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Alternative gauge for the description of the light-matter interaction in a relativistic framework

Tor Kjellsson,1,* Morten Førre,2 Aleksander Skjerlie Simonsen,2 Sølve Selstø,3 and Eva Lindroth1

1Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
2Department of Physics and Technology, University of Bergen, N-5007 Bergen, Norway

3Faculty of Technology, Art and Design, Oslo and Akershus University College of Applied Sciences, NO-0130 Oslo, Norway
(Received 29 June 2017; published 29 August 2017)

We present a generalized velocity gauge form of the relativistic laser-matter interaction. In comparison with
the (equivalent) regular minimal coupling description, this form of light-matter interaction results in superior
convergence properties for the numerical solution of the time-dependent Dirac equation. This applies both to the
numerical treatment and, more importantly, to the multipole expansion of the laser field. The advantages of the
alternative gauge is demonstrated in hydrogen by studies of the dynamics following the impact of superintense
laser pulses of extreme ultraviolet wavelengths and subfemtosecond duration.
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I. INTRODUCTION

With high laser intensities, available now or in the near
future [1–4], and the interesting possibilities thus opening,
discussed for example in Ref. [5], the description of the
light-matter interaction in a relativistic framework is of
growing importance. The ionization dynamics initiated with
few-cycle laser pulses calls further for a time-dependent
treatment. Several attempts have consequently been made to
solve the time-dependent Dirac equation (TDDE) (see, e.g.,
Refs. [6–9]), but it has proven to be a hard task to explore
the truly relativistic region while simultaneously accounting
for the spatial dependence of the electromagnetic field and
the full dimensionality of the problem. Recently, however, a
numerical study was made where high orders of multipole
interaction terms were successfully accounted for [10]. Field
intensities up to the strength where electrons are expected
to reach quiver velocities, vquiv ≈ eE0/mω, of around 20%
of the speed of light were treated, and emerging relativistic
effects could be detected. Still, the study also underlined some
severe problems appearing when one is tackling the TDDE,
concerning in particular the inclusion of magnetic effects.

When electrons are driven to high velocities by laser fields,
the magnetic part of the electromagnetic field inevitably be-
comes increasingly important. An interesting effect emerging
is the force imposed on the particle in the propagation direction
of the light. Simulations in the low- or medium-intensity
regimes are usually made within the dipole approximation,
where the spatial dependence of the vector potential of
the pulse is neglected completely. Since this approximation
implies a neglect of all magnetic effects, it is rather pointless
in the high-intensity regime [11]. To understand the importance
of different types of effects beyond the dipole approximation, it
is illustrative to look at the studies within this regime that have
been done with the nonrelativistic time-dependent Schrödinger
equation (TDSE). In that case, the spatial dependence of
the vector potential may conveniently be treated through a
Taylor expansion [12,13] and the lowest order contribution
has been shown to dominate the dynamics beyond the dipole
completely—at least up to intensities that drive the electron
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to velocities just above 10% of the speed of light [12].
Surprisingly enough, as shown in Ref. [10], when the same
approach is used with the TDDE, the lowest order spatial
contribution from the Taylor expansion gives results that
deviate significantly from the nonrelativistic results already at
modest intensities, far below the relativistic regime. This can
be corrected by adding the next term in the expansion, but when
the intensity is increased further the situation is repeated and
one is forced to include also the following term and so on. This
behavior can be analyzed and understood in the nonrelativistic
limit, as shown in Ref. [10] and also discussed in Sec. II A
below. The problem stems from contributions that are known
to cancel (approximately), but which enter in different formal
orders with respect to the Taylor expansion when it is applied
to the Dirac equation. Wherever the expansion is truncated,
there will be unbalanced contributions which at some intensity
will play a significant role. This imbalance is inherent to
the four-component Dirac equation, and if the TDDE is to
be solved for strong relativistic pulses, the Taylor expansion
approach in the regular minimal coupling Hamiltonian quickly
leads to an intractable problem.

Recently, a generalized velocity gauge form of the nonrela-
tivistic light-matter interaction was presented [14,15]. Within
this gauge, the dipole contribution is given as in velocity
gauge, while the so-called diamagnetic term disappears and
instead other terms appear. Of these, the leading-order ones
depend explicitly on the momentum in the direction of the
laser propagation and this gauge was consequently coined the
propagation gauge. It was further shown that it is possible
to use a series of gauge transformations to successively
remove all field-dependent terms that do not depend explicitly
on the momentum. The lowest order interaction within this
gauge was further tested [14] and compared to simulations
performed with the traditional minimal coupling Hamiltonian.
Impressive numerical advantages were then demonstrated.
One manifestation of this was the evolution of the momentum
expectation value along the direction of propagation of the
light. In the minimal coupling description, it showed a
strong oscillating behavior, but in the other gauge it was
replaced by a smooth curve that could be sampled with much
larger time steps. Moreover, for a wave function expanded
in spherical harmonics, the ionized wave packet could be
described with considerably fewer angular momenta. In the
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following, we will show that a corresponding gauge choice
for the TDDE is even more advantageous. It requires just a
single gauge transformation, it takes a simpler form, and it is a
promising candidate for studying strong relativistic multipole
interactions.

The paper is structured as follows: In the next section,
we outline the theoretical framework. Brief details on the
implementation are provided in Sec. III, while the results are
presented and discussed in Sec. IV. Finally, we present our
conclusions in Sec. V. Atomic units are used throughout the
text unless explicitly stated otherwise.

II. THEORY

In a nonrelativistic framework, the evolution of a wave
packet representing a particle of mass m and charge −e in the
scalar field ϕ and vector potential A is governed by the TDSE,

ih̄
d

dt
�NR = HNR(t)�NR, (1)

with the Hamiltonian

HNR(t) =
[

p2

2m
− eϕ + e

m
p · A + e2A2

2m

]
. (2)

Here the potential A has been taken to fulfill the Coulomb
gauge condition, ∇ · A = 0. When we let the electromagnetic
pulse be defined in terms of the vector potential A, and
assume the field to be linearly polarized along the z axis and
propagating along the x axis, the pulse may be written

A(η) = A(η)ẑ = E0

ω
f (η) sin(η + φ) ẑ, (3)

where η = ωt − kx and k = ω/c. The envelope function is
chosen to be sine squared:

f (η) =
{

sin2
(

πη

ωT

)
, 0 < η < ωT

0, otherwise
. (4)

In the dipole approximation, when the spatial dependence
of the vector potential is neglected, the A2 term can be
removed by a gauge transformation and consequently does
not affect the dynamics. On the other hand, this diamagnetic
term is known to give the leading contribution beyond the
dipole approximation in the high-intensity limit. This has, e.g.,
been shown in Ref. [12], where the spatial dependence of the
vector potential was examined with the help of a Taylor series
expansion:

A(η) ≈
ntrunc∑
n=0

1

n!

dnA(η)

dηn

∣∣∣∣
η=ωt

(
−ωx

c

)n

. (5)

To incorporate the spatial dependence of A, expansions such
as Eq. (5) are often employed since this allows for separation
in temporally and spatially dependent factors. Alternatively,
coupling elements must be calculated at each and every
numerical time step. While this does not constitute any
additional problem for implementations based on numerical
grids, in which the spatially dependent operators are treated
explicitly, it is likely to ruin the advantages offered by
implementations in which the wave function is expanded in
nonlocal basis states. We notice here, however, an interesting
approach in a recent work by Ivanov [16].

In Ref. [12], a Taylor expansion with ntrunc � 2 was
considered. A point worth noticing here is that the diamagnetic
term is second order in A, and thus an expansion of A to
a particular order in (ωx/c)n does not imply an expansion
of the Hamiltonian to the same order. The contributions to
the Hamiltonian with, for example, n = 2 come from the
square of the n = 1 term in Eq. (5) and from the cross term
between the n = 0 and n = 2 terms. Furthermore, there should
be considerable cancellations between these terms; their sum
oscillates with twice the frequency of the light while each of
them have a constant sign. Large cancellations were indeed
found in Ref. [12], and it was concluded that it is decisive to
include all terms that contribute to the Hamiltonian to a given
order. When the corresponding time-dependent Dirac equation
is solved using the minimal coupling Hamiltonian [10], the
diamagnetic term, which is then only implicitly included,
causes severe convergence problems in terms of the multipoles
of the external field. This is connected to an effective blocking
of the aforementioned cancellations as will be clear in the
following.

Turning now to the TDDE, the first step will be to consider
the minimal coupling Dirac Hamiltonian,

H (t) = cα · [p + eA(η)] − eϕ(r)14 + mc2β, (6)

and

α =
(

0 σ

σ 0

)
. (7)

As usual, σ is given by the Pauli matrices, and

β =
(
12 0
0 −12

)
. (8)

We set out to solve the TDDE,

ih̄
d

dt
�̃ = H (t)�̃, (9)

where the four-component wave function �̃ can be written as

�̃(r,t) =
(

�̃F (r,t)
�̃G(r,t)

)
, (10)

with �̃F and �̃G being two-component spinors, often called
the large and small components, respectively. The potential
ϕ(r) is for the present purposes simply the Coulomb potential
from a point nucleus; i.e., we neglect retardation effects in the
electron-nucleus interaction and take the nuclear mass to be
infinite.

A. The nonrelativistic limit of the relativistic
minimal coupling Hamiltonian

In order to understand the origin of the problems en-
countered with the TDDE expressed in terms of the original
minimal coupling Hamiltonian, it is important to study its
nonrelativistic limit. Since we are aiming for a solution to the
TDDE which describes a positive energy state, we may write

�̃(r,t) = �(r,t)e−imc2t . (11)

Equation (9) can then be rewritten as

ih̄
d

dt
�(r,t) = [H (t) − mc2]�(r,t). (12)
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Using the form of the wave function given in Eq. (10), we can
write Eq. (12) as two coupled differential equations:

−eϕ�F + cσ · (p + eA) �G = ih̄
d�F

dt
,

cσ · (p + eA)�F + (−eϕ − 2mc2) �G = ih̄
d�G

dt
. (13)

If only the dominating terms on the second line is retained (i.e.,
assuming that the mass-energy term is large both compared to
the potential energy, 2mc2 � eϕ, and to the time variation
of the small component), it is possible to write the small
component as

�G ≈ 1

2mc
σ · (p + eA)�F . (14)

When inserting this into the first line of Eq. (13), we get

−eϕ�F + 1

2m
[σ · (p + eA)]2 �F = ih̄

d�F

dt
, (15)

and with some operator algebra, detailed in Ref. [10], this
expression can be rewritten as(

p2

2m
− eϕ + e

m
p · A + e2A2

2m
+ eh̄

2m
σ · B

)
�F = ih̄

d�F

dt
,

(16)

where B = ∇ × A. Apart from the spin-dependent term, the
operators on the left-hand side are the same as those that
appeared in Eq. (2). In particular, we note the diamagnetic
contribution, which apparently is implicitly included in the
TDDE through the coupling between the small and large
components of the wave function. Hence, the advice from
Ref. [12] regarding the consistent inclusion of the xn terms
from the Taylor expansion of A is not easy to follow for
the TDDE. Since the Dirac equation is linear in the vector
potential, truncation after a particular n in Eq. (5) will result in
an implicitly included diamagnetic term that contains the x2n

contributions from the square of the xn term, but not the cross
terms between higher and lower order terms that are also
x2n contributions. As a consequence, the solution of the
TDDE with only the lowest order spatial correction (n = 1)
to the vector potential generally gives meaningless results, as
demonstrated in Ref. [10]. Furthermore, the convergence of
the dynamics with respect to ntrunc in Eq. (5) was shown to
be very slow once the laser pulse parameters started to enter
the relativistic regime. In the case where the electron was
accelerated to a quiver velocity of vquiv ∼ 0.2c, a fifth-order
expansion was necessary for converged results. It is natural
to assume that an even higher order expansion would be
necessary further into the relativistic regime, and with each
additional term xn in Eq. (5), the computational demand
quickly turns this into an intractable problem. It is thus highly
relevant to instead seek an alternative route less prone to
growing so complex when the dynamics become increasingly
relativistic.

B. The relativistic propagation gauge

Since it is the actual way the diamagnetic contribution
resurfaces in the TDDE that causes the convergence problems,
it might be possible to find an alternative form where it is easier

to balance the terms included in Eq. (5). We are, for instance,
free to make a gauge transformation to change the scalar field
and vector potential as

A → A + ∇ζ, ϕ → ϕ − ∂ζ

∂t
, (17)

which will yield a transformed Hamiltonian:

H = cα · [p + eA(η) + e∇ζ ] +
[
e
∂ζ

∂t
− eϕ(r)

]
14 + mc2β.

(18)

In Ref. [14], it was shown that by choosing a gauge that
followed the classical electron momentum in the direction
of the light propagation, pk , the diamagnetic term in the
Schrödinger equation could be removed and replaced by
operators that showed superior convergence properties. In the
relativistic case, as shown in Refs. [17,18], a free classical
particle that is initially at rest will acquire the momentum

pk(η) = mc

2

[
eA(η)

mc

]2

, (19)

when exposed to the electromagnetic field given by A(η). It
is natural to assume that a suitable gauge can be found if ζ

is defined using Eq. (19), but we start by defining it with an
additional operator, ℵ(η), that remains to be determined:

ζ (η) = −mc2

eω

∫ η

−∞
dη′ 1

2

[
eA(η′)

mc

]2

ℵ(η′). (20)

The introduction of ℵ is related to the distinction between
the relativistic and the nonrelativistic version of the gauge
transformation leading to the propagation gauge formulation
[14,15]. We will return to its specific form in the following.

With the vector potential polarized along the z axis and the
field propagating along the x axis we obtain

e∇ζ = −mc2

ω
x̂

∂η

∂x

d

dη

∫ η

−∞
dη′ 1

2

(
eA(η′)

mc

)2

ℵ(η′)

= +x̂ k
mc2

ω

1

2

(
eA(η)

mc

)2

ℵ(η)

= x̂ mc
1

2

(
eA(η)

mc

)2

ℵ(η) , (21)

where k = ω/c has been used in the last step.
Equation (21) is a vector operator in the propagation

direction of the field. Further, with

e
∂ζ

∂t
= −mc2

2

(
eA(η)

mc

)2

ℵ(η), (22)

we may now write down the propagation gauge Dirac
Hamiltonian, HPG:

HPG = cα · [p + eA(η)] − eϕ(r)14

+mc2β + e2A2(η)

2m
ℵ(η)(αx − 14), (23)

where the first line is just the minimal coupling Dirac
Hamiltonian from Eq. (6). The second line, on the other

023426-3



TOR KJELLSSON et al. PHYSICAL REVIEW A 96, 023426 (2017)

hand, displays one operator proportional to αx , the relativistic
velocity operator in the direction of the propagation of the
light, and one counter term. As we will see, this counter term
cancels the implicit diamagnetic term contributed by the first
line when the equation is examined in the nonrelativistic limit.

C. The nonrelativistic limit of the relativistic propagation gauge

Starting again from Eq. (12) but now adding the new terms
from the second line in Eq. (23), instead of Eq. (13) we find

−
(

ϕ + e2A2

2m
ℵ
)

�F +
[
cσ · (p + eA) + σx

e2A2

2m
ℵ
]

�G

= ih̄
d�F

dt
(24)

[
cσ · (p + eA) + σx

e2A2

2m
ℵ
]
�F

−
(

eϕ + 2mc2 + e2A2

2m
ℵ
)

�G = ih̄
d�G

dt
. (25)

Following the derivation preceding Eq. (14), and assuming
in addition that 2mc2 dominates also over (e2A2/2m)ℵ, we
obtain an approximate relation between the large and small
components:

�G ≈ 1

2mc

[
σ · (p + eA) + σx

e2A2

2mc
ℵ
]
�F . (26)

Inserting this expression for �G into Eq. (24), we find the
propagation gauge Hamiltonian in the nonrelativistic limit [cf.
the expression for the minimal coupling Hamiltonian on the
left-hand side of Eq. (16)]:

H NR
PG = p2

2m
+ e

m
p · A + e2A2

2m
− eφ + eh̄

2m
σ · B

+ 1

2mc

{
e2A2

2m
ℵ,px

}
− e2A2

2m

(
ℵ − ℵ2 e2A2

4m2c2

)
,

(27)

where {a,b} denotes an anticommutator. In addition to the
original terms in Eq. (16), two new terms have appeared on
the last line of Eq. (27). It is evident that if we put ℵ = 1 the
diamagnetic term is canceled. However, another possibility is
to require

e2A2

2m
− e2A2

2m

(
ℵ − ℵ2 e2A2

4m2c2

)
= 0 (28)

and thus get rid also of the term proportional to A4. If Eq. (28)
is regarded as the defining equation for ℵ, we can readily write
down its expression as

ℵ =
1 −

√
1 − (

eA
mc

)2

1
2

(
eA
mc

)2 . (29)

It is clear from Eq. (29) that its range of validity is restricted
to the region where

(
eA

mc

)2

< 1, (30)

which is consistent with the approximation made to obtain
Eq. (26). In this case, we may also expand Eq. (29) and find

ℵ = 1 + 1

4

(
eA
mc

)2

+ 1

8

(
eA
mc

)4

+ 5

64

(
eA
mc

)6

+ · · · , (31)

which in fact is the series that was found in Refs. [14,15], i.e.,

ℵ =
∞∑

j=0

2aj+1

(
eA
mc

)2j

(32)

with aj = (2j )!

4j (2j − 1)(j !)2
.

With ℵ defined this way, we may write Eq. (27) as

H NR
PG = p2

2m
+ ep · A

m
− eφ + eh̄

2m
σ · B + 1

2mc

{
e2A2

2m
ℵ,px

}
,

(33)

which, apart from the spin-dependent term, is identical to
the propagation gauge Hamiltonian obtained directly from the
TDSE in Refs. [14,15].

D. The long-wavelength approximation

While a vector potential without spatial dependence does
not introduce any magnetic interaction in the ordinary min-
imal coupling Dirac Hamiltonian, Eq. (6), a purely time-
dependent A does provide an additional dynamical term in
Eq. (23): the term proportional to αx . Again this is in agreement
with the findings in Refs. [14,15]; in the propagation gauge
the radiation pressure is accounted for through a velocity
gauge-like operator acting along the propagation direction of
the laser in spite of a spatially independent A. The effective
Dirac Hamiltonian in this long-wavelength approximation
(LWA) is given by

HLWA = cα · [p + eA(ωt)] − eϕ(r)14 + mc2β

+ e2A2(ωt)

2m
ℵ(ωt)αx, (34)

where the terms that lack spatial dependence altogether have
been removed since they do not affect the dynamics. In
Sec. IV, we will show that the Hamiltonian Eq. (34) can
account fully for the dominating effects beyond the dipole
approximation for a wide range of electromagnetic pulses.
In fact, it gives excellent agreement with the much more
demanding fifth-order expansion of the Hamiltonian Eq. (6),
as applied in Ref. [10].

In principle, we are free to choose either ℵ = 1, to follow
the relativistic momentum in the direction of the propagation
of the laser light, or as given in Eq. (29) to allow for
a more straightforward comparison with the nonrelativistic
treatment. For sufficiently high fields, of course, there will
be differences for any nonexact implementation, as will be
demonstrated in Sec. IV. Lastly, although the properties of the
LWA-Hamiltonian Eq. (34) are very promising, we want to
emphasize that a practical implementation of Eq. (23) is by
no means restricted to the LWA approximation. It is indeed
possible to go further and introduce spatial dependence in
A, which should become important for sufficiently large field
strengths E0 and/or in the limit of very high laser frequencies.
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For illustrative purposes, we present a first-order beyond the
LWA Hamiltonian in the next section and later demonstrate that
it gives negligible contributions for the laser pulses considered
in this article, which accelerate the electron to quiver velocities
vquiv up to about 0.2c.

E. Beyond the long-wavelength approximation

We introduce a spatial dependence in A by using ntrunc = 1
in Eq. (5). Then, using ℵ = 1, the first order beyond the long-
wavelength approximation (BYLWA1) Hamiltonian can be
written as

HBYLWA1 = cα · [p + eA(ωt)]

− eαzxωA′(ωt) − eϕ(r)14 + mc2β

+ e2

2m

{
xω

c
2A(ωt)A′(ωt) − x2ω2

c2
[A′(ωt)]2

}
14

+ e2

2m

[
A2(ωt) − xω

c
2A(ωt)A′(ωt)

]
αx . (35)

It may seem odd that the two terms proportional to A2 in
Eq. (23) have been expanded differently. However, according
to the discussion in Sec. II A, this is indeed the proper way
of expanding the field-dependent terms as this minimizes
the problem with inconsistent terms appearing in the corre-
sponding nonrelativistic Hamiltonian. Note also that terms
lacking spatial dependence altogether have been removed from
Eq. (35).

In the continuation, we will demonstrate that the Hamil-
tonian HLWA in Eq. (34) provides practically all dynamics
for fields penetrating into the relativistic region, simply by
comparing its results with the corresponding results obtained
with HBYLWA1 as defined above. For clarity, we emphasize
that ℵ = 1 has been used in both Hamiltonians for a just
comparison. Before presenting our results, we briefly describe
our numerical implementation.

III. IMPLEMENTATION

We expand the wave function in eigenstates of the time-
independent Hamiltonian, i.e., Eq. (6) without A, giving

�(t) =
∑

n,j,m,κ

cn,j,m,κ (t)ψn,j,m,κ (r), (36)

with

ψn,j,m,κ (r) =
(

Fn,j,m,κ (r)
Gn,j,m,κ (r)

)
, (37)

where (
Fn,j,m,κ (r)
Gn,j,m,κ (r)

)
= 1

r

(
Pn,κ (r)Xκ,j,m(�)

iQn,κ (r)X-κ,j,m(�)

)
. (38)

Here κ = l for j = l − 1/2 and κ = −(l + 1) for j = l +
1/2. Xκ,j,m represents the spin-angular part, which has the
analytical form

Xκ,j,m =
∑
ms,ml

〈lκ ,ml ; s,ms |j,m〉Y lκ
ml

(θ,φ)χms
, (39)

where Y lκ
ml

(θ,φ) is a spherical harmonic and χms
is an

eigenspinor. The radial components Pn,κ (r) and Qn,κ (r) are

expanded in B-spline functions [19]:

Pn,κ (r) =
∑

i

aiB
k1
i (r), Qn,κ (r) =

∑
j

bjB
k2
j (r). (40)

Just as in Ref. [10], we use B-spline functions of orders k1 = 7
and k2 = 8 for the small and large components, respectively.
As has been shown by Froese Fischer and Zatsarinny [20], the
use of different k for the two components effectively removes
the so-called spurious states, which are known to appear when
the Dirac equation is solved within a finite basis set. We
use a linear knot sequence with 500 B-spline functions for
the large component and 501 for the small component up to
Rmax = 150 a.u. To avoid unphysical reflections at the box
boundary, we have used a complex absorbing potential starting
from r = 110 a.u. We include all spin orbitals with angular
momenta up to a certain lmax (as defined for the large
component) and keep all the associated magnetic quantum
numbers m; cf. Eqs. (38) and (39). To speed up the propagation,
without compromising the results, high-energy components
have been filtered out from the basis.

In Sec. IV, we present converged data for the energy distri-
bution, the expectation value of the momentum operator along
the pulse propagation direction, and finally, the total ionization
yield from the hydrogen ground state exposed to a 15-cycle,
95 eV (ω = 3.5 a.u.) laser field of intensity 7 × 1019 W/cm2

(E0 = 45 a.u.). For the two former quantities, converged
data were obtained with lmax = 30 for the propagation gauge
LWA, cf. Eq (34), corresponding to 1 902 594 states and
about 2.32 × 1010 nonzero matrix elements. In order to arrive
at the same result with the minimal coupling Hamiltonian,
Eq. (6), it was necessary to include lmax = 50 for the case
with ntrunc = 5 in Eq. (5). From now on, we will refer to this
level of approximation as fifth-order beyond dipole (BYD5).
The BYD5 simulation required 5 125 954 states and about
1.64 × 1012 nonzero matrix elements, i.e., roughly 70 times
more than our converged propagation gauge simulations.

For the ionization yield, which was systematically investi-
gated for both lower and higher values of E0, convergence was
always achieved with lmax = 40 for both HLWA, Eq. (34), and
HBYLWA1, Eq. (35). For further details on the implementation,
such as how interaction matrix elements are computed and
which numerical schemes are applied, readers are referred to
Ref. [10].

IV. RESULTS

We will first present results for the following scenario:
A hydrogen atom with the electron initially prepared in the
ground state is exposed to a laser pulse, defined in Eqs. (3) and
(4), with the parameters

E0 = 45.0 a.u., ω = 3.5 a.u., φ = 0,

and T = Nc
2π
ω

a.u. with Nc = 15. (41)

The pulse parameters are such that the electron’s quiver
velocity is expected to reach about vquiv ∼ 0.1c and have been
chosen primarily to demonstrate the convergence property of
the relativistic propagation gauge—not to reveal relativistic
effects per se. To show the convergence properties, the lowest
order interaction in the propagation gauge, LWA, cf. Eq. (34),
has been compared to the minimal coupling Hamiltonians
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FIG. 1. Kinetic energy spectrum of the emitted photoelectron
following the laser-assisted ionization of the hydrogenic ground
state, with the laser field described in Eq. (41). Results obtained
with the minimal coupling Hamiltonian Eq. (6) with the laser field
treated at five different level of approximations, i.e., in increasing
complexity from BYD1 to BYD5, as well as the result obtained with
the propagation gauge Hamiltonian in lowest order, i.e., the LWA in
Eq. (34), are shown for comparison. The minimal coupling results
are starting to converge with BYD4 and with BYD5 there is a good
agreement with the propagation gauge result.

ranging from BYD1 to BYD5, that is, with ntrunc = 1–5
in Eq. (5). Figure 1 shows a comparison of the energy
distribution of the ionized electron after interaction with the
pulse. A somewhat typical convergence pattern for the minimal
coupling simulations can be seen, where each successive
interaction type pushes the distribution to either side of the
fully converged result.

Figure 2 also shows the energy distribution but now only for
the minimal coupling BYD5 result and the propagation gauge
LWA result. The energy grid has been extended to include
the three first ionization peaks and a logarithmic scale is used
to better resolve the data. The coincidence between the LWA
result in the propagation gauge, which only involves purely
time-dependent fields, and the result using a fifth-order Taylor
expansion of the vector field within the minimal coupling
formulation Eq. (6), is evident.

For the nonrelativistic version of the propagation gauge
[14], an important demonstration of its computational advan-
tages was the smooth evolution of the expectation value of the
canonical momentum along the laser propagation direction,
〈px〉. Intuitively, the superior stability may be understood from
the fact that the canonical momentum within the propagation
gauge follows that of a free classical, i.e., nonquantum mechan-
ical, electron [cf. Eqs. (19) and (20)] also in the propagation
direction and not only in the polarization direction, as is the
case within the minimum coupling formulation. As seen in
Fig. 3, the same behavior is found for the corresponding
relativistic results. The violent oscillations seen using the
minimal coupling Hamiltonian are transformed into a smooth
development in the propagation gauge. We emphasize here
that the momentum evolutions presented in Fig. 3 do not

FIG. 2. As Fig. 1, but a comparison between the converged BYD5
minimal coupling result and the corresponding propagation gauge
result obtained within the LWA. The energy grid has been extended
and a logarithmic scale is used for higher resolution. The peaks
centered at roughly 3.0, 6.5, and 10.0 a.u. correspond to one, two,
and three absorbed photons, respectively.

correspond to kinetic momentum; they are highly gauge
dependent. Thus, the converged results in the two descriptions
need not be the same until after the interaction. The primary
feature of the smoothness seen in Fig. 3 is that it indicates
a much lower demand on the basis elements used in the
simulation, in this case dictated by the value of lmax.

Just as in Fig. 1, the convergence of the minimal coupling
Hamiltonian with respect to the BYD order is displayed in
Fig. 3. Interestingly, to the naked eye 〈px〉 seems to be
converged already at BYD3 while the probability distribution
shown in Fig. 1 clearly requires at least BYD5.

A comparison with nonrelativistic simulations is also in
order. As mentioned, the chosen pulse parameters result in

FIG. 3. Expectation value of the momentum in the propagation
direction of the pulse, as obtained with BYD1 to BYD4 as well as
the propagation gauge LWA, and for the laser field given in Eq. (41).
The total pulse duration is ∼26.9 a.u.
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FIG. 4. As Fig. 1, but a comparison of the relativistic and nonrel-
ativistic results, as obtained by the TDDE and TDSE, respectively.

an expected quiver velocity of vquiv ∼ 0.1c and only small
relativistic corrections, if any, are expected. Figure 4 shows a
comparison of the relativistic and nonrelativistic probability
distributions, as obtained by solving both the TDSE in the
propagation gauge LWA, cf. Ref. [14], and the TDDE with
the propagation gauge LWA Hamiltonian, Eq. (34), using
an equivalent basis set in both cases. Indeed, there are no
relativistic effects displayed in Fig. 4, and one only expects
these to appear at even higher intensities.

In order to search for possible relativistic effects, we
now systematically increase the field strength up to about
E0 = 100 a.u., corresponding to I ∼ 3.5 × 1020W/cm2 and
vquiv ∼ 0.2c. Figure 5 shows the resulting ionization yield
as a function of the electric field strength. The minimal
coupling results from Ref. [10] (TDDE BYD5), the relativistic
propagation gauge results obtained both within the LWA
[Eq. (34)] and beyond [Eq. (35)], as well as the corresponding
TDSE result, are shown for comparison. Again, the relativistic
corrections seem to be very small. Nevertheless, a tiny rela-
tivistic shift manifested as a decrease in the ionization yield,
is displayed as the quiver velocity approaches vquiv ∼ 0.2c.
Furthermore, Fig. 5 shows that the favorable behavior of the
LWA propagation gauge Hamiltonian persists over a wide
range of intensities, up to the onset of the relativistic regime.

Finally, going even further into the relativistic regime, the
important question of how to properly incorporate the full
spatial dependence of the field in the propagation gauge Dirac
Hamiltonian needs to be addressed. In an exact calculation, the
choice of ℵ, be it simply ℵ = 1 or as in Eq. (29) or, equivalently,
Eq. (32), does not matter, of course. However, with a truncated
representation of the field, cf. Eq. (5), this choice may be of
crucial importance, and increasingly so for increasing field
strengths. This dependence has been investigated and the first
results are shown in Fig. 6. As in Fig. 5, ionization probabilities
are shown for both the TDSE and the TDDE, but here for
field strengths E0 in the interval 80–105 a.u. and only within
the LWA. In going from ℵ as defined in Eq. (29) to simply
choosing ℵ = 1, i.e., truncation at the first term in Eq. (32),
a small shift downward is introduced, consistently both in the

FIG. 5. Ionization yield of a hydrogen atom irradiated by a laser
pulse with the parameters from Eq. (41) and varying peak electric field
strength E0. The relativistic propagation gauge results, obtained both
within the LWA and beyond, i.e., Eqs. (34) and (35), both agree with
the minimum coupling BYD5 results from Ref. [10]. A comparison
with the corresponding TDSE LWA result reveals a small relativistic
correction, manifested as a decrease in the ionization yield as the
quiver velocity approaches vquiv ∼ 0.2c. E0 = 90 a.u. corresponds to
a peak intensity of 2.8 × 1020 W/cm2.

relativistic and nonrelativistic treatments, respectively. Based
on the present results, it is still unclear which of the choices for
ℵ represent the best approximation nor where the LWA approx-
imation breaks down. However, the correspondence between

FIG. 6. As Fig. 5, but with the ionization yield obtained within the
LWA for different choices of the truncation in Eq. (32). The asterisk
(*) in the legend indicates simulations obtained when truncating the
expansion after 10 terms, while ℵ = 1 is used in the other two graphs
(see text for details). Both results obtained with the TDSE and the
TDDE are shown for comparison. In both the relativistic and the
nonrelativistic cases, a visible shift with respect to the truncation
level appears from E0 ∼ 60 a.u. (see Fig. 5) and becomes pronounced
from E0 ∼ 80 a.u. E0 = 100 a.u. corresponds to a peak intensity of
3.5 × 1020 W/cm2.
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the gauge transformation and the relativistic momentum in
the propagation direction for a corresponding free, classical
electron moving in the field, cf. Eq. (19), suggests that simply
ℵ = 1 should be the best choice. Although we here leave
these open questions for future research, simply due to the
computational complexity of the problem, it should be noted
that they could all be studied within the current computational
framework.

V. CONCLUSION

We have presented a generalized velocity gauge form
of the relativistic light-matter interaction and demonstrated
its superior convergence properties compared to the regular
minimum coupling Hamiltonian. As in the nonrelativistic
case, the alternative relativistic gauge relaxes the requirement
on the maximum angular momentum needed during the
time propagation. However, the major advantage goes even
beyond that. While the usual minimal coupling formulation
is numerically tough for high-intensity fields treated in a

nonrelativistic framework, it constitutes an intractable problem
in the relativistic case due to inherent imbalance in the Dirac
equation. The propagation gauge to a large extent removes this
imbalance and opens up for calculations on atoms subjected
to electromagnetic pulses in the truly relativistic regime.
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