortunately, the number of ways of positioning the Nd arrivals and Nd
departures on T time intervals is given by(

2Nd + T − 1

2Nd

)

[13], which explodes as either Nd or T increases, and the likelihood function is
thus infeasible except for in the most simple cases.

Since the likelihood function is infeasible, we resort to a more indirect way of
estimating the parameters. Intuitively, if we generate outcomes from the statistical
model in Section 4 using the true parameter values (that generated the real data),
we would expect outcomes from the statistical model to be similar to the real
data. Fortunately, it is simple to generate outcomes from the statistical model
in Section 4, which means that such an indirect approach is possible. Such an
approach dates back to at least [23]. Recently, more efficient approaches have been
developed. They are called Approximate Bayesian Computing (ABC). See [5] and
[11] for good reviews of different ABC approaches.

The methodology can be described as follows. Suppose that we have a statisti-
cal model with parameter θ. Let p(θ) denote the prior distribution of the parameter
and let Υo denote the observations that were generated from the statistical model
with the unknown parameter θo. The goal is thus to estimate θo. The estimation
procedure can then be described as follows:

1. Generate a large set of realisations θ1, . . . , θM from the prior distribution p(θ).
2. For each realisation θi, generate an outcome from the statistical model Υi.
3. Compute a set of K different statistics (sample mean, variance etc.) for each

outcome Υi, S1(Υi), . . . , SK(Υi). These statistics summarise the main proper-
ties of the data.

4. Compute the same statistics for the observations S1(Υo), . . . , SK(Υo). Intu-
itively, if S1(Υi), . . . , SK(Υi) is close to S1(Υo), . . . , SK(Υo) using some suitable
metric, we expect that θi will be close to the unknown true parameter θo.

5. Fit a statistical model to the relation between the parameters and the statistics
using the realisations θi and S1(Υi), . . . , SK(Υi), i = 1, . . . ,M . We let θ be the
response of the model (although the opposite is also possible).

Queue Forecasting Model 9

6. Use the statistical model to obtain inference on the unknown parameter θo.
A simple approach is to just plug the observed statistics S1(Υo), . . . , SK(Υo)
into the statistical model and use the output from the model in Step 5 as the
estimate of θo.

The interested reader is referred to [5] and [11] for more details. In our case, θ
refers to the parameters λ, α, β, µ, σ and Υ to the outcomes from the model in
Section 4, i.e. yRd , d = 1, . . . , D.

5.1 CPU data statistics

A crucial part of the ABC methodology described in the previous section is choos-
ing statistics that are able to distinguish properties of realisations from the model
in Section 4 for different values of the parameters λ, α, β, µ, σ. Thus, we started
by generating realisations from the model for different values of the parameters.
We fixed the expected CPU consumption for outputs from the model as equal to
the value in the observations, i.e.

E(Nd)E(sdn) =
1

D

D∑
d=1

yd

λ exp (µ+ σ2/2) =
1

D

D∑
d=1

yd (3)

where the expectations on the left-hand side follow from the properties of the
Poisson and Log-normal distributions. We thus choose combinations of λ, µ and σ
that satisfy this relation. We start by setting λ = 50, µ equal to the four values
−6,−7.5,−9 and −10.5 and σ were chosen to satisfy (3). Finally we set α = β = 3,
which resulted in a few more requests happening during the day, which is in accor-
dance with the real data. To study the effects of adjusting the parametric values, we
generated several realisations from the model for the different parametric choices.
One realisation from each of the values of µ is shown in Figure 2. We see that
setting µ = −6 (upper left panel), each CPU request is small and about the same
size. For µ = −9 (lower left panel), we see that the output from the model contains
both very small tasks and large tasks (the CPU consumption is high for long time
periods). For µ = −10.5 (lower right panel), this happens to an even larger degree.
Comparing this to the real data in Figure 1, the lower left panel in Figure 2 seems
to be most similar to the real data. However, there seem to be more spikes in the
real data, indicating that λ = 50 is too low a value to replicate the properties of
the real data.

Figure 3 shows the same as Figure 2 except that we increased λ to 1000. Since
we now get far more requests to the CPU, the expected size of each request must
be smaller and we set µ = −9,−11,−13 and −15. Comparing Figures 2 and 3, we
see that by increasing λ we get more spiky data, which is in accordance with the
real data. The lower right panel of Figure 3 seems to replicate properties of the
real data quite well.

Figures 2 and 3 show that, by adjusting the parameters of the model, we end up
with CPU data with different properties. We saw that the ABC method relies on

10 H. L. Hammer et al.

Fig. 2 Realisations from the model in Section 4 for λ = 50. For the panels from upper left to
lower right, µ = −6,−7.5,−9 and −10.5, respectively.

Fig. 3 Realisations from the model in Section 4 for λ = 1000. For the panels from upper left
to lower right, µ = −9,−11,−13 and −15, respectively.

Queue Forecasting Model 11

finding suitable statistics of the real data. In the experiments, we use the following
statistics.

– Average CPU consumption.

y =
1

D

D∑
d=1

yd

– Cumulative probabilities. Define

Pq =
1

DT

D∑
d=1

T∑
t=1

I(ydt < q)

being the proportion of observations with a value less than q (quantile). We
see that with λ = 50 compared to λ = 1000, a CPU consumption equal to
zero, one and two is far more common, since we have less disturbances from
zero, one or two cores running. The same is observed if we use a lower value
of µ (lower right panel in Figures 2 and 3). Thus, choosing values of q close to
these values seems reasonable. In the estimation procedure, we therefore use
the following values of q: 0.01, 0.1, 0.5, 0.9, 0.99, 1.01, 1.1, 1.5, 1.9, 1.99, 2.01,
2.1 and 2.5.

– To measure the degree of spikiness, we compute the change in CPU consump-
tion from one time step to the next

1

D(T − 1)

D∑
d=1

T∑
t=2

|ydt − ydt−1|

– We expect the spikiness measure above to be higher if the average CPU con-
sumption is high. Therefore we also compute the relative change from one time
step to the next.

1

D(T − 1)

D∑
d=1

T∑
t=2

|ydt − ydt−1|
MA(t)

where MA(t) is a moving average estimate of the expected CPU consumption
at different times during the day

MA(t) =
1

D(2L− 1)

D∑
d=1

L∑
l=−L

yd(t−l)

In the experiments, we used L = 5. We use the moving average instead of the
CPU consumption observations directly since the observations are very spiky,
resulting in unstable estimates.

– Changes in average load from one day to another. From Figure 1, we see that
in the real data the average load varies quite a lot from one day to another,
and we should have the same property in the model. There we include the
standard deviation in the daily averages

SDy =

√√√√ 1

D − 1

D∑
d=1

(yd − y)2

12 H. L. Hammer et al.

Typically choosing µ and σ, so that the Log-normal distribution becomes more
heavy tailed, like the lower right panels in Figures 2 and 3, the standard devi-
ation of the daily average increases.

– Finally, we need some statistics to capture the inhomogeneity in requests during
the day, i.e. to estimate the parameters α and β. Let V be a stochastic variable
with probabilities

P (V = τt) =
MA(t)∑T
t=1MA(t)

, t = 1, 2, . . . , T

which can be interpreted as the probability of requests to the CPU at different
times during the day. We now compute the expectation and standard deviations
of V and use these values as statistics

E(V) =
T∑
t=1

τt P (V = τt)

SD(V) =

√√√√ T∑
t=1

(τt − E(V))2 P (V = τt)

If most of the requests take place early (late) during the day, E(V) will have a
low (high) value. The parameters α and β are directly related to the statistics
E(V) and SD(V).

6 Forecasting future CPU consumption

In this section we present procedures for forecasting future CPU consumption.
The first procedure forecasts the average CPU consumption in disjoint time in-
tervals, while the second procedure forecasts the instantaneous CPU consumption
at any time point in the future. Only by taking into consideration the underlying
queue process is it possible to forecast the instantaneous CPU consumption at
any time point in the future. This means that the HMM in [16] or any time series
models is limited to only forecasting the average CPU consumption and not the
instantaneous CPU consumption.

We expect the queue model to forecast well since it is able to capture the
complex time dependency patterns of the underlying queue process.

6.1 Forecasting average CPU consumption

We assume that we have estimated the parameters of the queue model from historic
CPU consumption data using the procedure above. Further, we assume that we
have received observations on a new day, d0, up to time t, yd01, yd02, . . . , yd0t. We
now want to forecast the future CPU consumption yd0t+1, yd0t+2, We suggest
the following procedure:

1. Start by generating realisations from the queue model for P days, yRp , p =
1, 2, . . . , P , using parameter values estimated from the historic CPU consump-
tion data.

Queue Forecasting Model 13

2. Compare the values of each of the realisations and the observations in a neigh-
bourhood up to time t. We consider two metrics:

– Interval of length S: dp =
∑S
h=0

(
ydo,t−h − y

R
p,t−h

)2
.

– Exponential decay: dp =
∑t−1
h=0 e

−γh (ydo,t−h − yRp,t−h)2.
3. Select the Ψ realisations with the smallest dp. Denote the selected realisations

yRp(ψ), ψ = 1, . . . , Ψ .

4. Forecast the CPU consumption at time t+g, denoted ŷd0,t+g, using one of the
following two strategies
– Average:

ŷd0,t+g =
1

Ψ

Ψ∑
ψ=1

yRp(ψ),t+g

In the experiments we denote this strategy AV.
– Weighted average:

ŷd0,t+g =
1

W

Ψ∑
ψ=1

1

dp(ψ)
yRp(ψ),t+g

where W =
∑Ψ
ψ=1 d

−1
p(ψ). Intuitively, we should give more weight to the

realisations closest to the observations. In the experiments we denote this
strategy WAV.

The intuitive thinking behind the procedure is that realisations that are close to
the observations in a time period up to time t should have more or less the same
underlying arrival and departure times in the neighbourhood of time t, and the
realisations should therefore also be close to the observations in the neighbourhood
after time t. The forecast procedure is able to take into account the complex
dependency structures of the underlying queue model and lay the foundation for
precise forecasting.

6.2 Forecasting instantaneous CPU consumption at any time point

The procedure above forecasts the averge CPU consumption in disjoint time in-
tervals in the future. It could be argued that it is rather the forecasting of the
instantaneous CPU consumption at any time point in the future that is of main
interest. By making small modifications to the procedure above, we can forecast
this. Suppose that we want to forecast the CPU consumption at some arbitrary
time point in the future τ ′ > τt. Note that τ ′ can be any time point and not
limited by the discretisation of the observations. We modify the procedure above
as follows. In the third step above, for each of the selected realisations, we also
store the arrival and departure times. We denote them aRp(ψ),1, . . . , a

R
p(ψ),Np(ψ)

and

hRp(ψ),1, . . . , h
R
p(ψ),Np(ψ)

, ψ = 1, . . . , Ψ . The fourth step is modified as follows. For

each selected realisation, we can compute the CPU consumption at time τ ′ using
(1)

yRp(ψ)(τ
′) =

Np(ψ)∑
n=1

I
(
aRp(ψ),n < τ ′ < hRp(ψ),n

)
, ψ = 1, . . . , Ψ

14 H. L. Hammer et al.

We can further compute a probability distribution for the number of running
CPU cores at time τ ′ (which is the CPU consumption at time τ ′). For instance,
the probability that x CPU cores will be running at time τ ′ can be estimated as

P (yd0(τ ′) = x) =
1

Ψ

Ψ∑
ψ=1

I
(
yRp(ψ)

(
τ ′
)

= x
)
, x = 0, 1, 2, . . . (4)

or using a weighted sum depending on dp(ψ).

7 Experiments

In the first part of the experiments, we evaluated how well we were able to estimate
the parameters of the queuing model. In the next part, we performed a thorough
evaluation of the forecasting performance of the methods described in Section 6.
We compared it with different ARIMA models and the inhomogeneous hidden
Markov model in [16].

7.1 Parameter estimation

In the previous sections, we have built a realistic queue model for the CPU con-
sumption data and an estimation strategy based on the ABC framework. In this
Section, we will evaluate the estimation performance of the ABC procedure in Sec-
tion 5. The ABC procedure requires prior distributions for the unknown param-
eters. We assume that we have little prior information and chose wide uniformly
distributed priors as follows

p(λ) = Unif(50, 10000)

p(α) = Unif(0.5, 10)

p(β) = Unif(0.5, 10)

p(µ) = Unif(−25,−5)

p(σ) = Unif(0.5, 7)

where Unif(a, b) refers to the uniform distribution in the interval between a and b.

We started the parameter estimation by following the first three steps of the
ABC procedure described in Section 5 by generating M = 4 · 106 realisations and
computing the statistics presented in Section 5.1.

In the fifth step of the procedure, different statistical models can be used, such
as partial least square [29], neural net [4] or ridge regression [25]. We evaluated
both the neural net and the ridge regression approach. and the two approaches
resulted in very similar results. The results below are based on the neural net
approach.

In the rest of the paper, we set D = 19 and T = 288. which means that we have
288 observations per day (every five minutes) for 19 days. This is in accordance
with the real data presented in Section 3.

Queue Forecasting Model 15

Fig. 4 Synthetic example: Realisations from the ABC posterior distribution for the different
parameters of the model.

7.1.1 Synthetic data example

We started by generating a synthetic dataset over D = 19 days from the model
with parameter values λ = 500, α = 8, β = 8, µ = −10, σ = 2.2 and computed the
statistics from Section 5.1. If the estimation procedure performs well, we should get
reliable estimates of the parameters used to generate the synthetic data. Figure
4 shows a histogram of outcomes from the ABC posterior distribution for the
different parameters. We see that the procedure estimates the parameters of the
underlying queue process very well.

7.1.2 Real CPU consumption data example

Next, we ran the estimation procedure for the real data. Figure 5 shows a histogram
of outcomes from the ABC posterior distribution for the different parameters. We
see that we are able to get fairly precise estimates of the parameters in the queuing
model. In particular, the results reveal that the expected number of requests to the
CPU processor during a day is somewhere between 1000 (a request about every
1.5 minutes) and 5000 (a request about every 15 seconds). We see α ≈ β ≈ 3.5,
which means that most of the requests to the CPU processor take place in the
middle of the day (office hours), but 3.5 is not a very high value, so a fair amount
of the requests also happen at other times during the day.

Figure 6 shows four arbitrary realisations from the queue model using the esti-
mated parameters with the highest posterior probability (the MAP parameters).
By comparing Figures 1 and 6, we see that outcomes from the statistical model

16 H. L. Hammer et al.

Fig. 5 Real data example: Realisations from the ABC posterior distribution for the different
parameters of the model.

Fig. 6 Real data example: Four arbitrary realisations from the statistical model in Section 4
using the ABC MAP estimate of the model parameters.

Queue Forecasting Model 17

replicate the properties of the real CPU consumption data very well.

7.2 Forecasting

In this section, we evaluate the forecasting performance of the queue model. In
Sections 7.2.1 and 7.2.2, we evaluate the performance of forecasting average and
instantaneous CPU consumption, respectively, using the two procedures in Section
6.

7.2.1 Forecasting of average CPU consumption

We compared it with three alternative models.

– The hidden Markov model from [16], denoted HMM CPU in the rest of the
paper

– An autoregressive process of order one, denoted AR(1) in the rest of the paper.
– An ARIMA model. For the ARIMA model, we used the auto.arima function

in the forecast package [19] in the statistical software R [26]. More details
on the auto.arima function can be found in Section 3 of [19]. There is clearly
a daily seasonality in the CPU consumption data that needs to be included
in the model. The auto.arima function has a method for doing this, but it
performed poorly for our data since the data consist of many observations
per day (every fifth minute). We therefore followed the recommendations in
[20] and modelled the seasonality using a Fourier series approach. We used the
Akaike information criterion to choose the number of frequencies in the Fourier
series, ending up with three frequencies (K = 3 following the notation in [20]).

We forecast future CPU consumption using the procedure in Section 6.1 with
the following choices.

– In the first step of the procedure, we generated realisations from the queue
model for P = 100 000 days using the MAP estimates of the parameters in the
model.

– In the second step of the procedure, we used three different values of S, namely
S = 2, S = 6 and S = 12 referring to 10, 30 and 60 minutes backwards in time,
respectively. For the exponential decay approach, we chose γ, so that the weight
was reduced to 0.5 in 10, 30 and 60 minutes, which was achieved by setting
γ = ln (2)/2, γ = ln (2)/6 and γ = ln (2)/12, respectively.

– In the third step, we used two values for Ψ , namely Ψ = 50 and Ψ = 500.
– In the fourth step, we used both of the strategies AV and WAV.

We measured forecasting performance for all the combinations of the choices above,
ending up with 6 · 2 · 2 = 24 unique cases.

We evaluated the forecasting performance using leave-one-day-out cross vali-
dation. This means that we left out one of the D = 19 days to test the forecasting
performance and the 18 other days to train the different models above. We re-
peated this 19 times, so that each day was used as the test set. We measured
the forecasting error using the average difference in absolute value between the

18 H. L. Hammer et al.

Model Compare Ψ AV-WAV Error
QUEUE γ = ln (2)/6 500 WAV 0.102
QUEUE γ = ln (2)/6 50 WAV 0.103
QUEUE S = 6 500 WAV 0.104
QUEUE γ = ln (2)/6 500 AV 0.104
QUEUE S = 6 50 AV 0.105
QUEUE S = 6 50 WAV 0.105
QUEUE S = 6 500 AV 0.105
QUEUE γ = ln (2)/6 50 AV 0.105
QUEUE γ = ln (2)/12 500 WAV 0.108
QUEUE γ = ln (2)/12 500 AV 0.109
QUEUE γ = ln (2)/12 50 AV 0.111
HMM CPU – – – 0.111
ARIMA – – – 0.112
QUEUE γ = ln (2)/2 500 WAV 0.112
QUEUE γ = ln (2)/12 50 WAV 0.112
QUEUE γ = ln (2)/2 50 WAV 0.113
QUEUE γ = ln (2)/2 500 AV 0.113
QUEUE γ = ln (2)/2 50 AV 0.115
QUEUE S = 2 50 AV 0.117
QUEUE S = 2 500 WAV 0.117
QUEUE S = 12 50 WAV 0.117
QUEUE S = 12 500 AV 0.117
QUEUE S = 12 500 WAV 0.117
QUEUE S = 2 50 WAV 0.118
QUEUE S = 12 50 AV 0.118
QUEUE S = 2 500 AV 0.119
AR(1) – – – 0.135

Table 1 Forecasting performance of the different models. The columns from left to right show:
Model, choice in step two of the procedure in Section 6, choice in step three, choice in step
four and the forecasting error.

forecasting and the observation

Error =
1

T

T∑
t=1

∣∣∣ ŷt − yt ∣∣∣
where ŷt and yt refer to the forecasting and observation at time t during the test
day. We computed the forecasting error, forecasting 5, 10, 15 and 20 minutes into
the future.

Table 1 shows the results. The forecasting errors in the table are computed as
the average of the forecasting error going 5, 10, 15 and 20 minutes into the future.
We see that the AR(1) model performs more poorly than the more advanced
models. The ARIMA and the HMM CPU models perform about equally well.
The performance of the queue model in this paper depends on the choice of the
parameters. The choice of S and γ seems to be quite important. The method
performs very well using a history of about 30 minutes(γ = ln (2)/6 or S = 6)
and outperforms both the ARIMA and the HMM CPU models. Using a history
of 10 minutes or one hour, the performance mostly drops below ARIMA and
HMM CPU. It also seem that combining Φ = 500 and WAV results in a better
performance than Φ = 50 and AV, which means that it is better to select many
realisations and weight them than to select only a few without weighting.

Figure 7 shows the forecasting performance of the queue model with the best
parameter choices and compared to HMM CPU, ARIMA and AR(1). We see that

Queue Forecasting Model 19

Fig. 7 Forecasting performance of the queue model with the best parameter choices and
compared to HMM CPU, ARIMA and AR(1).

the queue model outperforms the other models for all forecasting time horizons.

7.2.2 Forecasting instantaneous CPU consumption

As described earlier in the paper, neither the HMM model in [16] nor the time
series models used for comparison in the previous section can be used to forecast
instantaneous CPU consumption, and we therefore do not have any models to
compare with. Instead of carrying out a comparison, we run a small experiment to
demonstrate the results of instantaneous forecasting. We select a time point with
high CPU consumption and forecast the instantaneous CPU consumption from 30
seconds to 20 minutes into the future.

We use the forecasting procedure in Section 6.2 with γ = ln (2)/6 and Ψ = 500,
which were the best choices in the experiments above. Further, we use (4) to
compute the probabilities. The results are shown in Figure 8. The black curve
shows the CPU consumption data in a time span of 50 minutes, 30 minutes before
the forecasting starts and 20 minutes after. We see that for the first 30 minutes the
CPU consumption is constantly about one, meaning that the CPU is processing
a large task. The grey curves show the forecasting of the instantaneous CPU
consumption. We see that the procedure forecasts a high probability of one core
running, which seems reasonable since the CPU was processing a large task when
the forecasting started. Going further into the future, the probability of one core
running is gradually reduced to about 0.8 after 20 minutes.

20 H. L. Hammer et al.

Fig. 8 Forecasting instantaneous CPU consumption from 30 seconds to 20 minutes into the
future. The CPU consumption (black curve) is read on the left y-axis, while probabilities (grey
curves) are read on the right y-axis.

8 Closing remarks

In this paper, we build a statistical model to replicate how observed CPU con-
sumption data are generated. We demonstrate that, by adjusting the parameters of
the statistical model, the outcomes of the model have different properties. Next,
we build statistics that quantify these differences and are used to estimate the
parameters of the statistical model to replicate the properties of real CPU con-
sumption data. Our results show that realisations from the queue model replicate
the properties of real CPU consumption data very well.

Further, we show that the queue model outperforms both the HMM CPU model
from [16] and an ARIMA model in forecasting future CPU consumption. Another
good property of the queue model is that we can forecast the instantaneous CPU
consumption at any time point in the future following the second procedure in
Section 6. This is only possible by taking into account the underlying queuing
process that generated the real CPU consumption data. Therefore, neither the
HMM CPU in [16] nor ARIMA models can forecast this, but only the average
CPU consumption at disjoint time intervals in the future.

It could be argued that our M/G/∞ modelling of the CPU processor is a
little simplified compared to how modern multi-core CPU processors work. The
procedure in this paper only requires that we are able to generate outcomes from
the statistical model, which means that the M/G/∞ assumption can be replaced
by other and more complex assumptions without affecting the usefulness of the
approach.

Queue Forecasting Model 21

References

1. SK Acharya. On normal approximation for maximum likelihood estimation from single
server queues. Queueing systems, 31(3-4):207–216, 1999.

2. Vineet Aggarwal, Natarajan Gautam, Soundar RT Kumara, and Mark Greaves. Stochastic
fluid flow models for determining optimal switching thresholds. Performance Evaluation,
59(1):19–46, 2005.

3. Farid Benhammadi, Zahia Gessoum, Aicha Mokhtari, et al. Cpu load prediction using
neuro-fuzzy and bayesian inferences. Neurocomputing, 74(10):1606–1616, 2011.

4. Michael GB Blum and Olivier François. Non-linear regression models for approximate
bayesian computation. Statistics and Computing, 20(1):63–73, 2010.

5. Michael GB Blum, Maria Antonieta Nunes, Dennis Prangle, Scott A Sisson, et al. A
comparative review of dimension reduction methods in approximate bayesian computation.
Statistical Science, 28(2):189–208, 2013.

6. Brian Bouterse and Harry Perros. Scheduling cloud capacity for time-varying customer de-
mand. In 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET),
pages 137–142. IEEE, 2012.

7. Konstantinos Christodoulopoulos, Vasileios Gkamas, and Emmanouel A Varvarigos. Sta-
tistical analysis and modeling of jobs in a grid environment. Journal of Grid Computing,
6(1):77–101, 2008.

8. DR Cox. The statistical analysis of congestion. Journal of the Royal Statistical Society.
Series A (General), 118(3):324–335, 1955.

9. Peter A Dinda. Online prediction of the running time of tasks. Cluster Computing,
5(3):225–236, 2002.

10. Peter August Dinda. Resource Signal Prediction and Its Application to Real-time Schedul-
ing Advisors. PhD thesis, Pittsburgh, PA, USA, 2000. AAI9986588.

11. Christopher C Drovandi, Anthony N Pettitt, Anthony Lee, et al. Bayesian indirect infer-
ence using a parametric auxiliary model. Statistical Science, 30(1):72–95, 2015.

12. Paul Fearnhead. Filtering recursions for calculating likelihoods for queues based on inter-
departure time data. Statistics and Computing, 14(3):261–266, 2004.

13. William Feller. An introduction to probability theory and its applications. Vol. I. 1950.
14. Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical dis-

tributions. John Wiley & Sons, 2011.
15. Lizheng Guo, Tao Yan, Shuguang Zhao, and Changyuan Jiang. Dynamic performance

optimization for cloud computing using m/m/m queueing system. Journal of Applied
Mathematics, 2014, 2014.

16. Hugo Lewi Hammer, Anis Yazidi, and Kyrre Begnum. An Inhomogeneous Hidden Markov
Model for Efficient Virtual Machine Placement in Cloud Computing Environments. Jour-
nal of Forecasting, 2016.

17. Hugo Lewi Hammer, Anis Yazidi, Alfred Bratterud, H̊arek Haugerud, and Boning Feng.
Recovering Request Patterns to a CPU Processor from Observed CPU Consumption Data.
In Industrial Networks and Intelligent Systems, pages 14–28. Springer, 2017.

18. Knut Heggland and Arnoldo Frigessi. Estimating functions in indirect inference. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 66(2):447–462, 2004.

19. RJ Hyndman and Y Khandakar. Automatic time series forecasting: the forecast package
for r. Journal of Statistical Software, 26(3):1–22, 2008.

20. Hyndman, RJ. Forecasting with long seasonal periods.
http://robjhyndman.com/hyndsight/longseasonality/, Sep 2010.

21. Sudha Jain. Relative efficiency of a parameter for a M/G/1 queueing system based on
reduced and full likelihood functions. Communications in Statistics-Simulation and Com-
putation, 21(2):597–606, 1992.

22. Jong Kim and Kang G Shin. Execution time analysis of communicating tasks in distributed
systems. Computers, IEEE Transactions on, 45(5):572–579, 1996.

23. Daniel McFadden. A method of simulated moments for estimation of discrete response
models without numerical integration. Econometrica: Journal of the Econometric Society,
pages 995–1026, 1989.

24. Jing Mei, Kenli Li, Aijia Ouyang, and Keqin Li. A profit maximization scheme with
guaranteed quality of service in cloud computing. Computers, IEEE Transactions on,
64(11):3064–3078, 2015.

25. Gisela Muniz and BM Golam Kibria. On some ridge regression estimators: An empirical
comparisons. Communications in Statistics-Simulation and Computation, 38(3):621–630,
2009.

22 H. L. Hammer et al.

26. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2015.

27. Sena Seneviratne and David C Levy. Task profiling model for load profile prediction.
Future Generation Computer Systems, 27(3):245–255, 2011.

28. Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale: elastic re-
source scaling for multi-tenant cloud systems. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, page 5. ACM, 2011.

29. Michael Sjöström, Svante Wold, Walter Lindberg, Jan-Åke Persson, and Harald Martens.
A multivariate calibration problem in analytical chemistry solved by partial least-squares
models in latent variables. Analytica Chimica Acta, 150:61–70, 1983.

30. Rich Wolski, Neil T Spring, and Jim Hayes. The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Generation Computer
Systems, 15(5):757–768, 1999.

31. Wei Xiong and Tayfur Altiok. Queueing analysis of a server node in transaction processing
middleware systems. Computers & Operations Research, 35(8):2561–2578, 2008.

32. Jing Xu and José Fortes. A multi-objective approach to virtual machine management
in datacenters. In Proceedings of the 8th ACM international conference on Autonomic
computing, pages 225–234. ACM, 2011.

33. Dingyu Yang, Jian Cao, Jiwen Fu, Jie Wang, and Jianmei Guo. A pattern fusion model for
multi-step-ahead cpu load prediction. Journal of Systems and Software, 86(5):1257–1266,
2013.

34. Lingyun Yang, Ian Foster, and Jennifer M Schopf. Homeostatic and tendency-based cpu
load predictions. In 2003 IEEE International Parallel and Distributed Processing Sympo-
sium, pages 9–pp. IEEE, 2003.

35. Mustafa Yuzukirmizi and J MacGregor Smith. Optimal buffer allocation in finite closed
networks with multiple servers. Computers & Operations Research, 35(8):2579–2598, 2008.

36. Yuanyuan Zhang, SUN Wei, and Yasushi Inoguchi. Cpu load predictions on the compu-
tational grid. IEICE TRANSACTIONS on Information and Systems, 90(1):40–47, 2007.

37. Zhongju Zhang and Weiguo Fan. Web server load balancing: A queueing analysis. Euro-
pean Journal of Operational Research, 186(2):681–693, 2008.

